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Abstract: 

Though biodiesel has begun to penetrate the fuel market, its effect 
on injection processes, combustion, and emissions formation under 
diesel engine conditions remains somewhat unclear. Typical tailpipe 
measurements from engines running biodiesel indicate that PM, CO 
and UHC are decreased, whereas NOx emissions tend to be 
increased. However, these observations are the result of complex 
interactions between physical and chemical processes occurring in 
the combustion chamber, for which understanding is still needed. 
 
To characterize and decouple the physical and chemical influences of 
biodiesel on spray mixing, ignition, combustion and soot formation, a 
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soy methyl-ester biodiesel is injected into a constant-volume 
combustion facility. A range of optical diagnostics is performed, 
comparing biodiesel to a conventional #2 diesel at the same injection 
and ambient conditions. 
Schlieren imaging shows virtually the same vapor-phase penetration 
for the two fuels, while simultaneous Mie-scatter imaging shows that 
the maximum liquid-phase penetration of biodiesel is higher than 
diesel due to their different boiling-point temperatures. But the 
different liquid-phase penetration does not affect overall mixing rate 
and downstream vapor-phase penetration because each fuel spray 
has similar momentum and spreading angle. The ignition delay and 
lift-off length are only slightly less for biodiesel compared to diesel, 
consistent with the CN. Because of the similarity in lift-off length, the 
differences in equivalence ratio distribution at the lift-off length are 
mainly affected by the fuels oxygen content. For biodiesel, the 
equivalence ratio is reduced, which, along with the fuel molecular 
structure and oxygen content, significantly affects soot formation 
downstream. Spatially-resolved soot volume fraction measurements 
obtained by combining laser extinction measurements with planar 
laser-induced incandescence imaging show that the soot 
concentration can be reduced by an order of magnitude for biodiesel. 
These integrated measurements of spray mixing, combustion, and 
quantitative soot concentration provide new validation data for the 
development of CFD spray, combustion, and soot formation models 
suitable for the latest biofuels. 
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Abstract 

 

Though biodiesel has begun to penetrate the fuel market, its effect on injection processes, combustion, and 

emissions formation under diesel engine conditions remains somewhat unclear. Typical tailpipe 

measurements from engines running biodiesel indicate that PM, CO and UHC are decreased, whereas 

NOX emissions tend to be increased. However, these observations are the result of complex interactions 

between physical and chemical processes occurring in the combustion chamber, for which understanding 

is still needed. 

 

To characterize and decouple the physical and chemical influences of biodiesel on spray mixing, ignition, 

combustion and soot formation, a soy methyl-ester biodiesel is injected into a constant-volume 

combustion facility under diesel-like operating conditions. A range of optical diagnostics is performed, 

comparing biodiesel to a conventional #2 diesel at the same injection and ambient conditions. 

 

Schlieren high-speed imaging shows virtually the same vapor-phase penetration for the two fuels, while 

simultaneous Mie-scatter imaging shows that the maximum liquid-phase penetration of biodiesel is higher 

than diesel. Differences in the liquid-phase penetration are expected because of the different boiling-point 

temperatures of the two fuels. But the different liquid-phase penetration does not affect overall mixing rate 

and downstream vapor-phase penetration because each fuel spray has similar momentum and spreading 

angle. For the biodiesel and diesel samples used in this study, the ignition delay and lift-off length are only 

slightly less for biodiesel compared to diesel, consistent with the fuel cetane number (51 for biodiesel, 46 

for diesel). Because of the similarity in lift-off length, the differences in equivalence ratio distribution at 

the lift-off length are mainly affected by the oxygen content of the fuels. For biodiesel, the equivalence 

ratio is reduced, which, along with the fuel molecular structure and oxygen content, significantly affects 

soot formation downstream. Spatially-resolved soot volume fraction measurements obtained by combining 

line-of-sight laser extinction measurements with planar laser-induced incandescence imaging show that 

the soot concentration can be reduced by an order of magnitude for biodiesel. These integrated 
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measurements of spray mixing, combustion, and quantitative soot concentration provide new validation 

data for the development of CFD spray, combustion, and soot formation models suitable for the latest 

biofuels. 

 

 

 

Introduction 
 

The diversification of fuel resources, including renewable fuels such as biodiesel [1, 2], presents an 

opportunity and challenge for the control of diesel combustion emissions. The use of biodiesel, in 

particular, has been studied in multi-cylinder diesel engines in pure and blended formulations, with the 

majority of these studies reporting a reduction of PM, CO, and UHC, while NOX emission and fuel 

consumption increase [3, 4]. These emissions trends are the result of complex interactions between 

physical and chemical processes occurring in the combustion chamber. Fatty-Acid Methyl Ester (FAME) 

biodiesel has significantly different physical properties compared to regular diesel fuel, including a higher 

boiling-point temperature, viscosity, and density.  In addition, FAME biodiesel is an oxygenated fuel, 

affecting fuel chemistry as well as air-fuel mixing stoichiometry. Because of the complexity of the 

physical and chemical interactions that take place during diesel combustion, changes in the spray 

combustion physics induced by the injection of biodiesel instead of conventional diesel, are not 

completely understood.  

Regarding the physical mixing processes, the quasi-steady liquid penetration, or liquid-length (LL) of 

biodiesel sprays can be substantially longer than conventional diesel sprays. Recent studies performed 

under high-temperature, but non-reactive, unsteady conditions showed that biodiesel can increases LL by 

up to 20% [5, 6] or 100% [7] with respect to conventional diesel fuels. This behavior has been related to 

its higher density and lower volatility [7, 8]. Because of the longer liquid penetration, the proximity of the 

liquid-phase spray to the quasi-steady flame lift-off length (LOL) is increased, which can potentially 

modify combustion and emissions formation [10].  

Several studies performed under room temperature or low-density conditions (mostly non-evaporative) 

report a faster axial penetration of the liquid-phase portion of the biodiesel spray [11-13]. Other 

experiments have shown similar results under comparable or more realistic conditions of a diesel engine 

[14-16]. However, under these evaporative engine conditions, the vapor-phase penetration of the fuel jet 

needs to be considered, since this ultimately affects the fuel-ambient mixing rate. But the vapor 

penetration of a biodiesel jet has not been studied yet in comparison to that of a diesel jet.  

In addition, because oxygen-carrying fuels such as biodiesel influence mixture stoichiometry, the temporal 

and spatial locations of ignition and flame-stabilization can occur differently for biodiesel than for 

conventional diesel fuels [17]. As flame lift-off determines the extent of oxygen entrainment from the 

surrounding gases prior to reaction, thereby affecting soot formation, this issue is especially important. 

