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Living cells can be modelled by successively imposing known constraints that limit their behaviour, such as mass 
balances, thermodynamic laws or enzyme capacities. The resulting constraint-based models enclose all the 
functional states that the modelled cells may exhibit. Then, predictions can be obtained from the models in two 
main ways: adding experimental data to determine the state of  cells at given conditions (MFA) or invoking an 
assumption of  evolved optimal behaviour (FBA). Both MFA and FBA predictions are typically performed at 
steady state. However, it is easy to take extracellular dynamics into account. This work explores the benefits of  
using possibility theory to get these dynamic predictions. It will be shown that the possibilistic methods (a) 
provide rich estimates for time-varying fluxes and metabolite concentrations, (b) account for uncertainty and 
data scarcity, and (c) give predictions relaxing the optimality assumption of  FBA. On the other hand, these 
methods could serve as basis for monitoring and fault detection systems in industrial bioprocesses.

Highlights

- Possibility theory is used to get dynamic estimates of  fluxes and metabolites.
- The approach handles measurements errors, uncertainty, and data scarcity. 

- Predictions can be obtained relaxing the assumption of  cells evolved optimality.
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Abbreviations

MFA: 		 	 	 Metabolic Flux Analysis. Reviewed in (Llaneras, 2008).
FBA: 		 	 	 Flux Balance Analysis. Reviewed in (Palsson, 2006).

Poss-MFA:	  	 	 Possibilistic approach to MFA. Introduced in (Llaneras, 2009).
Dynamic Poss-MFA:	 Extension of  Poss-MFA. Introduced in this paper.
Dynamic Poss-FBA:	 Possibilistic approach to FBA. Introduced in this paper.

MOC:   Model-based Constraints.

MEC:   Measurement-based Constraints.

CAC:    Capacity-based Constraints.
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1. Introduction

To facilitate the study of  biological systems under a system-level approach, constraint-based 
metabolic models have recently been assembled (Llaneras, 2008; Palsson, 2006). The cell 
metabolism can be viewed as a chemical “factory” that converts available raw materials into 
energy as well as building blocks needed to produce biological structures, maintain cells alive, 
and carry out various cellular functions. This process can be represented with a metabolic 
network that encodes the biochemical reactions taking place within the cells—the nodes 
represent the involved metabolites and the edges the reaction rates or metabolic fluxes; 
internal fluxes correspond to reactions within cells and exchange fluxes to exchanges of  
compounds between the cells and their environment (uptake of  substrates and formation of  
products). The set of  flux values at a given moment defines the metabolic state of  the cells by 
representing which reactions are occurring and at which rate. An example of  a metabolic 
network is given in figure 1.

These metabolic networks can be relatively complex and difficult to model. In principle, one 
could consider all the mechanisms operating in the metabolism, and this will lead to detailed 
quantitative predictions on cellular dynamics. However, this approach is difficult due to the 
lack of  knowledge on the intracellular reactions and its parameters. As an alternative, the so-
called constraint-based models impose mass balances, but disregard the dynamics of  the (fast) 
intracellular reactions, and assume that most internal metabolites rapidly reach their steady-
state. This way the state of  the cells is represented without any information on the kinetics of  
the reactions. Cells are also subject to other constraints that limit their behaviour, such us 
thermodynamics or enzyme capacities. By assembling a set of  constraints into a model, it is 
possible to determine which functional states can and cannot be achieved by a cell.

Constraint-based models are being used with different purposes (Llaneras, 2008), but this 
paper is focused on methods to estimate and predict cellular behaviour. We consider two main 
approaches to this problem: (a) metabolic flux analysis (MFA), which considers experimental 
data to perform estimations (Heijden, 1994), and  (b)  flux balance analysis (FBA), which 
assumes an evolved optimality of  cells for the same purpose (Edwards, 2002). These 
predictions are typically static, aimed to study cells at a state of  particular interest; however, 
several works taking extracellular dynamics into account can be found in the literature both in 
the context of  MFA (Herwig, 2002; Takiguchi, 1997; Henry, 2007) and FBA (Mahadevan, 
2002; Hjersted, 2009). 

In this paper we extend the possibilistic framework introduced in (Llaneras, 2009) to address 
MFA and FBA considering extracellular dynamics. The paper is organised as follows: 
preliminaries on extracellular dynamics and possibility theory are given in section 2. In 
section 3.1 Possibilistic MFA is extended to get dynamic (time-varying) estimations of  fluxes 
and metabolite concentrations; in section 3.2 it is shown how to formulate a FBA problem in 
the possibilistic framework. The methods described in section 3 are illustrated with two 
experimental case studies in section 4. Finally, some conclusions are withdrawn.



2. Preliminaries

2.1 Dynamics and constraint-based models

Let us start formulating a conventional constraint-based model. Consider a population of  
cells in an aqueous medium as environment. Given a metabolic network of  the cells to be 
modelled (see figure 1 for an example), mass balances around the intracellular metabolites can 
be represented as follows:

dc
dt

= N ⋅v − µx ⋅c (1)

where c is the m-dimensional vector of  intracellular-metabolite concentrations, v the n-
dimensional vector of  fluxes through each reaction, µx is the specific growth rate of  biomass 
cells, and N is the stoichiometric matrix linking fluxes and internal metabolites.

