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Abstract 27!

In this study, near-infrared spectroscopy coupled to chemometrics is used to build an analytical 28!

protocol to authenticate the origin of pistachio nuts (Pistacia vera L.), a high value-added food 29!

product. 30!

In particular, 483 samples from six different origins (Sicily, India, Iran, Syria, Turkey and U.S.A.) 31!

were analyzed by NIR spectroscopy. Spectra were recorded on half seeds cut longitudinally in 32!

reflectance mode. Spectral data were then processed by chemometrics to build classification models 33!

by SIMCA and PLS-DA. The discriminant approach resulted in classification accuracies higher 34!

than 90% for most of the classes. On the other hand, SIMCA built class-models with high 35!

sensitivity and specificities, the only exception being the two categories Turkey and Iran, whose 36!

heterogeneity resulted in a poorer  specificity (anyway higher than 80%). In particular, the results 37!

obtained for the samples coming from Bronte (Sicily), the only PDO pistachio production in Europe 38!

– 95.5% non error rate in PLS-DA, 90% sensitivity and 97% specificity in SIMCA, as evaluated on 39!

the external test set – are very promising from the viewpoint of the authentication of this product.  40!

In general, the results show that the coupling of NIR spectroscopy to chemometric classification 41!

techniques can be a valuable tool for tracing the origin of pistachio nuts, providing a reliable 42!

authentication in a rapid, relatively cheap and non invasive way. 43!

 44!

Keywords: Pistachio (Pistacia vera L.) nuts, Near Infrared Spectroscopy  (NIR), Classification, 45!

Partial Least Squares-Discriminant Analysis (PLS-DA), Soft Independent Modeling of Class 46!

Analogies (SIMCA). 47!

 48!

 49!

1. Introduction 50!

Pistachio (Pistacia vera L.) is a nut having peculiar organoleptic characteristics. It is widely 51!

consumed as a raw or toasted snack or ingredient of many desserts, ice cream, cakes, pastry and for 52!

the production of some sausages such as mortadella [1]. The genus Pistacia L. is a member of the 53!
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Anacardiaceae family and consists of at least 11 species. Among these species, Pistacia vera is the 54!

only cultivated and economically important one [2]. It can grow in dry and hot areas and under 55!

saline conditions [3]. Because of its marked resistance to extreme environmental (pedoclimatic and 56!

hydrologic) conditions, it is cultivated in Europe and Asia on soils that are unsuitable for other fruit 57!

crops [4]. 58!

The Pistacia vera tree is native to arid zones of central and west Asia [5]. Nowadays, only a few 59!

major growing areas exist worldwide: the principal pistachio-producing countries of the world are, 60!

in order, Iran, USA (California), Turkey, Syria, but to lesser extent, other countries, such as, Italy 61!

and India [2,3,6], cultivate pistachios as well [7]. 62!

In Italy, only a single variety (Bianca) is grown [4,8] and its cultivation is concentrated mainly in 63!

Bronte, an area around the Etna volcano, where the lava and climate allow the production of an 64!

intensely green nut with a very aromatic taste that is highly prized on the international markets. 65!

Italian production is very poor in comparison to Asian and American ones; however, it is 66!

compensated by the very high quality of the final products [5,9]. Moreover, fee rates and national 67!

laws on commodities of each producing country vary dramatically [7,10]. So, pistachios variation in 68!

quality, food safety (e.g., contamination by aflatoxins), import/export fees, legal implications, and 69!

financial concerns makes determining the country of origin for pistachios important to protect the 70!

consumers against potential fraud [7,10,11]. Moreover, given the fundamental economic 71!

implications of any fraud, not only the consumers but also pistachio producers and traders are 72!

moved to discover objective chemical techniques that can confirm food labels identifying 73!

geographic indications [7,10]. As a consequence, there is the need to develop analytical procedures, 74!

which can provide a reliable authentication of the geographical origin of this product.  75!

In this framework, some works have already been published in the literature concerning the 76!

possibility of differentiating the geographical origin of samples coming from various producing 77!

countries, using different chemical indices and analytical techniques. For example, Dyszel & Pettit 78!

used the triglycerol profile determined by HPLC and the areas of some DSC peaks to discriminate 79!

nuts coming from California from the Iranian and Turkish ones [11]. Furthermore, Anderson & 80!

