

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1007/978-3-319-11746-1_34

http://hdl.handle.net/10251/60352

Springer Verlag (Germany)

Leiva Torres, LA.; Alabau, V. (2014). On String Prioritization in Web-based User Interface
Localization. Lecture Notes in Computer Science. 8787:460-473. doi:10.1007/978-3-319-
11746-1_34.

On String Prioritization in Web-based
User Interface Localization

Luis A. Leiva and Vicent Alabau

PRHLT Research Center, Universitat Politècnica de València
{luileito,valabau}@prhlt.upv.es

Abstract. We have noticed that most of the current challenges affecting
user interface localization could be easily approached if string prioritiza-
tion would be made possible. In this paper, we tackle these challenges
through Nimrod, a web-based internationalization tool that prioritizes
user interface strings using a number of discriminative features. As a
practical application, we investigate different prioritization strategies
for different string categories from Wordpress, a popular open-source
content management system with a large message catalog. Further, we
contribute with WPLoc, a carefully annotated dataset so that others
can reproduce our experiments and build upon this work. Strings in the
WPLoc dataset are labeled as relevant and non-relevant, where relevant
strings are in turn categorized as critical, informative, or navigational.
Using state-of-the-art classifiers, we are able to retrieve strings in these
categories with competitive accuracy. Nimrod and the WPLoc dataset
are both publicly available for download.

Keywords: Localization; L10n; Internationalization; i18n; Translation

1 Introduction

Today most applications are looking forward to being available in more than one
language, mainly to reach a global audience, to gain competitive advantage, or
just because of legal requirements. In general, there is an increasing and stringent
need to adapt any type of software so that it can meet the cultural and linguistic
needs of every customer. For instance, according to a recent survey [7], a few
years ago web companies would have to translate content into 37 languages to
reach 98% of Internet users, and now it takes 48 languages to reach the same
amount of users.

Taking a different tack, the “translate frequently and fast” mantra is central
to companies seeking to increase global market share. As discussed in the Drupal
Translation project,1 with high-quality translation enterprises can tailor web
content to consumers around the world; but when it comes to the “frequently and
fast” part of the equation, enterprises run into problems. In fact, one place where
localization has always had big problems is within graphical user interfaces [10,

Paper published in Proc. WISE 2014. LNCS 8787.

2 L.A. Leiva and V. Alabau

15]. Later on we discuss the most important of these problems and show that
they could be easily approached if string prioritization would be made possible.
Consequently, we have developed a method to support this goal.

1.1 Research Goals and Contributions

This paper presents Nimrod, a particular instantiation of our method for PHP-
based software. Nimrod is a standalone open-source internationalization tool,
however we integrate it on Wordpress to illustrate its capabilities. By means
of an intuitive administration panel, webmasters can gain control over differ-
ent string sorting features. We first investigate the best combination of these
features, according to a manually annotated dataset. Next, we approach string
prioritization as an information retrieval task, where relevant messages have to
be differentiated from the non-relevant ones on the basis of a featurized string
representation. Further, we explore different state-of-the-art classifiers to retrieve
different categories among the relevant messages. The results show that ours is a
valuable new method to improve web-based software localization. Nimrod and
our dataset are both publicly available for download.

This paper is organized as follows. Section 2 provides the research background
and discusses related work. Section 3 describes our system implementation.
Section 4 evaluates the system. Section 5 concludes this paper and provides
opportunities for future work.

2 Research Background

When developing software for a global market, applications must follow a two-step
process: first internationalization (i18n), then localization (L10n). Internation-
alization consists of decoupling translatable text out of the application source
code, basically by wrapping each message or “resource string” with a translation-
capable function. After internationalization, the user interface (UI) is ready to
support the requirements of different locales, i.e., specific languages and countries
of the target audience; in short, the linguistic preferences that the user wants to
see in their UI.

Localization in turn comprises 2 sub-levels: first language translation, then
aesthetic adaptation; being the former the core activity due to its importance
and associated costs [6, 8, 13]. Indeed, most companies are well aware of both sub-
levels but eventually focus on translation due to time and budget limitations [9,
12]. While aesthetic adaptation can improve the user experience [16], localized
applications must speak the language of its users. What is more, nowadays that the
Internet is pervasive, people use web browsers more than any other class of desktop
software. Therefore, multilingual websites and web-based applications, much like
any other type of software, are crucial to every player in the industry [12, 18, 19].
Thus, as businesses continue to globalize, localizing web-based UIs becomes more
compelling. Last but not least, localization is a unique opportunity of preserving
a language [13, 14].

