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Abstract. In a previous paper, the authors introduced and characterized a new kind of matrices

called {K,s+1}-potent. In this paper, an associated group to a {K, s+1}-potent matrix is explicitly

constructed and its properties are studied. Moreover, it is shown that the group is a semidirect

product of Z2 acting on Z(s+1)2−1. For some values of s, more specifications on the group are

derived. In addition, some illustrative examples are given.
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1. Introduction. Let K ∈ Cn×n be an involutory matrix, that is K2 = In,

where In denotes the n× n identity. In [5], the authors introduced and characterized

a new kind of matrices called {K, s+ 1}-potent matrices where K is involutory. We

recall that for an involutory matrix K ∈ Cn×n and s ∈ {0, 1, 2, 3, . . .}, a matrix

A ∈ Cn×n is called {K, s+ 1}-potent if

(1.1) KAs+1K = A.

These matrices generalize all the following classes of matrices: k-potent matrices,

idempotent matrices, periodic matrices, involutory matrices, centrosymmetric matri-

ces, mirror symmetric matrices, circulant matrices, etc. Several applications of these

matrices can be found in the literature [1, 9, 13]. The class of {K, s + 1}-potent

matrices was linked to other kind of matrices (as {s+1}-generalized projectors, {K}-

Hermitian matrices, normal matrices, etc.) in [6]. Throughout this paper, we consider

K ∈ C
n×n to be an involutory matrix.

Some results on a similar class of 2×2 matrices and n×n invertible matrices have

been presented in [2]. On the other hand, matrices commuting with a permutation and

{K}-centrosymmetric matrices (that correspond to s = 0) have received increasing
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interest in the last twenty years. Some of their properties can be found in [1, 8, 9, 13].

Furthermore, matrices with k-involutory symmetries have been studied in [11, 12].

Moreover, some spectral properties related to similar classes of matrices are given in

[3, 5, 10].

Related to the group theory, we recall that if G is a finite group with identity

element e and a ∈ G then am = e implies that the order of a divides to m for any

natural power m.

Motivated by the fact that the definition of {K, s+ 1}-potent matrices involves

products of the two matrices A and K, we wonder if there are any other relationships

between products where these matrices appear. As a particular case, when s is the

smallest positive integer such that As+1 = A, it is clear that {A,A2, A3, . . . , As} is a

cyclic group (and, therefore, commutative and normal) of order s. This leads to our

main aim, which is to extend these results to {K, s+ 1}-potent matrices.

This paper is organized as follows. First, properties of a {K, s+1}-potent matrix

A are studied in Section 2 involving products and powers ofA andK. These properties

are necessary to construct, in Section 3, a finite group G from a given {K, s + 1}-

potent matrix. As a consequence, this group is a semidirect product of Z2 acting

on Z(s+1)2−1 where Zr is the group of integers modulo r. Moreover, the group G

is calculated in some simple cases. The case Ak = A for some k < (s + 1)2 is also

analyzed in Section 4. Finally, in Section 5, some illustrative examples are given.

2. Basic properties of {K, s+ 1}-potent matrices. It is clear that for each

n ∈ {1, 2, 3, . . .}, there exists at least one matrix A ∈ Cn×n such that A is {K, s+1}-

potent for each involutory matrix K and for each s ∈ {1, 2, 3, . . .}. It is also easy to

see that such a matrix is not unique [5].

Throughout this section, we consider s ∈ {1, 2, 3, . . .}. It is well-known [5] that

a matrix A ∈ Cn×n is {K, s+ 1}-potent if and only if any of the following conditions

are (trivially) equivalent: KAK = As+1, KA = As+1K, and AK = KAs+1.

We now establish properties regarding {K, s+ 1}-potent matrices.

Lemma 2.1. If A ∈ C
n×n is a {K, s + 1}-potent matrix then the following

properties hold

(a) KAs+2 = As+2K and KAs+2K = As+2.

(b) As+2 = (KA)2 = (AK)2.

(c) A(s+1)2 = A.

(d) (A(s+1)2−1)k = A(s+1)2−1 for every k ∈ {1, 2, 3, . . .}.

(e) (As+2)s+1 = As+2.