Typically, the internal metabolites are assumed to rapidly reach their steady-state, thus 
avoiding to consider the rarely known reaction kinetics. The dilution term µx⋅c is also often 
neglected. This way equation (1) turns into (2a), the so-called stoichiometric equation 
(Stephanopoulos, 1990). Other constraints can then be incorporated, such as the 
irreversibility of  reactions. These can be represented by a set of  inequalities (2b), where D is a 
diagonal matrix with Dii = 1 if  the flux i is irreversible (Dii = 0 otherwise). This leads to the 
constraint-based models typically used to analyse the fluxes at given cellular steady-state:

MOCss =
0 = N ⋅v
0 ≤ D ⋅v

⎧
⎨
⎩

(2a)

(2b)

At this point one may want to account for the dynamics of  the extracellular metabolites, i.e. 
those substrates and products that are exchanged between the cells and their environment. 
Mass balances around the extracellular metabolites can be established as follows:

de
dt

= Ne ⋅v −D ⋅e + Fe (3)

where e denotes the vector of  extracellular-metabolites concentration, D is the dilution rate 
(inflow per volume), Fe is the net inflow/outflow of  extracellular metabolites into the 
environment, and Ne is a selection matrix linking each metabolite e with the flux in v that 
represents its uptake or production rate. Without loss of  generality, each extracellular 
metabolite in e is represented with two nodes, one intra- and one extracellular, so there is only 
one flux in v accounting for its total uptake or consumption. Biomass is also represented as an 
external metabolite and its synthesis with one flux in v.

In summary, a constraint-based model considering the extracellular dynamics can be 
formulated with equations (2-3). This is the type of  models we will use in section 3. Similar 
formulations can be found in the literature in the context of  macroscopic models (Provost, 
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2004; Haag, 2005; Bastin, 2007) and also in the context of  MFA (Herwig, 2002; Takiguchi, 
1997; Henry, 2007) and FBA (Mahadevan, 2002; Hjersted, 2009).

2.2 Possibility theory and MFA

In a recent work we introduced Poss-MFA as a possibilistic framework to perform metabolic 
flux estimations using constraint-based models (Llaneras et al., 2009). The framework exploits  
the notion of  “possibilistic constraint satisfaction problems”, which was introduced in 
(Dubois, 1996). Similar optimization approaches to logic reasoning were previously explored 
in (Sala, 2001; Sala, 2008). The framework is based on two ideas: (1) represent knowledge 
with constraints satisfied to a certain degree, thus transforming the feasibility of  a potential 
solution into a gradual notion of  “possibility” that accounts for uncertainty, and (2) use 
computationally efficient optimisation-based methods to query for the “most possible” 
solutions. 

This framework provides a simple and powerful way to deal with uncertainty both in the 
measurements and the model (e.g., imprecision and lack of  knowledge), which is a typical 
difficulty in flux estimation problems. Herein we summarize the formulation of  Poss-MFA, 
but further details can be found in (Llaneras et al., 2009; Llaneras, 2011).

Constraints: model and measurements. Let us start considering the constraints 
conforming the model (MOC) that were given in equation (2). Then, we incorporate 

measurements of  (some) extracellular fluxes as additional linear constraints, the 
measurement-based constraints (MEC): 

MEC =

vm = w + ε − µ + ε f − µ f

0 ≤ ε, µ
0 ≤ ε f ≤ ε f

M

0 ≤ µ f ≤ µ f
M

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

(4)

where vm is the vector of  actual fluxes for each measured flux, and w is the vector of  
measured values. Both differ due to errors and imprecision. This uncertainty will be 
represented by the slack variables ε, μ, εf and μf. The slack variables ε and εf represent negative 
errors in the measurement w, whereas μ and μf represent positive ones. As will be explained 
below, ε and μ are “penalised” errors in a cost index (5), to assign a decreasing possibility to 
increasing errors, while εf and μf will be non-penalised, but bounded ones, thus defining a 
band of  fully possible vm values around the measured w.

Possibility. Let us denote each candidate solution of  (2)-(4) as δ={v, ε, μ, εf, μf} in some 
decision space ∆. The basic building block of  possibility theory is a user-defined possibility 
distribution π(δ):∆→[0,1]. This function assigns a possibility for each solution ranging 
between impossible (π=0) and fully possible (π=1). Among different possible choices, a simple 
yet sensible way to build the function is introducing a linear cost index J to penalise large 



deviations between actual fluxes and their measured values:

J δ( ) =α ·ε + β·µ (5)

and define the possibility of  each solution δ as follows:

π (δ ) = e− J(δ ) δ ∈Δ (6)

This way equations (4-6) can be interpreted as representing the statement: «given a measured 
value w, the assertion vm=w is fully possible, and the more vm and w differ, the less possible such 
situation is». 

The actual possibility for each value of  vm depends on how the user defines the “sensor” 
accuracy coefficients in (4) and (5): the maximum bounds for εfM and μfM define an interval of  
fully possible values (π=1), and the possibility of  vm being out of  this interval depends on the 
user-selected weights α and β in (5). Notice that measurements uncertainty can be non-
symmetric, and that very complex descriptions can be achieved by adding slack variables.