Since the stoichiometric mixture fraction is higher for oxygenated fuels, the flame position is expected to 

occur closer to the center of the fuel jet [17], and the flame length will also be less [18]. With the flame 

closer to the center of the fuel jet there is still limited information in the literature that quantifies LOL’s 

for reacting biodiesel sprays and the mechanisms governing the lift-off stabilization are still unclear to 

make good predictions [19]. Limited reports, such as [20], have shown biodiesel to have a longer LOL 
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than a conventional European diesel for a large range of charge-gas (ambient) temperatures, but there is 

still not a widespread conclusion on the LOL behavior of biodiesel.  

Despite these limited results, the literature suggests that the LOL is highly correlated with the ignition 

location and timing [21-23]. LOL measurements performed for a large set of oxygenated and non-

oxygenated fuels have shown that fuels with a high cetane number (CN) produced both shorter ignition 

delay (ID) and shorter LOL, especially at low density and/or low temperature ambient conditions [18]. 

Nonetheless, differences among fuels rather faded as the conditions were shifted to pressures and 

temperatures more typical of conventional injection strategies (near TDC). A similar analysis may apply 

in [24, 25], but under such a high-temperature and high-density environment, differences were too small 

to establish such a connection between ID and LOL.  

Numerous studies report that lowering the equivalence ratio at the LOL can reduce sooting propensity [10, 

17, 18, 24, 30-34] and the oxygenated nature of biodiesel offers a mechanism with which to accomplish 

these leaner equivalence ratios. Recent studies have investigated the effect of biodiesel on PM emissions 

(primarily soot) compared to conventional diesel using optical research engines [6, 35-41]. These facilities 

can associate simultaneous measurements of high-speed spatially-integrated natural luminosity (SINL) 

(usually through a transparent piston), in-cylinder pressure, and engine-out emissions. All report a 

consistent reduction of PM emissions when biodiesel is injected instead of conventional diesel. The 

mechanisms behind this reduction, however, are not fully understood. Though an SINL measurement can 

provide a qualitative measure of in-cylinder soot formation, this technique is not quantitative for soot 

concentration. This is primarily due to the high dependence of this diagnostic to the soot temperature 

(>T5) while it is merely linear with the soot volume fraction [42]. Therefore, a quantitative assessment of 

in-cylinder soot formation is needed to help understand the mechanisms behind the biodiesel soot 

reduction.  In addition, a deeper investigation on the relationship between the spray and jet structure, 

mixture stoichiometry, and combustion progression is needed [37, 43, 44] to develop a complete picture of 

the physics leading to the soot formation process.  

By studying biodiesel sprays under controlled free-jet conditions with multiple diagnostics, the present 

work addresses the mechanisms for vaporization, mixing, ignition, lift-off length, and soot distribution, 

providing a more complete understanding of how biodiesel fueling affects these processes. An array of 

carefully selected optical diagnostics and ambient gas conditions are applied to a single spray plume. To 

assess the influence of biodiesel fueling on spray and injection behavior, liquid and vapor-phase 

penetration were visualized using simultaneous Mie-scattering and schlieren high-speed imaging. To 

decouple physical and chemical processes, the spray was studied under both inert and reactive conditions. 

High-speed imaging of chemiluminescence, time-sequenced OH-chemiluminescence and Planar Laser-

Induced Incandescence (PLII) of soot documented the successive stages of the combustion reaction, from 

the early stages of ignition to the first soot formation. Measurements of the quasi-steady LOL provide the 

flame morphology, while a combined PLII and line-of-sight laser extinction measurement, provides cross-

sectional maps of the soot volume fraction field in the quasi-steady combusting spray. These soot volume-

fraction datasets represent the first quantitative soot measurements within reacting biodiesel sprays at 

engine conditions available in the literature. Results are compared with those obtained using a 

conventional US #2 diesel (D2). A 1-D spray mixing model is also employed to provide predictions of 

two-dimensional mixture fraction fields, supporting a discussion of the physical mechanisms behind the 

sooting characteristics of biodiesel. 
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Experimental Facility 

Spray Combustion Simulation Facility 

Experiments have been conducted in an optically accessible, constant-volume combustion vessel under 

simulated, quiescent diesel engine conditions. The vessel has a cubical combustion chamber, 108 mm on a 

side. The fuel injector is mounted horizontally in a purposely designed port, on one of the cube faces. 

Optical access is provided through sapphire windows located in four other ports allowing line-of-sight and 

orthogonal optical access to the spray. Previous publications provide in-depth discussions of the 

combustion vessel [45, 46] and the procedure for simulating diesel conditions [10, 45-48]. 

To summarize, the procedure is started by filling the vessel to a specified density with a premixed, lean 

combustible-gas mixture. This mixture is then ignited with spark plugs and burned, creating a high-

temperature, high-pressure environment in the vessel. As the products of combustion cool over a relatively 

long time (~1 s) due to heat transfer to the vessel walls, the vessel pressure slowly decreases. When the 

desired pressure is reached, the diesel-fuel injector is triggered and the fuel injection, auto-ignition and 

combustion processes ensue. Throughout an experiment, the mixing fan at the top of the combustion 

chamber is active. This fan maintains a spatially uniform temperature environment (±2%) in the 

combustion vessel up to the time of diesel fuel injection. The gas velocities induced by the fan (~1 m/s) 

are small in comparison to the velocities of the fuel jet [10, 48]. For the conditions of this paper, the jet 

penetration velocities exceed 75 m/s at a position midway through the chamber. As a result, the gases in 

the chamber can be considered quiescent relative to the fuel jet. The temperature, density, and 

composition of the ambient gas in the vessel at the time of diesel fuel injection can be varied widely with 

this simulation procedure. The ambient gas temperature and density at injection are determined by the 

ambient gas pressure at the time the fuel injector is triggered and the mass of the gas initially put in the 

vessel (a constant up to the time of the diesel injection event).  

As shown in Table 1, two levels of ambient temperature at constant density were selected for 

experimentation. The ambient composition is determined by the composition of the combustible gas 

mixture burned to generate diesel-like temperatures and pressures. First, the oxygen content was set to 0% 

avoiding any reaction and allowing the analysis of physical processes involved in the fuel injection only. 

Then, a reactive environment (15% O2) was created using a leaner premixed combustion, simulating air 

diluted with EGR. This enabled the analysis of the association between physical and chemical processes. 

 

Injector 

The fuel injector geometry and operating conditions are summarized in Table 2. The injector has a single-

hole, axial nozzle and is connected to a standard common rail in which pressure was controlled to 150 

MPa throughout the experiment. The nominal nozzle-hole diameter is specified at 90 µm, with 

microscopy imaging showing that the mean diameter is near 91 µm. Further information on the injector 

and its mounting may be found in the “Fuel injector and rail setup” section of the “Spray A” configuration 

of the Engine Combustion Network, an international collaborative group investigating diesel engine 

combustion fundamentals [49]. 

