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Abstract

In advanced industry manufacturing involving robotic operations, the re-
quired tasks can be frequently formulated in terms of a path or trajectory
tracking. In this paper, an approach based on sliding mode conditioning of
a path parametrization is proposed to achieve the greatest tracking speed
which is compatible with the robot input constraints (joint speeds). Some
distinctive features of the proposal are that: (1) it is completely indepen-
dent of the robot parameters, and it does not require a-priori knowledge
of the desired path either, (2) it avoids on-line computations necessary for
conventional analytical methodologies, and (3) it can be easily added as a su-
pervisory block to pre-existing path tracking schemes. A sufficient condition
(lower bound on desired tracking speed) for the sliding mode regulation to be
activated is derived, while a chattering amplitude estimation is obtained in
terms of the sampling period and a tunable first-order filter bandwidth. The
algorithm is evaluated on the freely accesible 6R robot model PUMA-560,
for which a path passing through a wrist singularity is considered to show
the effectiveness of the proposal under hard tracking conditions.

Keywords: Robotic tracking, sliding mode, input saturation, multivariable
systems

1. Introduction

A major issue in robotics is the tracking of reference trajectories. In
most practical applications that use industrial and/or mobile robots [1, 2]
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(e.g., machining, arc-welding, adhesive application, spray painting, assem-
bling, inspection, object transportation in warehouses, surveillance in known
environments, etc.), the robot task is based on tracking a given path with
negligible error and with the highest possible velocity, so that the cycle time
of the robot task is minimized. In this manner, both quality and produc-
tivity indexes can be enlarged. However, both the accuracy and the speed
with which this tracking can be performed is strongly related with the joint
actuators physical limitations, which are seldom considered in commercial
robots to regulate the robot forward motion. Instead, the tracking speed
usually has to be computed a priori by the robot operator in order to avoid
an error message.

The reference path, i.e. the path to be followed, can usually be expressed
as one-dimensional curve in the cartesian space, i.e., a time-dependent vec-
tor which can be parameterized in terms of a scalar motion parameter whose
first-order time derivative is related to the path tracking speed by well-known
expressions. In this sense, the idea of a parameterized path has been success-
fully used in several research works to adjust the tracking speed so that the
robot is able to track different types of references, even those ones crossing
robot kinematics singularities [3, 4, 5, 6]. Among the more significant works
in this research line, a self-paced fuzzy controller was designed in [7] to adjust
the tracking speed of two-dimensional paths in accordance with contour con-
ditions such as curvature. Similarly, a path parametrization satisfying input
and state constraints was obtained in [8] using look-ahead optimization and
a prediction of the evolution of the robot, for which a priori knowledge of the
desired path and a robot model are required. More recently, a time warp is
considered in [9] to slow down the task-space trajectory when joint limits are
encountered. In [10], instead, the power limits of the electrical motors driv-
ing the robot are considered to measure the maximum possible velocity and
force that can be physically generated by the robot to perform the required
task. Finally, path tracking is rigourously divided into a geometric (desired
error) and a dynamic (desired speed) task in [11], where speed profiles are
assigned for nonlinear systems to track non-smooth paths.

This paper proposes a simple method which allows regulating the robotic
tracking speed in order to avoid path deviations because of joint actuators
constraints. In order to achieve this goal, a sliding mode auxiliary loop is
added to conventional path tracking schemes, which is inspired on recent
reference conditioning algorithms developed to deal with constraints in mul-
tivariable control systems [12, 13]. It acts as a supervisory block, since it is
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only activated when the desired speed would lead the joint actuators to reach
their limit values. Interestingly, a practical consequence is the fact that, if
a sufficiently high speed reference (motion parameter) is set, the method
computes the maximal tracking speed which is compatible with the joint ac-
tuator limits. As an advantage over most of the above cited proposals, the
proposed technique is independent of the main path tracking control algo-
rithm and it does not require a priori knowledge of the desired path. Since
the method was thought to be used with commercial industrial robots, speed
joint constraints are assumed (see Section 2). A well-known six-revolute (6R)
robotic arm is taken as case study, for which a path passing through a robot
singularity is considered. The method implementation can be even carried
out by means of analog electronics since the switching device is confined to
the low-power side of the system.

The article is organized as follows. In the next section the classical kine-
matic control scheme for robotic path tracking is recalled, and some com-
mon alternatives to deal with actuator constraints are introduced. Section
3 presents some basic concepts of variable structure theory and develops the
sliding mode auto-regulation technique for tracking speed in order to avoid
path errors due to actuator nonlinearities. In Section 4 simulation results
are presented using the free-access 6R robot model PUMA 560, for which
the main distinctive features of the method are illustrated. Finally, some
conclusions are given.

