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Abstract 

A new, simple and sensitive method, based on photoinduced chemiluminescence, was 

developed for the determination of quinmerac. The photoproduct, obtained after UV 

irradiation in basic medium, was mixed with sodium sulfite (sensitizer), and Ce(IV) 

(oxidant) in acid medium. A wide linear dynamic range (2-600 ng mL-1) and a limit of 

detection of 0.6 ng mL-1 were obtained without any pretreatment (0.08 ng mL-1 after 

solid phase extraction). The determination was performed using a flow injection 

manifold, which allowed a high throughput (144 h-1). The inter-day reproducibility was 

5.6% (n=5), and the intra-day repeatability was 3.9 and 2.9% for 20 and 200 ng mL-1 of 

quinmerac, respectively (n=21). Finally, the method was applied to surface and ground 

waters with recoveries ranging from 78.1 to 94.5%. 
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included in the list of “Active substances authorized for incorporation in plant 

protection products; only for uses as herbicide” from the European Union5. However, 

there are very few papers devoted to the development of new analytical procedures for 

its determination and these are multi-residue methods. In all cases, liquid 

chromatography (LC) coupled to mass spectrometry (MS)6-14 was used, except in the 

method proposed by Vandecasteele et al.15. In that case, a solid phase extraction (SPE) 

coupled to liquid-liquid microextraction and reversed-phase LC using diode array 

detection was proposed for quantification of 77 pesticides in groundwater, with a limit 

of detection of 175 ng mL-1.  

Most of existing LC-MS methods are applied to food samples, but some of them 

have been developed for the determination of quinmerac in water. E.g., tandem LC-

MS/MS was used for the determination of 300 pesticides in drinking water by Greulich 

et al.11.  That method allowed the determination of quinmerac residues down to 0.1 ng 

mL-1, with a good precision (RSD<18%, n=15) and insignificant matrix effects 

(trueness between 101-107%, n=15) without need of sample enrichment and/or cleanup. 

On the other hand, Wode et al.12 developed an ultra high performance liquid 

chromatography (UHPLC) – high resolution mass spectrometry (HRMS) for the 

determination of 72 contaminants, among them some acidic pesticides, as quinmerac. 

On-line SPE with C18 Hypersil Gold column led to limits of detection (LOD) of 8, 23 

and 45 pg mL-1 in drinking, and diluted surface and waste waters, respectively.  

Mantzos et al.14 determined quinmerac in runoff water within the range of 50-1000 ng 

L-1 (LOD 0.25 ng L-1). A SPE (0.5 L) was performed before the separation with the 

above mentioned column, using a triple quadrupole MS with electrospray ionization for 

detection. Recoveries between 65.4 and 73.3% (RSD < 15.3%) were found for spiked 

samples. 



4 
 

In order to avoid sophisticated equipment, not always available for all 

laboratories, we selected chemiluminescence detection for the quinmerac determination, 

as it can provide the required selectivity and sensitivity. In addition, its combination 

with flow injection (FI) methodology allowed the automation of the procedure, and 

consequently, a low cost, highly reproducible and time saving alternative for the 

quinmerac determination. 

To the best of the authors' knowledge, this is the first time that quinmerac has 

been determined by a luminescent technique. The developed method was based on the 

photoinduced chemiluminescence (PICL) of quinmerac performed in basic medium 

followed by oxidation of the photoproducts with Ce(IV) in sulfuric acid, using sulfite as 

sensitizer. The sensitivity and selectivity of the method was improved by means of SPE. 

 

EXPERIMENTAL  

Reagents 

Milli-Q water and reagents of analytical grade were used to carry out the 

experiments. Ce(NH4)2(NO3)6, H2SO4 and Na2SO3 were supplied by Panreac; and 

NaOH was purchased from Scharlau. Quinmerac (99.2%), amitrole, metazachlor, 

metalaxyl, thiacloprid and cyromazine (99.9%); 2,4-D and pirimicarb (99.6%); diquat 

monohydrate (99.4%); glyphosate (99.2%); fenamiphos (97.7%); imazalil (99.8%); 

MCPA (98.7%) were supplied by Riedel-de Haën. Methomyl (99.5%) was purchased 

from Chem Service; while diphenamide, chloridazon (99.9%) and dimethoate (99.4%) 

were obtained from Fluka. 

SPE of water samples was carried out using Chromabond HR-X 3 mL/200 mg 

from Macherey-Nagel. 
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Sample preparation 

Water samples from different origins, namely: ground, spring, mineral and tap 

waters, were collected in plastic flaks at 4 ºC and analysed before 48 h. In order to 

remove sand and other suspended solid matters, the samples were filtered over a 0.45 

m membrane filter (Sartorius). After that, the pH of samples was adjusted to 2 using 

HCl 2 M.  

