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Abstract 

In this paper, an experimental study of the combination of Low Pressure and High 

Pressure EGR architectures has been carried out. In the first part of the paper, the effects 

of both High Pressure and Low Pressure EGR architectures on engine behaviour and 

performance are analysed by means of a series of steady tests. In the second part, the 

effects of the combination of both architectures are addressed. The results shown that 

the Low Pressure configuration improves High Pressure EGR results in BSFC, NOx and 

exhaust gas opacity, nevertheless the HC emissions are increased, especially during the 

engine warm up. In addition, the EGR rate that can be achieved with Low Pressure 

systems is limited by the low pressure difference between DPF outlet and compressor 

inlet, and the High Pressure system can be used to achieve the required EGR levels 

without increasing pumping losses. In this sense, the combination of both EGR layouts 

offers significant advantages to reduce emissions and fuel consumption to meet future 

emission requirements  
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List of abbreviation: 

BSFC  Break Specific Fuel Consumption 

CAC  Charger Air Cooler 

CO2  Carbon dioxide 

DI  Direct Injection 

DPF  Diesel Particulate Matter 

ECU  Electronic Control Unit 

EGR  Exhaust Gas Recirculation 

HC  Hydrocarbon 

HCCI  Homogeneous Charge Compression Ignition 

HPEGR High Pressure EGR 

HSDI  High Speed Direct Injection 

MKI  Moduled Kinetics 

NEDC  New European Driving Cycle 

NOx  Nitrogen Oxides 

PCCI  Premixed Controlled Compression Ignition 

PM  Particulates Matter 

RoHR  Rate of Heat Release 

VGT  Variable Geometry Turbine 

WCAC Water Cooled Air Conditioner 

 

List of Symbols: 

A  Valve effective area 

ṁ  Mass flow 



p   Pressure 

R  Gas constat 

T   Temperature 

V  Volume 

χ  Valve position 

  Specific heat ratio Cp/Cv 

π  Pressure ratio in valve 

 

List of subscripts: 

u  Upstream 

HP  HP EGR 

LP  LP EGR 

 

1. Introduction 

The increase in the specific power of DI Diesel engines during the last 20 years and 

their higher efficiency have allowed them to reach a favourable position in the market of 

light duty vehicles. In addition, as far as the Global Warming problem is concerned, 

their lower CO2 emissions are an additional advantage for DI Diesel engines. 

Nevertheless, the environmental concern has also pushed governments to progressively 

reduce the vehicle emission limits. Despite the stricter emissions laws, road transport 

was responsible in 2006 for 17,7 % of all EU-27 greenhouse gases (GHG) emissions, 

apart from providing 40 % of NOx, 36 % of CO and 18 % of non-methane volatile 

organic compounds emissions [1]. In this sense, the development of powertrains with 

low environmental impact is one of the most challenging problems to be faced during 

the next decades [2]. 



 

In the case of Diesel engines, particles and NOx have been traditionally the most 

challenging pollutants to control. Regarding particles, while the air-to-fuel ratio control 

and the optimization of injection strategies were traditionally sufficient to avoid 

excessive particulate emissions, during the last years the use of DPF has been a 

widespread solution to fulfil emissions regulations. On the other hand, despite the 

development in NOx after-treatment for Diesel engines, EGR remains a cost-effective 

solution to fulfil current and future NOx emissions regulations. Also, despite they are 

not widespread, during the last decade several combustion modes such as HCCI 

(Homogeneous Charge Compression Ignition)[3], PCCI (Premixed Controlled 

Compression Ignition) [4] or MKI (Moduled Kinetics) [5] have been studied in order to 

strongly reduce particles and NOx emissions without BSFC damage and it should be 

noted that the EGR is a key technique to control such combustion processes [6, 7]. 

Therefore, according to the previous aspects it is expected that the EGR will continue 

playing a major role in DI Diesel engines.  

