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Abstract

In this work a procedure for obtaining polytopic λ-contractive sets for Takagi-Sugeno fuzzy systems is presented,
adapting well-known algorithms from literature on discrete-time linear difference inclusions (LDI) to multi-dimensional
summations. As a complexity parameter increases, these sets tend to the maximal invariant set of the system when
no information on the shape of the membership functions is available. λ-contractive sets are naturally associated to
level sets of polyhedral Lyapunov functions proving a decay-rate of λ. The paper proves that the proposed algorithm
obtains better results than a class of Lyapunov methods for the same complexity degree: if such a Lyapunov function
exists, the proposed algorithm converges in a finite number of steps and proves a larger λ-contractive set.

© 2014 Published by Elsevier Ltd.
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1. Introduction

A large class of nonlinear systems can be exactly expressed, locally in a compact region of interest (denoted
as Ω in the sequel), as a fuzzy Takagi-Sugeno (TS) model, using the “sector nonlinearity” methodology [1],
[2] expressing the nonlinearity as a convex time-varying combination of “vertex” linear equations.

Once these locally exact fuzzy models are available, stability and control design for such systems can be
handled in some cases via widely-used Linear Matrix Inequality (LMI) results in literature [3, 4, 5, 6, 7]. Most
of the results can be applied to, for instance, finding a Lyapunov function V(x) such that V(xk+1) < V(λxk),
for some λ < 1 related to geometric decay-rate [8]. Hence, the largest level set of V in region of interest Ω,
let’s denote it as T , is λ-contractive [9] in the sense that xk ∈ T ⇒ xk+1 ∈ λT where λT denotes the linear
scaling of the original set T for some “contraction rate” λ. All λ-contractive sets for λ < 1 are subsets of the
domain of attraction of the origin, with a guaranteed decay rate.

In TS-LMI literature, the stability problem is usually considered solved once a feasible Lyapunov function
V(x) is found. It is usually in the form V(x) = xT Px, or a convex combination of quadratics (fuzzy Lyapunov
function [10, 1]). However, the largest level set {V(x) < Vc} in the region of interest Ω may be a small subset
of it, and the actual domain of attraction of the origin may be much larger. Also V(x) may be non-unique.
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The above issue is the motivation for the present work: trying to obtain the largest λ-contractive set for
some a priori fixed λ, departing from the standard Lyapunov approach.

A computationally viable invariant and contractive-set approach to stability analysis and control orig-
inated in the 1990s (see [9, 11]). It was further developed from thoughts in predictive-control literature,
where invariant sets are a key ingredient for stability guarantees [12]. The MPT toolbox [13] is a widely-used
piece of software to solve invariant-set and explicit predictive control problems. However, to the authors’
knowledge, an application of such ideas in the nonlinear fuzzy control setup has not been yet developed.
Indeed, invariant set computations for nonlinear systems is a challenging task and some assumptions and
simplifications must be considered, as later discussed.

The seminal work [9] sets up most relevant issues in the relationship between stability and contractive
sets.

The main idea in the above-cited approach is finding the set of states which, after N steps (N is an
arbitrary integer) have not left the region of interest Ω (actually, the scaled λNΩ if λ-contractiveness is
considered). If the set after N steps is identical to that after N + 1 steps, then a maximal λ-contractive
set (N → ∞) has been obtained [9, 14]. A tractable algorithm following the described approach was first
introduced for linear systems with linear constraints in [15]. Later, modifications have been proposed to
cope with systems with polytopic uncertainties [14, 16], bounded additive disturbances [17] and switched
linear systems (as a general case of piecewise-affine-systems) [18]. For all these cases the maximal invariant
set was shown to be polytopic, thus, the set is a level set of a polyhedral Lyapunov function.

The basic difference between TS-fuzzy literature and robust-linear one is the fact that in nonlinear fuzzy
control the convex combination coefficients are assumed known (denoted as membership functions); hence,
better performance can be extracted (at least theoretically [19]) from “fuzzy” controllers (partial distributed
compensators PDC, etc.) than from “robust” ones (such as those in [9]). However, the resulting closed-
loop expressions are polynomial in the membership functions, whereas in polytopic-uncertain systems under
linear robust control such expressions are linear in the memberships. Of course, naively embedding the
polynomial expressions in linear ones (blossoming) results in conservative models.

The objective of this paper is presenting a methodology to obtain the “largest” λ-contractive set in the
modelling region Ω, for a given λ, for discrete-time PDC closed-loop TS systems (up to conservatism in fuzzy
summations due to shape-independence [19]). The domain of attraction estimates are proved larger than
those obtained with a wide class of Lyapunov level-set LMI results in literature. Furthermore, this paper
proves that the maximal shape-independent (i.e., disregarding the fact that the membership functions in TS
systems are actually a function of the state) λ-contractive set is asymptotically obtained as the degree of
complexity of a Polya multiple summation tends to infinity, i.e., the algorithm is asymptotically exact.

The structure of the paper is as follows: Section 2 discusses preliminary definitions and states the goal of
the paper. Section 3 introduces shape-independent one-step sets for fuzzy control systems, together with a
procedure to obtain polytopic subsets which can be proved to be asymptotically exact. These sets are used
in Section 4 to propose an algorithm for the computation of polytopic invariant/λ-contractive sets. Section
5 shows the relation of the polytopic sets obtained in this proposal with those arising from polytopic linear
difference inclusions (LDI). Section 6 proves that these polytopic sets contain a certain class of ellipsoidal
invariant/λ-contractive sets derived from Lyapunov LMI results; conditions for algorithm convergence are
also given. Finally, some examples appear in Section 7, and a conclusion section closes the paper.

