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WHEN IS THE HERMITIAN/SKEW-HERMITIAN PART OF A

MATRIX A POTENT MATRIX?∗

DIJANA ILIŠEVIĆ† AND NÉSTOR THOME‡

Abstract. This paper deals with the Hermitian H(A) and skew-Hermitian part S(A) of a

complex matrix A. We characterize all complex matrices A such that H(A), respectively S(A), is a

potent matrix. Two approaches are used: characterizations of idempotent and tripotent Hermitian

matrices of the form

[
X Y ∗

Y 0

]
, and a singular value decomposition of A. In addition, a relation

between the potency of H(A), respectively S(A), and the normality of A is also studied.
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1. Introduction. Throughout, A∗ denotes the conjugate transpose of the com-

plex matrix A. Motivated by an application to statistics related to the chi-square

distribution, Khatri [19] studied the case when the Hermitian part H(A) = 1
2 (A+A∗)

of a complex matrix A ∈ Cn×n, with the same rank as A, is idempotent. Groß [14] ex-

tended this result by relaxing the assumption on the rank. The purpose of our paper

is to generalize these results concerning H(A) as well as to study the corresponding

problem for the skew-Hermitian part S(A) = 1
2 (A−A∗) of A.

General considerations on Hermitian and skew-Hermitian elements in a division

ring with an involution were given in [13], where the relation between certain powers

was analyzed.

In [22], the Hermitian and skew-Hermitian parts of a matrix are used to give some

inequalities involving norms, Hadamard products and submatrices. These results have

been applied to derive a bound on the backward and forward error of the solution of
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linear systems Ax = b (with H(A) positive definite).

Furthermore, from a numerical point of view, the Hermitian and skew-Hermitian

parts of a matrix were used for solving saddle-point problems, image restoration,

etc. [3, 6, 11, 17, 20, 21]. In [6], Bai, Golub and Ng introduced the Hermitian and

skew-Hermitian splitting (HSS) iteration method and discussed its unconditional con-

vergence property; see also [3] and [4]. The HSS iteration method was further gen-

eralized to the normal and skew-Hermitian splitting (NSS) iteration method in [7]

and to the positive definite and skew-Hermitian splitting (PSS) iteration method in

[5]. Benzi and Golub [12] developed the HSS iteration method to the saddle-point

problems; see also [11] and [8].

In this paper we first characterize all complex matrices A ∈ Cn×n satisfying one

of the following conditions:

• H(A)k+1 = H(A) for some k ∈ N,

• S(A)k+1 = S(A) for some k ∈ N.

Recall that a square matrix X is said to be a potent matrix (more precisely, a {k+1}-

potent matrix) if there exists k ∈ N such that Xk+1 = X . If a {k+ 1}-potent matrix

X is nonsingular then Xk = I; such matrices are said to be of finite order. Some

properties of {k + 1}-potent matrices can be found in [15, 23, 24]. Thus, in other

words, we characterize all complex square matrices whose Hermitian/skew-Hermitian

parts are potent matrices (in particular, matrices of finite order). In addition, a

singular value decomposition (SVD) is used to present another characterization; one

example illustrates this result. Later, we shall state a relation between the potency

of H(A) or S(A) and the normality of A.

The next result, which can be easily checked, will be useful in further considera-

tions.

Lemma 1.1. Let X ∈ Cn×n be a {k + 1}-potent matrix where k ∈ N.

(a) If X is a Hermitian matrix then X3 = X when k is even, and X2 = X when

k is odd.

(b) If X is a skew-Hermitian matrix then X3 = −X when k is a multiple of 4,

and X = 0 when k is not a multiple of 4.

Part (a) of Lemma 1.1 assures that the analysis of the idempotency and tripotency

of the Hermitian part of a complex matrix solves the proposed problem for every

arbitrary power of the Hermitian part. Analogously, part (b) of Lemma 1.1 reduces

the study of the {k + 1}-potency of the skew-Hermitian part to the case when k is a

multiple of 4.

Notice that in the case when a {k + 1}-potent matrix X ∈ Cn×n is nonsingular,
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the analysis of such matrices is reduced to the analysis of involutory matrices (for

Hermitian matrices) and skew-involutory matrices (for skew-Hermitian matrices).

Obviously, H(iA) = iS(A) for all square matrices A, where i denotes the imagi-

nary unit. Therefore, the study of the {k + 1}-potency of S(A) reduces to the study

of the {k + 1}-potency of −iH(iA).

2. Powers of the Hermitian and skew-Hermitian parts. Let N (A) be the

null space of a matrix A ∈ Cn×n, N (A)⊥ its orthogonal complement and R(A) the

range of A. We start this section with some interesting particular cases.

(1) Hermitian matrices: A∗ = A. In this case,

H(A)k+1 = H(A) ⇔ Ak+1 = A ⇔ A2 = A or A3 = A.

