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Abstract

To study the behaviour of nuclear power reactors it is necessary to solve the
time dependent neutron diffusion equation using either a rectangular mesh
for PWR and BWR reactors or a hexagonal mesh for VVER reactors. This
problem can be solved by means of a modal method, which uses a set of
dominant modes to expand the neutron flux. For the transient calculations
using the modal method with a moderate number of modes, these modes
must be updated each time step to maintain the accuracy of the solution.
The updating modes process is also interesting to study perturbed configu-
ration of the reactor. A Modified Block Newton method is studied to update
the modes. The performance of the Newton method has been tested for a
steady state perturbation analysis of two 2D hexagonal reactors, a perturbed
configuration of the IAEA 3D reactor and two configurations associated with
a boron dilution transient in a BWR reactor.

Keywords: Lambda Modes Problem, Block Newton Mehtod, Subspace
Tracking Problem, Boron Injection.

1. Introduction

To improve the safety of nuclear power reactors it is necessary to develop
fast and accurate plant simulators. In the BWR and PWR the fuel elements
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are square prisms and in the VVER reactors the fuel elements are hexagonal
prisms. For this reason, it is interesting to develop efficient methods for both
rectangular and hexagonal meshes.

Under general assumptions, the neutronic population inside a nuclear
power reactor can be modelled by the time dependent neutron diffusion
equation in the approximation of two energy groups. This model is of the
form (Stacey, 2001),

[

v−1
] ∂Φ

∂t
+ LΦ = (1− β)MΦ+

K
∑

k=1

λkχCk ,

∂Ck
∂t

= βk[νΣf1 νΣf2]Φ− λkCk , k = 1, . . . , K , (1)

where, K is the number of delayed neutron precursor groups considered,

L =

[

−~∇ · (D1
~∇) + Σa1 + Σ12 0

−Σ12 −~∇ · (D2
~∇) + Σa2

]

,

[v−1] =

[ 1
v1

0

0 1
v2

]

,

and

M =

[

νΣf1 νΣf2

0 0

]

, Φ =

[

Φ1

Φ2

]

, χ =

[

1
0

]

.

The diffusion constants and cross-sections, Dg, Σ12, Σag, νΣfg, g = 1, 2,
appearing in these equations depend on the reactor materials, that is, they
are position and time dependent functions.

Associated with this problem, there is the following generalised eigenvalue
problem,

LΦi =
1

ki
MΦi . (2)

This problem is known as the Lambda modes problem for a given configu-
ration of the reactor core. The fundamental eigenvalue (the largest one) is
called the effective multiplication constant, k-effective, of the reactor core,
and this eigenvalue and its corresponding eigenfunction describe the steady
state neutron distribution in the core. In this way, the calculation of the
stationary neutron flux distribution is the first calculation for any transient
analysis.
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To solve both problems (1) and (2), a spatial discretization of the equa-
tions has to be selected. Once this discretization has been selected, the
semidiscrete version of the time dependent neutron diffusion equation is
solved. Since the ordinary differential equations resulting from the discretiza-
tion of diffusion equations are, in general, stiff, implicit methods are neces-
sary. With the aim of reducing the computational cost of implicit methods,
we have used a modal method based on expanding the neutron flux in terms
of the dominant Lambda modes of the reactor core (Miró et al., 2002).

Starting from a steady state configuration of a nuclear power reactor
some situations arise in which the reactor configuration is perturbed. To
compute several eigenvalues and their corresponding eigenfunctions for the
new configuration of the reactor is quite expensive from the computational
point of view. Krylov subspace methods are efficient methods to compute
the dominant Lambda modes associated with a given configuration of the
reactor, but when the Lambda modes have to be computed from previous
perturbed configurations of the reactor other kind of methods that use the
information provided by the computed modes in previous steps can be more
convenient. In this line, we have studied a Modified Block Newton Method
(MBNM) to speed-up the calculations in the updating modes process.

The rest of the paper is organised as follows: In section 2, the spatial dis-
cretization used for the Lambda modes problem is briefly exposed. In section
3, to motivate the necessity of efficient method to update the Lambda modes,
the modal method for the time discretization of the equations is reviewed.
In section 4, the Modified Block Newton algorithm is developed. Section 5,
is devoted to test the performance of the MBNM algorithm updating the
modes for perturbed configurations of different reactors with hexagonal and
rectangular geometries. Finally, the conclusions are summarised in section 6.