SPE of 100 mL of the spiked samples (0.5, 2.0, 3.5, 5.0 and 6.5 ng mL-1) was 

performed at a flow-rate of 5 mL min-1 using a vacuum system and cartridges 

Chromabond HR-X. Preconditioning of cartridges was performed with 6.0 mL of 

methanol followed by 6.0 mL of water and 2 mL of HCl 0.01 M. After the sample went 

through, 2 mL of HCl 0.01 M and 6 mL of water was used for washing, next, air was 

passed 15 min for drying. Quinmerac was eluted by gravity with 3.0 mL of methanol 

and finally under vacuum. Finally, the solvent was evaporated to dryness, using a water 

bath at 30ºC, under a gentle stream of nitrogen. The residue was dissolved with 4.8 ml 

of water and 0.2 mL of NaOH 2.0 M. As a result, a 20-fold pre-concentration was 

achieved. 

 

RESULTS AND DISCUSSION 

Preliminary studies 

Chemiluminescent (CL) response from quinmerac and its photoproducts was 

tested with different oxidant systems, namely KMnO4, Ce(IV), KIO4, K2S2O8, 

K3Fe(CN)6, N-bromosuccinimide, H2O2 and NaClO4 using a FI assembly. To this aim, a 

quinmerac solution flowing at 1.9 mL min-1 and different photodegradation media 

(water, H2SO4 0.1 M or NaOH 0.1 M) at 0.65 mL min-1 were mixed just before the 
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Optimization 

Chemical and hydrodynamic parameters were optimized using the univariate 

method. The effect of the Ce (IV) concentration on quinmerac 50 g mL-1 was studied 

within the 10-3 – 1.5x10-2 M range. A maximum signal was achieved for Ce (IV) 6x10-3 

M; accordingly, that value was selected. Then, H2SO4, HCl, HClO4, HNO3, H3PO4 and 

CH3COOH, all of them at 2 M, were tested as oxidation media. As sulfuric and nitric 

acids provided the best results, the effect of their concentration on the CL signal was 

further studied. As a result, nitric acid was discarded because of its negative effect on 

the baseline. On the other hand, the optimal concentration found for sulfuric acid was 

0.22 M (studied range: 0.05-2.0 M).  

As oxidation time is dependent on carrier and oxidant system flow rates, the 

effect on the CL signal of global flow rates within the 10.8-24.6 mL min-1 range was 

studied using quinmerac 15 g mL-1. The signal remained constant from 19.6 mL min-1 

(14.3 and 5.3 mL min-1 for carrier and oxidant system respectively) onwards; 

consequently this value was chosen for further work. 

NaOH concentrations in the 0.04 - 0.12 M range were tested as irradiation 

medium using quinmerac 10 g mL-1. A maximum signal was found for NaOH 0.09 M. 

After that, different irradiation times were assayed using this medium. Outputs 

increased with irradiation time, but from 67 s onwards only small increases were 

observed. Therefore, quinmerac was irradiated for 67 s (flow rates of 1.35 and 0.45 mL 

min-1, for sample and NaOH respectively) in order to avoid a throughput decrease. 

The effect of potential CL enhancers and photosentizers16, was assayed, namely: 

ethanol 10%, acetone 1%, acetonitrile 30%, a mixture of  acetonitrile 30% and  acetone 

1%,  2-propanol 25%, 1,4-dioxane 10%,  formic acid 1%, sodium sulfite 10-4 M, 



9 
 

quinine 10-4 M, 8-hydroxyquinoline 10-4 M, fluorescein 10-4 M, eosin yellowish 10-4 M 

and rhodamine B 10-6 M, riboflavin 10-4 M, H2O2 0.05%, -cyclodextrin 0.17 and 0.5%, 

sodium dodecyl sulfate 0.05 and 0.15%, hexadecyltrimethylammonium bromide 0.07 

and 0.22%, Triton X-100 0.05 and 0.15% and hexadecylpyridinium chloride (HPC) 

0.08 and 0.25%. To this aim, quinmerac 5 g mL-1 in NaOH 0.09 M. was mixed with 

the sensitizer after or before the photoreactor, depending on whether the sensitizing 

effect was studied, both on the oxidation and photodegradation or only on the oxidation 

step. 

