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Abstract: The reduction of carbon dioxide to useful chemicals has received a great deal  

of attention as an alternative to the depletion of fossil resources without altering the 

atmospheric CO2 balance. As the chemical reduction of CO2 is energetically uphill due to 

its remarkable thermodynamic stability, this process requires a significant transfer of 

energy. Achievements in the fields of photocatalysis during the last decade sparked 

increased interest in the possibility of using sunlight to reduce CO2. In this review we 

discuss some general features associated with the photocatalytic reduction of CO2 for the 

production of solar fuels, with considerations to be taken into account of the photocatalyst 

design, of the limitations arising from the lack of visible light response of titania, of the use 

of co-catalysts to overcome this shortcoming, together with several strategies that have 

been applied to enhance the photocatalytic efficiency of CO2 reduction. The aim is not to 

provide an exhaustive review of the area, but to present general aspects to be considered, 

and then to outline which are currently the most efficient photocatalytic systems.  
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1. Introduction 

Due to the shortage in the reserves of oil and natural gas as well as the strong dependence of 

developed countries on fossil fuels, there is considerable interest in the development of renewable 

energy resources. One of the primary and inexhaustible energy sources is sunlight reaching the earth’s 

surface [1]. However, two of the main problems of sunlight, as a source of energy, are the circadian 

cycle between day and night together with the dependence on seasons and weather conditions and the 

low sunlight power that makes it necessary to accumulate the energy for long periods with large 

surfaces before the use of this energy. In this regard, considering the problems associated with the 

direct use of sunlight, there are two general strategies to use sunlight as a primary energy source, both 

of them based on the accumulation of solar energy. The first one consists in converting photons from 

the sun into electrical energy that can be stored in batteries or supercapacitors as well as in any other 

form of conventional mechanical energy already existing for electricity storage [2]. Particularly for 

transportation, where high energy powers are required, there is a necessity to accumulate sunlight into 

an intermediate energy vector that can be, for instance, charge capacitors or batteries [3]. One of the 

main problems associated with this strategy is the limited resources of lithium and other metals that are 

currently employed in batteries, making sustainability problematic. An alternative to store sunlight as 

electrical energy is to convert photons from the sun into chemical energy. The concept of solar fuels 

refers to the production of chemicals that can release chemical energy using sunlight as a primary 

energy resource. Among these solar fuels, the one that has attracted the largest attention has been 

hydrogen produced from water. While the US Department of Energy has identified hydrogen as the 

ideal renewable fuel for transportation, there is a lack of basic knowledge and technology that still 

limit the widespread application of hydrogen as fuel [4]. The advantages of hydrogen are its high 

energy power per mass unit and the lack of negative impact on the environment since water is the only 

by-product. However, the fact that hydrogen is a gas that cannot be liquefied is associated with 

problems related to the storage under ambient conditions of reasonable volumes of this gas as well as 

problems derived from the risk due to flammability and explosion. 

Since we are still far from the hydrogen technology era, one possibility, that could represent at least 

an intermediate situation between the present scenario based on massive consumption of fossil fuels 

and the future use of hydrogen as energy vector would be solar fuels based on CO2 reduction. The aim 

of the present article is not to provide an exhaustive review of photocatalytic CO2 reduction, but to 

present some general considerations that apply specifically to CO2 reduction, particularly in comparison 

to hydrogen generation from H2O, and to describe which are among the most efficient photocatalytic 

systems reported so far. The reader is referred to several existing reviews for an exhaustive coverage of 

solar fuel production and, specifically photocatalytic CO2 reduction, since herein we focus on reports 

having promisingly high efficiency. In the next section we comment on the general features associated 

with photocatalysis related to the reduction of CO2 focused on the production of solar fuels. 

2. Solar Fuels Derived from CO2 

While water reduction only affords hydrogen, there are a series of products that can be formed from 

CO2 reduction. The list includes oxygenated C1 and C2 compounds, such as oxalic acid, formic acid, 
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formaldehyde, methanol and CO. In addition to these compounds, methane and C2–C4 saturated and 

unsaturated hydrocarbons can also be obtained. From these potential products, the one that would be 

more valuable as transportation fuel is methanol, considering the high energy content of this alcohol, 

the convenience of using a liquid compound with a relatively high boiling point and the fact that 

methanol can even be combined as an additive of fossil fuels used in standard automotive engines. 