(2) Normal matrices: AA∗ = A∗A. In this case, A = UDU∗ for some unitary

matrix U and some diagonal matrix D. Then H(A) = U(Re(D))U∗, where

Re(D) = 1
2 (D + D∗), that is, Re(D) is a diagonal matrix with diagonal entries

consisting of the real parts of elements in σ(A). So,

H(A)k+1 = H(A) ⇔ Re(D)k+1 = Re(D) ⇔ Re(di) ∈ {−1, 0, 1}, ∀di ∈ σ(A).

(3) EP matrices: R(A) = R(A∗), which is equivalent to A = U

[
C O

O O

]
U∗ where

U is unitary and C is a nonsingular matrix. In this case,

H(A) = U

[
H(C) O

O O

]
U∗.

Since H(C) is Hermitian, H(C) = UCDCU
∗
C , where UC is unitary and DC is

diagonal with real entries. So,

H(A)k+1 = H(A) ⇔ Dk+1
C = DC ⇔ H(C)2 = H(C) or H(C)3 = H(C).

(4) Nonsingular matrices: If A is nonsingular then A∗ is also nonsingular. Hence,

R(A) = Cn = R(A∗), that is, A is an EP matrix. Notice that the matrix C in

(3) has the same size as A. Thus,

H(A)k+1 = H(A) ⇔ H(A)2 = H(A) or H(A)3 = H(A).

It is well known that these sets of matrices satisfy:

Hermitian matrices ⊂ Normal matrices ⊂ EP matrices.
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We want to extend these observations to a general matrix A. The next lemma will

be crucial in our characterizations of the {k+1}-potency of the Hermitian and skew-

Hermitian parts (cf. [16, Corollary 6]).

Lemma 2.1. Let A ∈ Cn×n be a matrix of rank r < n. Then there exist T ∈ Cr×r,

Y ∈ C(n−r)×r, and a unitary matrix U ∈ Cn×n such that

A = U

[
T 0

Y 0

]
U∗. (2.1)

Proof. Let {v1, . . . , vr} be an orthonormal basis of N (A)
⊥
and let {vr+1, . . . , vn}

be an orthonormal basis of N (A). Let U be the unitary matrix whose columns are

the vectors v1, . . . , vr, vr+1, . . . , vn. The block of the first r columns will be denoted

by U1 and the block of the last n − r columns will be denoted by U2, that is, U1 =[
v1 · · · vr

]
and U2 =

[
vr+1 · · · vn

]
. Then we get

U∗AU = U∗A
[
U1 U2

]
=

[
U∗AU1 U∗AU2

]
=

[
U∗AU1 0

]
.

Now, we can write

A = U

[
T 0

Y 0

]
U∗,

where T ∈ Cr×r and Y ∈ C(n−r)×r.

The expression (2.1) for A is also valid when A is nonsingular (in this case T

is an n× n nonsingular matrix and Y and the null blocks are absent). Notice that

N (A)⊥ = R(A∗). Let us also remark that T and Y in (2.1) can be chosen so that they

satisfy a useful relation [16, Corollary 6], providing a powerful tool for characterization

of various classes of matrices [9]. However, we choose T and Y under the condition

that Y ∗Y is diagonal, as we state in the following remark (in this case, the nice

relation from [16, Corollary 6] is not preserved).

Remark 2.2. Without loss of generality, we can assume that the matrix Y ∈

C(n−r)×r from (2.1) is such that Y ∗Y is diagonal with positive entries in the first

m ≤ r diagonal positions, where m = rank(Y ); if m = 0 then Y ∗Y = 0. Namely, there

exist a unitary matrix V ∈ C
r×r and a diagonal matrix D ∈ C

r×r, with positive entries

in the first m diagonal positions, such that Y ∗Y = V DV ∗. Let S = V ∗TV ∈ Cr×r,

Z = Y V ∈ C(n−r)×r and W = U diag(V, I) ∈ Cn×n. Then Z∗Z = V ∗Y ∗Y V, the

matrix W is unitary, and

A = U

[
T 0

Y 0

]
U∗ = U

[
V 0

0 I

] [
V ∗TV 0

Y V 0

] [
V ∗ 0

0 I

]
U∗ = W

[
S 0

Z 0

]
W ∗.
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Thus, it is sufficient to replace U with W, T with V ∗TV, and Y with Y V in (2.1).

Remark 2.3. If Y = 0 (or Y and the null blocks are absent), then T is a non-

singular matrix, that is, A is an EP matrix. In this case, without loss of generality,

we can assume that the matrix T is an upper triangular matrix. In fact, the Schur’s

triangularization theorem (cf. [18]), applied to T, assures that there exists a unitary

matrix V1 such that T = V1T1V
∗
1 , where T1 is an upper triangular nonsingular matrix,

so we have

A = V2

[
T1 0

0 0

]
V ∗2 , where V2 = U

[
V1 0

0 I

]
is unitary.

First let us consider the question of when a special matrix is idempotent, tripotent,

or involutory. This special matrix X is a Hermitian matrix of the saddle-point type

(such matrices are used to solve the saddle-point problem [4]). It is assumed to be

Hermitian because it will be used in the proof of Theorem 2.6 setting

X = U∗H(A)U =

[
H(T ) 1

2Y
∗

1
2Y 0

]
,

with U, T, Y as in Lemma 2.1 and Remark 2.2.

