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Abstract Analysis of the Fermi-LAT data has revealed two
extended structures above and below the Galactic Centre
emitting gamma rays with a hard spectrum, the so-called
Fermi bubbles. Hadronic models attempting to explain the
origin of the Fermi bubbles predict the emission of high-
energy neutrinos and gamma rays with similar fluxes. The
ANTARES detector, a neutrino telescope located in the
Mediterranean Sea, has a good visibility to the Fermi bubble
regions. Using data collected from 2008 to 2011 no statisti-
cally significant excess of events is observed and therefore
upper limits on the neutrino flux in TeV range from the Fermi
bubbles are derived for various assumed energy cutoffs of the
source.

1 Introduction

Analysis of data collected by the Fermi-LAT experiment has
revealed two large circular structures near the Galactic Cen-
tre, above and below the galactic plane—the so-called Fermi
bubbles [1]. The approximate edges of the Fermi bubble
regions are shown in Fig. 1. These structures are characterised
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by gamma-ray emission with a hard E−2 spectrum and a con-
stant intensity over the whole emission region.

Signals from roughly the Fermi bubble regions were also
observed in the microwave band by WMAP [2] and, recently,
in the radio-wave band [3]. Moreover, the edges correlate
with the X-ray emission measured by ROSAT [4]. Several
proposed models explaining the emission include hadronic
mechanisms, in which gamma rays together with neutri-
nos are produced by the collisions of cosmic-ray protons
with interstellar matter [5–7]. Others which include leptonic
mechanisms or dark matter decay would produce lower neu-
trino emission or none at all [1,6,8–10]. The observation of
a neutrino signal from the Fermi bubble regions would play
a unique role in discriminating between models.

The properties of the hypothesised neutrino emission are
described in Sect. 2. An overview of the ANTARES neutrino
detector is given in Sect. 3 and the neutrino event reconstruc-
tion is described in Sect. 4. The search for neutrino emis-
sion is performed by comparing the number of events in the
Fermi bubble regions to the number found in similar off-zone
regions (Sect. 5). The event selection optimisation is based
on a simulation of the expected signal as described in Sect. 6.
The selected events are presented in Sect. 7 together with the
significance and the upper limit on the neutrino flux from the
Fermi bubbles.

2 Estimation of the neutrino flux

The estimated photon flux in the energy range 1–100 GeV
covered by the Fermi-LAT detector from the Fermi bubble
regions is [1]:
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Fig. 1 Approximate edges (red line, circles) of the north and south
Fermi bubbles respectively in galactic coordinates identified from the
1–5 GeV maps built from the Fermi-LAT data [1]. The contour line
is discontinuous at the region of the Galactic Centre as the maps are
severely compromised by the poor subtraction and interpolation over a
large number of point sources in this region. The simplified shape of
the Fermi bubbles used in this analysis (black line) has an angular area
of 0.66 sr

E2 d�γ

dE
≈ 3–6 × 10−7 GeV cm−2 s−1 sr−1. (1)

Assuming a hadronic model in which the gamma-ray and
neutrino fluxes arise from the decay of neutral and charged
pions respectively, the νμ and νμ fluxes are proportional
to the gamma-ray flux with proportionality coefficients of
0.211 and 0.195 respectively [11]. With this assumption and
using (1) the expected neutrino flux is:

E2 d�νμ+νμ

dE
= Atheory, (2)

Atheory ≈ 1.2–2.4 × 10−7 GeV cm−2 s−1 sr−1. (3)

The neutrino flux, as well as the gamma-ray flux, is expected
to have an exponential energy cutoff, so the extrapolation
of (2) towards higher energies can be represented by:

E2 d�νμ+νμ

dE
= Atheorye−E/Ecutoff

ν . (4)

The cutoff is determined by the primary protons which have
a suggested cutoff Ecutoff

p in the range from 1 to 10 PeV [5].
The corresponding neutrino-energy cutoff may be estimated
by assuming that the energy transferred from p to ν derives
from the fraction of energy going into charged pions (∼20 %)
which is then distributed over four leptons in the pion decay.
Thus:

Ecutoff
ν ≈ Ecutoff

p /20, (5)

which gives a range from 50 to 500 TeV for Ecutoff
ν .

3 The ANTARES neutrino telescope

The ANTARES telescope is a deep-sea Cherenkov detector
which is located 40 km from Toulon (France), at a latitude of
42◦48′ N and at a mooring depth of 2,475 m. The energy and
direction of incident neutrinos are measured by detecting the
Cherenkov light produced in water from muons originating
in the charged-current interactions of νμ and ν̄μ. The light
is detected with a three-dimensional array of twelve detec-
tion lines comprising 885 optical modules, each containing
a 10 inch PMT. More details on the detector construction,
its positioning system and the time calibration can be found
in [12–14].