2. Preliminaries and problem statement

Consider a discrete-time nonlinear system

xk+1 = f (xk, uk) (1)

This system can be expressed locally in a compact region of the state-space, denoted as region of interest Ω,
as a TS fuzzy system with r rules or local models in the form:

xk+1 =

r∑
i=1

µi(xk)(Aixk + Biuk) (2)

2
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where xk ∈ Rn represents the state vector and uk ∈ Rm the control actions, and µi(x) represents membership
functions such that the vector of membership functions µ(x) belongs to the (r − 1)-dimensional standard
simplex ∆ ⊂ Rr, defined as:

∆ = {µi ∈ R |
r∑

i=1

µi = 1, µi ≥ 0 i : 1 . . . r} (3)

Considering now system (1) under a control law u = h(xk), the closed-loop equations are xk+1 = f (xk, h(xk)).
If a fuzzy PDC state-feedback controller [3] is used,

uk = −

r∑
i=1

µi(xk)Fixk (4)

the closed loop has the 2-dimensional summation form:

xk+1 =

r∑
i=1

r∑
j=1

µi(xk)µ j(xk)(Ai − BiF j)xk (5)

i.e., it is an homogeneous polynomial in µi(x) of degree 2.
In the following, the region of interest Ω will be considered to be a polytope. If so wished, it may be

considered as the intersection of the region in which the sector-nonlinearity model has been obtained and
those in which some constraints on state and input hold (for instance, to avoid saturation). When these
constraints are affine the set in which state and input should be forced to lie can be expressed as:

Λ = {(x, u) ∈ Rn+m | T x + S u + p ≤ 0} (6)

where T , S and p are matrices with the appropriate size.
Under the control law (4), the set Ω depends on the membership functions µi(x) and it is, in general,

non-polytopic:

Ω = {x ∈ Rn|

r∑
i=1

µi(x)(T − S Fi)x + p ≤ 0} (7)

This set is characterised by a collection of possibly complicated nonlinear inequalities as µi are nonlinear
functions of x. However, due to the fact that all membership functions are positive, a polytopic shape-
independent subset Ω[si] ⊂ Ω can be defined as

Ω[si] = {x ∈ Rn|(T − S Fi)x + p ≤ 0 ∀i = 1 . . . r} (8)

disregarding the dependence of µi in x and considering them to be arbitrary time-varying signals. By vertical
juxtaposition of each T − S Fi and p, the above set can be expressed as:

Ω[si] = {x ∈ Rn|Rx + s ≤ 0} (9)

for some matrices R and vector s. To avoid superscript [si] symbols everywhere, on the following, all references
to the region of interest Ω will be assumed to actually refer to the shape-independent subset Ω[si].

2.1. Invariant and λ-contractive sets for general nonlinear systems

In order to properly state the problem, some preliminary definitions derived from [14] are needed.

Definition 1 Given an arbitrary target set T ⊂ Ω, the closed loop one-step set Q(T) is the set of states in
Rn from which the next state of the closed loop system xk+1 = f (xk, h(xk)) is guaranteed to belong to T, i.e.,

Q(T) = {xk ∈ Rn| f (xk, h(xk)) ∈ T}

Consider now Algorithm 1 from [15], recursively generating a sequence of sets Ki(Ω), i = 0, . . . ,N.
3
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Algorithm 1 Calculation of the closed-loop N-step contractive set KN(Ω)
1. Make i = 0 and K0(Ω) = Ω

2. While i < N:

(a) Ki+1(Ω) = Q (λKi(Ω)) ∩Ω

(b) If Ki+1(Ω) = Ki(Ω), end algorithm and KN(Ω) = K∞(Ω) = Ki(Ω).
(c) i=i+1

Definition 2 (Maximal λ-contractive Set) The maximal closed-loop λ-contractives set under the control
law u = h(x), denoted as O∞(Ω), is defined to be the set K∞(Ω).

Note that a λ-contractive set with λ = 1 is an invariant set.
The above set is the set of initial states for which the closed-loop trajectory never leaves the region of

interest Ω. This is of particular interest in the case of TS fuzzy systems as leaving Ω would invalidate the
model, motivating this paper.

Relation to Lyapunov functions. Obviuosly, λ-contractive sets and Lyapunov level sets are related: if a
Lyapunov function V(x) ≥ 0 verifies V(xk+1) < V(λxk), V(λx) ≤ V(x), then its level sets are λ-contractive.
Hence, by definition, the maximal λ-contractive set O∞(Ω) obtained with the generic (nonlinear) algorithm
1 will always succeed in finding a domain of attraction of the origin greater or equal than those resulting
from any conceivable Lyapunov function.

As TS systems always admit a convex Lyapunov function (see [20] and later sections of this work), there
is no loss of generality in requiring V(λx) ≤ V(x) in the shape-independent TS setup in this paper1.

2.2. Problem statement

Algorithm 1 is based in the recursive computation of the one-step set, Q(Ω). In a general case, the
required computations in the above Algorithm may be impossible, as the shapes of the sets will be very
complex, arising from the nonlinearities in f and h (which, after the equivalent TS modelling are actually
translated to corresponding nonlinearities in µi(x)). As such, exact computations are only found in the
literature for a limited class of systems: linear [15], polytopic [14, 16], systems with additive disturbances
[17], switched linear systems [18] and linear systems with non-convex constraints [21].

Note, however, that the closed-loop fuzzy systems are in general not polytopic but polynomially de-
pendent on the membership functions. Hence, the purpose of this paper is extending the above ideas to
discrete-time systems characterised by homogeneous multi-dimensional fuzzy summations [22]. Of course,
for the case of fuzzy systems, Q(Ω) is also hard to compute due to the nonlinearity of the membership
functions.

