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Graphical abstract  

FE-SEM images of fracture surfaces of the sintered composites: (a) 
conventional and (b) microwave technique. 

 

 

Highlights 

 

� Ultrasonication and freeze drying were used to disperse GO into Al2O3 matrix. 

� Al2O3-rGO powders were densified by conventional and microwave sintering. 

� Microwave technology resulted in smaller grain size than conventional one.  
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� Presence of rGO in the composites resulted in improved electrical properties. 

 
 
Abstract 

A fast approach based on microwave technology was employed for the 

sintering of novel composites of alumina and using graphene oxide (GO) as 

susceptor. The thermal stability and structure of GO materials produced by 

chemical oxidation of graphite were characterized. The morphology, structure 

and mechanical properties of the composites sintered by microwave approach 

were reported to the counterparts sintered by conventional method. The results 

indicated the formation of an inter-connecting graphene network promoted the 

electrical conductivity in the composite having only 2 wt.% GO. Hardness and 

elastic modulus decreased significantly in samples sintered by conventional 

method due to lower values of density while microwave technology allowed to 

achieve a positive effect on the densification and showed a smaller grain size 

when compared to the one achieved by conventional heating. 

Keywords: A. Composites; B. Mechanical properties; C. Electron microscopy; C. 

Raman spectroscopy; D. Electrical properties. 

 

1. INTRODUCTION 

Graphene had evolved as a promising alternative to carbon nanotubes (CNTs) 

and great interest has been devoted to its research not only from fundamental 

point of view but also device applicability [1-6]. Thanks to its unique 

combination of electrical, mechanical and thermal [2, 7, 8] properties, graphene 

is considered an ideal second phase in order to improve simultaneously the 
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mechanical, electrical and thermal properties of metals, polymers and ceramics 

[9-12]. 

Alumina is one of the highly used structural ceramics in the materials industry 

having various potential applications including high speed cutting tools, dental 

implants, chemical and electrical insulators, wear resistance parts and coatings 

thanks to the hardness, chemical inertness and high electrical and thermal 

insulation properties [13-16]. However, the field of applications is significantly 

restricted by brittleness and fabrication difficulties.  

In this respect, it was shown that carbon materials are very good microwave 

absorbers, i.e., they are easily heated by microwave radiation [17]. Under 

exposure to microwave heating they are subjected to transformations giving rise 

to new carbon materials with tailored properties, that can be further used as 

microwave receptors in order to allow other materials which are transparent to 

microwaves, i.e., alumina, to heat indirectly. The main advantage of microwave 

over the traditional heating techniques is based on the different mechanism 

involved in heating carbons which results into: (i) a considerable decrease in 

the time scale, which in most cases implies a smaller consumption of energy; 

(ii) a reduction in the number of steps involved in the global process, eliminating 

the need for other reagents, devices, etc. and (iii) an increase in the efficiency 

of the global process. These advantages translate into a more economically 

competitive final product. 

The aim of this work is to demonstrate the successful obtainment of alumina 

composites by employing microwave sintering approach and graphene oxide 

(GO) as microwave receptor. To the best of our knowledge, this is the first 

report on such novel composites sintered by microwave technology. Simple and 
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fast modified Hummers method was shown to produce controllable good quality 

graphene oxide (GO) flakes [18]. Large scalability and homogeneous 

distribution of graphene sheets are the main requisites of the increasingly 

researched graphene-based composites for which the conversion of GO can be 

taken into consideration thanks to the major advantage of material availability at 

low cost and efficient bulk production. Here, the GO materials were dispersed 

together with Al2O3 powder to produce a homogeneous mixture by using simple 

sonication treatment and freeze drying. The thermal reduction of GO took place 

during the sintering of Al2O3-GO composites when the oxygen-containing 

functional groups introduced on both the edge and basal plane of the 

nanosheets by oxidation of graphite are removed, resulting in reduced GO 

(rGO) with aromatic graphene network partially restored. Among the reduction 

methods, thermal treatment was found to be one of the most effective [19]. The 

temperature and duration applied in the sintering procedure were sufficiently 

high and short enough to avoid additional reduction procedures and prevent the 

denaturation of graphene network. The effect of GO addition on the structure, 

morphology, electrical and mechanical properties of the ceramic composites 

sintered by microwave approach was reported to the counterparts sintered by 

conventional method.  