Smith proposed the use of stable isotope analysis to distinguish pistachio samples from the three 81!

main growing areas (USA, Asia and Mediterranean countries) [10,12]. Other researches from 82!

different groups hypothesized that the variations in the fatty acid composition of pistachio nuts, 83!

determined by various techniques (HPLC, GC, DSC, NMR), could be related to the different 84!

geographical origin of the product [1,7,11]. Lastly, differences in the profiles of inorganic anions, 85!

organic acids, and in color among pistachios of different origins and varieties have also been 86!

reported in the literature [4,12]. 87!
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On the other hand, there is a great number of researches where the problem of assessing the 88!

authenticity of a wide range of other food commodities, and in particular the problem of tracing 89!

their geographical origin, is tackled and solved by the use of near infrared spectroscopy (NIR) 90!

coupled with the application of chemometric classification methods for data processing. The 91!

possibility of using this spectroscopic technique to address problems connected to the authentication 92!

of foodstuff has attracted extensive attention by scientists due to its being rapid, relatively cheap 93!

and non-polluting, characteristics which perfectly fit the concept of “green analytical chemistry” 94!

[13]. Moreover, in many cases, the use of NIR spectroscopy allows the operator to analyze samples 95!

without the need to perform any previous chemical or physical treatment [14]. In the framework of 96!

the authentication of food origin, these methods have already been successfully applied, for 97!

example, to discriminate geographical origin of olive oils [15-19], meat [20], cheese [21], and 98!

honey [22]. However, to our knowledge this approach has never been tried before to trace the origin 99!

of pistachio nut samples. 100!

Therefore, the aim of the present work is to investigate the possibility of using NIR spectroscopy 101!

coupled to chemometric classification methods to build a rapid, relatively cheap and non-invasive 102!

analytical procedure for the authentication of the geographical origin of pistachio samples and, in 103!

particular, for the recognition of the PDO samples from Bronte (Italy). To this purpose, an 104!

experimental setup allowing the spectroscopic determinations to be carried out directly on the nuts, 105!

without any sample pretreatment steps was designed. Furthermore, from a data processing 106!

standpoint, both a discriminant and class-modeling chemometric approaches (by means of the 107!

algorithms PLS-DA and SIMCA, respectively) were used. Special care was also taken in the choice 108!

of the suitable method of signal spectral pretreatment prior to the construction of the models.  109!

 110!

2. Materials and methods 111!

2.1 Samples 112!

Pistachio nut samples from 6 different countries – the four main producers (Iran, USA, Turkey, and 113!

Syria) and two of the smaller but still relevant ones (India and Italy) – were collected and analyzed. 114!

In particular, the Italian samples were all coming from the Protected Designation of Origin (PDO) 115!

“Pistacchio Verde di Bronte” (Bronte, Sicily). In all cases, samples were obtained from different 116!

sources and suppliers, chosen to be as representative as possible of the different production areas. 117!

Pistachio nuts were stored in a refrigerator at 4 °C and protected from light until the day prior to 118!

analysis, to prevent any kind of surface modification and photodegradation of their molecular 119!

constituents. In total, 483 pistachio samples - 41 from Bronte (Italy), 41 from India, 121 from Iran, 120!

40 from Syria, 120 from Turkey, 120 from USA (California) - were analyzed. 121!



!

!

 122!

2.2 Acquisition of NIR spectra 123!

For the acquisition of spectra a Nicolet 6700 FT-NIR instrument (Thermo Scientific Inc., Madison, 124!

WI), equipped with a tungsten-halogen source and an InGaAs detector, was used. The signals were 125!

recorded between 10000 and 4000 cm-1, collecting 82 scans at a nominal resolution of 4 cm-1. All 126!

the spectra were acquired at room temperature in the interval on individual pistachio nuts, without 127!

any further sample treatment, in reflectance mode, through the use of an integrating sphere (Thermo 128!

Scientific Inc., Madison, WI). Operationally, each nut was split in two by a longitudinal cut, so that 129!

a flat surface was produced on both halves. Two different NIR spectra were then recorded on each 130!

half nut, aligning the pistachio first parallel and then perpendicular to the axis of the optical slit of 131!

the integrating sphere, and the four spectra corresponding to a single sample (two halves at two 132!

orientations) were averaged prior to the successive elaboration. The data were then exported from 133!