The goal of this paper is to obtain the “largest possible” shape-independent polytopic subset of Q(Ω),
and, subsequently, of the “largest possible” shape-independent polytopic subset of KN(Ω,Ω) (possibly non-
polytopic) by adapting the above algorithms.

The accuracy of the results will depend on the relaxations of fuzzy summations to be used, which,
however, are asymptotically exact [22].

Although developments are presented for double fuzzy summations arising from usual closed-loop ex-
pressions, they are easily generalizable to higher fuzzy summation dimensions (details omitted for brevity).

In this way, the obtained results in this paper will be a subset of the maximal invariant set of the original
nonlinear system (1), as system (1) corresponds to a particular choice µ(x); this source of conservativeness
in fuzzy systems analysis is well known [5, 23].

1This inequality requires the line from the origin to a point x to be included in the Lyapunov level set associated to x, i.e.,
it must be a “starred” set. This may be conservative in general nonlinear systems but not in “linear in the state” ones, such as
the TS class.
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3. Shape-Independent one-step sets for fuzzy control systems

As discussed above, Algorithm 1 is based in the recursive computation of the one-step input admissible
set, Q(Ω). In the fuzzy context, the goal of computing the “true” Q(Ω) will be (conservatively) transformed
to obtaining a suitable polytopic subset of Q(Ω), in fact of Q(Ω[si]) as previously discussed.

Computing invariant sets for the case with a linear controller h(x) = −Fx for a polytopic-uncertain system
is well known in literature [16].

In this paper we generalise the argumentations to multi-dimensional convex summations, as follows.
Let us consider system (2) with a PDC fuzzy controller (4). Then, the closed-loop system can be

represented as (5).
In this case, from (9), the set leading to the shape-independent Ω in one step is:

Q(Ω) = {x ∈ Rn|

r∑
i=1

r∑
j=1

µi(x)µ j(x)R(Ai − BiF j)x + s ≤ 0} (10)

We can multiply vector s by
∑

i, j µi(x)µ j(x) = 1 and the one step set can be expressed as

Q(Ω) = {x ∈ Rn|

r∑
i=1

r∑
j=1

µi(x)µ j(x)Qi j(x) ≤ 0} (11)

where the vector Qi j(x) is defined as
Qi j(x) = R(Ai − BiF j)x + s (12)

The set Q(Ω) is in general non polytopic as µi are nonlinear functions of x. Hence, for the computation of
the one-step sets in Algorithm 1 a subset, Q[si](Ω), is defined by considering µi to be arbitrary scalars ranging
over the whole simplex ∆, removing its relationship with x.

Then, the membership-shape-independent one-step set will be given rewriting (11) as:

Q[si](Ω) = {x ∈ Rn|

r∑
i=1

r∑
j=1

µiµ jQi j(x) ≤ 0 ∀µ ∈ ∆} (13)

Evidently, Q[si](Ω) ⊂ Q(Ω) because Q(Ω) considers a particular “shape” µi(x) instead of all possible ones.
If the shape-independent set Q[si](Ω) were used in Algorithm 1, the algorithm would obtain the largest

“shape-independent λ-contractive set” O[si]
∞ (Ω) guaranteed to be robustly invariant for all possible pairs of

model and its associated PDC controller.

3.1. Computable subset of the one-step set Q[si]

In robust linear control literature [16], the set Q[si](Ω) is a polytope because there appears a single
summation. However, the one-step set (13) is defined by homogeneous degree-2 polynomial inequalities in
terms of the membership functions (µi). As by definition µi are positive (3), checking if a given x belongs to
the set for any possible µ is a copositive program, similar to those well-known in LMI-based fuzzy control
where the problem has been deeply studied [22, 24]. However, the solution to the copositive program is only
asymptotic so further conservatism arises.

There is abundant literature on LMI relaxations of double fuzzy summations transforming the matrix
inequality problem

∑
µiµ jQi j > 0 presented in [22] into sufficient LMI conditions which are independent of

the memberships functions µi.
For brevity, on the following, a Polya-based approach analogous to [22, Theorem 1] will be discussed,

albeit the proposed reasoning can be easily adapted to other relaxations2.

2As the objective of this paper is obtaining polytopic descriptions of the invariant and contractive sets, we will consider
only linear relaxations in which the double sum positiveness is implied by positiveness of a collection of linear combinations
of the Qi j; such linear relaxations are, for instance, the Polya approach in [22], the triangulation approach in [24], and the
non-assymptotically exact Tuan-Apkarian approach [25].
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As a first step, because of positiveness of µi, a trivial sufficient condition for checking the negativity of∑
i, j µiµ jQi j as required in (13) can be given by ensuring that all Qi j are negative or zero. Then, a polytopic

subset, to be denoted as Q̃1(Ω), Q̃1(Ω) ⊂ Q[si](Ω), can be defined by the following set of linear inequalities:

Q̃1(Ω) = {x ∈ Rn|R(Ai − BiF j)x + s ≤ 0, i, j = 1 . . . r} (14)

However, the above result is usually very conservative (see, for instance Example 1 in section 5). Let us
now discuss a methodology to overcome such conservativeness.