2. Classical control scheme for robotic path tracking

Due to the computational complexity of advanced control algorithms de-
veloped in current robotics research [14, 15|, classical control techniques are
still widely used in industrial robot applications. In most practical robot
systems, the controller consists of three nested control loops: an analog ac-
tuator current controller, an analog velocity controller, and a typically digital
position controller. The great majority of industrial robot manufacturers im-
plement the inner control loops (i.e., the current loop and the velocity loop)
internally in the so-called joint controllers and do not allow the robot oper-
ator to modify these loops. Conversely, the outer-loop position controller is
usually open for the user and can be manipulated.

Let us now discuss some common setups for robot path tracking in the
above described framework.
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Figure 1: Robotic path tracking control scheme.

2.1. Kinematic control setups

Workspace-coordinates kinematic control. Let us denote as p,..;(t) the posi-
tion reference defining the desired path in some user-chosen workspace coor-
dinates (for instance, Cartesian position and Euler-angle orientation of the
end effector). As mentioned in the introduction, the trajectory p,.s(t) can be
usually expressed in terms of a desired path function f(\) whose argument
is the so-called motion parameter A(t) as

Prey = £(A), (1)
and, therefore, the desired speed comes from:
of .
: ref — —A\ 2
Pref = 53 (2)

A kinematic control block in a robot closes a loop using position informa-
tion in both joint coordinates, to be denoted as q, and workspace coordinates
p, as well as desired position and speed information from the target trajec-
tory.

The relationship between the q configuration and the end-effector posi-
tion/orientation p is highly nonlinear, generically expressed as:

p = 1(q), (3)

where the function 1 is called the kinematic function of the robot model. The
first order kinematics results in:

b= g—;q — J(Q)d. (4)

where J(q) is denoted as the Jacobian matrix or simply Jacobian of the
kinematic function.



Fig. 1 shows a common setup for the kinematic control block in robot path
tracking, consisting of a two-degree of freedom (2-DOF) control structure
which incorporates a correction based on the position error e, = p,.;y —p by
means of the position loop controller C), plus a feedforward term depending
on the first-order time derivative of the position reference, i.e. Pyey.

Note that, in this scheme the error correction is performed in the Carte-
sian space and then the inverse of the robot jacobian J(g) is used to obtain
the joint velocity vector q. Indeed, for a non-redundant manipulator (square
Jacobian), the joint velocities q producing a particular end-effector motion
Po can be written as:

a=J""(a)po, ()

and the kinematic control loop is in charge of determining the desired value
for pp as a function of current position (p) and current target trajectory
point (prer) and speed p,er. Once py is computed, (5) is applied and sent to
the actuators.

The Jacobian of a generic robotic arm can be easily obtained with the
vectorial approach described in [16]. It is well-known that there are certain
workspace limits and internal positions where .J is singular. This matter is
later discussed in Section 4.

Joint-coordinates kinematic control. Another conventional approach for kine-
matic control consists of performing the error correction directly in the joint
space [17]. This second approach requires to compute the position inverse
kinematics, i.e., g = 17*(p). In any case, the proposed technique also applies
for that or any other kinematic control.

2.2. Dealing with actuator constraints

In order to account for input constraints, joint speed saturation is from
now on considered between the desired joint speeds g of Fig. 1 and the
achievable ones, denoted as qg;.

Naturally, the maximum values of the robot control signals, which are
given by the power constraints of the actuators, limit the path tracking speed.
Basically, the following three approaches can be found in practical applica-
tions in order to face with robot actuators constraints:

a) To use a (conservative) low tracking speed, so that the robot control
signals never exceed their maximum values.



b) To also use a fixed tracking speed, but higher than the previous one, in
such a way that the robot control signals saturate at least once during
the tracking.

¢) To compute for each point on the path the maximum tracking speed
allowed by the limits of the control signals and to use that value for the
motion parameter speed.

The first approach is extremely conservative and thus a not advisable
solution. In effect, it gives rise to an excessively slow path tracking, which
indeed wastes the tracking capabilities of the robotic system. The second
approach, which is the classical one, has as its main drawback that when the
control signals are saturated the robot losses the reference and even leaves
the desired path, which makes it inappropriate for high-accuracy applica-
tions. The third option is the best choice among the three listed practical
approaches; however, it depends on the desired path and on the robot Ja-
cobian and, hence, it is more involved computationally and, furthermore,
modeling errors might give a speed over the desired limits.