Omnicare Suite software (Thermo Fisher Scientific Inc., Waltham, MA) as ASCII files, which were 134!

then imported into MATLAB (release R2011a, The MathWorks Inc., Natick, MA), for the 135!

successive chemometric analysis. In the data analytical stage, 7 different signal pre-processing 136!

techniques were evaluated and compared: MSC (Multiplicative Scatter Correction) [23,24], 137!

detrending [25], first and second derivatives, computed according to the Savitzky-Golay method (15 138!

points window and third-degree interpolating polynomial) [26], and the combinations of MSC with 139!

each of the other three; the possibility of no pretreatment was taken into account, too. 140!

 141!

2.3 Statistical data analysis 142!

Since the aim of this study is to develop a method to predict the geographical origin of pistachio 143!

nuts and, in particular, to build a traceability model for the PDO “Pistacchio verde di Bronte”, the 144!

measured NIR data were processed by statistical pattern recognition techniques. In particular, two 145!

different techniques were chosen, PLS-DA [27,28] and SIMCA [29,30], as examples of 146!

discriminant and class-modeling approaches, respectively. Discriminant techniques focus on the 147!

differences between samples coming from different classes and operate by dividing the hyperspace 148!

of the variables in as many regions as the number of available categories, while class-modeling 149!

techniques are rather focused on the similarities among samples of the same class than on the 150!

differences among the classes and act by defining the category space of one class at a time. 151!

 152!

2.3.1 Partial least squares-discriminant analysis (PLS-DA) [27,28] 153!

Building a classification model can be viewed as finding the best relationship between a 154!

multivariate independent matrix X, whose ith row contains the spectral fingerprint recorded on the 155!
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ith sample, and a qualitative vector of responses. Accordingly, if a suitably designed dummy 156!

response matrix Y is introduced, traditional regression methods can be used also to tackle with 157!

classification problems. In particular, when dealing with a classification problem involving m 158!

classes, each training sample is associated with a dummy binary-coded m-dimensional y vector 159!

having all entries equal to zero except for the component corresponding to the class the sample 160!

belongs to, which is equal to 1. For instance, in a problem involving 6 classes, like the one 161!

considered in the present study, samples belonging to the first category will be described by the 162!

dependent vector [1 0 0 0 0 0], samples belonging to the second by the vector [0 1 0 0 0 0] and so 163!

on. Under these assumptions, it is possible to use traditional regression methods to operate 164!

classification, computing a calibration model relating the matrix of predictors and this dummy 165!

matrix of responses. As the name itself suggests, the core of the PLS-DA approach is the use of 166!

Partial Least Squares regression [31], which operates a bilinear decomposition of both the X- and 167!

Y-spaces, under the assumption that a relationship between the two internal spaces exists, to 168!

compute the model parameters. The result is a linear classifier that has proved to be statistically 169!

equivalent to Linear Discriminant Analysis (LDA, [32]), but that is also applicable to all the cases 170!

when LDA cannot be used (low number of samples with respect to variables and/or correlated 171!

indices) [27]. 172!

In order to interpret the results in terms of the most significant spectral regions, it is important to 173!

check which of the measured variables contribute the most to the definition of the model. In the 174!

case of PLS-based techniques, this kind of information can be summarized in an index called 175!

Variable Importance in Projection (VIP [33]), a value that expresses whether a predictor is 176!

significant in the definition of the F latent vectors model for the prediction of a particular response. 177!

Mathematically, it is defined according to the formula: 178!

 179!
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 181!

where tk is the vector of sample scores along the kth latent variable, bk is the coefficient of the kth 182!

PLS inner relationship, Nvars is the number of experimental variables and wjk and wk are the weight 183!

of the jth variable for the kth LV and the weight vector for the kth LV, respectively. Since the average 184!

of squared VIP scores equals 1, ‘greater than one rule’ is generally used as a criterion to identify the 185!

most significant variables. Interpretation of the results can be further improved by inspection of the 186!

regression coefficients of the PLS model which, if opportunely examined, can indicate whether the 187!
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values of the different variables measured for samples coming from a specified category are higher 188!

or lower than those recorded on samples from all the other classes.  189!