Remark. Although there are alternatives,  possibilistic conjunction in equation (6) is defined 
under a non-interactivity assumption, in analogy to statistical independence (Llaneras et al., 
2009). Under this assumption the joint possibility of  two variables δ1,δ2 ∈ ∆ can be expressed 
as the product of  two univariate ones: π(δ1,δ2)=π(δ1)π(δ2), with J(δ1,δ2)=J(δ1)+J(δ2). This implies  
that the joint possibility of  two non-fully possible event is lower than their independent 
possibilities. Consider this example, if  π(v4=3) is 0.9 and π(v7=2) is 0.5, the joint possibility 
π(v4=3∩v7=2) is 0.45.

Poss-MFA Steady-State flux estimation.  The simplest flux estimate vmp is given by the 
maximum possibility (minimum cost) solution δmp={vmp, εmp, μmp, εf,mp, μf,mp} to the constraint 
satisfaction problem (2)-(4), which can be computed efficiently solving one linear 
programming problem (LP):

Jmin = min
ε ,µ,v

J s.t. 
MOC

MEC

⎧
⎨
⎩

(7)

Notice that point-wise estimates would be unreliable if  multiple solutions were reasonably 
possible, so it is advisable to get interval estimates and distributions. Interval estimates for 
desired marginal (π) and conditional or a posteriori (γ) possibilities can be obtained, again, 
solving efficient LP optimisations (Llaneras, 2011). 

For example, the interval of  values with a conditional possibility higher than γ for a given flux 
is obtained solving three LP optimisations; first problem (7), and once Jmin is available, the one 
below (lower bound) and the optimisation replacing minimum by maximum (upper bound):

5|  
 



vi,γ
m = min

ε ,µ,v
vi s.t. 

MOC∩MEC

J − Jmin < logγ
⎧
⎨
⎩⎪

(8)

These possibilistic intervals have a similar interpretation to confidence intervals (credible 
intervals) in Bayesian statistics. In practice, getting estimates with conditional possibilities γ is 
equivalent to normalise the marginal possibility distributions to a maximum equal to one. In 
this paper we typically compute the interval of  most possible values (γ=1) and other less 
possible intervals (γ=0.8, 0.5 and 0.1) to capture uncertainty.

Pos-MFA to evaluate consistency. Poss-MFA can also be used to evaluate the degree of  
consistency between a model (MOC) and some experimental measurements (MEC). Simply 

notice that the most “possible” solution (7) has an associated possibility value, 

π mp = exp(−Jmin )  that grades consistency. Possibility equal to one must be interpreted as 

complete agreement between the model and the measurements, whereas lower values imply 
that there is certain degree of  error in measurements, the model or both. The evaluation of  
consistency can be used to (a) conciliate a set of  experimental measurements, (b) serve as basis  
for process monitoring and fault detection systems, or (c) validate a constraint-based model 
(Llaneras, 2011; Llaneras et al. 2009) and (Tortajada et al., 2010).

3 Theory

3.1 Dynamic Possibilistic MFA

In this section we extend the Poss-MFA framework to take extracellular dynamics into 
account.

Imposing constraints. Let us consider a batch process (i.e., with no inflow nor outflow, 
and thus with Fe = D = 0) during time [0, T], and assume measurements are sampled with 
some given sampling rate. The first step is to define the model-based constraints at each 
successive sampling instant k:

MOC k( ) =
  

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 

0 = N ⋅v(k) (9a)

MOC k( ) =
  

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 

D·v(k) ≥ 0 (9b)

MOC k( ) =
  

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 e(k)− e(k −1)
ΔT

= Ne ⋅v(k) (9c)
MOC k( ) =

  

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 

 e(k) ≥ 0 (9d)

Equation (9a) and (9b) represent the mass balances around the internal metabolites and the 
reactions irreversibility, and are equivalent to the equation (2) but accounting for successive 
time instants. Equation (9c) represents the mass balance of  extracellular metabolites (3) using 
a backward approximation of  the derivatives for simplicity. Adding these mass balances 



implies that the concentrations of  extracellular metabolites e(k) are now variables of  the 
problem. Equation (9d) constrains the concentrations to be positive. Hereinafter, we denote 
the set of  system variables as var(k), with var(k)={v(k), e(k)}.

Once the model constraints have been defined, the second step will be to incorporate 
measurements at successive sampling instants as additional constraints, thus defining the 
measurement-based constraints, MEC(k): 

MEC k( ) =
  

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 

em (k) = fm (k)+ ε(k)− µ(k)+ ε f (k)− µ f (k) (10a)

MEC k( ) =
  

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 
ε(k), µ(k) ≥ 0 (10b)

MEC k( ) =
  

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 
0 ≤ ε f (k) ≤ ε f

M (k) (10c)
MEC k( ) =

  

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 

0 ≤ µf (k) ≤ µf
M (k) (10d)

where vector em(k) represents the actual (unknown) metabolite concentrations and fm(k) their 
measured values. Notice that initial conditions e(0) should be given for non-measured 
metabolites.

Following the ideas in the preliminaries section, we define a cost index J(k) for each time 
instant k,

J δ (k)( ) =α(k)·ε1(k)+ β(k)·µ1(k) (11)

and aggregate them by non-interactive conjunction defining a total cost index,

JT = J(k)
k=0

t

∑ (12)

where α(k) and ß(k) are row vectors of  user-defined coefficients that represent sensor accuracy 
associated with each measurement at each time instant (together with the defined bounds for 
the slack variables, ε f

M (k) and µ f
M (k) ).