As a result, it was found that eosin yellowish (+290% increase, when introduced 

before irradiation) and sulfite (+320%, introduced after irradiation; +108% introduced 

before irradiation) provided the highest outputs. Further study with different 

concentrations of these substances demonstrated that sulfite 1.5x10-3 M, mixed with 

quinmerac 2 g mL-1 after the lamp, provided the best results, with a 73-fold increase  

in sensitivity. Consequently, despite the blank signals obtained from the excited state of 

sulfur dioxide produced together with Ce(III) 17, the use of sulfite as a sensitizer was 

advantageous. To avoid dilution of samples, sulfite was introduced by an additional 

channel that merged with the oxidant stream. As a result, the baseline was negatively 

affected, and smaller signals were found. Consequently, the configuration of the FIA 

manifold finally selected was that depicted in Fig. 2. 

In order to study the effect of the temperature, the sample loop and two 1.5 m 

sections of teflon tube (0.8 mm i.d.) corresponding to the carrier (located immediately 

prior to the injection valve to minimize sample dispersion) and oxidant, were 

submerged in a water bath at temperatures within the 21-80ºC range. No improvements 

were achieved; consequently, room temperature was chosen for further work. 
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The effect of the injection volume was studied in the 407 – 608 μL range. 

Signals rose until a value of 508 μL and then levelled off, thus this value was selected. 

Finally, a re-optimization of the most important parameters was performed. The 

ranges studied were as following (selected values in brackets): [Ce(IV)]: 10-3 – 4x10-3 

M (3x10-3 M); [sulfuric acid]: 0.10 – 0.13 M (0.11 M); carrier+oxidant system flow 

rates: 17.7 – 22.9 mL min-1 (19.4 mL min-1, corresponding to 14.2 and 5.2 mL min-1 for 

carrier and oxidant, respectively); [NaOH]: 0.02 – 0.12 M (0.08 M); [sulfite]: 6x10-4 – 

1.5 10-3 M (9x10-4 M); and, irradiation times 54 – 80 s (60 s, corresponding to a flow 

rate of 2 mL min-1). 

 

Possible mechanism for the PICL reaction 

M.V. Pinna et al.18 reported that quinmerac, when exposed to UV irradiation 

from low-pressure mercury lamps (maximum irradiation at 254 nm), is degraded rapidly 

in water through a decarboxylation reaction, resulting in 7-chloro-3-methylquinoline as 

the only product. On the other hand, sulfite can be oxidized by Ce(IV) to produce 

excited SO2*.  Bearing in mind the low luminescence efficiency exhibited by that specie 

within the 300-450 nm range19, the possible enhancenment mechanism would involve 

energy transfer processes between SO2* and the photoproduct of quinmerac, which 

would yield an excited specie responsible of the light emission. That CL mechanism has 

been already reported for many organic compounds from different chemical families20-

25.  

In addition, the proposed mechanism is in agreement with previous studies 

dealing with the CL mechanism for other quinoline derivatives as lomefloxacin in the 

presence of a Ce(IV)-Na2SO3-Tb3+ system26,27. According to those studies, SO2* 
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transfers its energy to a complex between the lomefloxacin27 (or its photoproduct26) and 

Tb(III). Then an intramolecular energy transfer from lomefloxacin (or its photoproduct) 

in the excited-state complex to Tb3+ yields the excited Tb3+* which is proposed as the 

CL emitter27. In our case no lanthanide ion was present, consequently as above-

mentioned, energy transfer from SO2* to the photoproduct should be the responsible of 

the enhanced CL. 

 

Analytical performance 

A wide linear dynamic range was found between 2 and 600 ng mL-1, fitting the 

equation I =  (0.268±0.015) C + (0.6±0.2), r2=0.9990 (n=5), where I is the intensity after 

subtracting the blank signal in kHz, and C is the concentration of quinmerac in ng mL-1. 

The limit of detection (LOD), defined as the lowest quinmerac concentration giving a 

signal equal to or greater than the blank peak plus three times its standard deviation 

(SD), was found to be 0.6 ng mL-1. The inter-day reproducibility was determined from 

the above-mentioned series of 5 calibrations and the relative SD was 5.6%. The intra-

day repeatability was investigated using two series of 21 injections of quinmerac 20 and 

200 ng mL-1; the relative standard deviations (RSD) were 3.9 and 2.9%, respectively. 

The throughput, calculated from both series, was 144 h-1. 

 

Interferences 

In order to assess the tolerance of the proposed method, the interfering effect of 

the ions commonly present in natural waters was investigated (Table I). The effect of 17 

pesticides from different chemical groups28 was also studied (Table II). Diphenamid, 

diquat and metazachlor exhibited the strongest interfering effect. Chloridazon, 
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formulated together with quinmerac at a ratio of 8:1 in some formulations29, at a 20-fold 

higher concentration than that from quinmerac, did not interfere significantly. The other 

pesticides tested did not show a significant interfering effect, despite some of them, or 

photoproducts thereof, have chemiluminescent properties.30-33 

Table I. Interfering effect of ionic species on quinmerac 20 ng mL-1. 