 

Fuels 
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To provide context to our examination of the mixing and combustion behavior of biodiesel in this work, 

we performed comparative measurements using a conventional U.S. #2 diesel fuel. The properties of the 

soy-derived biodiesel, together with those of the conventional U.S. #2 diesel used in the experiments, are 

given in Table 3. Biodiesel is oxygenated, as reflected by its higher stoichiometric mixture fraction (Zstoich) 

and its lower energetic content, expressed as the Lower Heating Value (LHV). The FAME composition of 

the biodiesel fuel sample is given in Table 4. The possible effects of its higher density and viscosity on 

injection processes have been investigated by measuring the mass rate of injection as shown in  Figure 1. 

Biodiesel has a slightly higher mass flow rate, partially explained by the higher fuel density. Considering 

the energy rate of injection, the higher mass flow rate does not entirely offset the lower LHV. 

Consequently, biodiesel injections were extended to deliver the same total energy at each injection. The 

injected mass of biodiesel was 22.7 mg while it was 19.7 mg for #2 diesel. 

The distillation curves obtained under ASTM standards are presented graphically for both fuels in  Figure 

2. As seen in  Figure 2, biodiesel has a relatively flat distillation curve compared to diesel. The higher 

distillation temperatures over the full range of fuel recovery also shows that most of the conventional 

diesel fractions vaporize at temperatures lower than biodiesel under atmospheric pressure. This trend is 

expected for a spray under higher ambient pressure, making complete vaporization more difficult for 

biodiesel. 

 

Optical diagnostics 
Two sets of optical techniques have been employed in the current work. The first setup is aimed at 

characterizing the fuel mixing processes under both inert and reactive environments using simultaneous 

Mie-scattering and schlieren visualization, while the second was intended to quantify soot formation, 

using simultaneous laser extinction, planar laser-induced incandescence, and visualization of 

chemiluminescence (OH and other).  Details of each setup are listed in Table 5 and explained below. 

Fuel/Ambient mixing setup 

Simultaneous Mie-scattering and schlieren high-speed imaging was used to assess the temporal and spatial 

relationship between the liquid and vapor phases of the spray. The arrangement of the optical devices used 

for these measurements is shown in  Figure 3. 

A 100-mm wide and 20-mm oval-shaped laser beam, proceeding from a continuous-wave laser was 

directed downstream of the injector to volume illuminate the spray. Mie-scattered light from liquid 

droplets was collected by a high-speed CMOS camera at 50,000 pictures per second. The optical setup 

intentionally saturated the camera sensor (12 bits/4096 digital levels) in the dense liquid region, providing 

higher sensitivity to regions of complete vaporization. The image processing of this diagnostic aimed at 

measuring the maximum liquid-phase penetration (or liquid length). The threshold to apply for image 

segmentation is discussed and validated with laser extinction measurements in the Results and Discussions 

section. 

Simultaneous to the Mie-scatter imaging, schlieren high-speed imaging enabled visualization of refractive 

index gradients at the boundary between vaporized fuel and hotter ambient gases [51]. The schlieren setup 

is described in more detail in Ref. [50]. Its purpose was to obtain time-resolved measurement of the vapor-

phase penetration of the spray, which requires special image processing. A code available online at [49] 

has been developed to analyze the texture of the schlieren sequence. One option detects changes in texture 
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produced by the moving jet, allowing the vaporized fuel jet to be more easily identified against a non-

uniform, but frozen, background [50,60]. Once the jet boundaries are obtained, the penetration of the 

leading edge is calculated using the method defined by Naber and Siebers [48]. 

 

Combustion and soot measurement setup 

The optical combustion diagnostics employed for this study include high-speed broadband 

chemiluminescence imaging, intensified OH-chemiluminescence imaging, planar laser-induced 

incandescence (PLII) imaging, and laser extinction measurements. The laser extinction technique is shown 

with emphasis in  Figure 4. These diagnostics were all applied during the same injection event by 

arrangement of cameras/beamsplitters/mirrors and viewing through the bottom window depicted in  

Figure 3. 

High-speed images of natural combustion luminosity were collected to characterize the high-temperature 

ignition processes as in [21, 53]. Some time after ignition, strong emission from soot incandescence would 

eventually saturate the luminosity imaging. To measure the upstream high-temperature reaction zone 

without interference from soot luminosity, OH-chemiluminescence imaging was performed using an 

intensified CCD camera as shown in Table 5.  Beginning after autoignition and jet stabilization, the 

camera gate time opened for 3 ms to obtain time-averaged images, allowing identification of the quasi-

steady lift-off location of the reacting jet as in [10, 54]. In other experiments, the camera timing was 

varied to find the first appearance of OH-chemiluminesence in concert with broadband luminosity 

imaging. The camera gate was reduced to 200 µs, accompanied by increased camera gain.  

PLII images of soot were collected to analyze the location of soot along a thin plane at the jet axis. A 

frequency-doubled Nd:YAG laser pulse was used for this measurement. Images were acquired at 4 ms 

ASI during the quasi-steady portion, as well as throughout injection to detect the first appearance of soot.  

Figure 4 shows that the 80-mm wide laser sheet passes through the jet axis, creating the laser-generated 

incandescence signal along a plane. This soot signal was imaged by a second intensified CCD camera, 

filtering to block the soot luminosity and beam reflections.  

Simultaneous to the PLII data acquisition, a helium–neon (HeNe) laser beam was passed through the 

center of the fuel jet and collected with an integrating sphere to measure the soot or droplet extinction 

along this beam path. The laser extinction measurement provides the optical thickness, KL, where the 

transmitted laser intensity, I, normalized by the baseline laser intensity, I0, is related to the KL such as: 

  

 
 

In Eq. (1), K is the extinction coefficient and L is the path length through the soot cloud. The KL was 

time-averaged between 3 and 7 ms ASI during the quasi-steady period. All the technical considerations 

relative to this technique may be found in [55], including special considerations needed to accommodate 

high beam steering caused by fuel vaporization and combustion in this pressurized environment. 

 

As will be shown, the liquid-phase and soot regions were spatially separate from one another, permitting 

quantitive analysis of the soot field. The laser extinction quantifies the soot opacity integrated along the 

laser path through the jet:  
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where R is the jet outer radius, λ is the laser wavelength (632.8 nm), and ke is the dimensionless extinction 

coefficient. A value of ke = 8.7 was selected to relate the KL to the soot volume fraction [56]. Therefore, 

PLII images can be used, in combination with the quantitative KL measurements at the jet centerline, to 

obtain the time-averaged radial soot volume fraction (fv) distribution upon the fact that the PLII signal is 

proportional to the soot volume fraction (fv = c·LII). That is, the calibration constant c can be determined 

with the measured LII profile, measured KL, and known soot optical properties. This, in turn, enables the 

calculation of the average radial soot volume fraction distribution. 