Lemma 2.4. Let X ∈ Cn×n be a Hermitian matrix and suppose that there exist

r < n, a Hermitian matrix A ∈ Cr×r, and a matrix B ∈ C(n−r)×r of rank m such

that B∗B is diagonal with positive entries in the first m diagonal positions and

X =

[
A B∗

B 0

]
. (2.2)

Then the following holds.

(a) X2 = X if and only if A2 = A and B = 0.

(b) X3 = X if and only if one of the following holds:

(i) n = 2r, A = 0, and B is unitary,

(ii) A3 = A and B = 0,

(iii) 0 < m < r and there are a matrix W ∈ C(r−m)×m, a Hermitian matrix

Z ∈ C(r−m)×(r−m), and a matrix B1 ∈ C(n−r)×m such that

A =

[
0 W ∗

W Z

]
, B =

[
B1 0

]
,

with Z3 = Z, ZW = 0, and B∗1B1 = I − W ∗W which is a positive

definite diagonal matrix.

(c) X2 = I if and only if one of the following holds:
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(i) n = 2r, A = 0, and B is unitary,

(ii) 0 < m = n−r < r, and there are a Hermitian matrix Z ∈ C(r−m)×(r−m)

and a unitary matrix B1 ∈ Cm×m such that Z2 = I,

A =

[
0 0

0 Z

]
, and B =

[
B1 0

]
.

Proof. (a) We have

X2 =

[
A2 +B∗B AB∗

BA BB∗

]
.

Thus X2 = X if and only if A2 +B∗B = A, BA = B, and BB∗ = 0. Since BB∗ = 0

if and only if B = 0, we get A2 = A.

(b) We have

X3 =

[
A3 +B∗BA+AB∗B A2B∗ +B∗BB∗

BA2 +BB∗B BAB∗

]
.

Then X3 = X if and only if the following conditions hold:

(C1) A3 +B∗BA+AB∗B = A,

(C2) A2B∗ +B∗BB∗ = B∗,

(C3) BAB∗ = 0.

Let us remark that (C3) can be obtained from (C1) and (C2): subtracting the equal-

ities obtained multiplying (C1) by B∗ from the right and multiplying (C2) by A from

the left, we first conclude B∗BAB∗ = 0, then (BAB∗)∗(BAB∗) = 0, and finally

BAB∗ = 0.

If B is nonsingular, we get (i); if B is zero, we get (ii). Let us assume 0 < m < r

and let D = B∗B. By the assumption on B, we get that D = diag(E, 0), with E ∈

Cm×m a positive definite diagonal matrix. Let us observe the following conditions:

(C1’) A3 +DA+AD = A,

(C2’) A2D +D2 = D,

(C3’) DAD = 0.

Clearly, (C1) and (C1’) are the same conditions. Notice that (C2) ⇔ (C2’) and (C3)

⇔ (C3’). Namely, (C2) ⇒ (C2’) and (C3) ⇒ (C3’) are obvious. Conversely, if (C2’)

holds and we set M = A2B∗ + B∗BB∗ − B∗, then (C2’) yields MM∗ = 0, hence

M = 0; if (C3’) holds and we set N = BAB∗, then (C3’) yields N∗NN∗ = 0, which

implies N = 0. Therefore, X3 = X if and only if the conditions (C1’), (C2’) and (C3’)

hold.
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Let

A =

[
P W ∗

W Z

]

with P ∈ Cm×m Hermitian, W ∈ C(r−m)×m, and Z ∈ C(r−m)×(r−m) Hermitian. Since

D = diag(E, 0), with E ∈ Cm×m, we conclude that (C3’) is equivalent to EPE = 0.

Since E is invertible, P = 0. The condition (C2’) is equivalent to W ∗WE + E2 = E

and ZWE = 0. Since E is invertible, we conclude W ∗W + E = I and ZW = 0.

Furthermore, (C1’) is equivalent to

[
W ∗ZW W ∗WW ∗ +W ∗Z2 + EW ∗

WW ∗W + Z2W +WE WW ∗Z + ZWW ∗ + Z3

]
=

[
0 W ∗

W Z

]
.

Taking into account E = I −W ∗W, ZW = 0, and W ∗Z = 0, we conclude Z3 = Z.

Let us partition

B =
[
B1 B2

]
, (2.3)

where B1 ∈ C(n−r)×m and B2 ∈ C(n−r)×(r−m). Comparing the product B∗B com-

puted via (2.3) with B∗B = diag(I−W ∗W, 0), it is easy to conclude that B2 = 0 and

B∗1B1 = I −W ∗W . Hence, (iii) holds.

It can be easily verified that any of (i), (ii), (iii) implies X3 = X.

(c) First notice that X2 = I if and only if A2+B∗B = I, BA = 0, and BB∗ = I.

If B is nonsingular, then A = 0 and B∗B = I. The converse is obvious.

Assume 0 < m < r. Since X2 = I implies X3 = X, we may apply (iii) from (b).