2. Spatial discretization

The spatial mesh used to discretize a reactor core is naturally defined by
the different compositions of the materials present in the core. Thus, we use
a coarse mesh adapted to the fuel bundles composing the core and different
strategies are used for the spatial discretization of the equations depending
on the core geometry.
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2.1. PWR and BWR reactors

In PWR and BWR reactors the fuel assemblies are rectangular prisms.
Thus, a rectangular mesh is suitable to describe these prisms. Each one of
these prisms is divided into different nodes, and each node, e, is mapped
onto a reference domain by means of a change of variables from the real
space (x, y, z) to the variables of the reference domain (x′, y′, z′). Then the
neutron flux into each node e is expanded in terms of the ortonormal Legendre
polynomials as follows (Verdú et al., 1994),

Φe(x
′, y′, z′) =

K
∑

i=0

K
∑

j=0

K
∑

k=0

ψe,ijkPi(x
′)Pj(y

′)Pk(z
′) . (3)

Continuity over the inner interfaces of the elements for the neutron flux,
continuity for the neutron current over the normal directions of these inter-
faces and, boundary conditions over the external boundary of the reactor are
ensured by means of imposing them explicitly, and then, some algebraic ma-
nipulations are used to introduce these conditions into weighted equations for
each face of the nodes obtaining a set of algebraic equations that constitute
the approximation known as the Nodal Collocation method for the Lambda
modes problem (Verdú et al., 1994).

2.2. VVER Reactors

The fuel assemblies in VVER reactors are hexagonal prisms. Thus, dif-
ferent strategies from the ones used for rectangular reactors have to be con-
sidered. We will study bidimensional reactors discretized using a hexagonal
grid ana high order finite element method (Gonzalez-Pintor et al., 2009) that
uses a fixed mesh and increases its accuracy by increasing the order of the
polynomials expansions. The first step to perform the discretization is to
divide each hexagon corresponding to the fuel bundles into six equilateral
triangles, denoted by Ωe. To show the process followed we will consider
the neutron diffusion equation in the monoenergetic approximation. This
equation without loss of generality can be written as

−~∇D(x, y) · ~∇Φ(x, y) + Σa(x, y)Φ(x, y) = S(x, y) . (4)

The boundary conditions considered are albedo boundary conditions

D(x, y)~n(x, y) · ~∇Φ(x, y) +
1

2

1− β

1 + β
Φ(x, y) = 0 , (x, y) ∈ ∂Ωβ . (5)
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The neutron diffusion equation (4) is a stationary condition (Hébert,
2008) for the functional

F(Φ) =
1

2

∫∫

Ω

D(x, y)~∇Φ(x, y) · ~∇Φ(x, y)dxdy

+
1

2

∫∫

Ω

Σa(x, y)Φ
2(x, y)dxdy

−

∫∫

Ω

S(x, y)Φ(x, y)dxdy

+

∫

∂Ωβ

1

4

1− β

1 + β
Φ2(x, y)dl , (6)

where Φ(x, y) is defined in the Sobolev space

H∂Ω0
(Ω) =

{

h : h ∈ L2(Ω) , h(x, y) = 0 ∀(x, y) ∈ ∂Ω0 ∧ ~∇h ∈
[

L2(Ω)
]2
}

.

(7)
To develop the method, we use a change of variables transforming each

one of the triangles, Ωe, of the mesh into the Reference domain, ΩREF , also
known in the literature as the Right Triangle, which is defined as

ΩREF = {(x, y)/x ≥ 0, y ≥ 0, 0 ≤ x+ y ≤ 1} . (8)

Denoting by Φe the restriction on the neutron flux, Φ, to the element Ωe

of the mesh, it is assumed that it can be approximated by a finite expansion
of the form

Φe(x
′, y′) =

i+j≤K
∑

i,j=0

ψe,ijgij(x
′, y′) , (9)

where gij are elements of a polynomial basis in terms of the coordinates (x′, y′)
of the reference domain. The modified Dubiner’s polynomials (Karniadakis et
al., 2005) are used for the flux expansions. Some coefficients of the expansions
are fixed to assure the continuity of the neutron flux. Details of the definition
of the polynomials and the selection of the expansions coefficients can be
found in (Gonzalez-Pintor et al., 2009).
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2.3. Algebraic Problem