String Prioritization 3

2.1 Related Work

Previous work on how to prioritize UI localization strings is actually scarce. So far
the closest attempts we have found are tools that focus on string extraction but
little to none perform string prioritization. TranStrL [21] is an Eclipse plugin that
takes the source code of a Java application and automatically produces a list of
untranslated strings. This solves one of the current challenges UI localization (see
Section 2). However, TranStrL is only available for the Java platform. Smartling2

provides an Objective-C library that achieves the same effect by adding minimal
modifications to the source code of the applications. Again, this is not applicable
to web-based software. Finally, Globalyzer3 and World Wide Navi4 provide a
suite of desktop tools to analyze, test, and fix internationalization issues in
different programming languages. Unfortunately, none of these tools allows to
prioritize localization strings. Neither do current web-based localization tools
such as Launchpad,5 Pootle,6 Verbatim,7 or Transifex;8 not at least to cope with
a proper prioritization method as discussed in the next section.

As a mechanism for string prioritization, the GNU gettext manual [10]
encourages translators to “use and peruse [sic] the program like a user would
do and then use the suite of msg* command line tools to translate most urgent
messages first.” This is a somewhat improved approach, but actually impractical
for two reasons. First, by following this approach the roles of translators, end
users, and programmers are tightly coupled, which is rather an exception than
the norm. Second, string prioritization is done manually with command line tools,
which is time consuming. Messages can be sorted according to translation status
(untranslated messages first) and frequency (most frequent messages first), based
on the analysis of calls to the gettext() function and the like, e.g., t() in Drupal
or translate() in WordPress, two of the most popular web content management
systems (CMS) today. However, we believe that a more informed method is
necessary. Then, one could perform either manual or machine translation (or a
combination of both) of the prioritized strings, completing thus the UI localization
workflow.

2.2 User Interface Localization Challenges

From the previous discussion, it follows that string prioritization has been over-
looked. In order to stress the importance of this topic, here we identify a series
of key issues in software localization that are affected by the lack of string pri-
oritization. We believe that understanding these will be useful to the research
community and for others trying to build i18n/L10n tools.

Where do we start? Some applications have quite large message catalogs,
e.g., most web CMS have well over 3000 messages, but an important number of
them are seldom used on the UI. For instance, we have observed that in Wordpress
this amounts to roughly half of the total messages. Usually, a translator sometimes
has only a limited amount of time per week to spend on a package. Thus, it
seems reasonable to start working on the strings that are most frequent.

4 L.A. Leiva and V. Alabau

The trouble with string sorting order. Of particular importance is the
fact that strings in a message catalog are sorted according to the source code
files instead of the UI views. Actually the order of the strings in the source code
is quite apart from what it is shown on the UI. Moreover, the strings that appear
on the main UI view are usually more visible than those that appear on less
frequented UI views. Therefore, a method to prioritize strings on the basis of
the UI view where they appear would be quite a feat for current localization
technology. For instance, it would allow more software iterations and faster
development cycles by allowing translators to focus on the context of a single UI
view.

Lack of contextualization. Message catalogs lack of a proper localization
context, which is a two-fold problem. On the one hand, there is not enough
context due to the aforementioned sorting order according to source code files.
On the other hand, there is no visual context available, because UI strings are
decoupled from the source code. At best, translators can trust the comments
developers may have left to them, such as "# Translators: This message is

related to...". Unfortunately, these comments are scarce overall. Thus, those
strings with useful comments and/or pointers to the UI should be translated in
the first place.

Application updates. Often a new software version comes with a new
functionality and new messages attached to it. Moreover, some of the previous
strings can be updated. Even if only a few words have changed in the original
string, the translator may not see them with current localization tools; therefore
she has to proofread the entire message. Consequently, new strings and string
updates should be made more prominent to the translator, so that she can localize
those messages earlier.