2. EXPERIMENTAL PROCEDURE  

2.1. Graphene oxide (GO) preparation 

Modified Hummer’s method was applied for the synthesis of graphene oxide, as 

Pruna et al. described previously [18]. Basically, natural graphite powder 200 

mesh (99.9995%, Alfa Aesar) was oxidized for 2 h in a 150 mL mix of 

H2SO4:H3PO4 (6:1 v/v) and 6 g KMnO4. The mixture was cooled to room 
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temperature, diluted with deionized water and 30% H2O2 was added. Further, 

the mixture was filtered and purified with HCl and washed with deionized water 

till neutral pH was reached. The obtained product was subjected to a drying 

process at 50 ºC for 24 h. 

2.2. Powder mixture preparation 

In order to prepare uniform and well dispersed nano-composites we used a 

powder processing route. The obtained GO was added in deionized water and 

then sonicated for 30 min in an ultrasonic probe (UP 400 S, Hielscher, Stuttgart, 

Germany). After sonication, the appropriate amount of commercially available 

-Al2O3 powder (Taimei TM-DAR Chemicals Co. Ltd, Japan, particle size-150 

nm, specific surface area-14.5 m2/g and purity-99.99%) was added to the 

prepared suspension using magnetic stirring and the mixture was subjected to 

sonication for another 10 min. The final suspension was frozen in a liquid 

nitrogen bath and then dried in a freeze drier (Cryodos-50, Telstar, Spain) for 24 

h. The dried powder mixture was ground and sieved using 60 mesh. 

2.3. Al2O3-GO powder sintering 

Al2O3-GO nanocomposites with 2 wt.% loading were sintered under vacuum 

using two techniques: a conventional furnace at 1400 ºC for a dwell time of 2 h 

and a heating rate of 10 ºC/min and, a non-conventional sintering as microwave 

technology at 1400 ºC without susceptor using the heating rate of 200 ºC/min 

with 10-min of holding time at the maximum temperature. The temperature of 

the sample is monitored by an infrared radiation thermometer (Optris CT-Laser 

LT, 8-14 m), which is focused on the test sample via the small circular 

aperture in the wall of the test cell [20]. 

2.4. Characterization methods 
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GO characterization  

Absorbance ultraviolet-visible (UV-Vis) spectra were recorded with a Lambda 

35 (Perkin Elmer) spectrophotometer. Thermogravimetric analysis (TGA) was 

conducted with a Q50 (TA Instruments) thermal analyser under nitrogen flow at 

a scanning rate of 10 ºC/min. The FTIR (Fourier Transform Infrared 

Spectrometer) spectra were acquired on a Perkin Elmer FTIR Spectrum BX 

spectrometer in ATR mode. The crystalline phases present were determined by 

X-ray diffraction (XRD, D2 Phaser, Bruker, Germany) using Cu Kα radiation and 

a voltage of 30 kV. The scan range (2θ) was from 5º to 50º with a step size of 

0.02º. The recording step time was 0.3 s. Raman spectra were acquired on 

inVia Renishaw spectrometer with 514.5 nm wavelength of incident laser light. 

Atomic Force Microscope (AFM) (Bruker, Germany) was used to obtain 

micrographs operating in tapping mode. The investigation of the morphology 

has been performed by Transmission Electron Microscopy (TEM, TECNAI-10, 

Philips). 