After performing the spatial discretization, the problem (1), can be ap-
proximated by the following semidiscrete system of equations

[

v−1
]

ψ̇ + Lψ = (1− β)Mψ +
K
∑

k=1

λkXCk ,

XĊk = βkMψ − λkXCk , (10)

where matrices L, M and X have the following block structure

L =

[

L11 0
−L21 L22

]

, M =

[

M11 M12

0 0

]

, X =

[

I
0

]

;

and for the Lambda modes problem (2) we have

Lψl =
1

kl
Mψl . (11)

As the matrix L is nonsymmetric, we also consider the adjoint problem

L†ψ†
l =

1

kl
M †ψ†

l , (12)

since the eigenvectors solutions of problems (11) and (12) satisfy the following
biorthogonality relationship

< ψ†
m,Mψn >=< ψ†

m,Mψm > δn,m = Nmδn,m . (13)

3. Modal method

Different methods have been proposed to solve equations (10). One pos-
sibility that makes use of the dominant Lambda modes associated with a
given configuration of the reactor core is to use a modal method (Miró et al.,
2002). This method assumes that ψ(t) can be expressed approximately as

ψ(t) =

Md
∑

l=1

nl(t)ψl , (14)

where ψl, l = 1, . . . ,Md are the dominant Lambda modes of a given configu-
ration of the core. A small amount of the dominant Lambda modes and their
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corresponding adjoint modes can be efficiently computed using, for example,
the implicit restarted Arnoldi method (Verdú et al., 1999). Multiplying equa-
tions (10) by ψ†

m, writing

L = L0 + δL , M =M0 + δM ,

and making use of expansion (14), we obtain the equations

Md
∑

l=1

〈ψ†
m, [v

−1]ψl〉
d

dt
nl +

Md
∑

l=1

1

kl
〈ψ†

m,M0ψl〉nl

+

Md
∑

l=1

〈ψ†
m, δLψl〉nl = (1− β)

Md
∑

l=1

〈ψ†
m,M0ψl〉nl

+ (1− β)

Md
∑

l=1

〈ψ†
m, δMψl〉nl +

K
∑

k=1

λk〈ψ
†
m, XCk〉 ,

d

dt
〈ψ†

m, XCk〉 = βk

Md
∑

l=1

〈ψ†
m,M0ψl〉nl

+ βk

Md
∑

l=1

〈ψ†
m, δMψl〉nl − λk〈ψ

†
m, XCk〉 . (15)

Using the biorthogonality relationship (13), introducing the notation,

Λml =
〈

ψ†
m, [v

−1]ψl

〉

, AL
ml =

〈

ψ†
m, δLψl

〉

,

AM
ml =

〈

ψ†
m, δMψl

〉

, Cmk =
〈

ψ†
m, XCk

〉

,

and the mode m reactivity, defined as ρm = (km− 1)/km, equations (15) can
be expressed as the following matrix equations (see reference (Miró et al.,
2002) for full details)

d[n]

dt
= [Λ]−1

(

[ρ− βI][N ][n] + (1− β)[AM ][n]

− [Λ]−1[AL][n] +

K
∑

k=1

λk[Ck]
)

,

d[Ck]

dt
= βk[N ][n] + βk[A

M ][n]− λk[Ck] , k = 1, . . . , K . (16)
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Because of the stiffness of the differential equations (16), to solve this
system we have used a high order implicit method (Hindmarsh, 1983).

As initial conditions for the time integration of a transient, we start from a
critical configuration of the core. To obtain this critical configuration we solve
the Lambda modes problem (11) for a given initial configuration, searching
for the fundamental mode. Dividing the fission cross-sections of the initial
configuration by the fundamental eigenvalue, k1, we obtain

L0ψ1 =MCritψ1 , (17)

whereMCrit is a matrix whose components are the components ofM divided
by k1. Equation (17) together with equation

0 = βkM
Critψ1 − λkXCk , (18)

constitute the set of equations defining the steady state associated with the
critical configuration.