 190!

 191!

2.3.2 Soft Independent Modeling of Class Analogies (SIMCA) [29,30]  192!

As stated above, the core of the class modeling approach is that each category is modeled 193!

independently on the others. In particular, SIMCA describes each class on the basis of a principal 194!

component model of opportune dimensionality, according to the equation: 195!

 196!

                                      (2) 197!

 198!

where Xi is the sub-matrix of the original data set obtained by selecting only the samples from the 199!

ith class, TA and PA are the matrices containing the first A scores and loading vectors, respectively, 200!

and E is the matrix of the residuals. Once the principal component model is computed, the class 201!

space is defined according to some statistically defined criterion for outlier detection. In particular, 202!

two statistical variables are used to express the degree of outlyingness of a sample with respect to 203!

the computed principal component model: T2 which accounts for the distance of the sample within 204!

the model space and Q which represents its distance from the model space. The values of these two 205!

statistics for the analyzed samples are estimated from the scores matrix TA and the residual matrix 206!

E, respectively. The distance between each sample and the model of a category is then computed as 207!

“reduced distance” according to the equation: 208!

              (3) 209!

where T2
lim and Qlim are threshold values for the two statistics corresponding to a selected percentile 210!

of the distributions, usually 95%, under the null hypothesis. Commonly, if the reduced distance of a 211!

sample exceeds , the sample is considered as an outlier and rejected by the class model; 212!

otherwise, if the distance is lower than this value, it is accepted and recognized as being part of that 213!

class. 214!

 215!

3. Results and discussion 216!

As anticipated in the introductory section, aim of this study was to build and validate reliable 217!

classification models for the traceability of pistachio nuts, coming from 6 different countries, 218!



!

!

coupling near-infrared spectroscopy and chemometrics. To this purpose, a set of 483 pistachio 219!

samples from the 6 investigated countries was collected and analyzed by NIR spectroscopy, as 220!

described in section 2.2; the corresponding spectra (after averaging the 4 signals measured for each 221!

sample) are reported in Figure 1.  222!

To relate the spectral fingerprints to the origin of the samples, discriminant (PLS-DA) and modeling 223!

(SIMCA) classification approaches were used and compared. However, since several instrumental 224!

effects can hinder or worsen the performances of the classification models, different kinds of 225!

spectral pretreatment were tested. As mentioned before, the chosen pretreatments were 226!

Multiplicative Scatter Correction (MSC), detrending, first and second derivatives, and the 227!

combination of MSC with any of the latter three (with MSC being applied first as recommended by 228!

Rinnan et al. [34]). Models built after these preprocessings were also compared with the ones 229!

calculated from raw spectra. 230!

As, when dealing with supervised methods, validation of the models on an independent test set is of 231!

paramount importance to unbiasedly assess their predictive ability and performances, the whole 232!

data set made of 483 samples was then divided into training and test sets (the former to build the 233!

models, the latter to validate them). In order to maintain the same diversity in both sets, a sample 234!

splitting scheme based on the Duplex algorithm [35] was adopted. Indeed, the Duplex 235!

algorithm starts selecting the two objects in the data matrix that are farthest away from each other 236!

according to their Euclidean distance and putting them into the training set. Then, among the 237!

remaining candidates, the two objects farthest from each other are put into the test subset. At the 238!

next step, consecutive objects are selected and put alternatively in the training and test sets, the 239!

object added being the one farthest away from all the objects of the data matrix already selected in 240!

the considered set. To determine which object is the farthest one, a so-called maximin criterion, 241!

which is the same as in the Kennard and Stone algorithm [36], is used: the Euclidean distance 242!

between each candidate object and its closest neighbor already in the considered subset is computed 243!

and the object for which this distance is maximal is added. 244!