Notation. For brevity, let us define Ξ as:

Ξ =

r∑
i=1

r∑
j=1

µiµ jQi j(x) (15)

so the 1-step set is defined by Q[si] = {x | Ξ ≤ 0}. For the rest of the article, the following multi-index notation
from [22] is used3:

� Boldface symbol i will denote a multi-index in a d-dimensional index set Id (Id has rd elements),

Id = {i = (i1 i2 . . . id) ∈ Nd | 1 ≤ i j ≤ r, j = 1 . . . d} (16)

Also, a multidimensional summation notation will be defined as

∑
i∈Id

Qi =

r∑
i1=1

r∑
i2=1

· · ·

r∑
id=1

Qi1i2...id (17)

� The product of membership functions will be denoted as:

µi =

d∏
l=1

µil = µi1µi2 . . . µid i ∈ Id

so, for instance, (15) can be expressed with notation (17) as Ξ =
∑

i∈I2
µiQi.

� The set of unique permutations of the multi-index i ∈ Id is denoted by P(i), and the cardinal of P(i)
is denoted as ni. This cardinal can be obtained with well-known repeated permutation formulae as
d!/Πr

k=1(nk!), where nk is the number of times the integer k appears in i. For instance, for i = (3, 3, 1, 1, 1),
ni = 5!/(2!3!) = 10 and P(i) = {(3, 3, 1, 1, 1), (3, 1, 3, 1, 1), (3, 1, 1, 3, 1), (1, 3, 1, 3, 1), . . . }.

The permutations will be used to group elements in multiple fuzzy summations which share the same
product of membership functions: It is an evident fact that j ∈ P(i) ⇒ µj = µi. For instance,
µ(1,1,3,4) = µ2

1µ3µ4 = µ(3,1,4,1) = µ(4,1,1,3) = . . . .

� The subset of ordered indexes of Id will also appear in later developments, defined as:

I+
d = {i ∈ Id | ip ≤ ip+1, p = 1 . . . d − 1}

Note that
∑

i∈Id
µi =

∑
i∈I+

d
niµi = 1 and for any given index j ∈ Id, there exists a unique permutation of

it, say i, which belongs to I+
d (i.e, P(j) ∩ I+

d has only one element).

3Note that in [22] Qi j denoted matrices to be set up in LMI software; in this work Qi j are vectors to be handled by linear
algebra routines, but summation notation is kept unchanged.

6
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Relaxed 1-step set. After these definitions, we take back again the problem of checking negativity of Ξ in
(15). As this is a double fuzzy summation which may be expanded to any desired level of nested sums, it
can be expressed with this new notation as

Ξ =

 r∑
i=1

µi

d−2

Ξ =
∑
i∈Id

µiQi1i2 ≤ 0 (18)

where i1, i2 are the two first elements of the multi-dimensional index i. Following the properties of the
defined sets it follows that∑

i∈Id

µiQi1i2 =
∑
i∈I+

d

∑
j∈P(i)

µjQ j1 j2 =
∑
i∈I+

d

µi

∑
j∈P(i)

Q j1 j2 =
∑
i∈I+

d

µiQ̃i (19)

where we define4 Q̃i =
∑

j∈P(i) Q j1 j2 . Therefore, a sufficient condition to prove the negativity of Ξ can be
obtained by checking the negativity of all the terms Q̃i at the right-hand side of (19). Hence, the following
implication is defined as “complexity-d Polya conditions” in literature [22]:

Q̃i =
∑

j∈P(i)

Q j1 j2 ≤ 0 ∀ i ∈ I+
d ⇒ Ξ ≤ 0 (20)

It can be proved that the larger d is, the less conservative the conditions (20) are, but the more compu-
tationally demanding the procedure is, as the number of elements of I+

d increases.

Based on the fact that (20) implies Ξ ≤ 0 in (15), the “complexity-d polytopic 1-step set” Q̃d(Ω), d ≥ 2,
of the one-step set will be defined as

Q̃d(Ω) = {x ∈ Rn|
∑

j∈P(i)

Q j1 j2 ≤ 0 ∀ i ∈ I+
d } (21)

and, from this definition of Q̃d(Ω), for a fixed complexity degree d > 1, we have:

Q̃1(Ω) ⊆ Q̃d(Ω) ⊆ Q̃d+1(Ω) ⊆ Q[si](Ω)

and limd→∞ Q̃d(Ω) = Q[si](Ω) (asymptotical exactness of the Polya conditions, see [22]).
For instance, given a closed-loop system with two rules, Q̃2(Ω) would be defined by inequalities:

Q11 ≤ 0 Q22 ≤ 0 Q12 + Q21 ≤ 0

Also, Q̃3(Ω) would be defined by

Q11 ≤ 0, Q22 ≤ 0, Q11 + Q12 + Q21 ≤ 0, Q22 + Q12 + Q21 ≤ 0

which are obviously less restrictive than those from Q̃2(Ω), proving Q̃2(Ω) ⊆ Q̃3(Ω), and so on.

4. Algorithm for computation of polytopic λ-contractive sets with Polya expansions

Note that inequalities arising from the Polya conditions are still affine in x and, hence, that the one-step
sets Q̃d(Ω) are polytopic, as the starting region Ω is a polytope by assumption. So, choosing a complexity-
parameter d, computation of Q̃d(Ω) will obtain a polytopic subset of the shape-independent one-step set
Q[si](Ω).

4Note that, obviously, there is no need of actually carrying out the summing over P(i) as literally defined next for Q̃i. Indeed,
it is possible to express Q̃i =

∑r
j1=1

∑r
j2=1 mi( j1, j2)Q j1 j2 where the integer mi( j1, j2) can be obtained from combinatorics. Indeed,

if both j1 and j2 are not present in i (or two occurrences of j1 in case j1 = j2), then mi( j1, j2) = 0. Otherwise, forming the
(d−2)-dimensional multiindex, denoted as ĩ by removing j1 and j2 from i (with removal position being arbitrary), then mi( j1, j2)
is the number of elements of P(ĩ), i.e., the previously-defined cardinal nĩ. Thus, computation of Q̃i for each i is straightforward.
Similar ideas with a different notation appear in, for instance, [26].