For realistic transients, the nuclear cross-sections are time dependent
functions and to obtain good accuracy using the modal method a large
amount of modes are necessary. This is prohibitive from the computational
point of view. Thus, instead of this, we use a small number of modes together
with an updating modes strategy that is performed at each certain updating

time step (Miró et al., 2002). In this way, to update the modes it is necessary
to develop an efficient strategy that uses the modes computed in the previ-
ous steps as starting initial guess to speed-up the computation. A method
of this kind is the Block Newton Method, presented in next section. Also,
a modes updating methodology is of interest when perturbed configurations
of the reactor core are studied.

4. Modified Block Newton Method

With the spatial discretization methods exposed above, the the Lambda
modes equation with two groups of energy (2) can be approximated by an
algebraic generalised eigenvalue problem with the following block structure

[

L11 0
−L21 L22

] [

ψ1

ψ2

]

=
1

λ

[

M11 M12

0 0

] [

ψ1

ψ2

]

, (19)

where ψ1 is a vector with the unknowns corresponding to the neutron flux
for the fast group, and ψ2 is a vector with the unknowns corresponding to
the thermal flux.
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To solve this problem, it is reduced to the ordinary eigenvalue problem

Aψ1 = λψ1 , (20)

where the matrix A in equation (20) is defined as

A = L−1
11

(

M11 +M12L
−1
22 L21

)

. (21)

As it has already mentioned, to update the modes along a transient or for
a perturbed configuration of the core it is interesting to take into account that
the space spanned by the new modes should be close to the space spanned by
the previous ones. For this reason, a Modified Block Newton Method (Lösche,
1998), which has a high order of local convergence, is applied to update the
modes using as initial guess the modes obtained in a previous step. In the
following, we expose the main ideas of this method.

Given a partial eigenvalue problem of the form

AV = V Λ , (22)

where V ∈ Rn×q is the matrix of eigenvectors and Λ ∈ Rq×q is a diagonal
matrix whose elements are the dominant eigenvalues. It is assumed that the
eigenvectors can be factorized as

V = ZS , (23)

where ZTZ = Iq. Problem (22) can be rewritten as

AV = V Λ⇒ AZS = ZSΛ⇒ AZ = ZSΛS−1 ⇒ AZ = ZK , (24)

where matrix K is not necesarily a diagonal matrix. This system is undeter-
mined (Lösche, 1998). To determine the problem we introduce the biorthog-
onality condition WTZ = Iq, where W is a fixed matrix of rank q. Then the
Newton method is used to solve the problem

FW (Z,K) :=

[

AZ − ZK
WTZ − Iq

]

=

[

0
0

]

. (25)

From Newton’s method the new iterated solution arises

Z(k+1) = Z(k) −∆Z(k) , K(k+1) = K(k) −∆K(k) , (26)

9



where ∆Z(k) and ∆K(k) are solutions of the system

A∆Z(k) −∆Z(k)K(k) − Z(k)∆K(k) = AZ(k) − Z(k)K(k) ,

WT∆Z(k) = WTZ(k) − Iq . (27)

The system (27) is coupled because of the off-diagonal elements of K(k).
To avoid this difficulty the Modified Block Newton Method (see Algo-

rithm (3)) applies two previous steps to decouple system (27). The first
step consists of an orthogonalisation to the Z(k) matrix (see Algorithm (1)).
Once Z(k) is an orthonormal matrix, i.e., Z(k)TZ(k) = Iq, as a second step, a

Algorithm 1 Modified Gram-Schmidt Orthogonalisation (Orth)

Require: A set of p independent vectors v1, . . . , vp
1: for i = 1 to k do

2: for j = 1 to i− 1 do

3: vi ← vi − 〈vj , vi〉
4: end for

5: vi ← vi/ ‖vi‖2
6: end for

Rayleigh-Ritz procedure is applied, which consists of obtaining the eigenvec-
tors U (k) and their corresponding eigenvalues R(k), of B(k) = Z(k)TAZ(k), in
such a way that

B(k)U (k) = U (k)R(k) . (28)

Then, taking into account the definition of B(k) and making use of the orthog-
onality of matrix Z(k) on equation (28), the following equation is obtained