The ANTARES detector started data-taking with the first
five lines installed in 2007. The construction of the detec-
tor was completed, with installation of the last two lines, in
May 2008. The apparatus has been operating continuously
ever since. Its main goal is the detection of neutrinos pro-
duced by the cosmic sources. Muons and neutrinos created
in cosmic-ray induced atmospheric showers provide the two
main background components for the search for cosmic neu-
trinos. Although the more than 2 km of water above the detec-
tor acts as a partial shield against the atmospheric muons, the
downgoing atmospheric muon background at these depths is
still bigger than the expected signal. Therefore, the search for
cosmic signal concentrates on upgoing events which corre-
sponds to neutrinos which have crossed the Earth. Also, the
optical modules are oriented downwards at 45◦ to favour the
detection of upgoing particles. The ANTARES neutrino tele-
scope has an excellent visibility by means of the upgoing neu-
trinos to the Galactic Centre region and to the Fermi bubbles.
Since atmospheric neutrinos may traverse the Earth and lead
to upgoing tracks in the detector, any signal from the Fermi
bubbles would be inferred by observing a significant statis-
tical excess over the background. The signal-to-noise ratio
can be improved by rejecting low-energy neutrino events, as
the spectrum of the atmospheric neutrinos is steeper than the
expected source spectrum.

4 Track and energy reconstruction

The track of a muon passing through the detector is recon-
structed using the arrival time of the photons together with the
positions and orientations of the photomultipliers. Details of
the tracking algorithm are given in [15]. Only events recon-
structed as upgoing have been selected. In addition, cuts on
the reconstruction quality parameters have been applied in
order to reject downgoing atmospheric muon events that are
incorrectly reconstructed as upgoing tracks. These parame-
ters are the quality � of the track fit, which is derived from
the track fit likelihood, and the uncertainty β of the recon-
structed track direction. The choice of the cut on � fixes the
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amount of background from misreconstructed atmospheric
muons in the neutrino sample. Neutrino simulations for an
E−2 neutrino spectrum have yielded a median angular reso-
lution on the neutrino direction of less than 0.6◦ for events
with � > −5.2 and β < 1◦ [15].

Shower-like events are identified by using a second track-
ing algorithm with χ2-like fit, assuming the hypothesis of
a relativistic muon (χ2

track) and that of a shower-like event
(χ2

point) [16]. Events with better point-like fit (χ2
point < χ2

track)
have been excluded from the analysis.

In this analysis the energy of the muons entered or born
in the detector was estimated using Artificial Neural Net-
works, which are produced using a machine learning algo-
rithm which derives the dependence between a set of observ-
ables and the energy estimate in a semi-parametric way [17].
The parameters used include the number of detected photons,
and the total deposited charge. The median resolution for
log10 ERec is about 0.3 for muons with an energy of 10 TeV.
The reconstructed energy ERec is used to reject the atmo-
spheric neutrino background while � is used mostly to reject
atmospheric muons. The choice of cuts on � and ERec in this
work is discussed in Sect. 6.

5 Off-zones for background estimation

A signal from the combined Fermi bubble regions is searched
for by comparing the number of selected events from the area
of both bubbles (on-zone) to that of similar regions with no
expected signal (off-zones). The simplified shape of each
Fermi bubble as used in this analysis is shown in Fig. 1.

Off-zones are defined as fixed regions in equatorial coor-
dinates which have identical size and shape as the on-zone but
have no overlap with it. In local coordinates, such off-zones
have the same, sidereal-day periodicity as the on-zone and
span the same fraction of the sky, but with some fixed delay
in time. The size of the Fermi bubbles allows at maximum
three non-overlapping off-zones to be selected. The on-zone
and three off-zones are shown in Fig. 2 together with the sky
visibility. The visibility of each point on the sky is the frac-
tion of the sidereal day during which it is below the horizon
at the ANTARES site (in order to produce upgoing events in
the detector). The average visibility of the Fermi bubbles is
0.68 (0.57 for the northern bubble and 0.80 for the southern
bubble) and it is the same for the off-zones.

Slightly changing detector efficiency with time and gaps
in the data acquisition can produce differences in the num-
ber of background events between the on-zone and the three
off-zones. In order to test for such an effect, firstly, the num-
ber of events in the off-zones is extracted from the data for
various cuts (�cut, Ecut

Rec) and the difference in the event num-
bers between each pair of off-zones is calculated. This dif-
ference is compared with the statistical uncertainty and no

Fig. 2 Hammer equal-area map projection in equatorial coordinates
(α, δ) showing the Fermi bubble regions (on-zone) shaded area in
the centre. The regions corresponding to the three off-zones are also
depicted. The colour fill represents the visibility of the sky at the
ANTARES site. The maximum on the colour scale corresponds to a
24 h per day visibility

excess is seen beyond the expected statistical fluctuations.
Secondly, the number of events in the on-zone together with
the average number of events in the three off-zones is tested
using the simulated atmospheric background and the differ-
ence is found to be within the expectation from the statistical
uncertainty. It can be concluded, therefore, that this effect is
negligible.