7
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Algorithm 2 Computation of the Polya-d closed-loop N-step approximation to the λ-contractive set

1. Make i = 0 and Kd,0 = Ω

2. While i < N:

(a) Kd,i+1 = Q̃d
(
λKd,i

)
∩Ω

(b) If Kd,i+1 = Kd,i, end algorithm and Kd,N = Kd,∞ = Kd,i.
(c) i=i+1

However, following the assymptotical exactness results derived from Polya argumentations [27], the set
Q̃d(Ω) will tend to Q[si](Ω) as the complexity parameter d tends to infinity, as stated below.

Once the choice of d is made, Algorithm 2 presents a modification of Algorithm 1 using the above
complexity-d one-step sets. If the algorithm converges, it will allow the computation of a subset Kd,∞ of
(but asymptotically equal to) the maximal shape-independent invariant or λ-contractive set O[si]

∞ (Ω) (i.e.,
contractive for all possible trajectories of (5) for arbitrary µ)

with the following properties:

� It is a polytope, because of the polytopic nature of Q̃d(Ω) and Ω for any chosen d.

� It is λ-contractive.

� As d increases the obtained converged set Kd,∞ tends to the maximal shape-independent invariant set
O

[si]
∞ (Ω) due to the assymptotical exactness, in the terms defined in the next theorem below.

Theorem 1 If x belongs to the interior of the maximal shape-independent λ-contractive set in Ω, denoted
as O[si]

∞ , then there exist a finite d such that x belongs to the set Kd,∞ resulting from Algorithm 2.

Proof: Consider, for any arbitrary h, that we have obtained the polytopic shape-independent h-step
set of Ω, denoted as K[si]

h . Then, if x belongs to the interior of the (h + 1)-step set of Ω, there is a finite dh

such that x ∈ Q̃d(λK[si]
h ) due to the asymptotically exact nature of the Polya expansion [27].

Hence, as in Algorithm 1, starting from K[si]
0 = Ω, an induction argumentation proves that if x belongs

to the interior of the N-step shape-independent set for Ω, K[si]
N , there is a sequence d1, . . . , dN such that

generating K[si]
h+1 = Q̃dh (λK[si]

h ) ∩ Ω, then x ∈ K[si]
N . As conservatism of the Polya conditions decreases as d

increases, choosing a single complexity parameter d = maxh dh, generating now the actual sequence defined
in Algorithm 2 results in Kd,N ⊃ K[si]

N so that x ∈ Kd,N .

Note: Theorem 1 asymptotically obtains the maximal shape-independent contractive set. The remaining
sources of conservativeness are:

� The asymptotical nature of the theorem, so that the size of the resulting sets will depend on the
user-defined parameter d (chosen according to the available computational resources) and problem
conditioning [27].

� The shape-independence assumption, i.e., the evaluation of the algoritm using the set in (13) instead
of (11), which cannot be easily computed in a general case5.

5In some particular cases, there is some knowledge of the bounds on, say, the products of the memberships (for a particular
nonlinear system we might have µ2(x)µ3(x) − 0.1 ≤ 0 ∀x ∈ Ω) or, in general, knowing that some polynomial in the memberships
fulfills p(µ) ≤ 0. Such kind of shape-dependent knowledge can be embedded into stability conditions via a KKT multiplier [23]
and, also, into the 1-step set computation, changing

∑
i
∑

j Qi j ≤ 0 for conditions into an augmented space (x, L) stated as L ≥ 0,∑
i
∑

j Qi j + Lp(µ) ≤ 0, where L is the multiplier. However, these shape-dependent issues are out of the scope of the presented
work, so details are omitted for brevity.
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5. Relation with polytopic invariant sets for polytopic linear difference inclusions

The presented results as mentioned at the beginning of Section 3 are clearly connected to results for
polytopic LDI, where the uncertainties are bounded by a polytope. As discussed in the introduction, in
previous literature results, as the parameters are unknown, there is no possibility of controlling the system
by a PDC controller, contrary to TS fuzzy systems. On the other hand, when linear controllers are used,
well known results are available.

Note that in the case studied in this paper, i.e. the closed-loop TS fuzzy system controlled by a PDC,
can be consertively embedded in an LDI following the related literature as:

xk+1 = G(w)xk where G(w) ∈ conv{(Ai − BiF j) i = 1 . . . r j = 1 . . . r} (22)

If the one step set for this system is computed, the obtained set is exactly the same presented in (14)
Q̃1(Ω), i..e, it is a conservative estimation (subset) with respect to any other Qd for d > 1.

Despite that, this approach is also interesting if we take into account that (5) can be multiplied by(∑r
i=1 µi

)d−2. Then, an equivalent expanded model can be presented as

xk+1 =
∑
i∈Id

µiGixk where Gi = Gi1i2 = Ai1 − Bi1 Fi2 (23)

As in Section 3.1, we can group all the coefficients Gi1i2 multiplied by the same value of µi. Then, this vector
of polynomials can be expressed with the minimum number of coefficients as

xk+1 =
∑
i∈I+

d

niµiG̃ixk (24)

Where

G̃i =
∑

j∈P(i)

1
ni

(A j1 − B j1 F j2 ) (25)

As all µi are positive and
∑

i∈I+
d

niµi = 1 , we can define a new LDI such that

xk+1 = G(w)xk where G(w) ∈ conv{G̃i, ∀i ∈ I+
d } (26)

As expected, as Ω is a polytope, if we compute the one step set for this system, the set Q̃d(Ω) presented
in Section 3.1 is found. Hence, the invariant and contractive sets from (26) inspire the developments in this
work in the search for an asymptotically exact solution to the fuzzy invariant set problem.