The measurement for carbon content in GO was performed by combustion of 1 

mg GO sample at 1050 ºC (LECO CHNS-932). Under these conditions carbon 

material is transformed into CO2, H2O and possibly SO2 where sulphur content 

remained in GO material from the oxidant used in modified Hummers 

procedure. The obtained values indicated the necessity of further purification 

procedure where relevant. These three compounds were detected and 

evaluated for its absorption in the infrared spectrum. Nitrogen formed NOX, 

subsequently reduced to N2 with Cu, this species being quantified by gas 

chromatography from the signal obtained with a thermal conductivity detector 
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(TCD). Thus, the percentage of carbon, hydrogen, nitrogen and sulphur in each 

of the samples were calculated.  

The oxygen content was determined by graphite furnace coupled at LECO VTF 

900 equipment. 1 mg of sample was pyrolyzed to 1350 ºC under a helium flow 

of 225 ml min-1. The generated CO got oxidized to CO2 forming CuO, which 

was evaluated and thereby obtaining the oxygen content of the sample directly. 

Composite characterization  

The bulk density of the samples was measured by the Archimedes method 

(ASTM C373-88) with ethanol as the immersion medium using densities of 3.98 

and 2.0 g/m3 for Al2O3 and GO, respectively. The relative density was 

calculated by dividing the bulk density with the theoretical density of the powder 

mixture. 

Nanomechanical properties such as hardness and Young’s modulus of samples 

were obtained by nanoindentation technique (Model G200, MTS Company, 

USA). The sintered samples were previously cut longitudinally in half cylinders 

with a diamond saw and polished (Struers, model RotoPol-31) with 0.25 μm 

diamond paste. To carry out indentations at very low depths, a Berkovich 

diamond tip was used with radius less than 20 nm. In order to ensure the quality 

of the tip throughout the work, pre- and post- calibration procedures were 

performed for this indenter ensuring the correct calibration of its function area 

and correct machine compliance. The nanomechanical properties of the Al2O3-

rGO ceramics were evaluated from the load-displacement nanoindentation data 

using the widely accepted Oliver and Pharr model [21].  

The fracture surface sections of the sintered samples have been observed 

using a field emission gun scanning electron microscope (FE-SEM, HITACHI S-

ACCEPTED M
ANUSCRIP

T



4800, SCSIE of the University of Valencia). Four-point probe measurements 

were performed for the electrical properties.  

3. RESULTS AND DISCUSSION 

3.1. Characterization of GO 

Figure 1a shows the typical FTIR spectra of as-synthesized GO material. With 

respect to the characteristics exhibited by parent graphite, the spectrum of GO 

confirmed the successful oxidation of graphite by the appearance of peaks at 

1744, 1518, 1234, 1128 and 1068 cm-1 attributed to oxygen functional groups 

namely carbonyl, carboxyl, hydroxyl and epoxy [18]. On the other hand, the 

peak corresponding to graphitic domains at 1645 cm-1 can be still observed in 

GO indicating the presence of un-oxidized material. The broad band at 3000-

3500 cm-1 in GO was attributed to adsorbed water [22]. 

XRD was further performed in order to estimate the oxidation degree and 

according to the spectra in figure 1b, it was found that the typical (002) 

diffraction peak of graphite was down-shifted from 26.5 degrees to 11.5 

degrees confirming the successful expansion of graphite due to the intercalating 

functional groups as the interlayer spacing changed from 0.35 to 0.68 nm upon 

oxidation. Moreover, the UV-Vis spectroscopy results confirmed these findings 

as the spectra recorded for the aqueous dispersion of GO material exhibited the 

typical absorption peak at 225 nm attributed to π-π* transitions of aromatic C=C 

bonds and a shoulder peak at about 300 nm attributed to n-π* transitions of 

C=O bonds [23] (see figure 1 in supplementary file).  