Hence,

A =

[
0 W ∗

W Z

]
, B =

[
B1 0

]
,

with Z Hermitian, Z3 = Z, ZW = 0, and B∗1B1 = I − W ∗W which is a positive

definite diagonal matrix. However, we have

I = A2 +B∗B =

[
I 0

0 WW ∗ + Z2

]
,

0 = BA =
[
0 B1W

∗ ]
, I = BB∗ = B1B

∗
1 .

This implies WW ∗+Z2 = I and B1W
∗ = 0. Then B∗1B1W

∗ = 0 as well. Since B∗1B1

is a positive definite diagonal matrix, it is nonsingular, so W = 0. This yields Z2 = I
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and B∗1B1 = I. Since rank (B∗1B1) = rank (B1B
∗
1 ), we conclude m = n− r, hence B1

is unitary. Thus, (ii) holds. It is easy to check that (ii) implies X2 = I.

Remark 2.5. When (iii) in item (b) of Lemma 2.4 holds, then B1 has nonzero or-

thogonal columns (because B∗1B1 is diagonal positive definite) and the matrix

[
B1

W

]

is a partial isometry (that is, it coincides with its Moore-Penrose inverse) because
[

B1

W

]∗ [
B1

W

]
= I.

It is easy to see that the converse is also true.

The desired results on the {k + 1}-potency of the Hermitian/skew-Hermitian

parts of a complex matrix now immediately follow from Lemma 2.1, Lemma 1.1, and

Lemma 2.4.

Theorem 2.6. Let A ∈ Cn×n and k ∈ N. Then:

(I) H(A)k+1 = H(A) if and only if there exists a unitary matrix U ∈ Cn×n such

that A has the form (2.1) with Y ∈ C(n−r)×r of rank m such that Y ∗Y is

diagonal with positive entries in the first m diagonal positions, and

(a) if k is odd then Y = 0 and H(T )2 = H(T ),

(b) if k is even then one of the following holds:

(i) n = 2r, H(T ) = 0, and 1
2Y is unitary,

(ii) Y = 0 and H(T )3 = H(T ),

(iii) 0 < m < r and there exist W ∈ C(r−m)×m, a Hermitian matrix

Z ∈ C
(r−m)×(r−m), and a matrix Y1 ∈ C

(n−r)×m such that

H(T ) =

[
0 W ∗

W Z

]
, Y =

[
Y1 0

]
,

with Z3 = Z, ZW = 0, and Y ∗1 Y1 = 4(I−W ∗W ) which is a positive

definite diagonal matrix.

(II) S(A)k+1 = S(A) if and only if there exists a unitary matrix U ∈ Cn×n such

that A has the form (2.1) with Y ∈ C
(n−r)×r of rank m such that Y ∗Y is

diagonal with positive entries in the first m diagonal positions, and

(a) if k is not a multiple of 4 then S(A) = 0,

(b) if k is a multiple of 4 then one of the following holds:

(i) n = 2r, S(T ) = 0, and 1
2Y is unitary,

(ii) Y = 0 and S(T )3 = −S(T ),

(iii) 0 < m < r and there exist W ∈ C(r−m)×m, a skew-Hermitian matrix

Z ∈ C(r−m)×(r−m), and a matrix Y1 ∈ C(n−r)×m such that

S(T ) =

[
0 −W ∗

W Z

]
, Y =

[
Y1 0

]
,
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with Z3 = −Z, ZW = 0, and Y ∗1 Y1 = 4(I − W ∗W ) which is a

positive definite diagonal matrix.

Proof. Application of Lemma 1.1 and Lemma 2.4 to the matrix

U∗H(A)U =

[
H(T ) 1

2Y
∗

1
2Y 0

]

proves part (I) of the theorem. Part (II) follows from S(A) = −iH(iA).

Example 2.7. Let

A =

[
i 0

2 0

]
.

Then, using the notation of Lemma 2.1, n = 2, r = rank(A) = 1, T = [i], and Y = [2].

This implies n = 2r, H(T ) = 0, and 1
2Y = [1] is unitary, which corresponds to case

(i) in (I)-(b) of Theorem 2.6. Then H(A)k+1 = H(A) =

[
0 1

1 0

]
for all even k.

Since Y �= 0, we conclude H(A)k+1 �= H(A) for all odd k.

The previous example shows that there exists a matrix A such that H(A)k+1 =

H(A) for all even k, but H(A)k+1 �= H(A) for all odd k. However, if H(A)k+1 =

H(A) for some odd k ∈ N then H(A)k+1 = H(A) for all k ∈ N. Namely, if there

exists an odd k such that H(A)k+1 = H(A) then H(A)2 = H(A) by Lemma 1.1,

thus H(A)k+1 = H(A) for all odd k. This implies H(A)3 = H(A)2 = H(A), hence

H(A)k+1 = H(A) for all even k as well.

Example 2.8. Let

T =

[
1 1

−1 0

]
, Y = 0m×2, and A =

[
T 02×m

Y 0m×m

]
,

where 0r×c denotes the zero matrix of size r × c, and m ∈ N.