Note that while a quantitative relationship between KL and soot volume fraction is affected by 

uncertainties in the soot optical properties, a relative comparison between the two fuels under all operating 

conditions should be valid since the soot optical properties are not expected to change significantly. With 

KL measurements along the axis of the jet combined with the PLII images, these data were used to obtain 

quantitative, two-dimensional soot volume fraction distributions, similar to Refs. [34, 57-59]. 

 

Results & discussions 
The Results and Discussions section is divided into three parts to analyze the succession of processes 

occurring during the combustion of the biodiesel spray. In each section, measurements taken using 

biodiesel and #2 diesel are compared to assess the physical and chemical effects of biodiesel on the 

mixing and combustion processes. In the first section, high-speed imaging of the liquid and vapor 

penetration of the non-reactive spray are analyzed and contrasted with 1-D jet modeling results. The 

second section presents high-speed imaging under reactive conditions, providing a temporal and spatial 

description of ignition and first soot formation. The last section presents time-averaged measurements 

during quasi-steady combustion to quantify lift-off length and in-flame soot concentration.  

Analysis of the transient inert spray 

Imaging of the liquid- and vapor-phase spray was performed in both reacting (15% oxygen) and inert (0% 

oxygen) conditions. Only the inert case will be discussed in this first section. Both fuels were injected into 

ambient environments of 900 and 1000 K with equivalent density and injection pressure. Measurements of 

the liquid-phase penetration were obtained using the image processing algorithm described above. Still, 

the tip of the liquid spray, where most of the fuel already vaporized but where some small fractions still 

remain in liquid-phase, has always represented a difficult challenge to resolve via image processing. This 

concern has been analyzed by moving the HeNe laser, used in subsequent soot extinction measurements, 

along the vicinity of the liquid spray tip region. By measuring the extinction of the HeNe beam due to 

scattering by liquid droplets, a threshold for liquid boundary selection in the Mie-scattering images could 

be justified. The extinction induced by the liquid droplets near the spray tip was quantified following Eq. 

1.  
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 Figure 5 shows the KL measurements taken at 5 axial positions and the liquid length obtained using 4 

different thresholds with their corresponding standard deviation. Although the KL measurements are 

relatively low compared to what could be found measuring soot, the decrease in KL is appreciable moving 

the laser from 19 to 21 mm. Mie-scatter processing using a threshold of  120 to 250 pixel counts results in 

mean liquid lengths of 20 to 21 mm. A value of 120 pixel counts (or 3% of the maximum signal) to define 

liquid length was selected for consistency with previous measurements at this facility [45].  

The ensemble-averaged liquid penetration of 10 injection cycles is plotted as a continuous line in  Figure 

6. As expected, the liquid-phase penetration stabilizes at a fixed distance from the injector, which is time-

averaged during the steady period for determination of the mean liquid length (LL), as defined by Siebers 

in [45]. Considering first the inert condition, biodiesel shows an increased liquid length of about 30% 

compared to conventional #2 diesel at both ambient temperatures. This result is consistent with the higher 

distillation temperature range for biodiesel shown in  Figure 2. 

Simultaneous to the Mie-scatter liquid-phase imaging, high-speed schlieren imaging was used to visualize 

the vapor-phase penetration. In  Figure 7, the ensemble-averaged penetration at 900 K is shown as solid 

lines. The measured liquid-phase penetration is also shown for reference. During the initial penetration of 

the injection, the liquid and vapor phases overlap until the liquid-phase reaches its maximum penetration 

or liquid length. After the spray reaches this penetration distance, only the vapor-phase continues its 

progression through the chamber up to the vessel wall. The jet slows as it continues to penetrate and 

entrain ambient gases, following a typical square-root dependency with time [48]. 

Comparing the two fuels jets, biodiesel appears to have a slightly faster penetration rate than #2 diesel, 

demonstrated more easily by the difference in penetration at the top of  Figure 7, which shows as much as 

2 mm higher penetration for biodiesel. However, the differences are slight, especially when considering 

the experimental uncertainty. The shaded line surrounding the mean biodiesel penetration at the bottom is 

the 95% confidence interval for the ensemble average of the data. The overlap between mean value and 

the shaded region shows that the statistical difference between the two fuels is only marginal.  

If real, the faster penetration of biodiesel could be the result of two factors: (1) a narrower spreading angle 

and/or (2) a higher spray momentum. Investigations of the measured spreading angle were not conclusive 

to establish a spreading angle effect in this study. The difficulties with assigning a spreading angle via 

schlieren imaging in this high-temperature/high-pressure environment are discussed at length in Ref. [60], 

where it was shown that subtle differences in optical setup and image processing yield different results for 

spreading angle but not penetration. Indeed, the radial borders of the schlieren images (see  Figure 9, later, 

as an example) have too much uncertainty to conclude that biodiesel has a smaller spreading angle 

compared to diesel. However, studies in a low density environment where these uncertainties are smaller 

were conclusive that biodiesel had a smaller spreading angle than diesel during the transient penetration, 

before relaxing to the same spreading angle during the steady period [13]. Therefore, although no certain 

trend with spreading angle can be established in this study, there is an indication that the biodiesel 

spreading angle may be slightly less than diesel, at least during the initial transient period.  

Regarding (2), there is also an indication that biodiesel may have a slightly higher spray momentum. Note 

that the higher fuel density of biodiesel does not automatically increase spray momentum when injection 

pressure is held constant [47]. In fact, momentum changes only if the nozzle flow coefficients change. 

Table 2 indicates that the discharge coefficient increases from 0.91 with diesel to 0.94 with biodiesel, 
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indicating that biodiesel would have higher momentum. Uncertainties in these coefficients deserve 

attention, however, particularly because the fuel and injector temperature were slightly (10 K) different, 

which increases the uncertainty. In our previous study [13], flow coefficient measurements performed for 

the same fuels using the same injector temperature controller, but with a different, 0.108-mm nozzle, 

showed only an 0.01 units higher nozzle flow coefficients for biodiesel compared to diesel. This 

difference is also within the experimental uncertainty [13]. 