Z(k)TAZ(k)U (k) = Z(k)TZ(k)U (k)R(k) . (29)

Renaming Z̃(k) := Z(k)U (k) and Λ(k) := R(k). From equation (29), we have

that Λ(k) is a diagonal matrix whose elements, λ
(k)
i are called the Ritz values

and Z̃(k) are the approximated Ritz eigenvectors, that satisfy the equation

Z(k)T
(

AZ̃(k) − Z̃(k)Λ(k)
)

= 0 . (30)

This Rayleigh-Ritz procedure is implemented in Algorithm (2). At each
iteration, the matrix W is chosen as the previous approximation for the
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invariant subspace, that is W = Z(k), and system (27) is decoupled into the
q linear systems

[

A− Iλ
(k)
i Z(k)

Z(k)T 0

][

∆z
(k)
i

−∆λ
(k)
i

]

=

[

AZ(k) − Z(k)Λ(k)

0

]

ei , i = 1, . . . , q .

(31)

where ei denotes the i-th coordinate vector, and ∆z
(k)
i is the i-th column of

∆Z(k).

Algorithm 2 Rayleigh-Ritz procedure (rr)

Require: Initial approximation Z for the desired invariant subspace of A
1: B ← ZTAZ
2: Calculate [U,R] such that BU = UR for the small matrix B
3: V ← ZU {Approximated Ritz eigenvectors}
4: Λ← R {Ritz Values}

The Modified Block Newton Method can be summarized as in Algo-
rithm (3).

Algorithm 3 Modified Block Newton Method (MBNM)

Require: Initial approximation Ṽ (0) of the eigenmodes
1: [Z(0)]← orth(Ṽ (0))
2: [V (0),Λ(0)]← rr(Z(0), A)
3: while V (k) does not satisfy a termination criterion do

4: ∆V (k) = [∆v
(k)
1 , · · · ,∆v

(k)
p ] {Correction determined with the Newton

iteration of equation (31)}
5: Ṽ (k) ← V (k) −∆V (k)

6: Zk ← orth(Ṽ (k))
7: [V (k),Λ(k)]← rr(Z(k), A)
8: k ← k + 1
9: end while

5. Numerical Results

The behaviour of the Block Newton method presented above for updat-
ing the dominant Lambda modes of a nuclear reactor core is tested with
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four different problems, two of them with hexagonal geometry for the fuel
assemblies, and the other two with rectangular geometry.

Starting from a steady state configuration of a nuclear power reactor
some situations arise in which the reactor configuration is perturbed. Dif-
ferent events justify the study of these perturbations: poisoning by Xenon,
insertion of control rods, subcooling of the entry, study of Doppler effect of
a nuclear core by means of a uniform perturbation of the core, etc. To test
the behaviour of the Modified Block Newton method different perturbations
have been defined for different reactors. First, a bidimensional VVER 1000
reactor (Chao and Shatilla, 1995) will be perturbed increasing the second
group absortion cross section Σa2 of seven control rods equally distributed
over the reactor. This is a symmetric perturbation, where the shape of the
modes after the perturbation is close to the one of the initial state, athough
the corresponding eigenvalues are quite different.

Similarly, the second problem is a perturbation for a VVER 440 reac-
tor core which is based on a collapsed three dimensional benchmark for a
transient in the reactor (Keresztúri, 1992). In this transient the peak of the
power distribution performs a large increase in a non-symmetric form and
the dominant eigenmodes change their shape along the transient.

The first problem with rectangular geometry considered is a perturbed
configuration of the well known three dimensional IAEA reactor (Argone
National Laboratory , 1977), which is a PWR reactor. The perturbation is
performed by means of the extrusion of a set of control rods and the insertion
of another set symmetricaly.

The last example considered corresponds to the compuation of the dom-
inant eigenmodes of two configurations of a three dimensional BWR reactor
in a boron ijection transient. This problem shows a strong perturbation
for the shape of the dominand modes to be updated, and it is proposed to
check the behaviour of Newton method for updating the modes in strong
perturbations.