It is easy to see that

H(T ) =

[
1 0

0 0

]
,

hence H(T )2 = H(T ). Then H(A)k+1 = H(A) for all k ∈ N.

When X is nonsingular, the problem of the {k + 1}-potency of X is reduced to

Xk = I. If X is the Hermitian/skew-Hermitian part of a matrix A then part (c) of

Lemma 2.4 is applicable and the following results can be easily obtained.

Notice that in this case the condition Y = 0 can be only formally fulfilled, that

is, it holds if and only if Y and the null blocks are absent.

Theorem 2.9. Let A ∈ Cn×n and k ∈ N. Then:
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(I) H(A)k = I if and only if there exists a unitary matrix U ∈ Cn×n such that A

has the form (2.1) with Y ∈ C(n−r)×r of rank m such that Y ∗Y is diagonal

with positive entries in the first m diagonal positions, and

(a) if k is odd then Y and the null blocks are absent and H(T ) = I,

(b) if k is even then one of the following holds:

(i) Y and the null blocks are absent and H(T )2 = I,

(ii) n = 2r, H(T ) = 0, and 1
2Y is unitary,

(iii) 0 < m = n − r < r, and there exist a Hermitian matrix Z ∈

C(r−m)×(r−m), and a matrix Y1 ∈ Cm×m such that Z2 = I,

H(T ) =

[
0 0

0 Z

]
, Y =

[
Y1 0

]
,

and 1
2Y1 is unitary.

(II) S(A)k = I if and only if k is a multiple of 4 and there exists a unitary matrix

U ∈ Cn×n such that A has the form (2.1) with Y ∈ C(n−r)×r of rank m such

that Y ∗Y is diagonal with positive entries in the first m diagonal positions,

and one of the following holds:

(i) Y and the null blocks are absent and S(T )2 = −I,

(ii) n = 2r, S(T ) = 0, and 1
2Y is unitary,

(iii) 0 < m = n − r < r and there exist a skew-Hermitian matrix Z ∈

C(r−m)×(r−m), and a matrix Y1 ∈ Cm×m such that Z2 = −I,

S(T ) =

[
0 0

0 Z

]
, Y =

[
Y1 0

]
,

and 1
2Y1 is unitary.

Notice that the utility of the obtained results can be found in the manipulation

of smaller exponents and matrices of smaller sizes than the original ones.

3. An algorithm to check the {k+1}-potency of H(A). In this section we

design an algorithm to decide whether H(A) is {k+1}-potent when k is odd, by using

an SVD of a matrix A.

Let A =
∑r

j=1 σjujv
∗
j be a (reduced) SVD of a nonzero matrix A ∈ Cn×n with

{u1, . . . , ur} and {v1, . . . , vr} two orthonormal sets of column vectors of Cn and σ1 ≥

σ2 ≥ · · · ≥ σr > 0. It is well known that rank(A) = r and N (A)⊥ = span{v1, . . . , vr}.

Defining

Ur =
[
u1 · · · ur

]
, Vr =

[
v1 · · · vr

]
, Σ = diag(σ1, . . . , σr)

we have that A = UrΣV
∗
r , which implies that AVr = UrΣ because

U∗rUr = I, V ∗r Vr = I. (3.1)
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Notice that, in general, Ur and Vr are not unitary matrices.

ALGORITHM: This algorithm decides whether H(A) is {k+1}-potent when k

is odd.

Input: A square matrix A.

Step 1. Compute a (reduced) SVD of A and set Ur, Vr, and Σ as before.

Step 2. Compute M = V ∗r Ur.

Step 3. If Ur = VrM and H(MΣ)2 = H(MΣ) then H(A)k+1 = H(A) for all k ∈ N,

else H(A)k+1 �= H(A) for all odd k ∈ N.

Before we proceed to justify this algorithm, we illustrate it with an example by

using MATLAB R2010b (Version 7.11.0.584). Let

A =
1

15

⎡
⎢⎢⎣

1 2 3 −1

2 4 6 −2

3 6 9 −3

−1 −2 −3 1

⎤
⎥⎥⎦ .

An SVD of A is

Ur =

⎡
⎢⎢⎣
−0.2582

−0.5164

−0.7746

0.2582

⎤
⎥⎥⎦ , Σ = 1.0000, Vr =

⎡
⎢⎢⎣
−0.2582

−0.5164

−0.7746

0.2582

⎤
⎥⎥⎦ .

Since M = V ∗r Ur = 1 and H(MΣ)2 = H(MΣ), then we get H(A)k+1 = H(A) for all

k ∈ N.

We now consider a matrix R =
[
vr+1 · · · vn

]
whose columns form an or-

thonormal basis of N (A), that is AR = 0. Define the unitary matrix V =
[
Vr R

]
.

Now we get

V ∗AV =

[
V ∗r
R∗

]
A
[
Vr R

]
=

[
V ∗r
R∗

] [
UrΣ 0

]
=

[
V ∗r UrΣ 0

R∗UrΣ 0

]
.