In practical implementations of the second or third options, the actuator
limitations are typically faced in two different ways:

1. as a direct and independent saturation element for each joint, for which:

Qmax,i if Qd,i > Qma:c,i
st,i = Qd,i if qmm,i < Qd,i < qmaz,i, 1=1,...,n (6)
Gminy 1 Gai < Gmini
With Gezi and Guin; denoting the maximum and minimum actuator
(speed-servo) output of the corresponding joint, and n the the robot’s
degrees-of-freedom. For the sake of simplicity, it is assumed in the fol-
lowing that speed limits are symmetric, i.e. Gmini = —Gmaz,i, although
the methodologies to be presented can be trivially modified if that were
not the case.

2. as a directionality preserving saturation, in which the joint speeds vector
(Qgs) direction remains constant, hence the direction of p does so as
well, but its modulus is scaled as:

qu - fdir Qd (7)



where
if |Fx Qalleo > 1,

1
far = { Pyl ®

otherwise,

notation || - ||, denotes element-wise maximum (infinity norm) and Fy
is a diagonal matrix with the ith diagonal element equal to 1/¢maz-

The latter is the most frequent approach in robotic tracking schemes to
address joint speed limitations, and thus it will be the case considered in the
SM auto-regulation algorithm proposed in the next section.

In the following, a simple methodology to regulate the tracking speed
in presence of actuator constraints is presented, which can be added as a
supervisory block to any tracking scheme independently of the robot model
and the desired path.

3. Tracking speed auto-regulation technique

3.1. Background on sliding modes

The kinematic-loop control to be proposed in this work incorporates some
sliding-mode elements. Sliding-mode control is a well-developed discipline
and the reader is referred to references such as [18, 19, 20] for ample detail.
Among other attractive features, sliding-mode controllers are easy to imple-
ment (see (10) below), reduce the order of the system dynamics, and provide
robustness to matched uncertainties and external disturbances. Because of
its interesting properties, a large number of papers presenting practical ap-
plications of SM control have been reported. For instance, in the recent
contributions [21, 22, 23, 24| the application of SM to robotic systems is
discussed. The basic ideas to be used in later sections are recalled here.

A variable structure system comprises a set of two continuous subsystems
with an associated switching function that determines a manifold on the state
space, the so-called sliding surface. According to the sign of the switching
function, the control signal takes one of different possible values, leading to
a discontinuous control law.

In particular, consider the following dynamical system:

x = h(x) 4+ g(x)u 9)

where x € R™ is the system state, u is the discontinuous control signal, and
h(x) and g(x) are vector fields in R". The variable structure control law is
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defined as o
u:{ uw if o(x) <0 (10)

ut if o(x)>0

according to the sign of the auxiliary output o(x). The sliding surface S
is defined as the manifold where the auxiliary output, also called switching
function, vanishes. That is,

S ={x e R" o(x) = 0}. (11)
The two basic ideas of variable-structure (sliding-mode) control are:

e Find a suitable auxiliary output ¢ such that some prescribed properties
of the closed-loop dynamics are fulfilled (stability, time constant, etc.)

e Enforce the state to reach the prescribed sliding surface and, hence-
forth, to remain (“slide”) on it by applying the control u., enforcing
¢ = 0, not explicitly but by means of a very fast switching action aris-
ing from the discontinuity in (10). This mode of operation is denoted
as sliding mode (SM) or sliding regime.

Once this sliding mode is established, the prescribed manifold imposes
the new system dynamics.
If, as a result of the switching policy (10), the reaching condition

o(x)<0 if o(x)>0 (12)
o(x)>0 if o(x) <0,
holds in a neighborhood of S, or, equivalently
lim 06 < 0, (13)

o—0

locally holds at both sides of the surface, a switching sequence at very high
frequency (ideally infinite) occurs, constraining the system state trajectory
to slide on §. The inherent low-pass characteristics of realizable physical
systems averages that switching signal so that its behaviour is equal to the
so-called equivalent control u., fulfilling:

o
COx

o}

(h(x) + g(X)teg) = 0 (14)



so the sliding-mode regime will be maintained as long as
min{u”,u"} < ue, < mazr{u,ut} (15)

From (9), (10) and (14) it can be easily observed that for a sliding motion
to exist on S (in other words, to satisfy condition (13)), the auxiliary output
o(x) must have unitary relative degree with respect to the discontinuous
signal, i.e. its first derivative must explicitly depend on u [18]:

Oo

5 IX) #0. (16)

The inequality (16) is known as transversality condition.