Estimation of  fluxes and metabolites. Once that the constraint-based problem has been 
formulated, the fluxes and the metabolite concentrations can be estimated along the process 
duration. The straightforward approach to the problem is to consider all the operating 
constraints at each time instant simultaneously, thus taking into account all the available 
knowledge to get each estimate. Although this approach could be computationally intense if  
the sampling rate needs to be high, this is not the case in most situations (the issue is discussed 
below).

The simplest estimate is the solution with the highest possibility value of  the defined 
constraint satisfaction problem (9-10), which is obtained solving an LP optimisation problem:
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JT
min = min

ε (k ),µ(k ),v(k )
JT s.t. 

MOC(k) ∀k
MEC(k) ∀k

⎧
⎨
⎪

⎩⎪
(13)

The solution {varmp(k)}k=1...t contains the “most possible” value for each flux and metabolite 
at each time instant. However, as explained above, interval estimates should be obtained to 
provide more reliable results in case multiple solutions are reasonably possible. For instance, to 
compute the interval of  values with conditional possibility higher than γ for a flux (metabolite) 

at a given time, [ vari,γ
m (k) , vari,γ

M (k) ] we solve three LP optimisations; first we solve (13), and 

subsequently the following problem (to get the lower bound) and the same one replacing 
minimum by maximum (to get the upper bound):

vari,γ
m (k) = min vari (k)

  s.t.  
MOC(k) ∀k
MEC(k) ∀k

JT
min − logπ (varmp ) < − logγ

⎧

⎨
⎪⎪

⎩
⎪
⎪

(14)

These possibilistic intervals provide a rich and concise estimation. Remember also that the 
whole possibility distribution of  a particular variable can be reconstructed obtaining the 
intervals for a grid of  possibilities, to say, γ =1, 0.9, 0.8, ... 0.1 (Llaneras et al., 2009). Notice 
also that (14) can be used to estimate both metabolic fluxes v(k), and extracellular metabolite 
concentrations e(k). This means that it is possible to estimate the evolution of  non-measured 
metabolites, such as the concentration of  a product of  interest or a by-product. An example 
will be given in a case study below.

Remark about computational efficiency. One feature of  the Possibilistic framework is that the 
estimations are cast as efficient linear optimisation problems (LP). The most possible solution 
(13) is obtained solving just one LP, and each interval estimate (14) is obtained solving 2∙t 
extra LP problems. There are widely-known and efficient software tools to solve these 
problems —with thousands of  variables and constraints—, so the method is in principle 
suitable for large-scale models. However, as it has been described, the procedure could 
become computationally expensive if  the extracellular metabolites needed to be measured 
with a high sampling rate, because the number of  constraints grows with t. This situation will 
be rare because extracellular dynamics are typically slow. Anyway, if  this is the case, the 
computational cost of  the estimation procedure can be reduced adopting «finite-window» 
approaches (details are straightforward, omitted for brevity). The benefit of  this «finite-
window» formulation is that the possibilistic estimates are obtained solving LP problems that 
do not grow with the sampling rate. The price to pay is that, since less constraints are 
considered at each time, the solution space will eventually become larger and the intervals will 
be wider than those given by using a «whole-window» (14). This means that the “finite-
window” approach may lead to less insight, although in no case it will lead to results deviated 
from those provided by the «whole-window» approach. Most of  the works in the literature 
that account for extracellular dynamics follow approaches that can be seen as «finite-window» 



with windows of  size one (Herwig, 2002; Takiguchi, 1997; Henry, 2007; Mahadevan, 2002; 
Hjersted, 2009). However, using windows of  convenient size, the users could chose the trade-
off  between computational efficiency and the more precise estimates of  the «whole-window».

3.2. Dynamic Possibilistic FBA

Flux balance analysis (FBA) is a methodology to get predictions from a constraint-based 
model invoking an assumption of  optimal cells behaviour (Edwards et al. 2002; Palsson, 2006). 
Basically, one particular cellular state among those that are feasible is promoted based on the 
assumption that cells have evolved to be optimal, and that their “objective” is known and can 
be expressed in convenient mathematical terms.

In this work we consider the particular case where extracellular dynamics are accounted for, 
as shown in (9), and FBA is used to predict fluxes and metabolite concentrations during a 
cultivation process (Mahadevan, 2002; Hjersted, 2009). The novelty of  the approach is that 
possibility theory will be used. This provides a simple way to relax the optimality assumption 
by defining optimality in a gradual way: an optimal state is considered fully possible, and the 
more a state differs from it, the less possible such situation is considered. This allows, for 
example, to get dynamic predictions that capture alternate optima, and allow for a certain 
degree of  sub-optimality. 

Imposing constraints. Let us consider the same model constraints, MOC(k) at each time 
instant k, as done in (9). Measurements, however, are not incorporated. Instead, a few uptake 
fluxes are typically constrained based on (a) known capacities, (b) a kinetic expression or (c) 
their availability in the media. These constraints will be denoted as capacity-based 
constraints, CAC(k):

CAC(k) = v
u

m (k) ≥ vu (k) ≥ v u

M (16)

A hypothetical cells objective. FBA predictions are obtained by invoking an optimal use 
of  resources, and therefore the cells objective must be defined (e.g., maximum growth). 
Typically the objective is expressed by means of  a linear cost index Z(k):

Z(k) = d ⋅v(k) (17)

At this point FBA predictions at each time k could be obtained by maximising Z(k) subject to 
the operating constraints. However, some refinements can be easily incorporated using the 
possibilistic framework.