The thermal behaviour of GO was studied by TG analysis and it was observed 

that GO exhibited much lower thermal stability than graphite with various step-

wise losses attributed to the adsorbed water (around 10% loss at 100°C), labile 
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oxygen groups (a steep loss was observed at about 200°C followed by a steady 

trend till 500°C) and the removal of more stable ones (an increased weight loss 

of about 45% was registered at 600°C), respectively (see figure 2 in 

supplementary file). The obtained results confirmed earlier findings that overall 

amount of oxygen functionalities, their type and distribution in the GO materials 

can be tailored by appropriate graphite oxidation parameters [24]. 

The morphology of as-prepared GO was characterized by TEM and AFM as 

shown in figure 2. The TEM image in figure 2a depicts the GO as large 

transparent folded sheets resembling silk veil waves while AFM characterization 

revealed GO sheets with an average thickness of folded sheets of around 2 nm 

while the lateral size ranged from hundreds nanometres to few microns. GO 

folded sheets are expected to be “thicker” than graphene due to the presence of 

covalently bonded oxygen and the displacement of the sp3-hybridized carbon 

atoms slightly above and below the original graphene plane. 

3.2. Characterization of sintered Al2O3-rGO composites 

Table 1 shows the analysis for carbon content, bulk densities and electrical 

resistivity of the prepared composites as a function of sintering process. The 

graphene content of the composites were found in similar percentage. This 

indicated that in the mixture and after densification by two methods, the carbon 

content remain similar. 

Fully dense composites were obtained by microwave (MW) with a dwell time of 

10 min, thus limiting the damage induced in rGO by prolonged exposure at high 

temperature. As a result of the transformation of GO into rGO during the 

sintering, the addition of even very small amounts of GO to the alumina matrix 

resulted into an electrically conductive composite fact that confirms the 

ACCEPTED M
ANUSCRIP

T



successful dispersion of GO into the alumina matrix and reduction of GO. This 

value indicates the exponential increase of the conductivity up to 11 orders of 

magnitude in comparison to the monolithic alumina (109 cm). Centeno et al. 

[12] found that the percolation threshold of the Al2O3/graphene composites was 

found around 0.22 wt.% of graphene (50  cm). 

The value of electrical resistivity obtained (0.39  cm) for Al2O3-rGO sintered by 

microwave, is good enough to be able to shape the nanocomposite using the 

electro discharge machining (EDM) technique while the value obtained for 

conventional sintering (CS) is similar to the one reported for GO reduced by 

both hydrazine and thermal treatments at 400 and 1100 °C in vacuum [25]. The 

improvement of the electrical properties due to heat treatment has been 

attributed to mechanisms such as restoration of sp2 C–C bonds and cross-

linking between reduced GO sheets during the thermal annealing process [25]. 

This technique can be an effective alternative for manufacturing complex shape 

components from hard materials but certain electrical conductivity (>0.3-1 S m-

1) is required. Previous studies have shown that EDM can be successfully 

applied to machine ceramic materials, including single-phase ceramics and 

ceramic/ceramic and metal/ceramic composites if the electrical resistivity was 

below 100  cm [26, 27]. Attempts have also been reported to increase the 

electrical conductivity of ceramic materials in order to make them suitable for 

EDM operation [28]. Among these ceramic materials, Al2O3 is a very interesting 

material for technological applications. However, due to its insulator character it 

requires electrical conductivity in order to be shaped using EDM. 

Raman spectroscopy was used to confirm the structural integrity of the 

graphene in the alumina matrix upon sintering process (figure 3a). The two 
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main Raman features arising from the first-order scattering of the E2g phonon of 

sp2 C atoms and the breathing mode of k-point photons of A1g symmetry, 

respectively [29] were observed for all samples. The effects of the reduction of 

GO during the sintering approaches on the Raman characteristics show that 

both D and G bands undergo significant changes and confirm the successful 

reduction of GO by the sintering approaches of alumina composites. 