 

Despite there exist different methods to reintroduce part of the exhaust gases in the 

engine cylinders, the external High Pressure EGR approach (HPEGR) is by far the most 

commonly employed EGR architecture in current engines [8]. It is known as external 

EGR because the burnt gas is extracted from the exhaust line to be introduced in the 

intake line. On the contrary, internal EGR consists on avoiding the exhaust of part of the 

burnt gas that stays in the cylinder to participate in the next combustion process. 

External EGR systems have prevailed due to their better flow and temperature 

regulation. The terms ―High Pressure‖ refers to the gas is extracted from the exhaust 



manifold (upstream the turbine) and introduced in the intake manifold (downstream the 

compressor), in this sense the EGR line is at a higher pressure than ambient.  

 

According to the system layout, the EGR rate is limited by the pressure difference 

between the intake and exhaust manifolds. In addition, since the turbocharger behaviour 

also depends on the intake and exhaust conditions, a strong coupling between the 

HPEGR and the VGT system appear. Other problems attached to the HPEGR systems 

are the important increment in intake temperature despite employing EGR coolers [9] 

and the difficulty to provide a homogeneous intake charge between cylinders [10]. The 

increase in intake temperature leads to a reduction in the admitted charge, by means of 

the thermal throttling effect reported in [11, 12]. Moreover, the short distance amongst 

the EGR inlet and the cylinder ports prevents from a uniform EGR distribution.   

 

The Low Pressure EGR (LPEGR) technique is a topical subject because some of the 

problems of the HPEGR systems can be reduced by modifying the EGR layout [13, 14, 

15]. The LPEGR method consists on extracting part of the exhaust gas from the DPF 

outlet and guiding it to the compressor inlet. At these conditions, the recirculated gas 

particle free and its temperature is lower than obtained at the turbine inlet. In addition, 

the coupling between turbocharging and EGR systems is reduced due to the fact that the 

whole exhaust gas flows through the turbine, and then the increase in EGR rate does not 

involve a reduction in the turbine available energy. The EGR rate with the LPEGR 

system does not depend on the intake and exhaust pressures, nevertheless, despite the 

fact that the compressor inlet pressure is always lower than the DPF outlet pressure, the 

pressure drop between those points is usually not high enough to reach the required 

EGR levels. In this sense, LPEGR systems require a backpressure valve at the DPF 



outlet (downstream the EGR extraction) or an intake throttle at the compressor inlet 

(upstream the EGR injection). Since the EGR is introduced at the compressor inlet, 

there is enough length in the intake line to achieve a perfect air and EGR mixture before 

the cylinders. 

 

Of course, the LPEGR system involves some difficulties. Since the EGR goes through 

the whole intake line the use of DPFs is strictly necessary in order to prevent the 

exhaust particles from damaging the compressor wheel and also plugging coolers. With 

the widespread application of DPFs, the compressor and charge air cooler reliability 

problems with LPEGR have been reduced. Other problems of the LPEGR system are 

the condensation of species contained in the burnt gas along the intake line, and 

especially at the charge cooler. When the previous aspects have been addressed in 

preceding works [10, 15, 16], the objective of this paper is to evaluate the behaviour of 

the combination of both EGR layouts, taking into account three main aspects: 

1. The ability to introduce mass into the cylinder assessed by the air mass flow 

and the EGR rate. 

2. The potential for the pollutant emissions reduction, taking into account the 

effects of the EGR on both the composition and temperature of the intake charge. 

3. The effects on engine performance, especially on BSFC, due to the 

differences on intake charge composition and temperature, but also the effect on 

pumping losses. 

  

2. Experimental Set Up and Methodology 

In the present paper, the study of the effects of the LP- and HPEGR combination on 

engine performance and emissions has been approached experimentally. The study has 



been performed on a state-of-art 2.0 litre HSDI Diesel engine. The engine, which main 

characteristics appear in table 1, was equipped with VGT, intercooler, DPF and a cooled 

High Pressure EGR loop. 