Methanol has a high octane number and can even be the precursor of other gasoline additives for 

octane number boost, such as methyl tert-butyl ether and methyl tert-amyl ether. The energy content of 

oxygenated derivatives decreases as the oxygen percentage in the compound increases. Equations (1)–(3) 

summarize the combustion free energy of some solar fuels, calculated from the data for the gaseous 

states from ref. [5]. One point of concern is the so called “carbon footprint” of a process that, in the 

case of methanol combustion, would be in principle zero if methanol is obtained from CO2 reduction 

by water. The carbon footprint is a quantitative indicator of the influence of a given process on climate 

change measured by the release of CO2 equivalents to the atmosphere. Neglecting the preparation of 

photocatalysts and other, in principle minor, contributions due to the transportation and manipulation 

of components, the use of methanol as fuel would not produce any increase of atmospheric CO2 if this 

chemical is obtained from CO2. It should be noted that methanol is far more reactive than CO2 under 

photocatalytic conditions, quenching holes and undergoing oxidation to formaldehyde, formic acid and 

eventually to CO [6–8]. For this reason, it is highly unlikely that in batch reactions the concentration of 

methanol could be high enough to be valuable, unless special conditions are applied.  

CH4 + 2O2 → CO2 + 2H2O ΔH0 = −802 kJ·mol−1; ΔG0 = −801 kJ·mol−1 (1)

CH3OH + 3/2O2 → CO2 + 2H2O ΔH0 = −676 kJ·mol−1; ΔG0 = −690 kJ·mol−1 (2)

HCHO + O2 → CO2 + H2O ΔH0 = −527 kJ·mol−1; ΔG0 = −520 kJ·mol−1 (3)

Besides methanol, the second most interesting solar fuel in the list of possible products from CO2 

reduction would be methane. The main advantage of methane is that all the technology for natural gas 

processing that is presently implemented could be still used independently of the origin of methane, 

either from natural gas or obtained photocatalytically from CO2. In addition, since methane is the most 

reduced product from CO2, its energy content is the highest possible (Equation (1)) and therefore 

methane is highly attractive due to its energy density. The main drawback, however, of the use of 

methane is its gaseous state at ambient conditions and the high risk associated with gas use. However, 

considering the large network of gas pipelines currently available, large scale production of methane 

could be currently viable. 

The above considerations raise a problem associated with solar fuel production from CO2, i.e., the 

need to control product selectivity in achieving a high yield of the target compound. In this regard, it 

has to be said that, at present, we lack sufficient understanding of the reasons why some processes 

exhibit different product distributions than others. Below, however, we comment on some trends 

related to the control of the product distribution that appear to be general, although rationalization is 

still lacking. 

From the point of view of solar fuel production, the ideal process would be the reduction of CO2 by 

water that would correspond to the reverse of Equations (1)–(3). Particularly important, as already 

mentioned, would be the reverse of Equation (2). However, this process is highly unfavourable from 
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the thermodynamic and kinetic point of view. For this reason and compared to photocatalytic water 

reduction, photocatalytic CO2 reduction is less favourable. From the kinetic point of view, hydrogen 

generation from H2O is mechanistically much simpler than CO2 reduction, which, depending on the 

product formed, always requires several electrons and also probably protons, to form the products.  

For instance, methanol formation from CO2 requires six electrons and six protons that in the reaction 

mechanism have to be supplied in several consecutive steps thus involving intermediates of several 

species. In contrast to this, hydrogen generation from water is not only thermodynamically less 

unfavourable than any of the products resulting from CO2 reduction, but also faster. The simplest 

mechanism for hydrogen generation involves a transfer of one electron from the conduction band of 

TiO2 to a proton leading to a hydrogen atom that will recombine with another hydrogen atom without 

any activation energy. 

The main problem of CO2 reduction is that, on one hand water is the most suitable hydrogen donor 

for CO2 reduction, water acting as hole quencher, but on the other hand water can compete, in 

principle also favourably for electrons in the conduction band. For this reason, it is frequently observed 

that photocatalytic CO2 reduction by water is accompanied by hydrogen generation. Moreover, 

generally hydrogen is formed in much higher yields than the total amount of products derived from 

CO2. There are specific features for photocatalytic CO2 reduction that makes this process notably 

different from water splitting (Table 1). 