In order to ensure that each of the 6 classes was adequately represented, the selection was 245!

performed separately for each category. Moreover, to account for the fact that different 246!

pretreatments had to be tested and that as much as possible of the variation after scatter or baseline 247!

removal was covered in the selection, at the same time having a unique sample splitting scheme to 248!

be able to compare the outcomes after the different preprocessings, a procedure recently designed 249!

by our group for another study [19] was adopted. In detail, Duplex algorithm was applied separately 250!

on each of the 8 data matrices corresponding to the different pretreatments (7 preprocessings and 251!

the raw spectra). The selection was performed class-wise using a 2:1 training:test splitting ratio and 252!
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working on the principal component representation of the data matrices (considering 20 PCs per 253!

category). Accordingly, the frequency of selection of each sample as part of the test set was 254!

computed so that, eventually, all the individuals selected more than 50% of the times (i.e. at least 5 255!

times out of 8) were included in the final test set (made, in total, of 163 samples: 19 from Bronte, 18 256!

from India, 38 from Iran, 15 from Syria, 34 from Turkey, 39 from USA). All the remaining 320 257!

samples constituted the training set (22 from Bronte, 23 from India, 83 from Iran, 25 from Syria, 86 258!

from Turkey, 81 from USA). The effectiveness of the splitting procedure in keeping a comparable 259!

diversity among the two sets can be graphically evaluated in Figure 2, where the projection of the 260!

training and the test samples onto the space spanned by the first two principal components is shown 261!

for the different spectral preprocessing. It is evident that the proposed procedure allows to select test 262!

samples spanning the same space of the training objects, irrespectively of the pretreatment 263!

considered, so that the chosen splitting scheme can be used to properly compare the results obtained 264!

with the different approaches. 265!

 266!

 267!

3.1 PLS-DA analysis 268!

In a first stage of our study, classification models were built according to a discriminant approach 269!

using the PLS-DA algorithm. In particular, each of the 8 data sets corresponding to the different 270!

spectral pretreatments was processed individually, after mean centering. In each case, the optimal 271!

complexity of the classification models was chosen as the one which led to the minimum overall 272!

classification error in cross-validation (10 cancelation groups). The results are summarized in Table 273!

1, where the correct classification rates for each of the 6 classes and the overall one in calibration 274!

and cross-validation are reported for the different spectral preprocessing. It can be observed from 275!

the Table that MSC followed by detrending is the pretreatment leading to the best results in cross-276!

validation, the corresponding PLS-DA model (built using 18 LVs) resulting in a classification error 277!

of 4.48% in calibration and 5.77% in cross-validation. Moreover, investigation on the classification 278!

accuracy for the different classes shows that the model built on data pretreated by MSC and 279!

detrending results in non error rates in cross-validation higher than 93% with the only exception of 280!

Iran, for which it is anyway slightly less than 90%.  281!

This optimal model was then validated on the external test set, and the results are reported in Figure 282!

3, where the values of the 6 components of the predicted y vector are reported for each sample. 283!

Assignation of an unknown sample to one of the 6 investigated categories is made based on the 284!

values of this predicted response vector: the sample is predicted to belong to the category 285!

corresponding to the highest value of the component. For the sake of easier visualization, horizontal 286!



!

!

lines were added to the Figure to indicate the y values above which a sample was assigned to the 287!

particular category. It can be seen that the optimal PLS-DA model built on the training set was able 288!

to correctly predict the country of origin of most of the validation samples, thus confirming the 289!

effectiveness of the approach. The validation results are also reported in Table 2 in terms of non 290!

error rate in prediction both on individual categories and on the whole test set. These results 291!

indicate that the class belonging of unknown samples can be predicted very accurately (prediction 292!

error is lower than 10% for all categories with the only exception of Iran, analogously to what 293!

already observed in cross-validation).  294!

The goodness of what resulted to be the best PLS-DA classification model, i.e. the one built on 295!

spectral data pretreated with MSC and detrending, can also be graphically visualized in Figure 4, 296!

where the projection of the training (cross-validated scores) and test samples onto the space spanned 297!

by the first three PLS-DA latent variables is displayed. It is apparent from the Figure that the test 298!

samples lie well into the space spanned by the training ones. Moreover, it is also possible to observe 299!

relatively well the grouping of samples from the different categories even if, due to the complexity 300!

of the model (18 LVs), it is difficult to appreciate the separation between the classes on this three 301!

dimensional representation.  302!

In order to identify the spectral frequencies which contribute the most to the discriminant model, 303!

VIP scores [33] were computed and examined: as already described in section 2.3.1, VIP is an 304!

index accounting for the contribution of individual experimental variables to the bilinear model and 305!

it is scaled in such a way that indices having VIP larger than 1 are considered to be significant. 306!