5.1. VVER-1000 problem

The VVER-1000 problem (Chao and Shatilla, 1995) with the geometry
shown in Figure 1 is considered. The core has a 1/6 cyclic symmetry, and
the assembly pitch is of 23.60 cm. The reflector is not explicitly modelled,
but it is assumed to be represented by means of albedos at the boundary of
the core.
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Figure 1: Geometry of the VVER-1000 reactor.

This original configuration will be perturbed increasing the second group
absortion macroscopic cross section Σa2 (see Table 1) of material 2 from
0.0810328 to 0.2010328, simulating a perturbation due to the insertion of
control rod banks at these positions.

Table 1: Cross sections of the VVER-1000 problem

Mat. g Dg Σa,g Σg,g+1 νΣf,g

1 1 1.38320 0.0083859 0.0164977 0.00481619
2 0.386277 0.0673049 0.0846154

2 1 1.38299 0.0115490 0.0147315 0.00466953
2 0.389403 0.0810328 0.0852264

3 1 1.39522 0.0089441 0.0156219 0.00604889
2 0.386225 0.0844801 0.1194280

4 1 1.39446 0.0119932 0.0140185 0.00591507
2 0.387723 0.0989670 0.1204970

5 1 1.39506 0.0091160 0.0154981 0.00640256
2 0.384492 0.0893878 0.1292810

The results for the first seven dominant eigenvalues of the initial config-
uration, together with the eigenvalues corresponding to the perturbed con-
figuration are shown in Table 2.
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Table 2: Eigenvalues of the initial and perturbed configurations of VVER-1000 reactor.

λl
l Initial conf. Perturbed conf.
1 1.006451 0.995906
2 0.994809 0.984379
3 0.994809 0.984379
4 0.973759 0.964955
5 0.973759 0.964955
6 0.955171 0.953445
7 0.948344 0.941234

The shape for the normalised power distribution associated with the fun-
damental mode and the first subcritical harmonic mode are shown in Fig-
ure 2.

The stoping criterion used in the Modified Block Newton method is based
on the residual of the calculated eigenvalues and eigenvectors at step k,

Resk :=
∥

∥AV k − V kΛk
∥

∥

2
≤ eps . (32)

The tolerance has been set to eps = 10−6. To show the performance of the
Newton method along the different steps, in Table 3, we present the value of
the residual Resk for different steps of the Newton Method using eigenvector
spaces with different size q, (q is the number of modes). We observe that for
this problem three steps of the Modified Block Newton method are enough
to achieve the convergence of 7 modes of the perturbed configuration.

5.2. VVER-440 problem

This problem is based on the 3-dimensional transient benchmark AER-
DYN-001 proposed in (Keresztúri, 1992). The nuclear cross section given in
the 3D benchmark have been collapsed in a single plane. Materials of the
bidimensional reactor have been defined as is shown in Figure 3 and the cross
sections of the materials are shown in Table 4.

A perturbed configuration that simulates the movement of two control
rods has been defined by means of changing the absorption cross section Σa2

for the material 8 from 0.11887 to 0.016917.
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(a) Neutron distribution

(b) First harmonic

Figure 2: Shape of the power distribution associated with the first for two dominant
modes of the VVER-1000 problem for the initial configuration (left) and the perturbed
one (right).

Table 3: Evolution of the residual in the problem VVER-1000 for different steps of the
Newton method and different number of modes.

Resk
q k = 0 k = 1 k = 2 k = 3
1 0.043835 0.000628 0.000006 0.000000
2 0.044356 0.000797 0.000005 0.000000
3 0.044396 0.000851 0.000006 0.000000
4 0.044505 0.001341 0.000008 0.000000
5 0.044489 0.001376 0.000008 0.000000
6 0.044494 0.001379 0.000007 0.000000
7 0.047095 0.001305 0.000008 0.000000
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Figure 3: VVER 440 2D

The first 7 dominant Lambda modes of the initial configuration of the
reactor have been updated to obtain a set of dominant modes of the perturbed
condiguration. The eigenvalues of these modes are shown in Table 5.

The shape for the normalised power distribution associated with the fun-
damental mode and the first two subcritical modes are shown in Figure 4.

The residual of the calculated eigenvalues and eigenvectors at step k of
the Modified Block Newton Method using different numbers of modes, q, is
presented at Table 6. We observe that also in this case the modes can be
updated with three steps of the Newton method.