Given the uncertainties associated with spreading angle and spray momentum, and also with the measured 

penetration itself, it is helpful to address the effect that these parameter variations have on predicted jet 

penetration. The Musculus and Kattke jet model described in [61] is used to model spray penetration with 

different assumptions for nozzle coefficients and spreading angle. Modeling results are given at the top of  

Figure 7, displayed as difference in the modeling result compared to the biodiesel experimental or 

modeling data. Three model predictions are represented in the figure. One is for biodiesel with the 

discharge coefficient set to the experimental value of Table 2 and a full spray angle of 20˚. The model 

predictions for biodiesel toggle about the experimental data, starting out too low but ending too high, 

although never varying from the experimental data by more than 2 mm. Two other model predictions are 

shown for diesel fuel. D2a uses the same spreading angle as BD and the measured discharge coefficient 

from Table 2, while D2b assumes the same nozzle coefficients and a higher spreading angle. The lower 

penetration of diesel (positive values in  Figure 7, top) is well predicted with either a 0.6˚ spreading angle 

increase or a 0.03 decrease in discharge coefficient (according to our measurements) compared to that of 

biodiesel, amounting to about 1 mm lower penetration by 3000 µs in each case. This modeling exercise is 

useful because it shows the extent that changes in spreading angle or flow coefficients affect penetration. 

It also shows that these subtle variations produce predictions that fall within the experimental uncertainty, 

as was discussed for a wide range of fuel sprays in [47]. Ultimately, we conclude that the differences in 

penetration for biodiesel and diesel jets are not significant enough to ascertain a causal effect of either 

spreading angle or flow coefficients on the penetration. 

The penetration measurements do provide a valuable basis for estimation of the fuel/ambient mixing field, 

or the mixture fraction distribution throughout the jet, because the jet model used for prediction of 

penetration may also be used for prediction of mixture fraction. Recent work shows that when model 

predictions are based on the measured penetration the model also falls within the experimental uncertainty 

of direct mixing measurements [60]. The mixture fraction predictions may be converted to equivalence 

ratio by considering the ambient oxygen concentration, as well as the fuel oxygen.  

The resulting two-dimensional mixing contours of the steady-state, non-reacting jet are represented in  

Figure 8. Three mixture fraction layers of interest are indicated, including surfaces representing 

evaporation (liquid length), soot formation (equivalence ratio = 2), and stoichiometry. Note that the model 

predictions correspond to the best fit of penetration when using experimental nozzle coefficients with 

constant spreading angle, and include effects such as differences in fuel density. For the liquid length 

predictions, properties of n-heptadecane and methyl-oleate have been selected as surrogates because of 

their similar physical properties to diesel #2 and biodiesel, respectively [13, 62].   The mixing predictions 

provide guidance about mixing and combustion phenomenon that is discussed throughout this paper.  

The mixing predictions show that a longer liquid length is predicted for biodiesel, owing to a lower 

mixture fraction for complete vaporization compared to that of diesel fuel. Although the liquid length does 

not match the experimental value using a spreading angle input, which appears too high for the near-
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nozzle region, as discussed in Ref. [60], the trends are consistent with the boiling point temperature and 

fuel density arguments made above. The mixing prediction contours also show that the approximate soot 

formation limit (Zsoot) and stoichiometric layer (Zstoich) occur further upstream for biodiesel. This is caused 

directly by fuel oxygenation, which increases the critical mixture fraction for these quantities for biodiesel 

compared to diesel, as shown in Table 3. Essentially, a higher Zstoich or Zsoot means that less mixing with 

ambient gases is required to avoid soot formation or to complete combustion.   

Analysis of the transient reactive spray 

To examine the ignition and combustion behavior of the biodiesel spray, the operating conditions were 

modified from the previous non-reacting experiments to generate an ambient oxygen concentration of 

15% (by volume) while maintaining all other thermodynamic conditions. Some observations about the 

effects of ignition and combustion on liquid-phase penetration were already given in  Figure7, where it is 

shown that there are no significant differences between the inert and reactive spray. These results suggest 

that the flame heat release does not affect the vaporization processes for either the biodiesel or #2 diesel 

sprays at these particular experimental conditions. Understanding the causes for this behavior and further 

observations of combustion requires analysis of the ignition and reaction zones within the fuel jet.  

 Figure 9 presents a time sequence of images representing a typical combustion event for a biodiesel spray 

at the 1000 K operating condition. To reveal lower intensity regions during the early stages of ignition and 

combustion, the range of image display is shown as a percentage of full scale for some natural luminosity 

and PLII images, as indicated in the lower right of these images. The figure shows that the first 

appearance of broadband chemiluminescence occurs simultaneously with OH-chemiluminescence at 400 

µs, indicating that the broadband chemiluminescence is a capable marker of high-temperature, second-

stage ignition [22]. Spatially, the first broadband and OH chemiluminescence appears in the head vortex 

region of the spray, which is also the same location where a noticeable darkening and radial expansion 

appears in the schlieren image, signifying a rapid decrease in density [46,50]. After ignition, the reaction 

zone grows and expands in all directions, filling the downstream portion of the jet and also moving 

slightly upstream. However, the OH chemiluminescence shows that the flame remains lifted from the 

injector during subsequent injection at slightly less than 20 mm from the injector.  

To quantify the average ignition timing and location, the first broadband chemiluminescence detection 

was identified (intensity > 4/4096 counts). Afterwards, the ignition location was more precisely defined as 

the centroid of the chemiluminescence area for the next three subsequent images.  The ensemble-average 

ignition delay and axial position over a large number of combustion events are given in Table 6. For 

biodiesel, ignition delay nearly doubles, and the ignition site moves downstream, comparing results at 900 

K to that at 1000 K.  These results emphasize the strong influence of ambient temperature in the processes 

governing autoignition.  

The pressure signal offers a second measure of the ignition delay. Pressure measurements typically show a 

sharp increase corresponding to the onset of rapid, second-stage ignition [49]. The timing of this rapid 

pressure increase was identified, and also corrected for speed-of-sound time delay to reach the pressure 

transducer [21]. A comparison of the broadband chemiluminescence and pressure signal detection of 

ignition in Table 6 shows that the two ignition delay metrics are consistent, indicating straightforward 

interpretation of ignition based on the imaging (schlieren, broadband, OH chemiluminescence) 

observations. Evaluation of the measured ignition delays for biodiesel and #2 diesel shows that biodiesel 
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ignites faster than conventional #2 diesel, in agreement with the cetane numbers indicated in Table 3. 

Differences in ignition delay for the two fuels also influence the stabilized lift-off length position, as 

discussed in the next section.  

 

The penetration rate of the reacting fuel jet is demarcated by the green border lines overlaid on the 

schlieren images of  Figure 9. The ensemble-average penetration for the biodiesel jet is shown in  Figure 

10, where reacting results are shown alongside inert to highlight differences attributed to heat release. In 

addition, the spatially integrated intensity obtained from broadband chemiluminescence imaging is plotted 

on a logarithmic scale on the right axis. A star on the figure indicates the time of first pixel saturation due 

to intense soot luminosity, evident in the bottom images of  Figure 9, after which the intensity is no longer 

quantitative. The objective of  Figure 10 is twofold:  First, it shows that combustion affects penetration; 

Second, it illustrates that the timing of the combustion interaction effect on penetration is different for 

each ambient temperature, as indicated by the presence of broadband chemiluminescence emission. 