Invoke optimality in a gradual way. To account for optimality in a gradual way, we will 
define the possibility of  each candidate solution in terms of  optimality. First, the slack variable 
ϕ(k) is introduced to represent sub-optimality as function of  Z(k) and its maximum Zmax(k),

φ(k) = Zmax (k)− Z(k)
Zmax (k)

,     0 ≤ φ(k) ≤1 (19)
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Possibility is then defined as a function of  optimality using a cost index Jopt,

Jopt (k) =α s ⋅φ(k) (20a)

π (k) = e− Jopt (k )    (20b)

where αs is the user-defined weight that links possibility and optimality. 

Equation (20) implies that only cellular states var(k) maximising Z(k) are fully possible (even if  
multiple optima may exist); and the more a state differs from the optimum, the less possible 
such situation is considered. The parameter αs allows to define possibility as a “degree of  
belief ”, depending on the credibility that the user associates with different levels of  sub-
optimality. For instance, if  the experimental evidence shows that the strain being modelled 
typically exhibits high growth optimality —for example—, the user should choose the 
parameter to strongly penalise sub-optimal states. Furthermore, the flexibility to define 
possibility as function of  optimality —but not necessarily equivalent— makes it possible to 
consider other sources of  uncertainty (e.g., parameter variability). Sometimes the degree of  
optimality to be shown by the modelled cells is not well-known. In these cases one could link 
possibility and optimality in an arbitrary but simply way: e.g. choosing αs = –2∙log(0.5), 
possibility π=0.5 is assigned to half  optimal states, where Z(k)=0.5∙Zmax(k). This way, 
possibility roughly indicates the degree of  sub-optimality.

Getting dynamic predictions. Once optimality has been defined within the framework, 
predictions with desired sub-optimality (possibility) π can be obtained successively at each k 
following a two-step procedure.

At each time instant k, the first step provides the value of  Zmax(k), as follows:

Step 1 Zmax (k) = max  Z(k)    

s.t.

MOC(i) 1... k
CAC(i) 1... k

φ(i) = Zmax (i)− Z(i)
Zmax (i)

1... (k -1)

α s ⋅φ(i) < logπ 1... (k -1)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

(21)

The last three constraints guarantee that the optimal solution at k does not violate the 
optimality π at previous time instants {1 ... k-1}.

In the second step, Zmax(k) is used as reference to get the sub-optimal predictions as 
possibilistic intervals, [ vari,γ

m (k) , vari,γ
M (k) ], solving a pair of  LP optimisation problems:



Step 2 vari,γ
m (k) = min vari (k)

s.t.

MOC(i) 1... k
CAC(i) 1... k

Z(k) = Zmax (i) ⋅ 1−φ(i)( ) 1... k
0 ≤ φ(i) ≤1 1... k

α s ⋅φ(i) < logπ 1... k

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

(22)

  Bound vari,γ
M(k)  is obtained by replacing minimum by maximum.

The two-step procedure can be repeated for different degrees of  possibility thus getting a rich 
prediction that considers sub-optimality and captures alternate optima.
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4 Cases studies

Two experimental cases studies will be presented to illustrate the methods described so far. In 
section 4.1 dynamic Poss-MFA will be applied to monitor a CHO cells culture; in section 4.2 
it will be applied to an E. coli batch process.

4.1 Dynamic Poss-MFA: monitoring of a CHO cells culture

Preparation. As first example we consider a cultivation of  Chinese Hamster Ovary cells 
(CHO cells) in batch mode. A metabolic network that describes the metabolism concerned 
with the two main energetic nutrients, glucose and glutamine has been taken from (Bastin, 
2007). The network, which is depicted in Figure 1, includes 31 reactions (24 internal ones, six 
exchanges and the biomass growth) and 25 metabolites (listed in Tables 1 and 2). There are 
no redundant mass balances, so the network has six degrees of  freedom. The corresponding 
25×31 stoichiometric matrix N is given in Table 3. The vector of  reactions irreversibility, 
which defines the diagonal of  the matrix D, is also given in Table 3.  With matrices N and D 
the constraint-based model (5) is completely defined.

Measurements of  concentration for glucose (G), alanine (A), lactate (L), glutamine (Q) and 
ammonia (NH4), and biomass were taken from (Provost, 2006). Data were collected using a 
sample rate of  24 h. The uncertainty of  the measurements is represented in possibilistic 
terms, as follows:

(i) Full possibility (π=1) is assigned to values with less than 5% of  deviation.

(ii) Larger deviations are penalised, so values with a deviation equal to 20% have a 
possibility of  π=0.1, and those with a deviation equal to 10% have a π≈0.5.

(iii) Symmetric uncertainty is considered (α=β).
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M
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M
m
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alanine glucose

Lactate
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15
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1
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NH4

0

4

0

60

Figure 2. Measured and estimated metabolite concentrations  during a cultivation of CHO cells. 

Measurements are denoted with black dots. The concentrations  estimated with Poss-MFA for three 
degrees of  possibility (π=1, 0.5, 0.15) are denoted with grey and blue areas.