3.2. Proposed sliding-mode conditioning of path tracking speed

Differing from conventional SM control, where the discontinuous signal
is commonly used as the main control action (this is the case of the robotic
applications reported in [21, 22, 23, 24]), the approach to be presented in this
section exploits sliding regime as a simple and robust way of determining the
maximum rate of change of the motion parameter A which is compatible
with the robot actuators physical limits. Its purpose is, once the robot is
sufficiently close to the desired path, to automatically regulate the speed with
which the path is followed in such a way that the control signal generated
by the path reference through the kinematic control does never exceed the
prescribed limits, thus preventing the robot from path deviations due to
actuator constraints.

The sliding mode technique proposed to regulate the path following speed
is presented in Fig. 2, whose constituent elements will be described below.
It assumes that the input to the path-tracking system is the desired motion
parameter speed \g; such input signal will be “conditioned” in such a way
that saturation is avoided.

The kinematic control block of Fig. 2 represents a path tracking control
scheme as the one depicted by Fig. 1 (but not necessarily identical). Now,
a saturation block has been included between the desired joint speeds (¢g)
and the achievable ones (qqs). As already mentioned, directionality preserv-
ing saturation will be assumed present in the referred block, as it is the
most common approach in robotic tracking schemes to address joint speed
limitations. However, it is worth mentioning that the validity of the pro-
posed supervisory technique is completely independent of how saturation is
performed.
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Figure 2: Proposed sliding mode auto-regulation technique for robotic path tracking (sat-
uration block is assumed to be directionality preserving)

From the saturation block, an auxiliary loop is added to the conventional
path tracking configuration in order to generate the conditioned tracking
speed. To this end, the discontinuous signal u is determined by means of the

commutation law:
u—{ ut =1 ifeo(x)=0,

u~ =0 otherwise (17)

where 0,, denotes the null vector of dimensions n x 1, and the switching
function vector o is defined as:

o(x) = Quas—qa (18)

The maximum tracking speed A which avoids inconsistencies between the
kinematic controller outputs and the real robot input signals is then gener-
ated from u by means of a first-order low-pass filter

forr = —ag fsar + agu, (19)

with the filter output fgu being a “sliding mode factor” such that A is
obtained as A = femAs. The filter has unit gain at low frequencies and
its bandwidth a; needs to be chosen sufficiently fast for quick stops to be
allowed, but slow enough in order to smooth out A. As we will see in Section
4, the best choice for the filter bandwidth is strongly related with the path
to be followed.
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Actually, the switching function vector (18) determines two boundary
sliding surfaces for each one of the n coordinates:

Si = {X|Qdi - Qmaxi - O} .
. . ’ i=1,...,n 20
S, = {X|Qd,i — Qmini = 0} (20)

From (2), (5), (7), (8), and (19) it can be easily deduced that these surfaces
are only reached provided the desired motion parameter speed satisfies

1
|77 531

Aa >

(21)

as, indeed, if the above condition does not hold in at least one point of
the path, the actuation limits will not be reached. These conditions are the
equivalent conditions for sliding mode establishment (13). Then, if Ay verifies
(21) on all points of the path at least one of the actuators will be saturating at
maximum speed and, hence, the conditioning algorithm implicitly provides
the maximum-speed directionality-preserving path tracking solution.

Note that this reaching condition (21) is not enforced by the switching
action. Indeed, equation (21) shows how the maximal achievable tracking
speed depends on the own path reference f, the robot kinematics J, the
actual robot configurations (J is function of q) and, naturally, the saturation
levels Fly. Note that (21) is particularly small for robot configurations close
to singularities or against abrupt path changes. In fact, in the former case
some singular values (and vectors) of J~! are very big; in the latter case, it
is Of /OX who takes a very large value.

Hence, according to (17) and (18), when a joint speed reaches its max-
imum value, the discontinuous signal u is forced equal to zero in order to
avoid surpassing the actuator bound. This switching makes the motion pa-
rameter speed to slow down and the corresponding control action ¢g; to fall
below its limit ¢e 4, Which in turn produces by means of the switching law
(17) that u = 1 again. In this way, as the forward evolution on the reference
path continues being limited by actuator ¢, the signal u will be switching
between 0 and 1 at high frequency and a sliding regime will transiently es-
tablish on either the surface S; or S;, depending on whether the upper or
lower saturation limit was going to be exceeded.