5.3. IAEA 3D problem

The IAEA 3-D PWR problem (Argone National Laboratory , 1977) is
a standard benchmark problem to measure the performance of neutronic
calculation methods. The core is composed by 177 fuel assemblies including
9 fully rodded fuel assemblies and 4 partially rodded fuel assemblies, as it is
shown in Figure 5. Radial reflector is modelled by means of 64 assemblies
surrounding the core. The fuel assembly pitch is 20cm and the active height
of a fuel assembly is 340cm. The thickness of axial reflector is 20cm. Nuclear
cross sections for this problem are shown in Table 7.

As it is shown in Figure 5, two configurations are considered for this
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Table 4: Cross sections for the 2-D VVER 440 reactor.

Mat. g Dg Σa,g Σg,g+1 νΣf,g

1 1 1.346557 0.008312 0.016976 0.004413
2 0.370075 0.064282 0.072784

2 1 1.337728 0.008745 0.016000 0.005491
2 0.367411 0.079145 0.104256

3 1 1.332264 0.009411 0.014974 0.006990
2 0.363171 0.099536 0.147261

4 1 1.447520 0.000933 0.032215 0.000000
2 0.251741 0.033037 0.000000

5 1 1.231711 0.012120 0.020782 0.001345
2 0.240027 0.118846 0.027352

6 1 1.337727 0.008747 0.015996 0.005492
2 0.367479 0.079153 0.104316

7 1 1.346561 0.008317 0.016968 0.004416
2 0.370177 0.064282 0.072846

8 1 1.231640 0.012123 0.020785 0.001342
2 0.239942 0.118870 0.027299

problem, CONF.1 is the initial configuartion and CONF.2 is the perturbed
one. In the perturbed configuration the control rods of fully inserted as-
semblies have been extracted 40cm, and the control rods of partially rodded
assemblies are inserted 40cm. Table 8, shows the three dominant eigenvalues
obtained for both configurations.

The axial and radial profiles of the normalised power distribution associ-
ated with the fundamental mode and the first harmonic mode are shown in
Figure 6.

The evolution of the residual of the calculated eigenvalues and eigenvec-
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Table 5: Eigenvalues for the initial and perturbed configuartions of reactor VVER 440.

λl
l Initial conf. Perturbed conf.
1 1.005186 1.011159
2 0.998421 1.001079
3 0.998420 1.000791
4 0.984674 0.988257
5 0.984675 0.985502
6 0.967776 0.967903
7 0.964815 0.965150

Table 6: Residual evolution for different steps of the Newton method for different number
of modes of reactor VVER-440.

Resk
q k = 0 k = 1 k = 2 k = 3
1 0.015864 0.002868 0.000292 0.000000
2 0.015866 0.002868 0.000292 0.000000
3 0.023867 0.000599 0.000000 0.000000
4 0.025380 0.000398 0.000000 0.000000
5 0.025380 0.000546 0.000000 0.000000
6 0.025380 0.000546 0.000000 0.000000
7 0.025630 0.000546 0.000000 0.000000

tors at step k of the Modified Block Newton Method using different number
of modes q, is presented at Table 9. We can see that only 3 steps of the
Newton’s method are enough to reach the convergence, as in the previous
problems.

5.4. Boron Injection in a BWR

An interesting transient is found in the BWR reactors when the SLCS
(standby liquid control system) injects water with a high proportion of boron
dissolved (Tinoco, 2010). This system is expected to work when the temper-
ature of suppression pool is enough high after the closure of the MSIV (Main
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(a) Neutron distribution

(b) First harmonic

(c) Second harmonic

Figure 4: Shape of the normalised power distribution associated with the first three domi-
nant modes of the initial configuration (left) and perturbed configuration (right) of reactor
VVER-440.

Steam Isolation Valve) and with a ATWS (Anticipated Transient Without
Scram). In this situation, the reactor can increase its power and an insta-
bility event can occur. The Lambda Modes are eigenfunctions, which have
been successfully used to describe the instable events in BWRs (Miró et al.,
2002).