(f) (KA)2s+1 = KA and (AK)2s+1 = AK.
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(g) KAjK = Aj(s+1) and AjK = KAj(s+1) for every j ∈ {1, 2, . . . , (s+ 1)2 − 1}.

(h) (KAj)2 = Aj(s+2) for all j ∈ {1, 2, . . . , (s+ 1)2 − 1}.

(i) AjA(s+1)2−1 = A(s+1)2−1Aj = Aj and (KAj)A(s+1)2−1 = A(s+1)2−1(KAj) =

KAj, for all j ∈ {1, 2, . . . , (s+ 1)2 − 1}.

(j) For each j ∈ {1, 2, . . . , (s+ 1)2 − 1}, one has (KAj)(KAk) = A(s+1)2−1, where k

is the unique element of {1, 2, . . . , (s+1)2−1} such that k ≡ −j(s+1) [mod ((s+

1)2 − 1)].

(k) K(KAj)s+1K =

{

KAj s

2
(s+4)+j if s is even

(

Aj(s+2)
)

s+1

2 if s is odd
for all j ∈ {1, 2, . . . , (s+ 1)2 −

1}.

Proof. (a) One has KAs+2 = KAs+1A = AKA = AAs+1K = As+2K. The

second equality can be deduced post-multiplying both sides by K.

(b) From (a) and the definition, we have As+2 = KAs+2K = KAAs+1K =

KAKA = (KA)2. The other equality in (b) can be similarly deduced.

(c) By definition we have A(s+1)2 = (As+1)s+1 = (KAK)s+1 = KAs+1K = A.

(d) Using Property (c) we get

(A(s+1)2−1)2 = A(s+1)2A(s+1)2−2 = AA(s+1)2−2 = A(s+1)2−1,

and now Property (d) can be easily shown by induction.

(e) From (c) we get (As+2)s+1 = (As+1A)s+1 = (As+1)s+1As+1 = A(s+1)2As+1 =

AAs+1 = As+2.

(f) From (b) and (c) the equalities (KA)2s+1 = KA(KA)2s = KA(As+2)s =

KAs2+2s+1 = KA(s+1)2 = KA hold, and in a similar way it can be shown the

equality (AK)2s+1 = AK.

(g) We proceed by recurrence. In fact, by definition we have

(2.1) KAK = As+1.

Then Equality (2.1) yields KA2K = KAAK = As+1KAK = As+1As+1 = A2(s+1).

Following a similar reasoning it can be proven that KAjK = Aj(s+1) for all j ∈

{1, 2, . . . , s}. Now, by using the definition and A(s+1)2 = A we get the property

for j = s + 1 as follows: KAs+1K = A = A(s+1)2 = A(s+1)(s+1). From now on,

following a similar reasoning as before it can be proven that KAjK = Aj(s+1) for

all j ∈ {1, 2, . . . , (s + 1)2 − 1}, and the other equality in (g) is easily obtained from

K2 = In.

(h) Using (g) one has

(KAj)2 = (Aj(s+1)K)2 = Aj(s+1)(KAj(s+1)K) = Aj(s+1)Aj = Aj(s+2).
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(i) Follows from (c) and (g).

(j) Let k ≥ 1. One has KAjKAk = Aj(s+1)+k . The right hand side is A(s+1)2−1

if k = −j(s+ 1)[mod ((s+ 1)2 − 1)].

(k) Case 1. s is even. Using Properties (g) and (c), we get

K(KAj)s+1K = AjAj(s+1) s

2Aj s

2K = Aj(s+2) s

2AjK = Aj(s+2) s

2KAj(s+1)

= KA(s+1)(j(s+2) s

2 )Aj(s+1) = KAj(s+1)((s+1) s

2
+ s

2 )Aj(s+1)

= K
(

A(s+1)2
)j s

2

A(
s

2
+1)j(s+1) = KAj s

2
(s+4)+j .

Case 2. s is odd. Using Property (g), we get

K(KAj)s+1K = AjAj(s+1) s+1

2 Aj s−1

2 = Aj(s+1) s+1

2
+j s+1

2 =
(

Aj(s+2)
)

s+1

2

.