As a consequence of this sliding mode, the tracking speed given by A will
be continuously adjusted in such a way that the control action ¢; sent to
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joint ¢ does not exceed the actuator limit. If because of the desired motion
parameter speed the robot is forced to saturate other joint actuator, say
actuator j # i, then the same reasoning can be followed for surfaces S; or
§;, one of which will be from then on the responsible of the path following
speed attenuation.

Observe that for the trivial sliding function vector (18) to satisfy the
unitary relative-degree necessary condition, apart from the filter being a
first-order one, the controller C, must be biproper. For the case of (very
unusual) strictly-proper controllers, the strategy is still applicable but the
sliding function should be redefined in order to include additional controller
states (see e.g. the switching functions defined in [12] to delimited crossed
interactions in decentralized control of multivariable systems).

3.3. Some implementation issues

3.3.1. Switching frequency and chattering

As in all sliding-mode controls, the theoretically infinite switching fre-
quency cannot be achieved in practice because all physical systems have fi-
nite bandwidth. In analog sliding-mode implementations (i.e., switching with
operational amplifiers set up as comparators) the actual switching frequency
will depend on the bandwidth of the electronic components. In computer im-
plementations, the switching frequency is directly the inverse of the sampling
period. Finite-frequency commutation makes the system leave the theoretical
sliding mode and, instead, its states evolve inside a “band” around o = 0.

In direct sliding-mode control the switching is in the main control action
of the controlled process: high-power, high-frequency sharply-discontinuous
inputs are not suitable for some processes (such as mechanical actuators
subject to fatigue issues) and some remedies to the situation must be put in
place to overcome these so called chattering problems [25].

Contrarily to the above, in reference conditioning setups, such as the
particular case of the proposed path tracking algorithm, sliding mode is con-
fined to the low-power side of the system. Hence, fast electronic devices
can be used to implement the discontinuous action (in effect, the algorithm
could be even implemented via analog electronics using a dual operational-
amplifier chip). What is more, the sliding regime and its switching law could
actually be a few program lines of a microprocessor. Thus, differing from
conventional sliding mode control, the current application presents a contin-
uous speed command to the actuator subsystem so the chattering issues are
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greatly alleviated. Only a residual band due to discrete implementations will
remain, as discussed below.

As previously discussed, computer implementations must operate at a
finite frequency, so the sliding surface o; = 0 implicit in (20) gets converted
into a band |o;] < A;.

Let us consider now the common case in which a sampling period 75 is
given by the discrete implementation of the main position control loop. We
are interested in estimating an upper bound for the chattering amplitude A;
so that the condition |o;| < A; is guaranteed during SM on, say, the surface
Si.

The basic idea is considering that, for instance, an Euler-integration of
the first-order filter (19) results in the unity-gain discrete system:

fSM(k’) = (1 — afTS)fSM(k — 1) + afTSu(k:) (22)

Hence when (k) switches from zero to one, approximately, if T} is rea-
sonably small so that (1 —a;T;) ~ 1, the sample-to sample increment of fga,
is a fTs-

This would lead to an increment on the motion parameter speed of a T A
and, if the kinematic control in Fig. 1 were used, it would translate to a
sample-to-sample increment of the speed command approximately given by
the expression:

of

i ﬁaf
where [J7'(q)];, denotes the ith row of the inverse Jacobian. The above
expression could be used to select parameters ay and 7T such that the speed-
command increments are below a predefined thresholds. In broad terms, in
order to reduce A;, the filter bandwidth must be decreased or the sampling
rate must be increased.

The filter bandwidth also influences the supervisor “reaction time”, i.e.,
the time required to completely adapt to trajectory changes requiring an
abrupt speed change. In order for the proposed scheme to work in practice,
the filter bandwidth must be significantly higher than the frequency content
of the initially desired trajectory p,.; = %)\d. Indeed, if the desired trajec-
tory included high-curvature fast-acceleration movements, a low bandwidth
of the supervision mechanism would result in tracking error, as intuitively
expected. Nevertheless, as shown in the case study section, reasonable fast
sampling rate and bandwidth make the above problems negligible in practical
implementation.

A~ [T74q)] T\ (23)
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3.3.2. Choice of sampling periods

Note that, by inserting sampler and zero-order-hold elements wherever
they might be needed, the sampling rates of the tracking speed auto-
regulation algorithm, kinematic control and robot dynamic control may be
different. In particular, the SM based algorithm may be run at a faster
sampling rate than that of the joint controllers in order to achieve a bet-
ter approximation to the continuous-time developments, for instance, with a
reduced chattering in (23).