6 Event selection criteria

The analysis adopts a blind strategy in which the cut optimi-
sation is performed using simulated data for the signal and
the background. The main quantities used to discriminate
between the cosmic neutrino candidate events and the back-
ground from misreconstructed atmospheric muons and from
atmospheric neutrinos are the tracking quality parameter �

and the reconstructed muon energy ERec.
The simulation chain for ANTARES is described in [18].

For the expected signal from the Fermi bubbles, the νμ and νμ

fluxes according to Sect. 2 are assumed, using four different
cutoffs Ecutoff

ν : no cutoff (Ecutoff
ν = ∞), 500, 100 and 50 TeV.

Atmospheric neutrinos are simulated using the model from
the Bartol group [19] which does not include the decay of
charmed particles.

Data in the period from May 2008, when the detector
started to operate in its complete configuration, until Decem-
ber 2011 are used. The total livetime selected for this analy-
sis amounts to 806 days. Figure 3 shows the distribution of
data and simulated events as a function of the parameter �

for events arriving from the three off-zones. Here the events
with at least ten detected photons and the angular error esti-
mate β < 1◦ are selected. The requirement on the number of
photons removes most of the low-energy background events.
The angular error condition is necessary in order to ensure a
high angular resolution to avoid events originating from an
off-zone region being associated with the signal region and
vice versa.
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Fig. 3 Distribution of the fit-quality parameter � for the upgoing
events arriving from the three off-zones: data (black crosses), 68 %
confidence area given by the total background simulation (grey area),
νsim

atm (blue filled circles), μsim
atm (pink empty circles); bin-ratio of the data

to the total background simulation (bottom)

At � ∼ −5.3 the main background component changes
from the misreconstructed atmospheric muons to the upgo-
ing atmospheric neutrino events as seen in Fig. 3. The flux
of atmospheric neutrinos in the simulation is 23 % lower
than observed in the data. This is well within the systematic
uncertainty on the atmospheric neutrino flux and the atmo-
spheric flux from the simulations was scaled accordingly in
the following analysis.

A comparison of the energy estimator for data and for
atmospheric neutrino simulation is shown in Fig. 4 for the
same event selection but with a stricter cut � > −5.1 to
remove most of the misreconstructed atmospheric muons.
The reconstructed energy of all simulated events has been
shifted, log10 ERec = log10 Eoriginal

Rec + 0.1, in order to
improve the agreement between data and simulations. This
is within the estimated uncertainty of the optical module effi-
ciency and the water absorption length [20, Figure 4.24].

The final event selection is optimised by minimising the
average upper limit on the flux:

�90 % = �νμ+νμ

s90 %(b)

s
, (6)

where s is the number of events simulated with the flux
�νμ+νμ from (4). The method uses an approach following
Feldman and Cousins [21] to calculate signal upper limits
with 90 % confidence level, s90 %(b), for a known number
of simulated background events b. This best average upper
limit in the case of no discovery represents the sensitivity of
the detector to the Fermi bubbles’ flux [22]. Using (4) the
average upper limit on the flux coefficient A can be defined
as:

Fig. 4 ERec distribution of the events arriving from the three off-zones
with � > −5.1: data (black crosses), 68 % confidence area for the total
background from simulation (grey area), νsim

atm (blue filled circles), μsim
atm

(pink empty circles), expected signal from the Fermi bubbles according
to (3)–(4) without neutrino energy cutoff (green dotted area) and with
50 TeV energy cutoff (green dashed area). The expected signal was
scaled by a factor of 3 to allow easy comparison with the total off-zone
distribution

Table 1 Optimisation results for each cutoff of the neutrino energy
spectrum

Ecutoff
ν (TeV) ∞ 500 100 50

�cut −5.16 −5.14 −5.14∗ −5.14

log10(Ecut
Rec[GeV]) 4.57 4.27 4.03∗ 3.87

A90 % 2.67 4.47 8.44 12.43

A
100
90 % (100 TeV cuts) 3.07 4.68 8.44 12.75

Average upper limits on the flux coefficient A90 % are presented in units
of 10−7GeV cm−2 s−1 sr−1. Numbers with a star indicate the cut used
for the A

100
90 %

calculation presented in the last row of the table

A90 % = Atheory
s90 %(b)

s
. (7)