  

As shown in figure 1 a Low Pressure EGR circuit was added to the original engine. An 

open code ECU was used to modify the engine calibration. Also, the engine was fully 

instrumented to measure temperatures and pressures in different interesting engine 

locations.  The engine is installed in a test cell equipped with a variable frequency fast 

response dynamometer. Despite the dynamometer allows carrying out transient cycles, 

this research has been performed by means of steady tests exclusively.  

A Horiba Mexa 7100 DEGR has been used to measure the intake CO2 concentration 

and exhaust gas emissions (NOx, HC, CO, CO2 and O2). Both intake and exhaust CO2 

have been measured by a non-dispersive infrared analyzer (NDIR). A heated 

chemiluminiscent detector (HCLD) allows measuring NOx emissions. The HC analyzer 

consists of a heated flame ionization detector (HFID). In the same way, an AVL 439 

smoke meter has been used to measure smoke opacity. Table 2 shows the 

instrumentation used in the engine cell. 

  

Two engine operating points were defined for testing, they were selected from the 

conditions reached during the NEDC cycle in order to be representative of real 

operation. In this sense, the engine conditions achieved when a given vehicle reaches 

100 and 120km/h during the NEDC were tested due to its important contribution to the 

NOx and PM emitted over the entire homologation cycle. A summary of those 

conditions can be found in table 3.  

 



For both operating conditions, tests consisted on performing a sweep of EGR rates 

combining the use of both LP and HP EGR systems, keeping the values of engine speed, 

injected fuel, CAC outlet temperature and intake pressure constant.  

 

For each engine point, the EGR ranged from 0% (no EGR) to the maximum EGR rate 

the engine can admit. The maximum EGR rate limits were established by two different 

phenomena: 

 

1. Unsteady combustion: An extremely high EGR rate leads to an unacceptable 

increase in BSFC due to the high delay in the combustion process. 

2. Recirculated mass flow limited by the pressure ratio between the source and 

discharging points: In the case of the LPEGR system, the low pressure 

difference between DPF outlet and compressor inlet introduces an important 

limitation in the maximal EGR rate that can be achieved without auxiliary 

devices such as valves at the DPF outlet to increase the gas pressure at the EGR 

inlet. 

 

2.1 HP and LPEGR flow estimation 

The estimation of HP and LPEGR flows starts with the mass balance in the intake 

manifold: 

t

m
mmmm
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       (1) 

Assuming that the intake charge behaves as perfect gas, the previous equation can be 

written as: 
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Since the present study only considers steady state behaviour, the variations of both 

intake manifold pressure and temperature can be neglected, arriving to: 

0mmmm engineHPLPair           (3) 

The mass flow aspirated by the engine is calculated taking into account that the engine 

volumetric efficiency does not depend on the EGR rate. In this sense, the mass flow 

admitted by the engine at a given speed and load conditions is considered to be constant 

and is obtained from the test without EGR. In addition, a flowmeter located upstream 

the LPEGR introduction provides the air mass flow signal. The mass flow through any 

of the EGR valves can be modelled by the nozzle flow equation [17]: 
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where χ EGR is the EGR valve position, Tu and pu are the temperature and the pressure 

upstream the valve, A is the valve effective area, which depends on the valve position, 

and π is the pressure ratio in the valve. Despite the production engines do not have the 

sensors required to calculate the EGR flows from equation (4), in the experimental 

facility used in this study they are available. Nevertheless, it should be noted that 

equation (4) provides a poor estimation of the LPEGR flow due to the very low pressure 

drop across the LPEGR system. In this sense, equation (4) has been used to calculate the 

flow through the HPEGR loop, while the LPEGR flow has been obtained from equation 

(3). In figure figure 2, the EGR rate measured with the gas analyser is plotted versus the 

proposed estimation. The estimated EGR rate is defined as: 

airHPLP
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As can be observed in figure 2, there is a well correlation between the measured and the 

estimated EGR rate, nevertheless, it can be stated that there is a light overprediction of 

the proposed method.  