Specifically, the ID/IG ratio increased upon microwave reduction procedure 

indicating a disorder enhancement [30] while the reduction of GO upon CS of 

composites resulted in a lower ID/IG ratio which is indicative of a defect healing 

effect of CS (see table 2). Moreover, this effect is confirmed by the red-shift of 

the G band position of rGO obtained upon reduction by CS, as well. The red 

shift of the G band was attributed to tensile strain weakening the bond and thus 

lowering the vibration frequency due to the elongation of C-C bonds [31]. 

Additionally, two small peaks were observed for all rGO materials: a 2D band 

sensitive to the aromatic C-structure at around 2695 cm-1 and an additional 

peak at 2945 cm-1 ascribed to the G + D combination mode induced by disorder 

or the D + D’ band [32]. The rGO material obtained by CS exhibited higher I2D/IG 

values than by microwave approach with respect to parent GO, thus indicating 

better restoration of aromatic carbon structure by thermal treatment by CS 

technique than by MW approach, in good agreement with previous research 

results on sintering of alumina-graphene composites [11]. The observed result 

could be explained by a healing process thanks to carbon radicals introduced 

while thermally reducing the GO in CS [33]. On the other hand, the intensity 

ratio I2D/IG is sensitive to doping [34] and it is highly affected by the sintering 

technique, that is, it decreases with the annealing during MW procedure, while 
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for CS approach it increases. Thermal treatments at 1100 °C in vacuum have 

been previously reported to yield a significantly reduced GO [35]. Further 

investigation is ongoing to identify the chemistry of the GO sheets under the 

various annealing conditions employed during the sintering approaches applied 

in this work. 

The XRD spectra in figure 3b show the crystal system of the hexagonal α-Al2O3 

ceramics (JCPDS #82-1468). Similar pattern was detected upon conventional 

sintering for pure Al2O3 specimens with a marked decrease in the full width at 

half maximum (FWHM), indicating an increase in the crystallite size. On the 

contrary, the microwave technology resulted in a FWHM value close to the 

parent powder. The presence of GO in the powder mix was indicated by a low 

broad shoulder due to the low content in the composite. Upon sintering, the 

rGO presence was indicated by the shift of the corresponding peak to higher 

degrees (about 22°) as depending on the reduction produced during the applied 

thermal treatment. A small difference in the (002) peak position for rGO and the 

corresponding FWHM indicated that the reduction of GO is affected by the 

thermal treatment applied. No detectable second phase was revealed indicating 

the absence of significant reaction between GO and alumina. 

The microstructure of sintered ceramic samples was examined. In order to 

evaluate the effect of sintering method and the distribution of GO/rGO in the 

composites, fracture surfaces were investigated, as depicted in figure 4. The 

FE-SEM images of the samples sintered by conventional and microwave 

sintering were compared to those of the pure Al2O3 and Al2O3-GO powders. The 

Al2O3 subjected to conventional sintering presented a fully-dense structure of 

mainly intergranular fracture mode (see figure 4c) with uneven grains (the 
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average grain size reaches about 475 nm). It is clearly seen that conventional 

sintering resulted in a marked increase of grain size with respect to the un-

sintered powder. By comparing the composite obtained by conventional 

sintering in figure 4d with the pure Al2O3 in figure 4c it is observed that the 

presence of GO doesn’t result in obvious change in grain size indicating that the 

small grain size observed in figure 4e (grain size of 180 nm) is due to the 

microwave technology, in agreement with the XRD results. The counterparts 

obtained by MW exhibited an increase in the uniformity. When heating 

materials with microwave energy, the sintering occurs due to a self-heating of 

the material and the maximum temperature is found in the core of the material. 

Therefore, the most energetic area is located within grain centre. Consequently, 

the grain boundary diffusion and subsequent formation of sintering neck is less 

favoured. This effect can lead directly to the second stage of the sintering 

process, densification and microstructural change [36], skipping the first phase, 

which causes the neck between grains and thickening. 