Set T = V ∗r UrΣ ∈ Cr×r and Y = R∗UrΣ ∈ C(n−r)×r. Hence

A = V

[
T 0

Y 0

]
V ∗,

that is, A has the form (2.1). In the sequel we recall Remark 2.2. There exist a

unitary matrix W ∈ Cr×r and a diagonal (positive definite) matrix E ∈ Cm×m such

that Y ∗Y = W diag (E, 0)W ∗. Let TN = W ∗TW ∈ Cr×r, YN = YW ∈ C(n−r)×r,
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and VN = V diag (W, I) ∈ Cn×n. Then

A = VN

[
TN 0

YN 0

]
V ∗N ,

where Y ∗NYN = diag(E, 0).

Suppose H(A)k+1 = H(A) for some odd k ∈ N. We apply part (I)-(a) of Theorem

2.6 and we conclude:

• YN = 0, that is, R∗Ur = 0. Hence, v∗i uj = 0 for r + 1 ≤ i ≤ n and

1 ≤ j ≤ r. In other words, u1, . . . , ur are orthonormal to vr+1, . . . , vn, and

thus u1, . . . , ur ∈ span{v1, . . . , vr}. Therefore, there exists M ∈ Cr×r such

that

Ur = VrM. (3.2)

Multiplying (3.2) by V ∗r from the left and using (3.1), we deduce M = V ∗r Ur.

Inserting this in (3.2), we get Ur = VrV
∗
r Ur.

• H(TN ) is idempotent, which is equivalent to H(V ∗r UrΣ) is idempotent.

We now suppose that Ur = VrV
∗
r Ur holds and H(V ∗r UrΣ) is idempotent. By

Theorem 2.6, the algorithm will be justified if we check that YN = 0. This fact

follows from

YN = R∗UrΣW = R∗VrV
∗
r UrΣW = 0

since R∗Vr = 0.

We can also deduce the following result.

Proposition 3.1. Let A ∈ Cn×n and k ∈ N be odd. If H(A) is {k + 1}-potent

then A is an EP matrix.

Proof. By the above, we have that Ur = VrV
∗
r Ur, that is, (I−VrV

∗
r )Ur = 0, which

implies R(Ur) ⊆ N (I−VrV
∗
r ) ⊆ R(VrV

∗
r ) ⊆ R(Vr). The considered SVD assures that

R(Ur) = R(A) and R(Vr) = R(A∗). Now we have R(A) ⊆ R(A∗). Since A and A∗

have the same rank, we also have R(A∗) ⊆ R(A). Hence A is an EP matrix.

We end this section noticing that similar results can be obtained for S(A).

4. Relation with the normality property. Groß showed in [14] that there

are matrices A such that H(A)2 = H(A) and A is not normal. The matrix A in

Example 2.7 is such that H(A)3 = H(A) and A is not normal.

In this section we shall present some relations between the {k + 1}-potency of
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H(A), respectively S(A), and the normality of A.

Lemma 4.1. Let T ∈ Cn×n be an upper triangular matrix. If H(T )3 = H(T )

and the real part of the eigenvalues of T is in {−1, 1} then T is diagonal.

Proof. It follows by induction on the size of the matrix T. If n = 1, the conclusion

is evident. Suppose n > 1 and that the result is valid for every (n − 1) × (n − 1)

matrix. Let

T =

[
λ1 t12

0 T22

]
∈ C

n×n,

with λ1 ∈ C, t12 ∈ C1×(n−1), T22 ∈ C(n−1)×(n−1), be such that H(T )3 = H(T ) and

T22 is upper triangular. Then

H(T ) =

[
Reλ1

1
2 t12

1
2 t
∗
12 H(T22)

]
,

so we have that the entry (1, 1) in H(T )2 is equal to (Reλ1)
2 + 1

4 t12t
∗
12. The real part

of the eigenvalues of T is in {−1, 1}, thus (Reλ1)
2 = 1. Hence, the entry (1, 1) in

H(T )2 is equal to 1 + 1
4 t12t

∗
12.

Since H(T )3 = H(T ), the eigenvalues of H(T ) are in the set {−1, 0, 1}. Then the

eigenvalues of H(T )2 are in the set {0, 1}. Thus there exists a unitary U ∈ Cn×n such

that

H(T )2 = U

[
Ir 0

0 0

]
U∗,

with r ≤ n. If we write

U =

[
U1 U2

U3 U4

]

with U1 ∈ Cr×r, U2 ∈ Cr×(n−r), U3 ∈ C(n−r)×r, U4 ∈ C(n−r)×(n−r), then

H(T )2 =

[
U1U1

∗ U1U3
∗

U3U1
∗ U3U3

∗

]
.

Since U is unitary, we have U1U1
∗ + U2U2

∗ = I. If U1 = [uij ] and U2 = [vij ], then

comparing the entries (1, 1) we get
∑r

j=1 |u1j|2+
∑n−r

j=1 |v1j |
2 = 1. Since the entry (1, 1)

in H(T )2 is equal to
∑r

j=1 |u1j |2, now we have that it is also equal to 1−
∑n−r

j=1 |v1j |
2.