String obsolescence. Sometimes a software patch removes old widgets from
the UI but their associated strings are still included in the message catalog. Then,
when localizing the software into a new language there is no way to tell those
strings apart and thus they would be unnecessarily translated. Therefore, being
able to identify this “dead code” would allow translators to work only on what is
really needed.

Supporting Agile Localization. On another line, some companies such as
Adobe are releasing updated versions of their product multiple times per day [20],
making it imperative for localization to catch up and keep improving its agility.
In consequence, software localizers should be able to translate most important
messages first, e.g., those that are most visible to the user or that require a
special attention, like error messages.

3 System Overview

With the aforementioned localization challenges in mind, we have developed
Nimrod, a PHP internationalization tool that prioritizes resource strings through
progressive filtering. The tool is based on PHP’s built-in gettext library. To begin
with, it selects those strings that are exclusively required to build the UI. Next, it

String Prioritization 5

takes into account a number of features to assign a different importance to each
string, depending on the context of the string in the UI according to e.g. visibility,
frequency, semantics, or the interaction received by the user. Meanwhile, the
remainder strings are considered to be less imperative and thus are left untouched,
as they appear in the original message catalog. In sum, our tool selectively picks
the most relevant candidates among all strings available in the message catalog
for early translation, by moving the relevant strings to the top of the catalog file.

At a lower level, our tool exposes two functions to the developer: gt() and
gx(), where the only difference between the two is that the latter allows the

developer to specify a particular gettext context. This is so because in gettext all
strings are indexed according to source string (msgid) and context (msgctxt), if
available. Both Nimrod functions augment the PHP gettext() function and its
shorthand equivalent () with a special code, so that whenever the function is
invoked, the localized message is complemented with UI-based information where
available, such as size or contrast of the UI element where each string belongs to.
This UI information is compiled by the web browser using injected JavaScript
code. Since Nimrod preserves the usual localization information (e.g., developer
comments or name of source files), it is able to reproduce the original message
catalog together with feature-rich information.

<body>

<h1><?php echo _gt("Hi there!") ?></h1>

...

<body>

<h1>{{Hi there!||34}}</h1>

...

<body>

<h1 data-nimrod=’{"source":"Hi there!","id":34}’>Hi there!</h1>

...

source code

intermediate code

generated code

output buffer

web server

web browser

request

Fig. 1: Nimrod’s processing pipeline.

This complementary information is logged in a dedicated database, in JSON
files, by means of an asynchronous Ajax call invoked on page load. To achieve
this, the HTML code is parsed before being sent to the web browser, by means of
PHP’s output buffering capabilities; see Figure 1. Without output buffering this
would not be possible, as the page would be sent into pieces as PHP processes
each HTTP request and thus the document object model (DOM) would not be
ready for manipulation. Then, the website administrator can access a control

6 L.A. Leiva and V. Alabau

panel (Figure 2) and generate message catalogs on the fly, where strings can be
sorted according to the following priority features (Section 3.1).

Ê

Ë

Ì Í Î

Ï Ð

Ñ

Fig. 2: Integration with Wordpress admin site. Ê The importance degree of each
feature is in [−100, 100] %. Values are stored in a cookie. Ë Localization files are
shown in a dedicated table. Ì Source files are available for each browsed URL. Í
Number of resource strings, according to gettext() function calls. Î Each source
file is associated at least with one gettext domain. Ï Selected source files can be
downloaded or inspected individually. Ð Preferences can be considered coming
from either the currently logged user or all admin users. Ñ This button creates
one PO file per domain, taking into account all these preferences.

3.1 Prioritization Features

The following is a succinct description of the computed features.

Automatic comments [int] Number of autogenerated comments, aimed at
giving element examples where each message appears (Figure 3).

Developer comments [int] Number of comments given by the programmer in
the source code, directed at the translator.

Number of references [int] Number of source files where each message ap-
pears. Theoretically, the higher the more their importance.

String frequency [int] Number of times each message appears on the UI, as
different elements may have the same string.

String Prioritization 7

Element frequency [int] Number of UI elements where each message appears.
Strings appearing in multiple elements may require a special attention.

String visibility [bool] Whether the string is shown on the UI or not. Page
TITLE and most of the BODY elements are visible to the user.

Element size [float] The size (height) of an element may influence its impor-
tance. Typically, bigger elements are most visible and thus should be localized
earlier.