For the sake of simplicity, in the simulations of Section 4 the same value
is used for all sampling periods, even if in an industrial robot application the
joint controllers might likely work at a lower sampling frequency.

3.3.3. Computing the inverse of the robot Jacobian

Note that the proposed sliding-mode speed regulation technique does not
need any Jacobian computation as it is independent of the underlying kine-
matic control loop, which is one of the distinctive advantages of the proposal.
However, in order to clarify issues about its behavior in singularities, and to
explain in a clearer way the design choices later made in the case study
section, the inverse Jacobian computation is discussed below.

As seen in Section 2, the robot Jacobian J relates the joint speeds vector
q to the workspace speed p of the robot end-effector (EE). Now, concerning
its inverse, it is recalled that the inversion of the robot Jacobian J gives
rise to numerical problems when the determinant of the Jacobian vanishes,
which as already known occurs at singular points. Then, a modified Jacobian
inverse is employed in this section to cope with singularities. Particularly,
the Jacobian inverse block of Fig. 1 has been implemented for the simulations
of next section as

sign(det(J))
max(|det(J)]|,¢€)

Inv(J) = adjoint (J7), (24)
i.e., the well-known adjoint-transpose formula for the matrix inverse has the
determinant in the denominator replaced by a minimum value € when its
absolute value tends to zero. This approximate inverse preserves the Jacobian
inverse directionality. In other words, near singular points the direction of
the Jacobian inverse is preserved but its modulus is bounded in order to
avoid numerical ill-conditioning.

It is noticed here that although (24) was chosen to evaluate the proposed
methodology, any other alternative for avoiding Jacobian singularity could
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have been employed, such as those ones described in [3].

3.3.4. Effect of the feedback terms

The proposed kinematic control has two components, a feedback error-
based control and a feedforward auto-regulated trajectory generator (2-DOF
structure). In theory, the proposed motion-parameter conditioning generates
a trajectory reference which can be followed by the robot under the prescribed
saturation constraints. In that sense, if the robot started on exactly the same
point as the reference path does, it would track the rest of the path with no
error (assuming negligible modeling error).

Then, as in any 2-DOF setup, the effect of the error-based controller
corrects two issues:

e Initial conditions not in the starting point of the path
e Modeling error and process/sensor noise.

It is easy to understand that the proposed motion-parameter condition-
ing technique stops the set-point movement if initial conditions or transient
tracking error are big. Basically, the supervisor blocks reduce the maximum
motion-parameter speed as tracking error increases. The intensity of the
effect (i.e., the error figures forcing the path-generator to stop updating ref-
erence points) depend on the gain of the feedback regulator: the larger the
regulator gain, the smaller the error bound which stops the motion param-
eter ()\ = 0). This is in agreement to what it is expected from conventional
feedback regulators (the larger the gains, the smaller the errors); hence, the
feedback-gain tuning conveniently tunes both the closed-loop behaviour re-
garding disturbance rejection and modeling error and the regulation of the
reference path’s speed if errors are high.

4. Case study: 6DOF robot arm

In this section the main features of the proposed SM auto-regulation
technique are illustrated through simulation results on the well-know 6DOF
robotic arm PUMA-560, which is a classical 6R serial manipulator with spher-
ical wrist. A path passing through a wrist singularity point is considered in
Subsection 4.2 in order to show the effectiveness of the method under hard
control conditions.
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The results shown have been obtained with the Robotics Toolbor (Re-
lease 7.1) for MATLAB® developed by P. Corke [26], which is available to
download for free, and which includes the kinematic model of the PUMA-560
robot.

4.1. Conditions and parameters for the simulations

Simulations were run under the following conditions:

i) A kinematic framework is considered, i.e. the dynamics given by the
joint controllers is considered much faster than the dynamics given by the
position loop, and therefore the actual joint speed vector q is assumed ap-
proximately equal to the saturated desired joint speed vector qgs.

ii) The six elements of the workspace coordinate vector have been defined
as follows: the cartesian [z y z] coordinates have been chosen as represen-
tation of the end-effector position; the roll-pitch-yaw Euler angles [« 3 7]T
have been chosen for the end-effector orientation. The units for linear and
angular dimensions are meters and radians, respectively.

iii) Four cases have been considered: in the first three cases the tracking
speed \ is constant, while in the fourth case the tracking speed is auto-
regulated with the proposed SM technique. Moreover, in the first case the
joint speeds are ideally unconstrained, whereas in the other three cases the
joint speeds are constrained. In this regard, the second case uses a direct
saturation for the joint speeds, whereas the third and fourth cases use a
directionality-preserving saturation, see Subsection 2.2.

iv) A maximal tracking speed was aimed, i.e. the desired motion Ay does
always satisfy condition (21).

v) For the sake of simplicity, a proportional controller has been used for
the correction of the position error, i.e. C), = K.