Finally, we have 1+ 1
4 t12t

∗
12 = 1−

∑n−r

j=1 |v1j |
2, that is, 1

4 t12t
∗
12+

∑n−r

j=1 |v1j |
2 = 0.

This implies t12 = 0. By induction hypothesis, T22 is diagonal and then T is diagonal

as well.

Theorem 4.2. Let A ∈ Cn×n and k ∈ N.
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(I) Suppose k is odd and consider the following statements:

(a) H(A)k+1 = H(A).

(a’) H(A)k = I.

(b) The real part of the eigenvalues of A is in {0, 1}.

(b’) The real part of the eigenvalues of A is 1.

(c) A is a normal matrix.

Then the following implications hold: (a)∧(b)⇒ (c), (a)∧(c)⇒ (b), (b)∧(c)

⇒ (a), (a)∧(b’) ⇔ (a’)∧(c), (b’)∧(c) ⇒ (a’).

(II) Suppose k is even and consider the following statements:

(a) H(A)k+1 = H(A).

(a’) H(A)k = I.

(b) The real part of the eigenvalues of A is in {−1, 0, 1}.

(b’) The real part of the eigenvalues of A is in {−1, 1}.

(c) A is a normal matrix.

Then the following implications hold: (a)∧(c) ⇒ (b), (b)∧(c) ⇒ (a),

(a)∧(b’) ⇔ (a’)∧(c), (b’)∧(c) ⇒ (a’).

(III) If k is not a multiple of 4, then S(A)k+1 = S(A) if and only if A is Hermitian.

(IV) Suppose k is a multiple of 4 and consider the following statements:

(a) S(A)k+1 = S(A).

(a’) S(A)k = I.

(b) The imaginary part of the eigenvalues of A is in {−1, 0, 1}.

(b’) The imaginary part of the eigenvalues of A is in {−1, 1}.

(c) A is a normal matrix.

Then the following implications hold: (a)∧(c) ⇒ (b), (b)∧(c) ⇒ (a),

(a)∧(b’) ⇔ (a’)∧(c), (b’)∧(c) ⇒ (a’).

Proof. If A is normal then it is unitarily similar to a diagonal matrix with the

eigenvalues of A as diagonal entries. Thus, without loss of generality, we can as-

sume that A = diag(λ1, . . . , λn). Then H(A) = diag(Reλ1, . . . , Reλn) and S(A) =

diag( Imλ1, . . . , Imλn). It is now easy to see that (a)∧(c) ⇒ (b), (b)∧(c) ⇒ (a),

(a’)∧(c) ⇒ (a)∧(b’), and (b’)∧(c) ⇒ (a’) in (I), (II), and (IV).

Assume (a) and (b) in (I). Lemma 1.1 implies H(A)2 = H(A), thus it remains to

apply [14, Theorem 2] to conclude that A is a normal matrix. Hence, (a)∧(b) ⇒ (c)

in (I).

If (a) and (b’) in (I) hold then (a) and (b) also hold. We have proved that then

(c) holds as well. Furthermore, since (b’)∧(c) ⇒ (a’) in (I), we have that (a’) also

holds.

Now assume (a) and (b’) in (II). According to Lemma 1.1, we have H(A)3 =

H(A). In view of Schur’s triangularization theorem, A is unitarily similar to an upper

triangular matrix T. Since H(T )3 = H(T ), Lemma 4.1 implies that T is diagonal,
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thus A is normal. In particular, since (b’) and (c) hold, we conclude that (a’) holds

as well. In other words, (a)∧(b’) ⇒ (a’)∧(c) in (II).

Assume (a) and (b’) in (IV). Then the real part of the eigenvalues of iA is in

{−1, 1} and H(iA)k+1 = H(iA), so it remains to apply (a)∧(b’) ⇒ (a’)∧(c) in (II) to

conclude (a’)∧(c) in (IV).

Finally, if k is not a multiple of 4 then S(A)k+1 = S(A) if and only if S(A) = 0,

by Lemma 1.1. Hence, (III) holds.

Remark 4.3. The implications (a)∧(b) ⇒ (c) in (II) and (IV) are not true in

general. It is sufficient to observe the matrix

A =

[
0 0

2 0

]
.

Then we have H(A)3 = H(A) and the real part of the eigenvalues of A is 0, that is,

(a) and (b) in (II) hold. We also have S(A)5 = S(A) and the imaginary part of the

eigenvalues of A is 0, that is, (a) and (b) in (IV) hold. However, A is not normal.

It is not difficult to verify that Theorem 4.2 implies the following result.

Corollary 4.4. Let A ∈ Cn×n and let k1, k2 ∈ N. Consider the following

statements:

(a) A is normal.

(b1) H(A)k1+1 = H(A) and S(A)k2+1 = S(A).

(b2) H(A)k1 = I and S(A)k2 = I.

(c1) σ(A) ⊆ {0, 1}.

(c2) σ(A) ⊆ {0, 1, i, 1 + i,−i, 1− i}.

(c3) σ(A) ⊆ {−1, 0, 1}.

(c4) σ(A) ⊆ {−1 + i, i, 1 + i,−1, 0, 1,−1− i,−i, 1− i}.