To achieve this representation we must choose particular bounds εfM(k) and μfM(k) and weights 
α(k) and β(k) for each measurement; condition (i) implies that εfM(k)=μfM(k) =0.05w(k), whereas 
(ii) defines α(k), noticing that 0.2w(k)=μ20%+μfM(k), then α(k)=-log(0.1)/(0.2-0.05)/w(k). 

Dynamic Poss-MFA estimation of  fluxes and metabolites. Dynamic Poss-MFA was 
applied to estimate the metabolic fluxes and the metabolite concentrations along the 
cultivation process (0-192h). We used (14) to compute three possibilistic interval (γ=1, 0.5, 
0.15) for each variable at each time instant. This implies solving 2∙3∙9 LP problems (2∙p∙t) for 
each variable. 

13|  
 

0

5

−20

−10

0

−5

0

5

−5

0

5

0

10

−5
0
5

10

−0.4

0

0.6

0

5

0

5

0

5

0

4

8

0

4

8

0

4

8

0

1

1.5

0

0.8

0

0.5

0

0.5

1

0

0.2

0.4

0

10

20

0

10

20

0

4

8

0

10

0

4

8

0

4

8

0

5

−5
0

10

−0.4

0

0.6

0

1

0

1
1.5

10

20

1

2

0h 120h 192h 0h 120h 192h 0h 120h 192h

0h 120h 192h

m
M
/h

m
M
/h

m
M
/h

m
M
/h

m
M
/h

m
M
/h

m
M
/h

m
M
/h

v1

v5

v9

v13

v17

v21

v25

v29

Figure 3. Estimated fluxes during a cultivation of CHO cells. The fluxes estimated with dy-
namic Poss-MFA for three degrees of possibility (π=1, 0.5, 0.15)  are depicted in grey areas. The 

fluxes were also estimated with the «finite-window» approach for same three degrees  of possi-
bility;  the oversize with respect to the «whole-window» approach is  represented with red areas. 
The black dots represent the flux values estimated in Bastin (2007).



The evolution of  the metabolite concentrations is depicted in Figure 2. The results show how 
it is possible to estimate non-measured metabolites over time, such as CO2. Notice that 
measured metabolites can also be estimated and improved, because considering them all 
together may reduce their uncertainty and correct errors if  they are not completely consistent 
(although this was not the case in the example).

The estimated fluxes are depicted in Figure 3. This includes uptake or production rates for 
the extracellular metabolites (e.g., v25 or v26) and internal fluxes (e.g., v4 or v12). It can be 
observed that some fluxes are estimated with precision (v5 or v7), whereas other estimates are 
wider (v8 or v12). Notice, however, that even the wider ones can be valuable: for instance, the 
estimates of   v12 are wide, but they clearly indicate that reaction 12 is always active during 
exponential growth (0-120 h). For comparison purpose we consider the estimates in (Bastin, 
2007) for all the internal fluxes (v1 to v24) at the growth phase (around time 72h). These are 
shown at Figure 3. The results are clearly similar to those obtained by us, although his 
intervals are narrower because (a) they assume that all reactions are irreversible during the 
growth phase, and (b) they do not consider uncertainty in the measurements (see, for example, 
the difference in v1, the glucose uptake). Another possible flux estimation from the same data 
is given in (Provost, 2006b), which seems also compatible with our results and those of  Bastin, 
even if  the model used by Provost has some slight modifications.

Finally, we repeated the estimation using the «finite-window» approach described in section 
3.1. It can be observed in figure 3 that the estimates are wider, as expected, although in this 
particular example the oversize is reasonably small. The oversize of  the estimated areas (one 
per variable and degree of  possibility) compared with those obtained with a «whole-window» 
approach is on average a 3.2% for fluxes (ranging from 0% to 12.4%) and a 4.3% for 
metabolites (ranging from 0% to 7.8%). 

4.2 Dynamic Poss-FBA: predicting E. coli batch growth

Preparation. Finally we will illustrate the kind of  results provided by dynamic Poss-FBA 
with an example of  diauxic growth of  E. coli on glucose and acetate. The example has been 
taken from Mahadevan et al. (2002). In that work the authors selected four pathways from a 
genome-scale reconstruction of  E. coli and used them to define a simplified metabolic network 
with three extracellular metabolites, glucose (G), acetate (A) and oxygen (O), and biomass (x). 

The four macro-reactions are the following:

v1 :
v2 :
v3 :
v4 :

39.43 A + 35 O2 →  x
9.46 G + 12.92 O2 →  x
9.84 G + 12.73 O2 →  1.24 A + x

19.23 G →  12.12 A + x

(23)

A constraint-based model accounting for these metabolites and biomass can be defined with 
the constraints MOC(k) and CAC(k). Let us consider a batch of  10 hours, divided in 21 
intervals, so k = [1, 2,..., 21]. The reaction rates for each macro-reaction at each time instant 



are represented with the vector  v(k)=(v1(k), v2(k), v3(k), v4(k))T. The first constraints in MOC(k) 

are the mass balances around extracellular species, which are the following:

G(k)−G(k −1)
ΔT

= 0 −9.46 −9.84 −19.23( ) ⋅v(k)

A(k)− A(k −1)
ΔT

= −39.43 0 1.24 12.12( ) ⋅v(k)

O2(k)−O2(k −1)
ΔT

= −35 −12.92 −12.73 0( ) ⋅v(k)+ kLa 0.21−O2(k −1)( )

x(k)− x(k −1)
ΔT

= 1 1 1 1( ) ⋅v(k)

(24)

where G, A and O denote the metabolite concentrations (mM), and x the biomass 
concentration (g/L). The mass transfer coefficient for oxygen (kLa) is 7.5 h-1 accordingly to 
(Edwards et al., 2001). The oxygen concentration in the gas phase is assumed to be a constant 
and equal to 0.21 mM. 