The penetration for the non-reactive 1000 K jet (900 K data is presented in  Figure 7) is nearly identical to 

that of the 900 K condition, as shown plainly in  Figure 10. This behavior is expected because ambient 

temperature is known to have no effect on vapor-phase penetration under inert conditions [48, 63]. 

However, under reactive conditions, the jet is faster in reaching the wall. Moreover, this acceleration of 

the jet tip is amplified when ambient temperature is increased. Faster penetration of a reacting jet may be 

expected because heat release reduces the density of the jet, and causes thermal expansion [64,65]. 

However, since this expansion also occurs in the radial direction, the axial expansion (penetration) may or 

may not exceed that of the non-reacting jet [65,50], depending upon particular conditions.  

Regarding soot formation,  Figure 9 shows that the first detectable LII signal occurs after 600 µs ASI for 

biodiesel, more than 200 µs after the start of high-temperature combustion. Soot concentrations are very 

low at first; the 10%-scale display-adjusted image shows that the first soot develops at approximately 32 

mm from the injector tip which corresponds to the transient head vortex region according to the schlieren 

and chemiluminescence images. Bright luminosity from hot, naturally incandescent soot is also apparent 

in this head region in the luminosity and schlieren images, also signifying that soot has formed. A finite 

time delay between high temperature ignition and soot formation has been demonstrated previously [66], 

particularly for fuels with lower sooting propensity operating in reduced ambient oxygen concentration 

(i.e., 15% O2) environments.  

After the time of initial soot formation, the sooting region follows the jet development downstream and 

soot concentration increases by more than a factor of 10, based on the PLII intensity scale. The sooting 

zone remains about 10 mm downstream of the lift-off length and does not regress back towards the 

injector. At steady conditions (after 4000 µs ASI), the soot concentration decreases downstream of 80 mm 

where enough oxygen has been entrained to oxidize the soot. In the following analysis, the soot formation 

is examined and compared in biodiesel and diesel sprays during this quasi-steady combustion period, 

downstream of the stabilized, lifted flame.  

 

Analysis of soot formation for stabilized flame 

Long injection events were studied to quantify the soot formation of the fully developed biodiesel and #2 

diesel sprays during the mixing-controlled phase of combustion. As previously discussed, a combination 

of PLII and laser extinction measurements was performed to produce 2-dimensional maps of the soot 
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volume fraction at the jet center plane. The stabilized lift-off length position was also measured during the 

quasi-steady period to assess the spatial relationship between lift-off length and soot formation for the two 

fuels.  

 

The stabilized lift-off length was measured from OH-chemiluminescence images using a long-duration 

exposure centered during the quasi-steady period.  Figure 11 shows the ensemble average of numerous 

cycles and the resulting averaged lift-off length. Consistent with the observation of a slightly shorter 

ignition delay for biodiesel, a decrease in the lift-off length is also observed for biodiesel in comparison to 

#2 diesel. The order for both ignition delay and lift-off length is as follows: BD(1000 K) < D2(1000 K) << 

BD(900 K) < D2(900 K).  

 

To quantify the soot formed during the quasi-steady period, line-of-sight laser extinction measurements 

were performed along the flame axis, at least every 10 mm from 30 mm to 80 mm. The calculated optical 

thickness, KL, at each axial position was time-averaged over the stabilized portion of the extinction signal, 

between 3000 and 7000 µs ASI (during the quasi-steady period), and ensemble-averaged for 10 injections.  

Figure 12 shows results for biodiesel and #2 diesel [49] sprays at the 900 K and 1000 K ambient 

conditions. The tendency for biodiesel to form less soot than conventional diesel is in agreement with 

exhaust measurements as discussed in the Introduction [3, 4]. Levels are very low for biodiesel at 900 K, 

with peak KL values less than 0.01, but both PLII and laser extinction confirm that some soot does form at 

this condition. The axial distribution shows that soot formation reaches a peak at 50 or 60 mm before 

decreasing as soot oxidation becomes dominant towards the flame length. The peak soot location tends to 

move further downstream with decreasing ambient temperature, in response to an increased lift-off length 

and delayed soot formation [17,18].  

 

To give further insight into the soot spatial distribution, the qualitative PLII images were combined with 

the quantitative KL measurements to construct the 2D maps of soot volume fraction as shown in  Figure 

13. Note that different color scales are used because of the large change in soot level. Results show that 

the use of biodiesel instead of #2 diesel reduces local soot concentration by a factor 5 at 1000 K and by a 

factor 10 at 900 K. Biodiesel soot is also more constrained to the center of the fuel jet, and the axial 

position of what appears to be complete oxidation (i.e., the flame length) is also is shorter.  

Causes for the change in soot distribution for oxygenated fuels were examined in [17], and these factors 

remain important for biodiesel fuel. As was shown in the jet mixture fraction predictions given in  Figure 

8, the oxygen content of biodiesel increases the critical mixture fraction for the soot formation limit (Zsoot) 

and the stoichiometric layer (Zstoich), implying that soot formation or complete combustion may be avoided 

if mixtures fall below these levels. For example, since Zstoich is closer to the injector nozzle for biodiesel, 

both axially and radially, shortening and narrowing the flame is expected. Also, since both fuels have 

comparable lift-off lengths, a smaller percentage of fuel jet mixtures fall above Zsoot for biodiesel, thereby 

reducing downstream soot formation. Indeed, the higher Zsoot for biodiesel partially compensates for the 

fact that its lift-off length is slightly less than that of diesel. 

Aside from fuel oxygenation effects on mixture stoichiometry, the molecular structure of the fuel will also 

strongly affect the progression of soot formation downstream of the lift-off length, as discussed in detail in 

Ref. [17]. Inside of the diffusion flame, a partially premixed fuel-rich combustion zone forms soot 

precursors that are the foundation for soot growth downstream. As noted above, the transition from high-
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temperature, fuel-rich combustion near the lift-off length to soot formation does not happen immediately. 

Distances between the lift-off length and the first soot formation easily exceed 10 mm, with greater 

distances evident for biodiesel compared to diesel. Soot precursor and soot formation pathways within 

these regions are complex, and dependent upon mixture stoichiometry, original molecular structure, local 

mixture temperature, and residence time [57,58,17,18]. Soot formation commences after the formation and 

growth of condensed ring aromatics (PAHs) [67, 68]. 