3. Construction of a matrix group. Firstly, we note that, from a {K, s+1}-

potent matrix, Lemma 2.1 allows us to construct a group containing a cyclic subgroup

of {K, s+ 1}-potent matrices. Throughout this section we assume that s ≥ 1.

Theorem 3.1. Let A ∈ Cn×n be a {K, s+ 1}-potent matrix. If Ai 6= Aj for all

distinct i, j ∈ {1, 2, . . . , (s+ 1)2 − 1} then the set

G = {A,A2, A3, . . . , A(s+1)2−1,KA,KA2,KA3, . . . ,KA(s+1)2−1}

is a group with respect to the matrix product satisfying the following properties:

(a) A is an element of order (s+ 1)2 − 1, and then the set

(3.1) SA = {A,A2, A3, . . . , A(s+1)2−1}

is a cyclic subgroup of G.

(b) KAs and KA(s+1)2−1 are elements of order 2 of G.

(c) (KAs)A(KAs) = As+1.

(d) The set SA is a normal subgroup of G and all its elements are {K, s+ 1}-potent

matrices.

(e) The order of G is:

• (s + 1)2 − 1 if KA = Aj for some j ∈ {1, 2, . . . , (s + 1)2 − 1} and, in this

case, the group G is commutative.

• 2((s + 1)2 − 1) if KA 6= Aj for all j ∈ {1, 2, . . . , (s + 1)2 − 1} and, in this

case, the group G is noncommutative.

(f) For every j ∈ {1, 2, . . . , (s+1)2− 1}, the element KAj of the set G \SA (when it

is nonempty) is {K, s+1}-potent if and only if s is even and one of the following

conditions {4|s, s
2 + 1|j} or {4 6 | s, s+ 2|j} holds.
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Proof. From the properties given in Lemma 2.1, it can be checked that A(s+1)2−1

is the identity element of the group G.

(a) G contains clearly a cyclic subgroup generated by the element A of order

(s+ 1)2 − 1.

(b) Using Property (h) of Lemma 2.1, one has (KAs)2 = As(s+2) = A(s+1)2−1.

Similarly, (KA(s+1)2−1)2 = A(s+1)2−1.

(c) Using the definition we get (KAs)A(KAs) = KAs+1KAs = AAs = As+1.

(d) The set SA is a subgroup of G of index 2. Then it is normal. As a direct

consequence of Property (f) of Lemma 2.1 we obtain the second part of Property (d)

since Aj are {K, s+ 1}-potent matrices for all j ∈ {1, 2, . . . , (s+ 1)2 − 1}.

(e) Case 1. There exists j ∈ {1, 2, . . . , (s + 1)2 − 1} such that KA = Aj . Then

KAi = Aj+i−1, that is, it is also one of the (s+1)2− 1 powers of A indicated in (3.1)

for all i ∈ {2, 3, . . . , (s+ 1)2 − 1}. Thus, the order of G is (s+ 1)2 − 1 and then G is

commutative.

Case 2. For every j ∈ {1, 2, . . . , (s + 1)2 − 1} one has KA 6= Aj . It is clear that

the order of G is 2((s + 1)2 − 1) because if i, j ∈ {1, 2, . . . , (s + 1)2 − 1} such that

KAi = KAj with i 6= j exist, then Ai = K2Ai = K2Aj = Aj , which is impossible.

Assume that G is commutative. Then (KA)(KAs+1) = (KAs+1)(KA), that implies

A2s+1 = A. We obtain a contradiction.

(f) Assume that G \ SA 6= ∅ and KAj ∈ G \ SA. Then the fact that KAj is

{K, s + 1}-potent implies that s is even, by Property (k) of Lemma 2.1. This same

property assures that, in this case, K(KAj)s+1K = KAj s

2
(s+4)+j . Then,

KAj is {K, s+ 1} − potent ⇐⇒ KAj s

2
(s+4)+j = KAj ⇐⇒ Aj s

2
(s+4)+j = Aj

⇐⇒ Aj s

2
(s+4)+jA(s+1)2−1−j = A(s+1)2−1 ⇐⇒ Aj s

2
(s+4) = A(s+1)2−1

and so, this is equivalent to the statement (s+1)2−1 = s(s+2) divides j s
2 (s+4). Now,

it can be checked that s(s+2)|j s
2 (s+4) is equivalent to {4|s, s

2+1|j} or {4 6 | s, s+2|j}.