 

3. Results 

3.1 Considerations on the effects of HP- and LPEGR 

One of the main differences between HP- and LPEGR systems lies in the conditions of 

the intake charge. When the LPEGR is used, the intake temperature is almost 

independent of the EGR rate, nevertheless, with the HPEGR an increase in the EGR rate 

leads to an inevitable increase in the intake temperature. The left part of figure 3 shows 

how the increase in the HPEGR rate from 0 to 30% produces an increase in the intake 

temperature of almost 80ºC. Since tests have been performed with constant intake 

pressure, the increase in temperature involves a 20% reduction in the intake density. 

Then, in addition to the substitution of part of the air charge by burnt gasses, the 

HPEGR produces an additional reduction in the air charge due to the density reduction 

(―thermal throttling‖). In the right part of figure 3 the reduction in the intake O2 

concentration with the EGR can be observed. For a given EGR rate, the HPEGR system 

produces an additional reduction in the O2 concentration due to the increase in the 

intake temperature. 

 

As far as the EGR has effects on the intake charge properties, it affects the combustion 

process. The reduction in the intake O2 concentration contributes to the increase in the 

ignition delay. In this sense, figure 4 shows a shift in the rate of heat release pattern in 

the cases with EGR. The higher ignition delay with EGR provides more time for the 



fuel to mix with the oxidizer, which increases the amount of pre-mixed fuel. Comparing 

the cases with EGR, it can be observed a higher rate of heat release with the LPEGR 

system. The increase of inlet temperature with HPEGR results in a decrease of the 

RoHR, because of the reduced in-cylinder gas density. Therefore, the introduction of 

diluents in the combustion chamber results in an increase in the combustion delay as 

well as a shifting of the combustion process towards the expansion stroke which 

involves a reduction in the indicated work. This degradation in the indicated work is 

intensified by the increase in the intake temperature. 

 

To compute the global engine efficiency, the pumping losses, i.e. the work done to 

evacuate the exhaust gases and introduce the fresh charge into the cylinders, should be 

taken into account. For a given intake pressure, when a HPEGR system is used, 

communication between the intake and exhaust manifolds reduces the pressure 

difference between intake and exhaust manifolds as observed in figure 5 and then 

pumping losses. The thermal throttling also contributes to decrease the pumping losses 

since the flow through engine elements and trapped mass are reduced with increasing 

EGR. When the LPEGR is used, the pumping losses are almost constant due to the fact 

that the mass flow through engine elements and trapped mass are almost constant. 

Despite of the higher pumping losses, the higher mass flow through elements with 

LPEGR presents some advantages, specifically regarding turbocharging, the higher 

mass flow through the turbine allows the turbocharger to reach a higher speed, reducing 

the turbocharger lag during a sudden increase in load. In addition, the compressor 

operating points of the engine using the LPEGR system are located close to those of the 

engine without EGR, while compressor operational points using HPEGR are shifted 

towards the surge line. 



 

Regarding emissions, figure 6 shows the evolution of exhaust gas opacity and NOx 

concentration as the intake O2 concentration is reduced with both LP and HPEGR 

configurations. As stated before, the main difference between both systems is that while 

the intake temperature with the LPEGR system has been kept constant (40ºC), it has 

suffered an important increase (from 40ºC to 115ºC) with the HPEGR loop. When the 

intake temperature is kept at 40ºC (LPEGR) the reduction in the intake O2 concentration 

produces maximum exhaust gas opacity of 14% when the O2 concentration reaches 

17.5%. From this conditions, an additional decrease in the O2 concentration leads to a 

reduction in exhaust gas opacity. According to the literature [18, 19], the lower the 

intake temperature, the higher the O2 concentration from which the opacity starts to 

decrease with EGR. Also, for a given O2 concentration, the higher the intake 

temperature, the higher the exhaust gas opacity. This behaviour is reflected in figure 6, 

where it can be observed how the exhaust gas opacity with the HPEGR system (high 

temperature) is higher than that obtained with the LPEGR architecture. It can be also 

noticed that with HPEGR, the reduction in the O2 concentration involves an opacity 

increase in the whole tested range.  