Table 1 reports the optimal cuts (�cut, Ecut
Rec) obtained for

the four chosen cutoff energies (∞, 500, 100, 50 TeV) of the
neutrino source spectrum and the corresponding value of the
average upper limit on the flux coefficient A90 %. Addition-
ally, the optimal cuts for Ecutoff

ν = 100 TeV are applied for

the other neutrino-energy cutoffs and the values A
100
90 % are

reported for comparison. As the obtained values A90 % and

A
100
90 % for each cutoff are similar, the 100 TeV cuts are chosen

for the final event selection.
At energies above 100 TeV the semi-leptonic decay of

short-lived charmed particles might become a major source
of atmospheric neutrino background. The uncertainty in the
flux from this contribution is large [23–25]. Due to the com-
parison of on and off zones (Sect. 5) and the final cut ∼10 TeV
(Table 1) the flux from charmed particle decays will not have
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Fig. 5 Distribution of the reconstructed energy of the events after the
final cut on �: events in on-zone (red crosses), average over off-zones
(black circles), 68 % confidence area given by the total background
simulation (grey area), expected signal from the Fermi bubbles without
neutrino-energy cutoff (green dotted area) and 50 TeV cutoff (green
dashed area). The chosen Ecut

Rec is represented by the black line with an
arrow

a significant impact on the analysis nor alter the final result
on upper limits.

7 Results

The final event selection � > −5.14, log10(ERec[GeV]) >

4.03 is applied to the unblinded data. In the three off-zones
9, 12 and 12 events are observed. In the Fermi bubble regions
Nobs = 16 events are measured. This corresponds to 1.2 σ

excess calculated using the method by Li and Ma [26].
The distribution of the energy estimator for both the on-

zone and the average of the off-zones is presented in Fig. 5.
A small excess of high-energy events in the on-zone is seen
with respect to both the average from the off-zones and the
atmospheric neutrino simulation.

An upper limit on the number of signal events is calcu-
lated using a Bayesian approach at 90 % coverage using the
probability distribution with two Poisson distributions for
the measurements in the on-zone and in the three off-zones.
In order to account for systematic uncertainties in the sim-
ulation of the signal, a dedicated study has been performed
in which the assumed absorption length in seawater is var-
ied by ±10 % and the assumed optical module efficiency is
varied by ±10 %. For each variation the number of events
is calculated for each cutoff and compared with the num-
ber of signal events s obtained using the standard simula-
tion. The differences are calculated and summed in quadra-
ture to obtain σsyst. A Gaussian distribution of the efficiency
coefficient for the signal with mean s and standard devia-
tion σsyst is convoluted to the probability distribution. The
maximum of the probability distribution is found for every

Table 2 90 % confidence level upper limits on the neutrino flux
coefficient A90 % for the Fermi bubbles presented in units of
10−7 GeV cm−2 s−1 sr−1

Ecutoff
ν (TeV) ∞ 500 100 50

Number of signal events in simulation s 2.9 1.9 1.1 0.7

Uncertainty on the efficiency σsyst , % 14 19 24 27

A90 % 5.4 8.7 17.0 25.9

Fig. 6 Upper limits on the neutrino flux from the Fermi bubbles for
different cutoffs: no cutoff (black solid), 500 TeV (red dashed), 100 TeV
(green dot-dashed), 50 TeV (blue dotted) together with the theoretical
predictions for the case of a purely hadronic model (the same colours,
areas filled with dots, inclined lines, vertical lines and horizontal lines
respectively). The limits are drawn for the energy range where 90 % of
the signal is expected

neutrino flux coefficient A and the obtained profile likelihood
is used together with the flat prior for A to calculate the post-
probability. The upper and lower limits for A are extracted
from the post-probability to have 90 % coverage.

The results are summarised in Table 2. A graphical rep-
resentation of the upper limits on a possible neutrino flux
together with the predicted flux is shown in Fig. 6. The
obtained upper limits are above the expectations from the
considered models. The modified Feldman and Cousins
approach with the included uncertainties gives comparable
results [27].

8 Conclusions

High-energy neutrino emission from the region of the Fermi
bubbles has been searched for using data from the ANTARES
detector. An analysis of the 2008–2011 ANTARES data
yielded a 1.2 σ excess of events in the Fermi bubble regions,
compatible with the no-signal hypothesis. For the optimistic
case of no energy cutoff in the flux, the upper limit is within
a factor of three of a prediction from the purely hadronic
model based on the measured gamma-ray flux. The sensi-
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tivity will improve as more data is accumulated (more than
65 % gain in the sensitivity is expected once 2012–2016 data
is added to the analysis). The next generation KM3NeT neu-
trino telescope will provide more than an order of magnitude
improvement in sensitivity [28–30].
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