In the first case, there are 2s such j and in the second one, there are s such j.

Corollary 3.2. The group G is a semidirect product of Z2 acting on Z(s+1)2−1

when G has order 2((s+ 1)2 − 1).

Proof. We consider a semidirect product of Z2 acting on Zr. Then its presentation

is in the form 〈a, b| a2 = e, br = e, aba = bm〉 where m, r are coprime. Here r =

(s+ 1)2 − 1, a = KAs, b = A, m = s+ 1.

Now, we need the following definition.
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Definition 3.3 ([7]).

(i) The dihedral group, denoted by Dm, is generated by an element a of order m

and another element b of order 2 such that b−1ab = a−1. It has order 2m.

(ii) The quasi-dihedral group, denoted by Q2m for m ≥ 4, is generated by an element

a of order 2m−1 and another element b of order 2 such that b−1ab = a2
m−2−1.

It has order 2m.

We now classify the group G defined in Theorem 3.1. It is clear that G depends

on A, K, and s. That is why, for the following result, we will denote G by Gs and

so we stress on the parameter s. We shall see a relation between the group Gs and

dihedral and quasi-dihedral groups in the following result.

Proposition 3.4. Assume that Gs has order 2((s+ 1)2 − 1). One has

(a) Gs is a dihedral group if and only if s = 1. In this case, G1 ≃ D3.

(b) Let s > 1. Then Gs is a quasi-dihedral group if and only if s = 2. In this case,

G2 ≃ Q16.

Proof. (a) If s = 1, the proof for case (a) can be deduced from the fact that Gs is

generated by the element A of order 3, the element KA of order 2, and furthermore,

the relation (KA)A(KA) = A2 holds, where A2 is the inverse of A.

Let s > 1. In this case, it is known that the group Gs has an element A of order

(s+1)2 − 1. On the other hand, we check that for any α ∈ {1, 2, . . . , (s+1)2− 1} the

element KAα has order 2 if and only if α is a multiple of s. Indeed,

A(s+1)2−1 = (KAα)2 ⇐⇒ As(s+2) = KAαKAα = Aα(s+1)Aα = Aα(s+2)

⇐⇒ s(s+ 2) divides α(s+ 2) ⇐⇒ s divides α,

and hence all the elements of order 2 of Gs have the form KAst. However, for any

element of the form KAst, where

t ∈

{

1

s
,
2

s
, . . . ,

(s+ 1)2 − 1

s

}

∩ N = {1, 2, 3, . . . , s+ 2},

the equality (KAst)A(KAst) = A(s+1)2−2 is not satisfied since

(KAst)A(KAst) = (KAst+1K)Ast = A((s+1)2−1)t+(s+1) = (A(s+1)2−1)tAs+1 = As+1.

Finally s > 1 implies that s+ 1 < (s+ 1)2 − 2, a contradiction.

(b) It is necessary to take into account the fact that the properties of Gs for s = 2

coincide with those of Q2m for m = 4. In fact, if s = 2 then Gs has an element A

of order 8 = 24−1, another element KA2 of order 2 and, moreover, by Property (c)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 24, pp. 34-44, February 2012

http://math.technion.ac.il/iic/ela



ELA

Properties of a matrix group associated to a {K, s+ 1}-potent matrix 7

of Theorem 3.1 we have (KA2)A(KA2) = A3 = A24−2−1 and therefore G2 ≃ Q24 .

Conversely, if Gs ≃ Q2m then we have 2m−1 = (s + 1)2 − 1 = s(s + 2). Thus s is a

power of 2 and s = 2, m = 4.

4. What about the group when Ak = A for k < (s + 1)2?. We can ask:

what would happen if a power k of A less than (s+1)2 and such that Ak = A existed?