Information on the VIP score was integrated with the examination of the regression coefficient for 307!

the interpretation of the model. Indeed, even if the presence of nonorthogonal contributions to the 308!

signal can perturb the shape of the regression coefficient vector so that it no longer looks like the 309!

pure spectrum [37], inspection of its values, although not straightforward, still can provide useful 310!

information. Accordingly, for the sake of interpretation variable significance estimated by VIP 311!

scores and the values of the regression coefficients were graphically represented in Figure 5, 312!

superimposed to the average spectral profile recorded on the samples after the optimal 313!

preprocessing. It can be seen from the Figure that the features identified as relevant by the model 314!

(which are also summarized in Table 3) correspond to spectrally meaningful frequencies, and that 315!

while most of the spectral intervals are common to all the investigated categories, there are also 316!

some significant differences. In particular, the spectral regions that appear to be relevant for all the 317!

categories involve the peaks at around 4500–5000 cm−1, which may be attributed to combination 318!

bands of C-C and C-H stretching vibration, the signals between 5650 and 6000 cm−1, due to the 319!

combination bands and first overtone of C-H bonds, and those between 7074 and 7180 cm−1, which 320!
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can be ascribed to C-H bonds combination band. On the other hand, portions of the band between 321!

8000 and 9000 cm-1 (second overtone of methylenic stretching vibrations) are significant only in the 322!

definition of the categories Turkey and USA.  323!

 324!

3.2 SIMCA analysis 325!

In a second stage, class-modeling approach was also used to process the same data set. Indeed, even 326!

if very satisfactory results were obtained using PLS-DA, as described in the previous sub-section, 327!

the asymmetry in the number of available samples for each category together with the difference in 328!

heterogeneity of the classes due, for instance, to the uneven geographical distribution of the 329!

productive areas in the investigated countries (production in Bronte being limited to a very narrow 330!

area compared to e.g. Iran, where numerous cultivation sites scattered over the country exist), could 331!

be the cause of the non perfect classification rates obtained. Moreover, in problems like those 332!

concerning the traceability of foodstuff, where the question to be answered is “Is the product 333!

coming from country X as declared?”, one is more interested in assessing whether the investigated 334!

sample is compatible with the model of a specific category, which is exactly what class-modeling 335!

does. In this investigation, class-modeling on the data set containing the spectral fingerprints of 336!

pistachio samples was performed by means of the SIMCA algorithm. Accordingly, independent 337!

class models were built for each of the 6 investigated categories, whose optimal complexity was 338!

chosen as the number of principal components corresponding to the highest geometrical average of 339!

sensitivity and specificity in 6-fold row-wise cross-validation. As in the case of PLS-DA, the effect 340!

of the spectral pretreatments on the classification ability was evaluated, by comparing the cross-341!

validated results of SIMCA modeling on the 8 matrices corresponding to the different 342!

preprocessings considered. Consistently with what already observed for the discriminant approach, 343!

also with SIMCA the best spectral preprocessing resulted to be the coupling of MSC with 344!

detrending, which allowed to achieve the highest values of sensitivity and specificity for all the 345!

categories. Indeed, most of the class models result in a perfect sensitivity and a rather good 346!

specificity in calibration while, in the cross-validation phase, sensitivity decreases significantly for 347!

many of the considered pretreatments. Besides, irrespectively of the pretreatment, the models for 348!

the categories Iran and Turkey have a significantly lower specificity than the others. This could be 349!

explained by the fact that the samples coming from these two regions are produced in various areas 350!

scattered in the country, far away from one another and characterized by different climates, 351!

environmental conditions and latitude values: to take into account this heterogeneity, keeping 352!

reasonable values of sensitivity, the class models have to be wide at the expense of specificity. This 353!

hypothesis was also supported by the observation that, for each of the two countries (in particular, 354!
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for Iran), there is a marked difference among the spectral fingerprints of the producing regions 355!

represented in the data set. When the models built after the best spectral pretreatment 356!

(MSC+detrending) were applied to the external test set, very good results were obtained (Table 4). 357!