At the right part of figure 6 it can be seen that for a given O2 concentration, raising the 

inlet charge temperature increases the exhaust NOx concentration. In this way, the lower 

intake temperature with the LPEGR system allows an additional NOx reduction to the 

effect of the O2 concentration reduction. 

 

3.2 HPEGR and LPEGR combination 

In this section, the combination of both HP and LP architectures is analysed. In figure 7, 

the EGR rate measured at the different tested conditions versus the mass flows through 



both EGR circuits is represented. For both operating conditions the LPEGR rate is 

limited by the pressure difference between the DPF outlet and the compressor inlet. The 

LPEGR rates achieved in this study could be increased by using a backpressure valve in 

the exhaust line, after the EGR extraction, which increases the pressure difference in the 

LPEGR line. Nevertheless, this solution will increase the engine pumping losses and 

will have a negative impact in BSFC. On the contrary, the HPEGR rate is limited by an 

excessive reduction in the intake O2 concentration, which involves an important 

increase in opacity and BSFC.    

 

The differences in the intake temperature and O2 concentration lead to differences in the 

engine behaviour. Results concerning engine performance are shown in figure 8. In this 

figure the trade off NOx-opacity is represented for both operating points. The color 

scale represents the BSFC, from dark (high BSFC) to light (low BSFC). The results 

obtained indicate that for a given EGR rate, the higher the LPEGR contribution, the 

lower emissions (points are moved towards the origin of coordinates. Also, for both 

operating conditions, the points with HPEGR show for a given NOx emissions a higher 

BSFC and opacity. 

 

In this sense, for the tested conditions the combination of both EGR loops does not 

improve the performance of the LPEGR system. Nevertheless, other studies are required 

in order to explore possible benefits of the HP and LPEGR such as: 

 The control of both intake charge temperature and composition. In spite of the 

benefits of the low intake temperature in terms of NOx and opacity, the low intake 

temperature also involves higher HC emissions, especially during the warm up. In 

this sense, figure 9 shows the effect of the EGR on HC emissions during the NEDC, 



it can be observed that especially during the first phases of the cycle, where the 

engine is still cold, the HC emissions with the LPEGR system are considerably 

higher due to the lower intake temperature. As the cycle evolves and the engine 

warms up, these differences are progressively reduced. Since the benefits of the 

LPEGR configuration on NOx mainly appear at the last phase of the NEDC, the HP-

LPEGR combination allows taking profit of the lower HC emissions of the HPEGR 

configuration during the ECE, while reducing the NOx emissions during the EUDC 

due to the use of the LPEGR architecture.  

 The increase in the EGR rate without increasing pumping losses avoiding the 

use of a backpressure valve. In fact, the HPEGR can be used to increase the 

LPEGR rate up to the required levels. 

 Avoiding high exhaust gas concentrations through the intake line that can 

produce condensation. 

 At high speed and loads, where the mass flow is high and therefore pumping 

losses become important, the substitution of the LPEGR rate by HPEGR can 

improve BSFC. 

 

4. Conclusions 

In the present paper the effect of both LP and HPEGR architectures on engine 

performance and emissions has been analysed. The following conclusions have been 

obtained: 

 The LPEGR loop allows increasing the EGR rate without increasing the intake 

temperature. The increase in intake temperature promoted by the HPEGR leads 

to a reduction of intake gas density and therefore on trapped mass. In this sense, 



the HPEGR reduces the intake O2 concentration by substituting the fresh air 

(dilution effect) and also by reducing the trapped mass (thermal throttling). 

 Due to the thermal throttling effect of HPEGR, for a given EGR rate, the intake 

O2 concentration obtained with the HPEGR system is lower than that obtained 

with the LPEGR configuration. 

 The reduction in the mass flow through intake and exhaust lines when using 

HPEGR leads a reduction of pumping losses once the EGR rate increases 

(keeping constant intake pressure). Nevertheless, this reduction also involves a 

lower mass flow through the turbine and then it forces less turbocharger speed. 

The lower turbocharger speed damages the engine transient performance during 

a tip in. 