Element contrast [float] Difference between background and foreground RGB
colors. Elements with low contrast are less visually noticeable, so their priority
may be less important.

Element semantics [float] A numerical weight for each type of DOM element,
similar to what is done in information retrieval [3, p.2], to assign more importance
to special elements like headers or links. This can also be used to reward (or
penalize) good (or bad) HTML markups.

(a) (b)

Fig. 3: Messages are augmented with automatic descriptions of the UI elements
(3a), together with URLs to highlight such UI elements in the original web page
(3b).

In addition, the message catalog can be extended with behavioral information
that suggests which strings are more relevant to the user; e.g., mouse or touch
events. Although Nimrod allows these events to be captured, they are not
considered for analysis at the moment, since they are too dependent on website
usage and webmaster activity.

4 Evaluation

We aim to assess to what extent Nimrod can be effectively used to prioritize the
localization of a real website by end users. To do so, first we study the combination

8 L.A. Leiva and V. Alabau

of feature presets (Figure 2) that best represent a number of different string
categories (Section 4.4). Then, we convey an experiment to perform a fine-grained
categorization of strings based on their relevance (Section 4.5).

4.1 Experimental Setup

We developed WP Nimrod, a plugin for Wordpress on top of Nimrod. We chose
Wordpress for evaluation because it is one of the most popular web CMS, is
open-source software (GPL) written in PHP, and is already internationalized
with gettext. After a clean Wordpress installation on our web server, we just
had to activate the plugin. Basically, the WP Nimrod plugin traces the calls to
Wordpress’ translate() function and stores in a JSON file the strings of each
requested web page, together with the features mentioned in the previous section.

4.2 Procedure

We manually browsed all pages at the Wordpress admin site, by clicking on
all links of the rightmost navigation menu, including links in submenus; see
Figure 4. In total, 37 admin pages were browsed. All translatable strings from
these admin pages were automatically registered, removing duplicates, resulting
in 1679 messages. These account for 47.5% of the messages in the latest version
of the official Wordpress PO file (v3.8.1, 3533 messages), which reveal that an
important number of strings are seldom used on the admin site. In the following,
we briefly describe the dataset we gathered from the remaining strings, named
“Wordpress Localization dataset”, or WPLoc for short. The dataset will be made
publicly available after publication.

Fig. 4: Wordpress admin menu.

String Prioritization 9

4.3 Dataset

The WPLoc dataset comprises 1679 manually annotated messages from Wordpress
admin site; see Table 1. These messages are distributed in a long tail: 1100 strings
were logged only once, 390 strings appeared in more than 10 cases, and 49
strings appeared in more than 100 cases. Anecdotally, the most frequent message
is "Add New", appearing 540 times. It is worth pointing out that 93% of the
strings appear in one single element, and that 70% of the messages have no
visibility on the UI. This is the case of strings in drop-down menus, hidden
lists, or help paragraphs that are revealed after an explicit user click/touch.
Indeed, the most frequent HTML tags among all UI elements are DIV, LABEL,
OPTION, and table cells. Of utmost importance is the fact that just 4 strings have
human-generated comments, which reveals that Wordpress developers do not
leave enough localization comments for translators.

On the UI, different types of strings may appear, such as error messages, call-
to-actions, labels, etc. Thus, each message in the WPLoc dataset was manually
labeled according to the following categories:

1. Relevant: Messages that must be understood to make use of the UI.

2. Non-relevant: Less important strings, such as month names or cities.

Both categories are well balanced, with 841 relevant strings and 838 strings
otherwise. In addition, a finer-grained categorization was achieved by dividing
the relevant strings in 3 subclasses:

1.1. Critical: Most imperative messages, such as those related to website main-
tenance or error messages.

1.2. Informative: Those messages that facilitate the understanding of the basic
functionality of the website, such as paragraphs.

1.3. Navigational: Messages that inform about browsing actions, such as menu
items.

Table 1: Message categories used for evaluation.