Indeed, sensitivity and specificity values for the validation samples were over 80% for most of the 358!

categories (the only exceptions being the sensitivities of Syria and Turkey models), being in many 359!

cases even higher than 90%. These results can be graphically evaluated in Figure 6, where the 360!

projections of the training (cross-validated predictions) and test samples onto the model space of 361!

each single category are reported. This representation allows to easily visualize which samples are 362!

accepted or rejected by the different class models: the dotted lines in the graphs correspond to the 363!

threshold values of reduced distance, below which the samples are accepted by the model of the 364!

considered category, as described in Section 2.3.2. The Figure shows clearly that all the models are 365!

very sensitive both in cross-validation and on the external test set but that some of them, 366!

particularly Turkey and Iran, have lower specificity.  367!

When more than one category is modeled, it is possible to check whether the samples are accepted 368!

by one, more than one or none of them. This could be useful in order to turn SIMCA into a 369!

discriminant classifier by assigning each sample to the category it is closer to. This information can 370!

be easily visualized building a so-called Coomans plot [38], a graph where the two axes represent 371!

the distance of the samples to each of the two class models under study. As an example, Error! 372!

Reference source not found. shows the Coomans plot for the Bronte and USA class models built 373!

on the spectral data pretreated by MSC + detrending algorithms. The dotted black lines correspond 374!

to the threshold distances values (in our case ) and cut the plot in four different regions: the 375!

uppermost left and the lowermost right will correspond to unambiguous acceptance by a single 376!

category model (respectively Bronte and USA), the lowermost left to acceptance by both classes 377!

while the uppermost right to rejection by both category models. Most of the samples coming from 378!

the two different geographical areas lye inside the space of the corresponding class model. Only few 379!

samples coming from the other four zones were accepted by the two different class models, while 380!

the remaining samples are found in the uppermost right region of the plot. Moreover, none of the 381!

samples are accepted by both models. The diagonal line bisecting the plot represents the 382!

discriminant classification boundary so that all the samples lying above it are classified as from 383!

Bronte, while all the samples lying below it are predicted as from USA. Based on these 384!

considerations, discriminant classification based on SIMCA models would result in 100% (Bronte) 385!

and 100% (USA) both in cross-validation and on the external test set. 386!

 387!

3.3 A closer look on Bronte 388!



!

!

As reported in the Introduction, one of the 6 classes investigated in this study, “Pistacchio verde di 389!

Bronte”, is the only pistachio product with a Protected Designation of Origin. Therefore, from the 390!

standpoint of the analytical control of frauds on certified foodstuff it would be of outmost 391!

importance to have an accurate method for checking the authenticity of this product. In this respect, 392!

the results of this study appear quite promising, both if the discriminant or if the class-modeling 393!

approach are concerned. Indeed, by looking at the results of PLS-DA reported in Section 3.1 one 394!

could see that for the class Bronte a non-error rate in prediction higher than 95% was obtained. 395!

Additionally, by inspecting the plots in Figure 3 it can be observed that only a very low number of 396!

samples from other categories are erroneously predicted as belonging to Bronte.  397!

As far as SIMCA is concerned, the results in Table 3 indicate that the model of the category Bronte 398!

has very high sensitivity and specificity in prediction, as requested for a reliable traceability model.  399!

 400!

4. Conclusions 401!

In this study, the potential of NIR spectroscopy coupled to chemometric discriminant and class-402!

modeling pattern recognition techniques for the traceability of pistachio nuts samples was 403!

demonstrated. Classification models with high accuracy were built to recognize the geographical 404!

origin of the samples, as evaluated on an external test set. The outcomes for both the different 405!

classification approaches are very satisfying: the origin of over 95% of validation samples was 406!

correctly predicted using PLS-DA and these results were confirmed by SIMCA modeling of the 407!

same data, which allowed to build very sensitive and highly specific models for authenticating the 408!

provenance of pistachio nuts. In particular, the results obtained for the category Bronte, which is the 409!

only type of pistachio having a Protected Denomination of Origin, appear really promising in the 410!

light of the possibility of building a traceability model for this product.  411!

Furthermore, a first attempt of interpreting the observed differences in terms of significant spectral 412!

bands by means of the inspection of VIP scores was made: discriminant information was found to 413!

be associated to meaningful signals corresponding to methylene overtones and C-H and C=C 414!

combination bands.  415!