If A ∈ C
n×n is a {K, s+1}-potent matrix then Property (b) of Lemma 2.1 allows

us to construct, by Theorem 3.1, the group G considering the subgroup SA of order

(s+1)2−1 when all the powers of A are different. But, it may occur that there exists

an integer k such that Ak = A with 2 ≤ k < (s+ 1)2. In this case, it is also possible

to consider the group Gs,k = {A,A2, . . . , Ak−1,KA,KA2, . . . ,KAk−1} associated to

the matrix A. Therefore, the subset Sk
A = {A,A2, . . . , Ak−1} is a (cyclic) subgroup

of the group SA and then k − 1 has to divide (s+ 1)2 − 1 = s(s+ 2).

How many groups Gs,k can we construct in this way? One only: the group

corresponding to the smallest power k such that Ak = A (otherwise, we obtain exactly

the same group Gs,k). Consequently, the only possibilities for the order of the group

are: (s+ 1)2 − 1, 2((s+ 1)2 − 1), k − 1 or 2(k − 1) (if such k exists).

For some values of s and k, more specifications on the group are given in the fol-

lowing result. In order to analyze these special cases we recall the following definition.

Definition 4.1. [4] The quaternion group, denoted by Q, is generated by three

elements a, b, c of order 4 such that a2 = b2 = c2 and bab−1 = a−1. It has order 8.

Proposition 4.2. Assuming that Gs,k has order 2(k − 1), the following state-

ments hold.

(a) Let s = 1. Then k = 2. In this case, G1,2 ≃ Z2.

(b) Let s = 2. Then one of the following statements hold:

(i) k = 2. In this case, G2,2 ≃ Z2.

(ii) k = 3. In this case, G2,3 ≃ D2.

(iii) k = 5. In this case, G2,5 ≃ D4 or G2,5 ≃ Q.

(c) Let s > 2. Then

(i) Gs,s+1 ≃ Z2s when s is prime.

(ii) Gs,s+3 ≃ Ds+2.

Proof. (a) Let s = 1. If k is an integer such that 2 ≤ k ≤ 3 and Ak = A,

it must be k = 2 because k − 1 divides 3. Thus, KAK = A2 = A and then the

group G1,2 =
{

KA, (KA)2 = A
}

is generated by the element KA of order 2. Hence,

G1,2 ≃ Z2.
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(b) Let s = 2. If k is an integer such that 2 ≤ k ≤ 8 and Ak = A, it must be

k = 2, k = 3 or k = 5 because k − 1 divides 8. We now analyze these three cases:

• k = 2: the same reasoning as in (a).

• k = 3: in this case, G2,3 = {A,A2,KA,KA2} where A and KA2 have order

2 and KA2AKA2 = A. Hence, G2,3 ≃ D2.

• k = 5: in this case, G2,5 = {A,A2, A3, A4,KA,KA2,KA3,KA4} is a non-

commutative group (for instance, A(KA2) 6= (KA2)A). Then, Proposition

6.3 in [4] assures that G2,5 ≃ D4 or G2,5 ≃ Q.

(c) Let s > 2. If k is an integer such that 2 ≤ k ≤ s(s+ 2) and Ak = A, we get

k = s+ 1 or k = s+ 3 as particular values of k because k − 1 divides s(s+ 2). Now,

we analyze these two cases:

• k = s + 1: in this case, Gs,s+1 = {A,A2, . . . , As,KA,KA2, . . . ,KAs} is

a commutative group of order 2s. Then, Corollary 6.2 in [4] assures that

Gs,s+1 ≃ Z2s.

• k = s + 3: in this case, Gs,s+3 = {A,A2, , . . . , As+2,KA,KA2, . . . ,KAs+2}

is a non-commutative group (for example, A(KAs+1) 6= (KAs+1)A). A is of

order s+ 2, KAs of order 2 and KAsAKAs = As+1. Hence, Gs,s+3 ≃ Ds+2.

Remark 4.3. If Gs,k has order 2(k − 1) then Gs,k is a semidirect product of Z2

acting on Zk−1, when k − 1, s + 1 are coprime. Its proof is similar to the proof of

Corollary 3.2 where a = KAk−1, b = A, r = k − 1, m = s+ 1. The Property (h) of

Lemma 2.1 allows us to show that KAk−1 has order 2. In fact, a2 = (KAk−1)2 =

A(k−1)(s+2) = Ak−1 = e. Moreover, aba = (KAk−1)A(KAk−1) = KAkKAk−1 =

As+1Ak−1 = As+1 = bm.