 The increase in intake temperature with higher HPEGR rates has a negative 

effect on BSFC, NOx and opacity. 

 For the conditions evaluated in this study, the combination of LP and HPEGR 

systems does not involve any benefit comparing with the BSFC, NOx and 

opacity obtained with the LPEGR system.  

 A proper strategy to combine HP- and LPEGR systems can potentially improve 

simultaneously all kind of pollutant emissions, through the reduction of HC 

when the engine and catalyst are cold with HPEGR and the reduction of NOx 

and particulates when the engine is warm and the catalyst lighted on through the 

use of the LPEGR.  
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TABLES 

Table 1. Engine features 

Architecture 4 L 

Displacement 1998 cm3 

Bore x Stroke 85 x 88 mm 

Valves 4 / cylinder 

Compression ratio 18:1 

Turbocharger Garret VNT GT 1749V 

EGR High Pressure Cooled 

After-treatment Oxy-catalyst + DPF 

Max. Power / speed 100 kW - 4000 rpm 

Max. Torque / speed 320 Nm - 1750 rpm 

Injection System 

Injector 

 

Max Injection Pressure 

Common rail-direct injection 

Siemens 1980 - C0 clase 5 

Piezoelectric - 6 holes 

1800 bar 

 

 

 

 

Tabla 2. Engine test cell instrumentation 

Instrumentation  Type  Model  Range  Unit  

Temperature  K Thermocouple 
 

0 - 1260 ºC 

Pressure  Resistive  PMA Transmitter P40 0 - 6 bar 

Air mass flow  Hot - wire  Sensyflow DN80 0 - 720 kg/h  

Fuel consuption  Fuel Balence  AVL - 733S  0 - 150  kg/h  

Soot  Opacity  AVL - 439  0 - 100  %  

Emission  CO2, Nox, CO, HC HORIBA Mexa 7100        -   - 

Turbocharger Speed  Attenaution by eddy currents  Picotum BM/SM  0 - 320000  rpm  

 

 

 

 

 

Table 3. Tested conditions. 

 

engine 

speed 

(rpm) 

fuel 

(mg/cc) 

WCAC 

outlet T 

(ºC) 

intake p  

(bar) 

base line conditions (HPEGR) 

EGR 

(%) 

M 

(Nm) 

NOx 

(ppm) 

Opacity 

(%) 

A 1870 16.3 35 1.066 23.6 72 123 21.6 

B 2250 22.8 35 1.190 11.3 100 240 9.4 

 

 

 

 



FIGURES 

figure 1. Experimental set up. 

figure 2. Measured EGR rate versus estimated EGR rate at A conditions. ○: LPEGR. ■: 

HPEGR. ∙ :HP and LPEGR. 

figure 3. Effect of the EGR rate on the intake temperature (left) and intake O2 

concentration (right) at A conditions. ○: LPEGR. ■: HPEGR. 

Figure 4. Effect of the EGR on the Rate of Heat Release (left) and effect of the intake 

O2 concentration on the BSFC (right) at A conditions. ···: w/o EGR ([O2]=21%). -: 

LPEGR ([O2]=17.5%). -: HPEGR ([O2]=17.5%). ···: injection pattern. ○: LPEGR. ■: 

HPEGR. 

Figure 5. Effect of the EGR on the pressure difference between exhaust and intake 

manifolds (left) and effect on turbocharger speed (right) at A conditions. ○: LPEGR. ■: 

HPEGR. 

Figure 6. Effect of EGR on opacity (left) and NOx concentration (right) of exhaust 

gases at A conditions. ○: LPEGR. ■: HPEGR. 

figure 7. EGR rate as a function of the flow through HP and LPEGR Systems at A (left) 

and B (right) conditions. 

figure 8. Trade off NOx-opacity at A (left) and B (right) conditions. The colorscale 

represents the BSFC from low (white) to high (black). 

figure 9. Effect of EGR on HC (left) and NOx (right) emissions during the NEDC. -: 

LPEGR. -: HPEGR. 
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