While a biodiesel (methyl ester) fuel has a higher sooting propensity than other oxygenated fuels because 

of a non-optimal C=O structural group [69], its molecular structure is still much less prone to form soot 

compared to typical diesel fuel. The D2 diesel fuel used in this study already contains 27 % of aromatics, 

whereas biodiesel is aromatics free. Biodiesel contains carbon-oxygen bonds quite difficult to break, 

inhibiting the formation of carbon-carbon double and triple bonds that lead to the formation of acetelyne 

and benzene (single ring aromatic). The longer distance required for soot growth is apparent in  Figure 13, 

if comparing a constant threshold (e.g., 2 ppm) between biodiesel and diesel. The longer distance also 

means that more residence time is required before the first soot formation or any subsequent soot growth. 

During this time, continual mixing and entrainment of ambient oxygen and combustion products 

proceeding from diffusion flame occurs whilst moving downstream, which can suppress the total soot 

growth. Since biodiesel fuel is oxygenated and has higher Zstoich, this entrained oxygen curtails soot 

growth more quickly than a hydrocarbon fuel, thereby also shortening the residence time. Ultimately, it is 

the combination of (1) fuel oxygenation effects on mixing and (2) fuel molecular structure benefits that 

produces much lower soot for biodiesel compared to diesel. 

 

 

 

Conclusion 
 

To study the effect of biodiesel fueling on the combustion processes of a diesel engine, a set of optical 

diagnostics have been applied to a soy methyl ester free spray under both reactive (15% O2) and non-

reactive (0% O2) environments. Experiments were conducted in an optically accessible, constant-volume 

vessel at ambient conditions representative of a modern diesel engine (22.8 kg/m3, 900-1000 K, 6.0-6.7 

MPa, 15% O2), comparing biodiesel to conventional #2 diesel. High-speed imaging and other diagnostics 

provided: (1) time-resolved liquid-phase penetration, (2) vapor-phase penetration, (3) ignition timing and 

location, (4) quasi-steady lift-off length, (5) flame boundaries, and (6) the in-flame soot distribution. 

These results provide a comprehensive understanding of the spray mixing and vaporization processes, 

coupled to a more fundamental understanding of the spray and combustion characteristics of biodiesel, 

when used as a direct replacement for conventional diesel.  

Major conclusions drawn from this work are summarized as follows: 

 

1- The liquid-phase penetration of biodiesel stabilized at a distance about 30 % farther downstream 

of the injector nozzle than with conventional #2 diesel at different ambient temperature conditions 

(900 K and 1000 K). This result is consistent with the higher distillation temperature range of 

biodiesel. Comparing reacting and inert conditions showed no significant difference in liquid 

length for either fuel, in part because the liquid length was upstream of the flame lift-off length.  
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2- The vapor-phase penetration rate is very similar between #2 diesel and biodiesel, with the 

biodiesel jet penetrating slightly more. Higher penetration for biodiesel could be caused by a 

better discharge coefficient of injection or a lower spreading angle, but these factors, as well as 

the penetration difference itself are within experimental uncertainty. The similarity in penetration 

suggests a similar fuel mixture fraction distribution exists for diesel and biodiesel, which can be 

estimated using a 1-D mixing model. Because biodiesel is oxygenated, and has the same mixture 

fraction distribution as diesel, it necessarily has a lower stoichiometry (equivalence ratio) 

distribution compared to diesel fuel.  

3- Under inert conditions, the vapor penetration of biodiesel at 900 and 1000 K overlap perfectly. 

Under reacting conditions (15% oxygen), the jet penetrates more quickly in the axial direction 

compared to an inert, vaporizing jet.    

4- The ignition delay and lift-off length were slightly shortened when using biodiesel. The lift-off 

length and ignition delay results in increasing order are: BD(1000 K) < D2(1000 K) << BD(900 

K) < D2(900 K).  This result follows the cetane rating of the two fuels, with the biodiesel fuel 

sample for this study having a higher cetane number than the #2 diesel. 

5- Spatially-resolved contours of soot volume fraction were measured by combining line-of-sight 

laser extinction and laser-induced incandescence, providing the first quantitative in-situ soot 

measurements of a biodiesel spray at engine conditions. At the 1000 K ambient condition, a factor 

of 5 reduction in peak soot volume fraction was observed when using biodiesel instead of 

conventional diesel, while a factor of 10 reduction was observed at the 900 K ambient condition. 

6- With very similar lift-off lengths, the reduced soot formation for biodiesel can be attributed to its 

fuel oxygenation, combined with a molecular structure less prone to soot formation. Because of 

fuel oxygenation, mixtures are less fuel-rich at the center of jet for biodiesel. Consequently, 

premixed combustion occurs at lower stoichiometry, closer to the jet center, and confined by a 

more narrow diffusion flame. In addition, biodiesel chemical composition, with no aromatics and 

with strong oxygen-carbon bonds, tends to reduce its sooting propensity. The longer time for soot 

inception and growth, combined with entrained oxygen during this period, ultimately limits the 

soot formation significantly for biodiesel compared to diesel.  

 

The database completed for biodiesel, including spray vaporization, mixing, ignition, combustion, and 

soot distribution, offers a valuable benchmark for CFD development with biofuels. In particular, we offer 

the first quantitative soot volume fraction measurements within reacting fuel sprays at diesel engine 

conditions, which are needed to develop soot models specific to methyl ester biofuels. These data are 

available online at [49]. 
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ASI: after start of injection 

ASTM: American standard testing and material 

BD: biodiesel (soy-methyl ester) 

BP: band pass 

Ca: area coefficient  

CCD: charge-coupled device 

Cd: discharge coefficient 

CMOS: complementary metal oxide semi-conductor 

CN: cetane number 

CV: discharge coefficient of the injector nozzle 

CW: continuous wave 

D2: American conventional #2 diesel  

EGR: exhaust gas recirculation 

F: lens focal length 

FAME: fatty acid methyl ester 

fV: soot volume fraction 

FWHM: full width at half maximum 

HeNe: helium-neon 

ID: ignition delay 

INFL: integrated natural flame luminosity 

KL:  K: coefficient of extinction; L: length of the laser path 

LHV: lower heating value 

LL: liquid length 

LOL: lift-off length 

Nd:YAG: neodymium-doped yttrium aluminum garnet 

NOX: nitrogen oxides 

OH: hydroxyl radical 

(P)LII: (planar) laser-induced incandescence 

PM: particle matter 

θ: full spreading angle 

SEM: scanning electron microscopy 

SINL: spatial integrated soot luminosity 

TDC: top dead center 

UHC: unburnt hydrocarbons 

Zevap: mixture fraction of liquid evaporation 

Zsoot: mixture fraction of soot formation 

Zstoich: stoichiometric mixture fraction 
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LIST OF TABLES 

 

 

 