Group Label Importance No. Strings

Critical relevant 92
Informative relevant 437

Navigational relevant 312
Others non-relevant 838

Total 1679

4.4 Feature Analysis for User-driven Prioritization

We investigated how the previous string categories are characterized by the
prioritization features described in Section 3.1. This would give an intuition to

10 L.A. Leiva and V. Alabau

webmasters on how they could take control over the panel shown in Figure 2 and
sort the strings according to their wishes. A straightforward approach to finding
such characterization consists in standardizing all sample features (to have zero-
mean and unit-variance) and computing the group centroids. Without feature
standardization, the features would be in different ranges and the importance of
each feature would be biased toward features with high values. Table 2 summarizes
these values for each message category, normalized to −100 and 100 as in Nimrod’s
control panel (Figure 2). This study provides a better idea on whether a given
feature affects prioritization, either positively or negatively.

Table 2: Feature combinations, or “mixer preset” weights (see Figure 2), that
prioritize different UI string categories. All weights are bounded to [−100, 100] %,
the sign indicating positive or negative influence.

Group A.C D.C N.R S.F E.F S.V E.Si E.C E.Se

Informative 14.7 -14.3 4.4 -24.4 0.6 41.0 40.8 34.6 23.6
Navigational -6.3 -14.3 8.8 43.2 15.5 12.2 18.6 57.2 22.7

Critical -14.9 -14.3 -8.1 -13.8 -31.9 4.7 11.2 -8.2 -32.2
Other -3.7 14.4 -4.7 -1.8 -2.6 -26.5 -29.4 -38.5 -17.2

Column names follow the same order given in Prioritization Features (Section 3.1); e.g.,
A.C: automatic comments, . . . , E.Se: Element semantics.

Looking at Table 2, it can be observed that navigational messages show a
high contrast, whereas critical messages are represented by a lower contrast.
Although this may sound contradictory, it must be noted that in Wordpress most
navigational elements have a white font over dark background, while critical
messages often use a red font color over light red background, which would
diminish its contrast. Thus, perhaps a more appropriate metric such as color
saliency based on visual human perception would be a better option to measure
element contrast.

On the other hand, it was found that string visibility and element size are more
prominent in informative messages rather than in critical messages. This may be
due to the fact that informative texts are often very descriptive and thus might
have a higher size on the UI. However, critical messages are typically exceptions
that are rarely shown, and thus they remain hidden most of the time. Something
similar happens to string and element frequency: critical messages appear scarcely
and often at the same places. Conversely, navigational messages appear in almost
any page and often in different menu entries. In this regard, informative messages
appear less frequently than its critical counterparts, probably because the former
are more specific and descriptive. Additionally, developer comments appear only
in the “other” category, hence their weights are uniform across categories. Finally,
the number of references was found to have little importance to discriminate
among the analyzed categories.

String Prioritization 11

4.5 String Retrieval for Fine-grained Prioritization

Given that we had defined a well-established ground truth, another experiment to
analyze string prioritization possibilities consisted in performing a more detailed,
automatic string retrieval task. As in the previous experiment, strings belong to
the classes (and subclasses) of the WPLoc dataset, and the same set of features
is used.

As a practical application, we decided to use several state-of-the-art classifiers.
All classifiers were evaluated using the open-source Weka machine learning
suite [11], which will allow others to easily reproduce our experiments. The
following results present a subset of the algorithms that, to our knowledge, are
representative of a broad range of techniques: Logistic Regression [4], Multilayer
Perceptron [17], KStar [5], Random Forest [2], and Bagging [1] with REPTree.

The experimentation was formulated as a retrieval problem, where we search
for the strings that match a given class. Thus, precision indicates, among all
retrieved strings, the percentage of strings that belong to the given class, whereas
recall indicates the percentage of strings of a given class that were effectively
retrieved. Finally, F-measure is the harmonic mean of precision and recall, and
it can be interpreted as a weighted accuracy. All experiments were run on the
whole set of 1679 strings with a 10-fold cross-validation setup.

Table 3: Retrieval results of relevant messages, in percentage.

Classifier Precision Recall F-measure

Logistic Regression 73.8 83.9 78.6
Multilayer Perceptron 75.0 94.4 83.6

KStar 80.6 88.0 84.1
Random Forest 79.7 87.4 83.4

Bagging (REPTree) 78.5 90.7 84.2

First of all, Table 3 shows results when retrieving those strings that were
classified as relevant. On the one hand, KStar achieves the best precision at the
expense of a worse recall. On the other hand, Multilayer Perceptron obtains the
best recall at the expense of a lower precision. In terms of F-measure, Bagging
and KStar performed better than their peers. Actually, what is best depends on
the particular user needs. For instance, high precision with low recall involves
less strings to be translated. Concretely, KStar retrieves 918 strings, Multilayer
Perceptron 1058 and Bagging 971. Thus, if the goal is to reduce localization costs,
then KStar is a reasonable option. Nevertheless, Multilayer Perceptron retrieves
most of the relevant strings, which is probably a more important technique for a
more imperative scenario, i.e., to reduce localization time.