An initial configuration of a typical BWR reactor is considered and a
perturbed configuration is proposed due to the injection of water with a pro-
portion of boron dissolved of 1500 ppm. This consists of a strong perturbation
of the reactor core. The first three dominant eigenvalues associated with the
reactor before the poisoning are shown in Table 10, together with the three
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Figure 5: Geometry of the 3D IAEA without reflector problem.

Table 7: Cross sections of 3D IAEA problem.

Mat. g Dg Σa,g Σg,g+1 νΣf,g

1 1 1.500 0.010 0.020 0.000
2 0.400 0.085 0.135

2 1 1.500 0.010 0.020 0.000
2 0.400 0.130 0.135

3 1 1.500 0.010 0.020 0.000
2 0.400 0.080 0.135

4 1 2.000 0.000 0.040 0.000
2 0.300 0.010 0.000

5 1 2.000 0.000 0.040 0.000
2 0.300 0.055 0.000

dominant eigenvalues associated with the reactor perturbed by boron.
The profiles of the normalised power distribution associated with the

fundamental mode and the first subcritical mode are shown in Figure 7.
The evolution of the residual of the calculated eigenvalues and eigenvec-

tors at different steps of the Block Newton method for different number of
modes q, is presented in Table 11. We can see that even with a strong per-
turbation, as the one induced by Boron in the BWR reactor, a small number
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Table 8: First three dominant eigenvalues of 3D IAEA reactor.

λl
l Initial conf. Perturbed conf.
1 1.028857 1.027907
2 1.016490 1.015933
3 1.016490 1.015933

Table 9: Residual for different steps of Newton’s method to update the modes of 3D IAEA
reactor.

Resk
q k = 0 k = 1 k = 2 k = 3
1 0.012160 0.000090 0.000001 0.000000
2 0.012160 0.000119 0.000001 0.000000
3 0.019517 0.000246 0.000002 0.000000

Table 10: Eigenvalues associated with the two configurations of the BWR reactor.

λl
l Without Boron With Boron
1 1.000487 0.937197
2 0.989536 0.919430
3 0.989396 0.919146

of steps of the Newton method are enough to update the modes.

6. Conclusions

The Lambda Modes of a reactor for a given configuration of the core are
used to integrate the time dependent neutron diffusion equation, using modal
methods. To compute a large amount of Lambda modes is a prohibitive
task from the computational point of view and to obtain accurate results
with a small amount of modes a modes updating strategy is needed. Also to
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(b) Radial profile of the fundamental mode for the initial configuration (left) and
the perturbed configuration (right) of the 3D IAEA reactor.
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(c) Radial profile for the first subcritical mode of the initial configuration (left) and
the perturbed configuration (right) of the 3D IAEA reactor.

Figure 6: Shape of the normalized power distribution of the first two dominant Lambda
modes of the initial and the perturbed configuration of 3D IAEA reactor.

update the modes of a reactor core can be useful in perturbative calculations.
Because the calculation of the Lambda modes is an expensive task, efficient
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Figure 7: Shape of the normalized power distribution of the first two dominant Lambda
modes of the initial and the perturbed configuration of BWR reactor.
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Table 11: Residual evolution for different steps of the Newton method to update the modes
of the BWR reactor.

Resk
q k = 0 k = 1 k = 2 k = 3
1 0.023849 0.015123 0.000627 0.000008
2 0.031375 0.022050 0.003632 0.000098
3 0.031956 0.023237 0.004542 0.000082

Resk
q k = 4 k = 5 k = 6 k = 7
1 0.000000 0.000000 0.000000 0.000000
2 0.000040 0.000011 0.000001 0.000000
3 0.000000 0.000000 0.000000 0.000000

methods to update the Lambda modes using the information provided by
previous calculations are necessary to improve the improve the utility of
modal and perturbative methods.

Once an initial set of Lambda modes has been obtained, the update of
these modes we have used a Modified Block Newton Method, which has a
local cubic convergence (Lösche, 1998). BY studying different benchmark
problems, we have shown that this method is robust to deal with problems
that have degenerate or clustered eigenvalues, and it has fast convergence
in such a way that the number of steps needed to update the modes is not
very dependent on the kind of perturbation considered and the number of
modes to be updated. For these reasons it seems to be interesting to take
advantage of the convergence properties of this kind of updating methods
when perturbed configurations of a reactor core have to be studied.
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