Constraints are added to define the fluxes as irreversible and impose a positiveness condition 
to the metabolite concentrations:

D·v(k) ≥ 0 (25a)

 e(k) ≥ 0,  x(k) ≥ 0 (25b)

Then we define constraints CAC(k) to bind the glucose uptake with measured values of  
glucose concentration—notice that similar results were obtained when the uptake was 
modelled with Michaelis-Menten kinetics:

G(k)−G(k −1)
ΔT

=
Gm(k)−Gm(k −1)

ΔT
(26)

At this point the constraints operating at each time instant have been defined, MOC(k) 
constraints are defined with (24) and (25), and CAC(k) constraints with (26). The last step is to 
define the optimality criteria. According to Mahadevan et al. (2002), we assume that the cells’ 
objective is maximization of  growth and define the objective function as follows:

Z(k) = 1 1 1 1( ) ⋅v(k) (27)

In order to analyze the degree of  (growth) sub-optimality exhibited by the modelled cells, the 
parameter in (20) is defined as αs = –2∙log(0.5), so that possibility is π=0.5 when the biomass 
growth is 50% of  the maximum feasible at time k. We will compute interval predictions for 
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possibilities {π=0.95, 0.8, 0.5}, thus capturing “practically” alternate-optimal trends, near 
optimal, and half  optimal ones.

Dynamic Poss-FBA predictions. Finally we applied the two-step procedure described 
above (21-22) to get dynamic predictions for all the variables (fluxes and metabolites) and for 
three degrees of  optimality (π=0.95, 0.8, 0.5). The results are depicted in Figures 4 and 5.

It can be observed that Poss-FBA detects alternative optima. It provides alternative 
predictions for v2 and v3 (Figure 5) even if  only a slight sub-optimality is allowed (π=0.95). 
This is indeed sensible because these pathways have similar yields (i.e., they are nearly 
“exchangeable” in terms of  biomass growth). This could indicate that both pathways can be 
efficiently used by the organism, or more likely, that the selection of  one of  them depends on 
phenomena not represented by the model (e.g., the choice depends on a secondary objective 
or its regulated by an environmental condition different from substrate availability). The 
results in Figure 4 also show that considering sub-optimality gives a richer prediction and 
better agreement with the actual concentrations. The cells behaviour can be reasonably 
captured with the simple model considered here, even if  clearly the assumption of  
“maximisation of  growth” is not perfect (during most of  the batch the growth rate is only 
between 50% and 80% of  the maximum).

The results show how considering sub-optimality and alternate optima provide an indication 
of  the uncertainty of  each prediction. For example, the assumption of  “maximisation of  
growth” provides a more reliable prediction for biomass than for oxygen or acetate, for which 
wider ranges of  values are reasonably possible. In summary, by grading optimality Poss-FBA 
indicates in a explicit way how dependent is each prediction on the underlying optimality 
assumption, which can be understood as a special type of  model uncertainty.

5. Discussion

This paper has extended the possibilistic framework (Llaneras et al., 2009) to get predictions 
from a constraint-based model accounting for extracellular dynamics. The two main 
approaches to get these predictions have been addressed: metabolic flux analysis (MFA), 
which incorporates experimental data to estimate the state of  cells at given conditions, and 
flux balance analysis (FBA), which assumes evolved optimality of  cells to predict their 
behaviour. 

Features of  Dynamic Possibilistic FBA. In the context of  FBA we have shown that the 
possibilistic approach is a simple way to get rich predictions, both for fluxes and external 
metabolites. The novelty of  dynamic Poss-FBA is that cells optimality assumption is 
incorporated in a relaxed or “softened” manner,  so that the method gives not only a set of  
predicted values, but also an indication of  how dependent each of  these predictions is on the 
underlying assumption. Although there are other methods to do the same, Poss-FBA is a 
simple way to consider sub-optimality and capture alternate optima. Finally, by defining 
possibility as a “degree of  belief ”, we provide a theoretical framework to investigate how to 
consider simultaneously different indicators of  unfeasibility, such as sub-optimality, 
imprecision of  measured variables, or uncertainty in models and parameters.
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Features of  Dynamic Possibilistic MFA. In the context of  Poss-MFA it has been shown 
how to estimate time-varying fluxes and extracellular metabolite concentrations considering 
uncertainty and data scarcity. Although there are other methods accounting for extracellular 
dynamics (Provost et al. 2004; Herwig, 2002; Takiguchi, 1997; Henry, 2007), Dynamic Poss-
MFA departs in three main ways.