Table 4 disgregates the results for the different subclasses of relevant messages.
Overall, critical messages present very low recall scores in all of the tested
classifiers. We suspect that this is caused by the low number of strings that

12 L.A. Leiva and V. Alabau

fall under this category (5.5% in the WPLoc dataset). Thus, the class prior
probability is low and few samples are used to train each classifier. On the other
hand, we observed that informative messages are easier to retrieve with KStar,
with a 75.5% of recall. However, its precision suggests that half of the retrieved
strings would not be informative. Finally, navigational messages achieve higher
precision scores, probably also because of the class prior imbalance.

Intuitively, critical messages should be easier to retrieve, since typically they
would contain words related to errors and warnings, while navigational messages
should be short and semantically related to UI actions. Thus, we decided to
expand the feature set with a weighted bag of words of each resource string, where
weights are string frequencies. The results are presented in Table 4 and marked
with an asterisk (*). Significant improvements can be observed in all cases, which
remarks the importance of the text for relevance identification. Concretely, a
qualitative analysis of Bagging’s decision trees showed that the word ‘error’ is
used to discriminate critical messages, while ‘updated’ is present in informative
messages and ‘link’ in navigational messages.

It is worth mentioning that the bag-of-words analysis may not extrapolate
to any website. Indeed, different websites and CMS do have different UI strings,
and thus a classifier should be trained for each website or CMS. Nevertheless,
it is possible to use any of the other classifiers tested so far, as they provide
competitive accuracy. In any case, this study puts forward the fact that different
classifiers are feasible to improve website localization.

4.6 General Discussion

The needs of the localization industry change often over time. Today’s devel-
opment cycles are typically shorter, with quick turnaround times. This trend
encourages software localization for a prompt revision.

Often it is necessary to localize just the essential parts of a UI, either because
of competitive advantage or economical reasons. For instance, an advanced word

Table 4: Results for message retrieval of the different relevant subclasses, in
percentages. Classifiers marked with (*) were expanded with a weighted bag of
words of each resource string as additional features.

Critical Informative Navigational

Classifier Prec Rec F1 Prec Rec F1 Prec Rec F1

Logistic Regression 0.0 0.0 0.0 53.0 48.5 50.7 42.7 15.1 22.3
Multilayer Perceptron 69.2 9.8 17.1 51.3 70.9 59.6 49.4 39.7 44.0

KStar 66.7 17.4 27.6 51.3 75.5 61.1 67.8 37.8 48.6
Random Forest 47.4 19.6 27.7 56.2 67.7 61.4 63.1 48.7 55.0

Bagging (REPTree) 76.2 17.4 28.3 55.1 73.5 62.9 60.8 45.2 51.8

Random Forest* 58.2 34.8 43.5 62.2 65.4 63.8 64.2 63.8 64.0
Bagging (REPTree)* 83.3 27.7 41.0 63.3 73.0 67.8 68.2 57.1 62.1

String Prioritization 13

processor may comprise an important number of menus and options, but actually
only a few of these are used by regular users. Then, localizing just what is
most important would allow to reach emerging markets or even introduce a
new product sooner than the competence. Unfortunately, following the typical
localization workflow, it is difficult to decide which elements should be localized
earlier. Moreover, typically websites and web applications do change over time,
and so it should be possible to perform localization in an incremental fashion.
Therefore, a solution to prioritize UI elements for localization is necessary. Nimrod
is our contribution to tackle this topic.

5 Conclusion and Future Work

Software localization is both costly and a slow process, partially affected by
the lack of string prioritization. We have shown that it is possible to automate
the prioritization of UI strings, so that web-based software can be quickly and
frequently translated. Our method augments string information in a message
catalog with UI features, such as widget size, visibility, or color, so as to selectively
pick the most relevant strings in the first place.