Interferent 
Concentration 

(g mL-1) 
Error (%) 

Na+ 600 -4.0 
K+ 70 +4.7 
Ca2+ 60 -4.9 
Mg2+ 100a +1.3 
NH4

+ 40 -3.5 
Cl- 926 -4.0 
SO4

2- 1000a -3.4 
CH3COO- 6 +4.9 
H2PO4

- 20 -4.6 
HCO3

- 1000a +0.9 
NO3

- 10 -4.0 
Urea 1.5 -3.7 

a Maximum concentration assayed 

Table II. Interfering effect of pesticides on quinmerac 20 ng mL-1. 

Common name Chemical group 
[pesticide] 
(ng mL-1) 

[pesticide] / 
[quinmerac] 

Error 
(%) 

Amitrole Triazole 400 20 -4.8 
Chloridazon Pyridazinone 400 20 -4.9 
Cyromazine Triazine 40 2 +4.9 
2,4-D Alkylchlorophenoxy 160 8 +2.7 
Dimethoate Organophosphate 400 20 +1.1 
Diphenamid Alkanamide 20 1 +2.4 
Diquat 
monohydrate 

Bipyridylium 20 1 +3.9 

Fenamiphos Organophosphate 400 20 +2.9 
Glyphosate Phosphonoglycine 400 20 -1.6 
Imazalil Imidazole 100 5 +1.9 
MCPA Aryloxyalkanoic 

acid 
100 5 +3.8 

Metalaxyl Phenylamide 240 12 +0.5 
Metazachlor Chloroacetamide 20 1 +3.6 
Methomyl Carbamate 400 20 -1.6 
Pirimicarb Carbamate 140 7 +2.2 
Thiacloprid Neonicotinoid 240 12 -0.4 
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Analytical applications 

In order to increase the selectivity and sensitivity of the method, a SPE strategy 

was applied as described in Section 2.3 to mineral, tap, ground and spring water 

samples. A mixture of methanol:tetrahydrofuran (1:1, v/v) was also considered as 

eluent, instead of methanol. However, lower recoveries were found and consequently its 

use was discarded. 

SPE of 100 mL allowed a LOD of 0.08 ng mL-1 to be achieved, which is under 

the maximum permitted concentrations, established by European Community: 0.1 ng 

mL-1 for individual pesticides and 0.5 ng mL-1 for total pesticides in drinking water34 

and 1–3 ng mL-1 in surface water. 35 

As can be seen in Table III, recovery factors ranging from 78.1 to 94.5% (RSD < 

17%) for samples spiked at five levels (between 0.5 and 6.5 ng mL-1) were obtained. 

Bearing in mind that the acceptable range for recoveries in water samples is usually set 

between 70 and 110%, with a maximum permitted RSD of 20% 36, it can be considered 

that the analytical performance of the proposed PICL method was successful. 
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Table III. Accuracy of the method. 
 

Sample 
Added  

(ng mL-1) 
Found 

(ng mL-1) 
Average recovery (%)  

(RSD, %) 
Mineral water 0.500 0.461 94.1 (9.1) 

2.000 2.147 
3.500 3.410 
5.000 4.330 
6.500 5.660 

Tap water 0.500 0.462 94.5 (7.6) 
2.000 2.060 
3.500 3.518 
5.000 4.273 
6.500 5.922 

Ground water 0.500 0.453 78.1 (17.0) 
2.000 1.873 
3.500 2.464 
5.000 3.174 
6.500 4.712 

Spring water 0.500 0.453 88.3 (17.0) 
2.000 2.228 
3.500 2.582 
5.000 4.475 
6.500 4.949 

 

 

CONCLUSIONS 

It can be concluded that the proposed method is satisfactory for the analysis of 

quinmerac in water samples, as FI methodology provide a high sample throughput (144 

h-1) and reproducibility (RSD of 3.9 and 2.9% for 20 and 200 ng mL-1 of quinmerac, 

respectively). On the other hand, the use of CL detection led to wide linear dynamic 

ranges (2-600 ng mL-1) and low LODs (0.08 ng mL-1 and 0.6 ng mL-1 with and without 

SPE respectively). Those values are under the maximum permitted concentrations 

established by the European Community for drinking water, and they are much better 

than those obtained using LC and diode array detection (LOD: 175 ng mL-ng  mL-1)15 

and competitive with some of the reported LODs of LC-MS methods ( 0.1 ng mL-1,11 

0.008-0.045 ng mL-1, 14). On the other hand, the low cost and simplicity of the 
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developed method makes it highly suitable for routine analysis of quinmerac. Its 

applicability was tested in water collected from different sources with recoveries 

between 78.1 and 94.5% for samples spiked at five concentrations. 
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