In all the simulations, the linear position of the reference path is given
by the following helicoidal path:

Zref(N) = Trepuni + 0.1 (cos (A) — 1)
yref()\> = Yref_ini 4 0.1sin ()\) (25)
Zref(A) = Zrefiini — 0.1,

with A = 0...27w, while and the end-effector orientation
[tref(N) Bres(A) Yrer(N)]" is defined in the corresponding subsections.

It is important to recall that for the PUMA-560 manipulator the Z-axis
of the robot base frame is aligned with the first joint and its origin is located
at the same height of the second joint, i.e. the shoulder joint.
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Furthermore, the following parameter values have been used in the simula-
tion: determinant bound € = 10~°, controller gain in all coordinates K, = 10.
The sampling period T used in the first three simulated cases was 2.5 mil-
liseconds. The maximum/minimum joint speed limitations are assumed as
Qmam,i = _Qmm,z =0.5 rad/s with ¢ = 1, ey 6.

4.2. Simulation for a reqular reference path

Firstly, we consider a constant orientation reference for the robot
EE and initial robot pose error. ~We take in particular p,.r(0) =
[0.58 —0.150.14 0 7 0]" as the initial value for the path reference, whilst
the robot pose starts at p(0) = [0.68 — 0.25 0.19 0.2 2.94 0.1]".

Fig. 3 to Fig. 6 compare the results obtained with the four considered
cases. Dotted lines depict the ideal unconstrained case, dashed-dotted and
dashed lines draw respectively the direct saturated and directionality preserv-
ing saturated cases, and solid curves show the SM auto-regulation achieve-
ments.

For comparative purposes, the constant tracking speed used in the first
three simulated cases has been taken as A = 1.26, such that they take exactly
the same time as the SM auto-regulation technique for completing the re-
quired helicoidal path. Naturally, these conventional approaches can be sped
up by increasing )\, but at the expense of greater position errors. In fact,
Fig. 3 reveals that, despite their greater initial errors, both the direct satu-
rated and directionality saturated cases lose the reference path after having
(or almost having) reached it. This can also be appreciated in the 3D and
2D views of the desired and followed paths shown in Fig. 6. The reason of
these path deviations is that the robot is unable to follow the given path
at the specified constant speed because of joint speed saturation. Indeed,
these conventional methods would require “hand-tuning” A to achieve the
goal of fast tracking without drifting out of the desired path. This is what
the proposed auto-regulation transparently performs.

The solid lines of the figures show the effectiveness of the auto-regulation
proposal. Fig. 3 and Fig. 6 confirm that, once the initial error is reduced
making use of the directionality preserving saturation, the method avoids
path errors by regulating the motion parameter speed A. For this particular
case in which A\; = 5 was taken, the algorithm gives the maximal tracking
speed compatible with the actuator constraints, thus minimizing the time
required to complete the path. This is shown by Fig. 4, where it can be seen
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Figure 3: End-effector position and orientation errors (workspace coords.) for: ideal
unconstrained case (dotted), direct saturation (dashed-dotted), directionality-preserving
saturation (dashed) and SM auto-regulation technique (solid).
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Figure 4: Joint velocities for: ideal unconstrained case (dotted), direct saturation (dashed-
dotted), directionality-preserving saturation (dashed) and SM auto-regulation technique
(solid).
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Position Errors ‘ Case 1l Case2 Case3 Case4
RMS({ep}) 0.0101 0.0497 0.0523 0.0266

RMS({ep}) 0.0101 0.0188 0.0517 0.0266
RMS({e,3}) 0.0051 0.0834 0.0540 0.0133
RMS({ep}) 0.0202 0.1013 0.0642 0.0531
RMS({e,s}) 0.0202 0.2127 0.0642 0.0531

RMS({ey5}) 0.0101 0.0722 0.0321 0.0266
RMS({]le,l.}) | 0.0339 0.2655 0.1326 0.0891

Table 1: Comparison of the root mean square errors corresponding to the four cases
considered in Fig. 3. Case 1: ideal (unconstrained); case 2: direct-saturated; case 3:
directionality-preserving saturated; case 4: SM regulation.

how the method enforces at all times at least one joint speed to reach its
limit value.