As depicted in figure 4 b, it is observed the Al2O3 grains decorate the GO sheets 

in the powder mix due to the presence of residual oxygen functional groups in 

GO. The increase in the GO folding could be attributed to the freeze-drying 

procedure. These observations indicate the dispersion of the GO flakes in the 

ceramic matrix is size-dependent. The rGO in the sintered composites appear 

trapped in between the grain boundaries (see arrows in figure 4d and e) that 

could prevent migration of grain boundaries and result in a refining of 

microstructure. Their size is clearly decreased in the case of microwave 

approach and is attributed to the defects introduced by microwave heating and 

non-homogeneous reduction. The pulled-out sheets dispersed in the matrix and 
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the poor distribution could be explained by the shearing stress the thinner 

sheets were subjected to while the thicker ones exposed themselves in the 

fracture. 

The evolution of the hardness (H) and Young’s modulus (E) with penetration 

depth for studied materials is plotted in figure 5. A common trend can be clearly 

detected in the behaviour of H and E values as a function of penetration depth. 

Hardness and Young’s modulus values decrease when penetration depth 

increases. The slope of the curves is very slow and they finally stabilize in all 

experimented penetration depths. Dispersion of H and E are very large for the 

initial 200 nm of penetration depth. This fact could be due to the implicit 

experimental variability of factors such as tip-sample interactions, sample 

roughness and tip rounding [37]. The slight decrease of H with penetration 

depth could be due to the indentation size effect [38]. Concerning elastic 

modulus, the obtained values show a little decrease according to the 

penetration depth. In addition, the higher is the depth of penetration, the more 

likely is that residual porosity and grain boundaries can affect H and E values. 

Hardness and elastic modulus values for Al2O3-rGO bulk materials sintered by 

microwave technology are reported for the first time. Microwave sintered Al2O3-

rGO materials exhibited superior mechanical properties values when compared 

with conventional fired materials, as was expected from their higher densities. 

4. CONCLUSIONS 

Novel Al2O3-rGO composites were densified (~99%) by using non-conventional 

microwave technology at 1400 ºC. Reduction of GO took place simultaneously 

with the densification process and resulted in few-layers rGO sheets. The grain 

size of Al2O3 matrix and the mechanical properties of the composites were 
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markedly affected by the sintering method while the presence of rGO was 

indicated to improve the electrical properties. The results of this work indicate 

the high potential of rGO and microwave technology to suit various engineering 

applications of ceramic composites.  
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Table 1. Carbon content, density and electrical resistivity of samples sintered at 
1400 ºC by conventional (CS) and non-conventional (MW) methods for 120 min 
and 10 min, respectively. 

Sintered samples 
C content  

(wt.%) 

Relative density 

(%) 

Resistivity  

( cm) 

Al2O3-rGO/CS 1.65 92.2 1.3 

Al2O3-rGO/MW 1.70 98.9 0.39 

 

 

 

 

 

 

Table 2. Effect of sintering approach on the reduction of GO. 

Material νD (cm-1) νG (cm-1) ID/IG I2D/IG 

GO 1358 1598 0.76 0.42 

Al2O3-rGO/MW 1352 1598 1.05 0.18 

Al2O3-rGO/CS 1354 1584 0.62 1.5 
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Captions 

Figure 1. FTIR spectra (a) and XRD patterns (b) of GO and graphite. 

Figure 2. (a) TEM and (b) AFM images of GO. 

Figure 3. (a) Raman spectra of GO before and after sintering procedure and (b) 

XRD spectra of the powders before and after sintering. 

Figure 4. FE-SEM images of: (a) Al2O3 powder, (b) Al2O3-GO powder mix, (c) 

Al2O3 sintered by conventional method, (d) Al2O3-rGO sintered by conventional 

method and (e) Al2O3-rGO sintered by microwaves.  

Figure 5. The change in the mechanical properties of Al2O3-rGO as a function of 

sintering approach: a) Young’s modulus and b) hardness. 
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fig 3R  . 

ACCEPTED M
ANUSCRIP

T



 

Fig 5  . 
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fig4R2  . 
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