Ambient Conditions  Non-reacting Reacting 

O2/N2/CO2/H2O [Volume %] 0/89.71/6.52/3.77 15/75.15/6.23/3.62 

Pressure [MPa] 6.0 - 6.7 6.0 - 6.7 

Temperature [K] 900 - 1000  900 - 1000  

Density [kg.m
-3

] 22.8 22.8 

 

Table 1. Ambient conditions  

 

 

Injection settings     

Type   Bosch common-rail  

Nozzle   Single-hole, KS1.5/86, mini-sac  

Nozzle diameter (Nominal/Measured) 90/90.8 µm  

Injection pressure   150 MPa  

Fuel temperature (SME/#2 Diesel) 363/373 K 

Discharge coefficient (SME/#2 Diesel) 0.94/0.91 

 

Table 2. Injector characteristics and fuel temperature 

 

 

 

Fuel Properties 
Soy Methyl-
Esther  

#2 Diesel  

Density at 288 K [kg.m
-3

]  877 843 

Density expected @ 373 K [kg.m
-3

] 823 766 

Kinematic Viscosity at 313 K [mm
2
.s

-1
]  3.98 2.35 

Lower Heating Value [MJ.kg
-1

]  37.4 43.0 

Aromatics [Volume %] 0 27 
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C/H and C/O mass ratios 6.48/7.05 6.53/∞ 

Cetane Number  51 46 

Zstoich (15% O2)  0.054 0.046 

Zsoot
1
 0.105 0.089 

 

Table 3.  Fuel properties 

Mixture fraction at critical sooting equivalence ratio. Defined as ф = 2.0 for conventional diesel [32] and 

фΩ = 2.0 for biodiesel (фΩ ≡ oxygen equivalence ratio [49]). 

 

 

 

Constituent 

name 

Constituent  

abbreviation 

Chemical  

formula % 

Methyl palmitate C16:0 C17H34O2 11 

Methyl stearate C18:0 C19H38O2 4.0 

Methyl oleate C18:1 C19H36O2 25 

Methyl linoleate C18:2 C19H34O2 53 

Methyl linolenate C18:3 C19H32O2 7 

 

Table 4.  Soy-derived biodiesel composition per the fuel manufacturer. 

 

 

Optical setup 
Mie-
scatter 

Schlieren Luminosity PLII OH* 

Laser/lighting 

532 nm 

CW 

(2 W) 

Broadband arc lamp 
Natural 

emission 

532 nm 

(100 mJ) 

Natural 

emission 

Camera High-speed CMOS (Phantom v7.1) Intensified CCD (Xybion) 

Lens focal length 50 mm 105 mm 105 mm UV 

Lens f-stop f/1.2 f/1.2 f/1.2 f/2.8 f/4.5 

Filter center λ 

(FWHM) 

532 nm  

(10 nm) 
532 nm 0° inc. mirror None <450 nm 

310 nm  

(10 nm) 

Framing Period 20 µs 20 µs 20 µs n/a n/a 

Exposure Duration 10 µs 2 µs 16 µs 50 ns 3 ms/200µs 

Resolution 512 x 64 256 x 88 256 x 112 640 x 480 640 x 480 

Pixels/mm 3.75 2.59 2.81 6.77 7.23 
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Table 5.  Optical imaging setups. 

 

 

Ignition Delay [µs ASOI] Soy Methyl-Esther  #2 Diesel  

900 K (Chemiluminescence/Pressure) 709/660 782/761 

1000 K (Chemiluminescence/Pressure) 377/389 510/510 

Ignition Position [mm] Soy Methyl-Esther  #2 Diesel  

900 K (Chemiluminescence) 34.0 35.9 

1000 K (Chemiluminescence) 23.7 26.4 

 

Table 6. Ignition delays and position proceeding from the chemiluminescence imaging and 

pressure trace analysis, after correction for the speed of sound.  

 

 

 

LIST OF FIGURES 
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Figure 1. Mass rate of injection of diesel #2 and SME biodiesel for the conditions of Table 1. Fuel 

pressure in the line at 24 cm from the nozzle is shown at the top. 

 

 

 

  
Figure 2. Distillation curves for #2 diesel and soy-based biodiesel fuels used in this study. Note that 

the distillation curves are produced using different ASTM distillation methods, as shown. The 90% 

boiling point for the biodiesel fuel, measured by the ASTM D1160 distillation method, is also given.  
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Figure 3. Optical setup for vapor, liquid, and combustion luminosity imaging. 

 

 
Figure 4.  Simultaneous laser extinction and planar laser-induced incandescence imaging setup 
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Figure 5. Laser extinction measurements in the liquid spray tip region compared to the liquid length 

obtained with different thresholds for Mie-scattering image segmentation. Biodiesel, 900 K. 

 

 

 

 

 

Figure 6. Liquid-phase penetration of conventional diesel #2 and biodiesel under both reactive and 

non-reactive environment at 2 different ambient temperatures. LL(D2, 900K)=15.8 mm ; LL(D2,  

1000K)=12.6 mm ; LL(BD, 900K)=21.2 mm ; LL(BD,  1000K)=16.6 mm 
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Figure 7. Experimental and modeling results of the jet vapor penetration for both diesel and 

biodiesel non-reactive conditions at 900 K. (top) Difference of biodiesel experimental penetration with 

respect to diesel, or penetration modeling predictions with different discharge coefficient (Cd) or different 

full spreading angle (θ). 
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Figure 8. Results of spray calculations using biodiesel (dashed line) and #2 diesel (continuous line) 

at 900 K. Inputs BD: s.a. = 20°, Ca=0.99, Cd = 0.94. D2: s.a. = 20°, Ca=0.99, Cd = 0.91. Nozzle diameter 

(0.0908 mm) and fuel density at injection temperature from Table 3. From left to right: the evaporative, 

sooting and stoichiometric surfaces.   
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Figure 9. Multi-diagnostic image sequences of the combustion of a biodiesel spray at 1000 K. Left: 

green border is vapor boundary. Left middle: steady lift-off length is dashed red line. If given at the image 

lower right, the image display range is shown as a percentage of full scale, otherwise the display range is 

full scale.  
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Figure 10.  Vapor-phase penetration of the biodiesel spray under both reactive and non-reactive 

environment at 900 and 1000 K. Spatially integrated broadband flame luminosity is calculated by the 

integration of image digital intensity levels and is represented on a logarithmic scale at the right. 

 

 

 

 

Figure 11. Ensemble average of the OH chemiluminescence images for both diesel and biodiesel at 

two ambient temperature conditions. Lift-off length is represented in red dashed line with the value 

indicated at the lower right. 
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Figure 12. Laser extinction measurements along the flame axis. 

 

 

 

 

Figure 13.  Soot volume fraction distributions in the transversal cut of the flame. Lift-off length is 

represented by vertical dashed line. 
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