For future work we will incorporate our evaluation findings in our string prior-
itization tool. Concretely, we will add preset configurations that would allow to re-
trieve critical, informative, and navigational messages earlier. We also plan to con-
sider UI usage information for analysis, like mouse or touch events, in order to gain
more knowledge on the best prioritization schema. We hope this work will be useful
to researchers and companies interested in UI localization. Nimrod is open source
and can be downloaded at http://personales.upv.es/luileito/nimrod/.

Notes

1http://www.drupaltranslate.com
2http://smartling.com
3http://lingoport.com/globalyzer
4http://kokusaika.jp/en/product/wwnavi.html
5http://launchpad.net
6http://pootle.translatehouse.org
7http://www.verbatimsolutions.com
8http://www.transifex.com

Acknowledgments

This work is supported by the 7th Framework Program of EU Commision under
grants 287576 (CASMACAT) and 600707 (tranScriptorium). The motivation
of choosing “Nimrod” to name our tool is left as an additional exercise for the
reader.

14 L.A. Leiva and V. Alabau

References

1. Breiman, L.: Bagging predictors. Machine Learning 24(2) (1996)
2. Breiman, L.: Random forests. Machine Learning 45(1) (2001)
3. Cascia, M.L., Sethi, S., Sclaroff, S.: Combining textual and visual cues for content-

based image retrieval on the world wide web. In: IEEE Workshop on Content-Based
Access of Image and Video Libraries (CBAIVL) (1998)

4. le Cessie, S., van Houwelingen, J.: Ridge estimators in logistic regression. Applied
Statistics 41(1) (1992)

5. Cleary, J.G., Trigg, L.E.: K*: An instance-based learner using an entropic distance
measure. In: 12th International Conference on Machine Learning (1995)

6. Collins, R.W.: Software localization for internet software: Issues and methods. IEEE
Software 19(2) (2002)

7. DePalma, D.A., Hegde, V., Pielmeier, H., Stewart, R.G.: The language services
market. An annual review of the translation, localization, and interpreting services
industry. Available at http://commonsenseadvisory.com (2013)

8. Dunne, K.J. (ed.): Perspectives on Localization. John Benjamins Publishing Com-
pany (2006)

9. Esselink, B.: A Practical Guide to Localization. John Benjamins Publishing Com-
pany (2000)

10. Gettext: The GNU gettext manual. Available at http://www.gnu.org/ (1995),
version 0.18.2.

11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)

12. Hogan, J.M., Ho-Stuart, C., Pham, B.: Key challenges in software internationalisa-
tion. In: Workshop on Australasian Information Security, Data Mining and Web
Intelligence, and Software Internationalisation (ACSW Frontiers) (2004)

13. Keniston, K.: Software localization: Notes on technology and culture. Working
Paper #26, Massachusetts Institute of Technology (1997)

14. Leiva, L.A., Alabau, V.: An automatically generated interlanguage tailored to
speakers of minority but culturally influenced languages. In: Proceedings of the
SIGCHI conference on Human factors in computing systems (CHI) (2012)

15. Leiva, L.A., Alabau, V.: The impact of visual contextualization on UI localization.
In: Proceedings of the SIGCHI conference on Human factors in computing systems
(CHI) (2014)

16. Reinecke, K., Bernstein, A.: Improving performance, perceived usability, and aesthet-
ics with culturally adaptive user interfaces. ACM Transactions on Computer-Human
Interaction (TOCHI) 18(2), 8:1–8:29 (2011)

17. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review 65(6) (1958)

18. Sun, H.: Building a culturally-competent corporate web site: an exploratory study
of cultural markers in multilingual web design. In: Proceedings of the 19th Annual
International Conference on Computer Documentation (SIGDOC) (2001)

19. Troyer, O.D., Casteleyn, S.: Designing localized web sites. In: Proceedings of Web
Information Systems Engineering (WISE) (2004)

20. VanReusel, J.F.: Five golden rules to achieve agile localization. Available at
http://blogs.adobe.com/globalization/ (2013)

21. Wang, X., Zhang, L., Xie, T., Mei, H., Sun, J.: TranStrL: An automatic need-to-
translate string locator for software internationlization. In: Proceedings of IEEE
31st International Conference onSoftware Engineering (ICSE) (2009)