Example 1 Let us consider the system xk+1 = µ1(0.75xk + 0.25uk) + µ2(0.75xk − 0.25uk) subject to the control
law uk = µ1(−2xk) + µ2(2xk) has the closed-loop:

xk+1 =

r∑
i=1

r∑
j=1

µi(xk)µ j(xk)(Ai − BiF j)xk =

r∑
i=1

r∑
j=1

µi(xk)µ j(xk)Gi jxk

The closed-loop system has four “vertex models” xk+1 = Gi j(xk): {G11 : 0.25xk, G12 : 1.25xk, G21 : 1.25xk,
G22 : 0.25xk}. Hence, considering independently the 4 vertex models as in (22) would not guarantee a stable
closed loop, as G12 and G21 are unstable: no set apart from the origin can be proved λ-contractive for λ < 1.25
by iterating Q1 in Algorithm 2. Now, in order to find a λ-contractive set we multiply the closed-loop system
by µ1 + µ2 = 1, we get the system (expressed as in (26))

xk+1 = µ3
1(0.25xk) + 3µ2

1µ2(0.917xk) + 3µ1µ
2
2(0.917xk) + µ3

2(0.25xk)

As all the G̃i are now stable, a λ-contractive set can be found for λ = 0.917 for d = 3 proving stability. For
d = 4, we get also λ = 0.917. For d = 5 and d = 6, we get λ = 0.85, for d = 7 we get λ = 0.82, d = 9 gets
λ = 0.81, d = 13 gets λ = 0.78, d = 27 gets λ = 0.77, d = 43 gets λ = 0.76 and so on.

9
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Note that, in this simple case, we may compute an exact solution in a straightforward way; indeed, setting
µ2 = 1−µ1 the closed-loop can be written as xk+1 = (0.25 + 2µ1 − 2µ2

1)xk. When µ1 ranges in the interval [0, 1],
the function (0.25 + 2µ1 − 2µ2

1) ranges between 0.25 and 0.75. So, the system is actually λ-contractive up to
λ = 0.75. Asymptotic exactness of Polya theorems ensure that we will approach λ = 0.75 as close as desired
as d increases. Of course, higher-order processes with more rules cannot be approached with this simplistic
setup in order to determine the (decay) contraction rate, needing standard fuzzy-control LMIs [1].

6. Lyapunov Functions and Convergence

Note, importantly, that Theorem 1 actually shows that the proposed Algorithm 2 will ultimately obtain
a contractive set larger than any level set coming from shape-independent LMI Lyapunov function search
in literature, because it will asymptotically obtain the maximal set O[si]

∞ , if the value of the complexity
parameter d can be made large enough.

However, the theorem does not give a clue on the required value of the complexity parameter and the
number of algorithm steps needed to outperform a particular algorithm. In some cases, discussed in this
section, results on these issues can be obtained, as follows.

Many of the LMI conditions presented in Literature are equivalent, include the condition or can be
generalized, to searching for a convex Lyapunov function such that

V(G̃ixk) − V(γxk) < 0 ∀i ∈ I+
d (27)

where the parameters of V are unknown. For all this class of conditions it can be proved that the obtained
invariant set is inside the proposed in the section 3.1 for the same complexity level.

Proposition 1 If there exists a convex Lyapunov function such that (27) holds, then the largest invariant
set obtained from Algorithm 2 with complexity d includes any level set V(x) ≤ Vc included in Ω.

Proof: As V is a Lyapunov function for (26), the set V(x) ≤ Vc is a λ-contractive set for this system.
As the set obtained from Algorithm 2 with complexity d is the maximal λ-contractive set [14], proposition
holds.

Moreover, if the related LMI conditions are able to find a Lyapunov function, then Algorithm 2 converges
in a finite number of steps as discussed below.

Note that, as discussed above, the proposed algorithm will ultimate outperform any V(x) from a Lyapunov-
based approach, but if (27) does not hold for a particular choice of V and d, then a result on which complexity
level will be actually needed cannot be stated.

Proposition 2 If the closed-loop system is such that there exists a convex Lyapunov function such that the
following holds with some γ:

V(G̃ixk) − V(γxk) < 0 ∀i ∈ I+
d (28)

then Algorithm 2 with λ > γ converges in a finite number of steps. The number of steps is bounded by m,
defined as the minimum natural number such that

max
x∈Ω

V(γmx) ≤ min
x∈∂Ω

V(λmx) (29)

holds.

Proof: For any x0 in Ω, considering a time instant k, if the trajectory of (26) fulfills x j ∈ Ω for j ≤ k,
we have:

V(xk) ≤ max
x∈Ω

V(γk x)

10
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Also from (29), for k = m, we have V(xm) ≤ maxx∈Ω V(γmx) ≤ minx∈∂Ω V(λmx), so xm belongs to a level set of
the Lyapunov function which is γ-contractive and, hence, λ-contractive as γ < λ. Hence, using Proposition
1, we have Θ = {x ∈ Rn|V(x) < minx∈∂Ω V(λk x)} belongs to the maximal λ-contractive set Kd,∞ found by the
algorithm, that is, Θ ⊂ Kd,∞.

In summary, all points which do not escape Ω in m steps will belong to a Lyapunov level set Θ. Hence,
they will never escape Ω. Thus, as Algorithm 2 for polytopic LDI (26) is exact, Kd,m for (26) must have
already converged and Kd,m = Kd,m+1 = Kd,∞, i.e., the algorithm will converge in at most m steps.