Remark 4.4. We observe that G2,5 is isomorphic to D4 or Q because there are

(up to isomorphism) exactly two distinct non-commutative groups of order 8. We will

see, in Example 2, that these two possibilities can be realized.

Remark 4.5. We observe that if s > 2 and k = s+1, then A satisfies KA = AK

since As+1 = A. Such a matrix is said to be {K}-centrosymmetric [9]. In this

case, the group associated to such a matrix A has order 2s, commutative and then

isomorphic to Z2s if s is prime.

We close this section with the following remark.

Remark 4.6. (The case s = 0). It corresponds to {K}-centrosymmetric matri-

ces. It is sometimes also possible to construct a similar group as before. Observe that

the condition A(s+1)2 = A does not give any information for s = 0. So, if we assume

that At = A for some positive integer t (where Al 6= Am for all l,m < t, l 6= m),
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then G = {A,A2, . . . , At−1,KA,KA2, . . . ,KAt−1} is a group with the same features

mentioned before.

However, when the assumption is not fulfilled, since the powers of A cannot be

the identity element, the group does not exist. An example will clarify this situation.

For the matrices

A =





1 0 1

0 1 0

1 0 1



 and K =





0 0 1

0 1 0

1 0 0



 ,

it is impossible to construct such a group because

Am+1 =





2m 0 2m

0 1 0

2m 0 2m



 for every m ≥ 1.

5. Examples. Now we present some more examples illustrating the results we

have obtained.

Example 5.1. Let

A =





0 0 −i

i 0 0

0 1 0



 and K =





1 0 0

0 0 1

0 1 0



 .

A is {K, 2}-potent as the authors showed in [5]. G = {A,A2, A3,KA,KA2,KA3} is

a group of order 6 because A3 = I3 and, in this case, G ≃ D3 by Proposition 3.4.

Example 5.2.

(1) Let

A =

[

0 1

−1 0

]

and K =

[

1 0

0 −1

]

.

A is {K, 3}-potent and A2 = −I2. This example shows a matrix of the class

considered in Section 4. For this matrix, A5 = A holds and so it is possible to

construct a group with similar features as in Proposition 4.2. Since s = 2, k = 5,

G2,5 has order 4 or 8. In this example, the group is G2,5 = {±I2,±A,±K,±KA}

and, in this case, A is an element of order 4, KA2 = −K is an element of order

2, and (KA2)A(KA2) = A3. So G2,5 is isomorphic to D4.

(2) Let A be a {K, 3}-potent matrix given by

A =
1

2









0 0 1 + i 1− i

0 0 1− i 1 + i

1 + i 1− i 0 0

1− i 1 + i 0 0









and K =
1

8









9 −1 3 −3

−1 9 −3 3

−3 3 −1 9

3 −3 9 −1









.
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A4 = I4 and the associated matrix group (of order 8) is

G2,5 = {A,A2, A3, I4,KA,KA2,KA3,K}.

G2,5 is generated by the three elements A2,KA,KA3 of order 4 such that (A2)2 =

(KA)2 = (KA3)2 and (KA)(A2)(KA)3 = A2. So G2,5 is isomorphic to Q.

Example 5.3. Let

A =

[ √
5−1
2 1

−1 0

]

and K =

[

1
√
5−1
2

0 −1

]

.

A is {K, 4}-potent and A5 = I2. The associated group (of order 10) is

G = {A,A2, A3, A4, I2,KA,KA2,KA3,KA4,K}.

G is generated by A of order 5, KA2 of order 2, and (KA2)A(KA2) = A4. Then G

is isomorphic to D5.

Example 5.4. Let A be a {K, 5}-potent matrix given by

A =

[

−1 1

−1 0

]

and K =

[

1 −1

0 −1

]

.

The associated group (of order 6) is G = {A,A2, I2,KA,KA2,K} since A3 = I2. As

G is generated by A of order 3, KA2 of order 2 and (KA2)A(KA2) = A2, then G is

isomorphic to D3.
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