Finally, it can be concluded that NIR spectroscopy coupled to chemometric classification 416!

techniques is a powerful tool to trace pistachio nuts samples, allowing a fast, cheap and non-417!

invasive/non-destructive analysis. 418!

 419!
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Figure captions: 511!

Figure 1 – Raw spectra of the 483 pistachio samples analyzed in this study (after averaging the 4 512!

signals recorded on each nut). 513!

Figure 2 - Representation of the data splitting between the training and test set as a function of the 514!

different spectral pretreatments. Data are projected on the space spanned by the first two principal 515!

components. (●) Bronte; (■) India; (♦) Iran; (▼) Syria; (▲) Turkey; (★) USA; empty symbols 516!

correspond to training samples and filled symbols correspond to the test samples. 517!

Figure 3 – PLS-DA analysis after MSC+detrending: predicted values of the dummy vector 518!

components corresponding to the different categories for test set samples. Horizontal lines indicate 519!

the threshold above which a sample is assigned to that particular class. (●) Bronte; (■) India; (♦) 520!

Iran; (▼) Syria; (▲) Turkey; (★) USA. 521!

Figure 4 – PLS-DA analysis after MSC+detrending: projection of the training (cross-validateed 522!

scores) and test samples onto the space spanned by the first three latent variables. (●) Bronte; (■) 523!

India; (♦) Iran; (▼) Syria; (▲) Turkey; (★) USA; empty symbols correspond to training samples 524!

and filled symbols correspond to the test samples. 525!

Figure 5 – PLS-DA analysis after MSC+detrending: graphical representation of the regression 526!

vectors for the 6 categories superimposed to the average pretreated spectrum. The regression vector 527!

components are colored according to their VIP score: significant variables (VIP>1) are colored in 528!

red, while those estimated as not relevant in green). 529!

Figure 6: SIMCA on near-infrared data after MSC+detrending: projection of the training (cross-530!

validated estimates) and test samples onto the model spaces of the 6 investigated categories. (●) 531!

class Bronte; (■) class India; (♦) class Iran; (▼) class Syria; (▲) class Turkey; (★) class USA. 532!

Empty symbols correspond to training samples and filled symbols correspond to the test samples. 533!

Figure 7: SIMCA on near-infrared data after MSC+detrending: Coomans plot comparing the 534!

models of classes Bronte and USA. (●) class Bronte; (■) class India; (♦) class Iran; (▼) class Syria; 535!

(▲) class Turkey; (★) class USA. Empty symbols correspond to training samples and filled 536!

symbols correspond to the test samples. 537!

 538!
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Table 2: PLS-DA analysis on NIR data after MSC + detrending pretreatment: modeling and 
validation results 

Classes 
Non error rate in 

calibration 
Non error rate in 
cross-validation 

Non error rate in 
prediction 

Bronte 97.48% 97.32% 95.14% 

India 96.82% 95.30% 90.29% 

Iran 90.54% 89.48% 83.59% 

Syria 96.47% 93.97% 93.63% 

Turkey 95.17% 93.15% 91.71% 

USA 99.79% 99.17% 99.19% 
 



Table 3 – PLS-DA model: features identified as relevant for all the classes 
 
Spectral Region Vibrational modes 

4500–5000 cm-1 combination bands of C-C and C-H stretching vibration 

5650–6000 cm-1 combination bands and first overtone of C-H bonds 

7074–7180 cm-1 C-H bonds combination band 

8000–9000 cm-1 * second overtone of methylenic stretching vibrations 

*Meaningful only for the categories Turkey and USA 
 

 
 



Table 4: Results of SIMCA analysis on NIR data after MSC + detrending pretreatment for 
both training and test sets 

 LV Calibration Cross-validation Prediction 

Classes  Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

Bronte 4 95.45% 95.64% 72.73% 95.30% 89.47% 96.53% 

India 7 100.00% 90.57% 65.22% 93.60% 83.33% 98.62% 

Iran 5 98.80% 68.35% 93.98% 67.93% 92.11% 76.80% 

Syria 1 88.00% 88.81% 88.00% 87.46% 73.33% 82.43% 

Turkey 13 95.35% 79.06% 84.88% 80.77% 73.53% 80.62% 

USA 10 93.83% 100.00% 85.19% 100.00% 87.18% 99.19% 
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