Note: The maximum in left-hand side of (29) will be found at a non-interior point x ∈ ∂Ω due to the
convexity of V. Note also that (a) m does not exist for γ > λ and, (b) if γ = λ it will only exist if V were
constant in all the frontier of Ω which is an uninteresting exceptional case. Hence, this justifies the choice
λ > γ in the theorem.

Corollary 1 For quadratic-in-the-state Lyapunov functions m above is given by:

m =
1
2

(
log Vmin − log Vmax

log γ − log λ

)
(30)

where Vmin and Vmax are, respectively, the minimum and maximum values of the Lyapunov function in the
frontier of Ω.

Proof: Indeed, as V(λx) = λ2V(x) the above formula is easily obtained from maxx∈∂Ω γ
2kV(x) ≤ minx∈∂Ω λ

2kV(x),
i.e., γ2kVmax ≤ λ

2kVmin.

Corollary 2 If Algorithm 2 converges, then there exists a polyhedral Lyapunov function proving λ-contractiveness.

Indeed, straightforwardly expressing the result of the algorithm (a polytope) in the form Kd,∞ = {x ∈
Rn|Hx ≤ 1} for some matrix H, then defining V(x) = maxi(Hix), where Hi is the i -th row of matrix H, we
have that V(x) = 1 is the boundary of Kd,∞. Then, V(x) is the sought Lyapunov function because Kd,∞ is
λ-contractive, and due to the linear (time-varying) dynamics in which the original system is embedded, the
other sets level V(x) ≤ γ are λ-contractive, too, as long as they are inside the modelling region Ω (i.e., for
γ ≤ 1.

6.1. Fuzzy Lyapunov functions.

As the closed-loop equations can be expressed by

xk+1 =
∑
i∈I+

d

niµiG̃ixk (31)

consider, for instance, proving Lyapunov stability with a candidate Lyapunov function V = xT P(x)x. Condi-
tion V(xk+1) < λ2V(xk) is equivalent to the well-known Schur complement expression:(

λ2P(xk)
∑

i∈I+
d

niµiG̃T
i P(xk+1)

P(xk+1)
∑

i∈I+
d

niµiG̃i P(xk+1)

)
> 0 (32)

Let us now consider a fuzzy Lyapunov function [10] generalised to include multiple-sum expressions by
setting P(xk) =

∑
i∈I+

d
niµi(xk)Pi. Then, equation (32) would get converted into

∑
i,j∈I+

d

ninjµi(xk)µj(xk+1)
(
λ2Pi G̃T

i Pj
PjG̃i Pj

)
> 0 (33)

11
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In order to prove it, we could prove a sufficient condition(
λ2Pi G̃T

i Pj
PjG̃i Pj

)
> 0 ∀i ∈ I+

d ∀j ∈ I+
d (34)

Of course, quadratic Lyapunov functions are a particular case of the above setup with Pi = P, resulting
in level sets Θ = {x | xT Px ≤ 1}.

Proposition 3 If LMIs (34) are feasible, then Algorithm 2 obtains a larger shape-independent λ-contractive
set.

Proof: Indeed, if LMI holds, then for all i, j we have

xT
k G̃iPjG̃ixk − λ

2xT
k Pixk < 0

which is equivalent to:
max

j
xT

k G̃iPjG̃ixk − λ
2xT

k Pixk < 0 ∀i

hence we have:
max

j
xT

k G̃iPjG̃ixk − λ
2 max

l
xT

k Plxk < 0 ∀i

so this is the Lyapunov equation for system (26) and max-of-quadratics Lyapunov function V(x) = maxi xT Pix.
Then, once we have the non-fuzzy V(x) for the linear difference inclusion (26), all previous results apply, in
particular that the level set of the max-of-quadratics function will be smaller than the algorithm’s results
and it will be found in a finite number of steps bounded by Corollary 1.

Note that (34) is LMI whereas nonconservative max-of-quadratic conditions are BMI because a set of
scalars (Lagrange multipliers) is required in order to restrict the above LMI to hold only for those values of
x such that xT Pix is larger than the rest of indices. Details omitted for brevity, see [20, Theorem 8].

Shape-independence issues.

Let us now compare the above result to the level sets of fuzzy Lyapunov functions with LMIs (33).
In order for the comparison to be fair, we will initially only consider the level sets of fuzzy Lyapunov

functions that can be proved via convex programming (i.e., LMI conditions).
Under this assumption, note that to enforce via LMIs the condition {V(x) = xT ∑

i∈I+
d

niµiPix ≤ 1} ⊂ Ω

in the classical fuzzy Lyapunov approach, it is mandatory to introduce separate conditions on Pi enforcing
{xT Pix ≤ 1} ⊂ Ω for all i, because the membership shape µ cannot appear in LMIs: we are forced to assume
that µi(x) might be equal to one for any particular x.

Hence, LMIs (33) plus {xT Pix ≤ 1} ⊂ Ω will provide a shape-independent level set Θd = {Vi ≤ 1 ∀i} which
is actually the level set of the max-of-quadratics Lyapunov function. Hence, previous results apply to show
that the algorithms will converge to a larger set, even for the same complexity parameter d.

Shape-dependent level sets. Note, however, that the shape-dependent level set of the fuzzy Lyapunov function
V(x) ≤ 1 obtained with the actual evaluation of known nonlinear membership functions will be, of course,
larger than Θd (and maybe not convex); indeed, Θd is, actually, the intersection of the level sets from all
possible membership functions for a given set of Pi.

Notwithstanding, such larger set cannot be accounted for in LMIs, but only plotted “a posteriori” once
Pi are obtained (by searching a scaling factor Vc which keeps the set V(x) < Vc inside Ω). The procedure is
graphical by trial-and-error most of the times in 2D or 3D plots, and quite involved for higher dimensions.