The corresponding motion parameter A and directionality factor fgz, are
depicted in the Fig. 5. In this case, a sampling period 7§ of one millisecond
and a low-pass filter with a cutoff frequency of 5 rad/s were employed. As
shown by equation (23), slower filter bandwidth or faster sampling rates
could be used if chattering reduction were aimed. However, with the chosen
sampling period and bandwidth, the motion parameter speed (and, hence,
position) appear smooth enough in the referred plot: the chattering issues
discussed on Subsection 3.3.1 are irrelevant in practice if fast sampling rates
are possible.

As discussed on Subsection 3.3.4, the controller gain K, gives rise to an
error band or tolerance inside which the trajectory reference starts moving
forwards. In Fig. 5 the effect is noticeable in the initial phase: the trajectory
is automatically stopped until ¢t ~ 0.9, when the (directionality preserving)
saturation movement reaches the vicinity of the starting reference point.

Finally, Table 1 compares the root mean square errors of each coordinate
and of the corresponding Euclidean norm for the four cases considered in
Fig. 3. As expected, the auto-regulation technique reduces the errors pro-
duced by conventional constrained tracking algorithms.

4.8. Simulation for a reference path with a singular point

In order to evaluate the proposal under hard tracking conditions, we con-
sider now an initial robot pose p(0) = p,ef(0) = [0.57 — 0.150.07 0 7/2 0]"
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(zero initial error) and a reference orientation for the robot EE given by:

aref()\):O
w24+ x2 i A<n7
Bres N =\ x if A>7 (26)
0 if AZ<m

Yref(A) = A—m)/2 i A>m  with A=0..2n,

for which there is a wrist singularity at A = m, since the fourth and sixth joints
are aligned on the same axis at that point and therefore the determinant of
the Jacobian vanishes. Note that the approaching to the wrist singularity is
in the non-degenerated direction and the departure from the wrist singularity
is in a degenerated direction, i.e. the singularity is of the ordinary type [3].

In this case, the maximum/minimum joint speeds were taken as Gmazi =
—Gmin; = 2rad/s, with i = 1,...,6, in order to allow greater tracking speeds.
The constant motion parameter used in the first three cases was then set
as A = 3.1, again for comparative aims; whereas the fourth case has been
simulated with Ty = 0.25 ms, w, = 150 rad/s and )\d =12.

Fig. 7 to Fig. 9 show the corresponding results. The following points are
worthy of highlighting:

(i) As intuitively expected, in the first unconstrained case the joint speeds
of the fourth and sixth joints are extremely large at the singular point (al-
though truncated in Fig. 8, their magnitude orders are given by 1/¢).

(ii) In conventional constrained cases significant path errors appear since
the singular point is crossed (see Fig. 7), and these deviations remain during
all the second half-cycle of the helicoidal path.

(iii) In order to prevent the robot from leaving the desired path, the SM
auto-regulation technique completely stops the forward movement ()\ =0)
at the singular point, and it only restarts moving forward once the 4th and
6th joints have finished their reorientations (Fig. 8 and Fig. 9). Note that
with the SM tracking algorithm the singularity is reached earlier than with
conventional approaches because of the higher initial tracking speed.

5. Conclusions

A variable structure algorithm for path tracking speed auto-regulation
was proposed using sliding mode related concepts. The strategy acts as
a supervisory loop, shaping the speed reference along the path so that it
is always compatible with joint actuator constraints. In this manner, the
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Figure 7: Position and orientation errors when tracking a path including wrist singularity
for: ideal unconstrained case (dotted), direct saturation (dashed-dotted), directionality-
preserving saturation (dashed) and SM auto-regulation technique (solid).
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preserving saturation (dashed) and SM auto-regulation technique (solid).
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Figure 9: Speed profile A produced by SM auto-regulation when tracking a path including
wrist singularity.

algorithm does only activate when the nominal speed reference leads a control
signal to its maximum value, slowing down as much as necessary in order to
avoid path deviations. The proposal can be easily added as an auxiliary
loop to conventional robotic path-tracking schemes, and its implementation
is extremely easy. Importantly, singularities are gracefully handled.

Although the algorithm was illustrated for a particular kinematic con-
troller and 6R robot, the conclusions drawn for the tracking speed auto-
regulation method also apply to any other kinematic controller and/or
robotic system accepting joint speed commands. One suggestion for fur-
ther work would be to extend the proposed technique to include acceleration
and/or torque constraints.
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