First of all, most other methods  are typically based on traditional MFA which point-wise es-
timates  are unreliable if the estimation problem is  not overdetermined, and thus  require pre-
cise and sufficient measures  that may be unavailable. Instead, Poss-MFA gives  robust results 
even in scenarios  of high uncertainty and lack of measurements, by computing distributions 
and interval estimates only as  narrow as  possible and considering reactions  irreversibility. 
Poss-MFA achieves this  following an approach similar to other interval MFA methods, such as 
the one used by Zamorano et al. (Zamorano et al., 2010), which exploit the notion of elemen-
tary modes to describe the possible fluxes  and provide interval estimates, or the methods  used 
by Ierapetritou and coworkers  (Iver 2010a;  2010b) and by ourselves  (Llaneras  & Picó, 2007). 
In general, these interval estimates  are more informative than point-wise ones  in all instances 
when multiple flux values  might be reasonably possible. In addition, by using possibility dis-
tributions, Poss-MFA considers measurements  in a richer way and provide estimates  for de-
sired degrees  of possibility. Dynamic Poss-MFA also inherits  other benefits  of the possibilistic 
framework, such as  the ability to deal with non-gaussian errors or model imprecision, which 
have been illustrated before for static cases (Llaneras et al., 2009; 2010; 2011).

Another differential feature of  our approach is that the measured extracellular-metabolite 
concentrations can be directly used as input, while other methods in the literature need a pre-
step to calculate their average consumption/production rates (and their uncertainty, what can 
be particularly difficult) for each time instant by taking derivatives. Our intention was to keep 
the procedure simple and as purely “constraint-based” as possible, avoiding preliminary steps.

Another limitation of  most dynamic MFA-wise methods is that the complete time-series of  
data are not analysed as a whole, but rather as unconnected sub-problems (one at each time 
instant). Our proposal takes into account, simultaneously, the constraints imposed by 
extracellular dynamics during the whole time-series, and therefore (a) it avoids the problem of 
how to propagate uncertainty along time without losing information, and (b) provides 
estimates that are more precise (narrower). This last advantage was illustrated in the first case 
study, where estimations with an unconnected «one-sized-finite-window» and a «whole-
window» were compared.

Computational cost and large-scale. Regarding computation, one characteristic of  the 
Possibilistic framework is that all the MFA and FBA estimations and predictions are cast as 
efficient (sparse) linear optimisation problems, for which widely-known tools exist. The 
method is therefore suitable for large-scale problems, with tens of  thousands of  decision 
variables (the number of  them depends on sampling rate and time-window length). For 
convenience, dynamic Poss-MFA can be applied both with a «whole-window» or a «finite-
window», thus fixing the size of  the LP problems to be solved, so the users can select the 
trade-off  between computational cost and narrower estimates.

Besides computational cost, it should be noticed that Poss-MFA applied to a large-scale and 
even genome-scale models will face the same challenge that every MFA-wise method: there 
may be many different solutions compatible with the few available measurements. In this 
situation, our method, thanks to the use of  interval estimates, will be at least able to detect all 



the solutions that are equally possible (or “similarly” possible) and depict them by means of  
intervals.

6. Conclusion

In summary, we have shown that a possibilistic framework can be useful to get rich dynamic 
predictions from a constraint-based model, both exploiting available experimental data to 
apply an MFA-wise method, or incorporating a rational hypothesis of  evolved optimality of  
cells to follow an FBA-wise approach.

Table 1. List of  exchange metabolites in CHO cells case study.

G	 	 Glucose	 	 Substrates Q	 	 Glutamine	 initial substrates

L	 	 Lactate	 	 extracell. product A	 	 Alanine	 	 extracell. product

NH4	 	 Ammonia	 extracell. product CO2	 	 Carbon dioxide	 extracell. product

Nuc	 	 Nucleotides	 intracell. product

Table 2. List of  internal metabolites in CHO cells case study.

G6P	 	 Glucose-6-phosphate	 	 Mal	 	 Malate 	 	 	

F6P	 	 Fructosa-6-phosphate Oxa	 	 Oxaloacetate 	 	

G3P	 	 Glyceraldehyde-3-phosphate Glu	 	 Glutamate 	 	 	

DAP	 	 Dihydroxy-acetone Phosphate	 Asp 	 	 Aspartate 	 	 	

Pyr	 	 Pyruvate 	 	 	 Ri5P	 	 Ribose-5-Phosphate	 	

ACO	 	 Acetyl-coenzyme A 	 	 Ru5P	 	 Ribulose-5-Phosphate	 	

Cit	 	 Citrate 	 	 	 X5P	 	 Xylose-5-Phosphate

aKG  α-ketoglutarate   E4P	 	 Eryt-4-Phosphate
Fum	 	 Fumarate 	 	 	 CO2i	 	 Carbon dioxide (intracellular node)

Table 3. Stoichiometric matrix for CHO cells.
Irrevers. 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
Reaction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 vG vL vA vNH4 vQ vCO2 vBio

1 G6P 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0
2 F6P 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
3 G3P 0 0 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
4 DAP 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 Pyr 0 0 0 0 1 -1 -1 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 ACO 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 Cit 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 aKG 0 0 0 0 0 0 1 0 0 1 -1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 Fum 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
10 Mal 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 Oxa 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 Glu 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 -1 -1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0
13 Asp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0
14 RU5P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0 0 0 0 0 0 0 0
15 RI5P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 0 0 1 0 0 -1 0 0 0 0 0 0 0
16 X5P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0 0 0 0 0 0
17 E4P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0
18 CO2i 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0
19 NUC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0,17
20 G -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
21 L 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
22 A 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
23 NH4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
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24 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -3 0 0 0 0 0 0 0 0 0 0 1 0 0
25 CO2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0
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