(c5) σ(A) ⊆ {1 + i, 1− i}.

(c6) σ(A) ⊆ {−1 + i, 1 + i,−1− i, 1− i}.

(d1) k1 is odd and k2 is not a multiple of 4.

(d2) k1 is odd and k2 is a multiple of 4.

(d3) k1 is even and k2 is not a multiple of 4.

(d4) k1 is even and k2 is a multiple of 4.

Then the following implications hold:

(a)∧ (b1)∧ (di) ⇒ (ci) for i = 1, 2, 3, 4;

(a)∧(ci)∧(di) ⇒ (b1) for i = 1, 2, 3, 4;

(a)∧(b2)∧(d2) ⇒ (c5);

(a)∧(b2)∧(d4) ⇒ (c6);
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(a)∧(c5)+(d2) ⇒ (b2); (a)∧(c6)∧(d4) ⇒ (b2);

(b1)∧(c5)∧(d2) ⇒ (a)∧(b2); (b1)∧(c6)∧(d4) ⇒ (a)∧(b2).

5. Final remarks. As we have pointed out in the introduction, the Hermitian

part of a matrix is used in applications. For example, for a non-Hermitian positive

definite linear system, the Hermitian and skew-Hermitian parts of its coefficient matrix

were used to design generalized conjugate gradient method by Concus and Golub in

[10], and they were also used to construct inner-outer iteration methods by Axelsson,

Bai, and Qiu in [1].

For a Hermitian matrix X , we denote by X > 0 the fact that X is positive

definite and by X ≥ 0 that X is positive semidefinite. We end this paper with a

characterization for the positive semidefiniteness of H(A).

Let X ∈ C
n×n be a Hermitian matrix and suppose that there exist r < n, a

Hermitian matrix A ∈ Cr×r, and a matrix B ∈ C(n−r)×r of rank m such that B∗B is

diagonal with positive entries in the first m diagonal positions and

X =

[
A B∗

B 0

]
.

We shall prove that X ≥ 0 if and only if A ≥ 0 and B = 0; this implies that X > 0

cannot occur.

Namely, if X ≥ 0 then there exists a matrix Y ∈ Cn×n such that X = Y ∗Y .

Partitioning

Y =

[
C D

E F

]

in blocks of adequate sizes, we get

[
A B∗

B 0

]
=

[
C∗C + E∗E C∗D + E∗F

D∗C + F ∗E D∗D + F ∗F

]
.

We conclude that D = 0 and F = 0, which implies B = 0 and A = C∗C + E∗E ≥ 0.

It is easy to see that X ≥ 0 if and only if U∗XU ≥ 0 for all unitary matrices U .

By the above, the following proposition holds. Similar results were obtained in [2].

Proposition 5.1. Let A ∈ C
n×n be a matrix of rank r < n. Then H(A) ≥ 0 if

and only if there exists a unitary matrix U ∈ Cn×n such that A has the form (2.1)

with H(T ) ≥ 0 and Y = 0. In particular, H(A) ≥ 0 implies that A is an EP matrix.

Acknowledgements. The authors would like to thank the referees for their

valuable comments and suggestions.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 24, pp. 95-112, June 2012

http://math.technion.ac.il/iic/ela



ELA

When is the Hermitian/skew-Hermitian part of a matrix a potent matrix? 111

REFERENCES

[1] O. Axelsson, Z.-Z. Bai, S.-X. Qiu. A class of nested iteration schemes for linear systems with

a coefficient matrix with a dominant positive definite symmetric part, Numer. Algorithms

35 (2004), 351–372.

[2] Z.-Z. Bai. On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular

linear systems, Computing 89 (2010), 171–197.

[3] Z.-Z. Bai, G.H. Golub, C.-K. Li. Optimal parameter in Hermitian and skew-Hermitian splitting

method for certain two-by-two block matrices, SIAM J. Sci. Comput. 28 (2006), 583–603.

[4] Z.-Z. Bai, G.H. Golub, C.-K. Li. Convergence properties of preconditioned Hermitian and

skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Math.

Comp. 76 (2007), 287–298.

[5] Z.-Z. Bai, G.H. Golub, L.-Z. Lu, J.-F. Yin. Block triangular and skew-Hermitian splitting

methods for positive-definite linear systems, SIAM J. Sci. Comput. 26 (2005), 844–863.

[6] Z.-Z. Bai, G.H. Golub, M.K. Ng. Hermitian and skew-Hermitian splitting methods for non-

Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24 (2003), 603–

626.

[7] Z.-Z. Bai, G.H. Golub, M.K. Ng. On successive-overrelaxation acceleration of the Hermitian

and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl. 14 (2007), 319–335.

[8] Z.-Z. Bai, G.H. Golub, J.-Y. Pan. Preconditioned Hermitian and skew-Hermitian splitting

methods for non-Hermitian positive semidefinite linear systems, Numer. Math. 98 (2004),

1–32.

[9] O.M. Baksalary, G.P.H. Styan, G. Trenkler. On a matrix decomposition of Hartwig and
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