As a conclusion, this graphical ad-hoc procedure can obtain different sets than our algorithm: both
resulting sets will be larger than a particular Θd for a fixed feasible solution Pi but inclusion relations cannot
be stated. However, the procedure is a shape-dependent workaround involving non-convex search, hence
outside of the scope of the techniques compared with in the paper (restricted to be shape-independent and
convex).
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7. Example

Let us define a fuzzy model as (2) with:

A1 =

(
18.2 6

6 2.9

)
B1 =

(
57.9
20.6

)

A2 =

(
8.6 5.8
5.8 3.6

)
B2 =

(
45.5
26.5

)
A3 =

(
20.7 6.4
6.4 1.5

)
B3 =

(
52

14.5

)
controlled by a PDC in the form (4) with feedback gains:

F1 =
(
−0.3 −0.1

)
F2 =

(
−0.2 −0.15

)
F3 =

(
−0.4 −0.16

)
obtained by LMI procedures (in particular, the proposed gains are a feasible solution of the LMI problem
(3.19) and (3.20) in [28]).

The polyhedral constraint set Λ is defined such that the states hold |xi| ≤ 3 and the control action |u| ≤ 1.
This can be expressed as in (6), using matrices:

T =



−1 0
1 0
0 1
0 −1
0 0
0 0


S =



0
0
0
0
1
−1


p =



3
3
3
3
1
1


and, with suitable straightforward manipulations, R in (9) is readily obtained.

Now, setting λ = 1, if Algorithm 2 is performed in order to compute the invariant set Kd,∞, with
complexity d = 1, i.e., using the one-step set Q̃1(Ω) in (14) , no feasible set except the origin is obtained, due
to the already discussed conservatism of the choice Q̃1(Ω).

Using Algorithm 2 with d = 2, 3, 4, 5, the invariant sets shown in Figure 1 are found, each of them bigger
as d increases. For this example, no bigger invariant set was found by further increasing d (up to 20).

In order to compare the polytopic invariant set Kd,∞ with Lyapunov results, a family of ellipsoidal
invariant sets are computed by solving the following LMI problem:

min α subject to:
Pd > 0

G̃T
i PdG̃i − Pd < 0

Pd < αW(
Pd ai

aT
i 1

)
> 0

(35)

where ai are chosen as ai = Ri/si (i-th rows of matrix R and vector s from (9)) in order for the ellipsoid
Θd = {x ∈ Rn | xT Pd x ≤ 1} being a subset of Ω, and W is an arbitrary matrix stretching the ellipsoid shape in
particular directions (actually random for this example).

Figure 2 shows how the resulting polyhedron contains the union of all the ellipsoidal invariant sets with
complexity degree d = 5, as predicted by Proposition 1.

Repeating the algorithms for different values of the contraction (decay) rate λ, with complexity parameter
d = 5, we have the results in Figure 3. The number of iterations until convergence is depicted in Table 1,
so the algorithm is able to prove a contraction rate of at least λ = 0.87506 which, of course, will be equal or
better than that achieved with any Lyapunov function with d = 5. As expected, the fastest the contraction
rate is, the smaller the set in which such contractiveness holds can be proved.
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Figure 1. Valid region Ω and (suboptimal) maximal invariant sets Kd,∞, expanding with increasing d.
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Figure 2. The resulting invariant polyhedron contains the union of all ellipsoidal invariant sets for d = 5

Table 1. Number of iterations until convergence

λ 1 0.95 0.9 0.88 0.876 0.87506 0.87505
Iters. 4 4 4 8 12 25 >200
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Figure 3. Maximal λ-contractive sets for different λ.

8. Conclusions

In this work a procedure for obtaining polytopic invariant and contractive sets for closed-loop Takagi-
Sugeno fuzzy systems has been proposed. This procedure is based on the well-known algorithm from [14]
which needs the computation of the one-step set.

In this work, no assumptions on the shape of the membership functions are made, thus the provable
sets are valid for any possible membership functions (i.e., results are shape-independent). Furthermore, the
invariant and λ-contractive sets obtained are polytopic if the modelling region Ω is polytopic.

The results in the work justify that the obtained invariant sets are larger than Lyapunov level sets
obtained via widely used LMIs with the same linear relaxations of double-sum summations. It is also proved
that, if those LMIs were feasible, the proposed algorithm would converge in a finite number of steps; also,
as expected, a polyhedral Lyapunov function is obtained. An specific comparison with fuzzy Lyapunov
functions is also discussed.

In fact, Theorem 1 states that the procedure would asymptotically match or outperform closed-loop
stability analysis results from any conceivable Lyapunov or LDI-bounding approach if enough computing
resources were available.
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[13] M. Kvasnica, P. Grieder, M. Baotić, M. Morari, Multi-parametric toolbox (MPT), Hybrid systems: computation and

control (2004) 121–124.
[14] E. Kerrigan, Robust constraint satisfaction: Invariant sets and predictive control, Ph.D. thesis, Department of Engineering,

University of Cambridge, UK (2000).
[15] E. G. Gilbert, K. T. Tan, Linear systems with state and control constraints: The theory and application of maximal

output admissible sets, IEEE Transactions on Automatic Control 36 (9) (1991) 1008–1020.
[16] B. Pluymers, J. A. Rossiter, J. A. K. Suykens, B. De Moor, The efficient computation of polyhedral invariant sets for

linear systems with polytopic uncertainty, in: Proceedings of the American Control Conference, Vol. 2, 2005, pp. 804–809.
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