Table 1. Some differences between photocatalytic H2O and CO2 reductions. 

Photocatalytic H2O 
reduction 

Photocatalytic CO2 reduction 
How to drive phtotocatalysis 
towards CO2 reduction 

H2 generation from water Low CO2 solubility in water Gas phase reaction 
Single product Many possible products Presence of co-catalysts 

Simple mechanism 
Mechanism involving several e− and  
H+ transfers 

Presence of acid sites 

H2 diffusing out of the 
liquid phase 

Products in contact with the photocatalyst 
with decomposition 

Continuous flow 

Thermodynamically uphill 
Thermodynamically much less favorable 
than H2 production 

e− with appropriate reduction 
potential 

The most successful strategy to deal with the problem of concomitant photocatalytic water 

reduction of hydrogen prevailing over CO2 reduction is by making use of a suitable co-catalyst. As a 

general rule, platinum is a good centre for hydrogen generation from water and, therefore, it is 

necessary to avoid this metal or at least to make some alloy to minimize hydrogen generation in the 

photocatalysts containing platinum. On the other hand, copper, either forming independent particles or 

in combination with platinum, tends to increase CO2 reduction disfavouring hydrogen generation. 

One important issue that is related to the use of water as reducing agent is the physical state in 

which photocatalytic reduction is carried out. The majority of the studies have been carried out in 

liquid media using water as solvent. In this case, the low solubility of CO2 in acid or even at neutral pH 

values (below micromolar concentration) makes the use of basic pH either necessary or convenient. 

However, although it is clear that basic pH increases CO2 solubility in water, this is not necessarily 

advantageous since, under these conditions, the real species that are present would be carbonates or 
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bicarbonates (Equations (4) and (5)). Those species are more difficult to reduce than CO2 itself and,  

in this way, the advantages of high solubility, meaning high concentration of substrate around the 

photocatalyst will be lost. In fact, carbonates and bicarbonates, having negative charges, are good  

hole-quenchers and can donate electrons to the photocatalyst. This is indicated by Equations (6) and (7) 

and in this way the overall cycle is the oxidation of hydroxide to oxygen rather than the real reduction 

of CO2. For this reason, in order to avoid the problems of CO2 solubility in water at neutral or acid pH 

values, it could be advantageous to work under gas phase conditions by irradiating under a moist 

atmosphere of CO2 in the presence or absence of inert gases. However, these conditions also give rise 

to problems particularly considering that some products from CO2 reduction are not volatile and can 

strongly adsorb or deposit on the photocatalyst surface and can act as poisons of the photocatalyst.  

In this regard, experiments performed under gas phase should not be limited to analysis of the 

composition in the gas phase; it is also necessary to consider the possibility that oxalic acid, formic 

acid or even methanol and elemental carbon residues formed are deposited on the solid surface. 

CO2 + OH− → HCO3
− (4)

HCO3
−+ OH− → CO3

2− (5)

CO3
2− + h+ → CO3

•− (6)

2CO3
•− → 2CO2 + O2 + 2e− (7)

Another problem associated with photocatalytic CO2 reduction is the much higher reactivity of the 

reaction products that in addition tend to be deposited or adsorbed on the solid photocatalyst. Again, 

this situation is totally in contrast to photocatalytic water reduction in which hydrogen, being an 

insoluble gas, goes out of the aqueous liquid phase and separates from the photocatalyst. For CO2 

reduction it is just the opposite, since, as commented earlier, the solubility of CO2 in water is rather 

low at acid pH values, while much more reactive products like methanol are highly soluble and 

become concentrated in the liquid phase. In fact, photocatalytic methanol decomposition to CO2 was 

one of the favourite test reactions in early times for photocatalysis [9]. In this regard, it is very likely 

that for experiments under batch conditions a stationary concentration of methanol is achieved and, at that 

moment, the rate of methanol formation from CO2 equals the rate of methanol decomposition to CO2.  

To address this issue of methanol instability, a check that can be easily performed and can justify some of 

the photocatalytic results is to perform independent experiments in which methanol at concentrations above 

those obtained in the photocatalytic CO2 reduction is added deliberately to the CO2 and H2O mixture 

used in the photocatalytic CO2 reduction. Then, the evolution of the concentration of methanol is 

followed upon irradiation to determine if its decrease is due to methanol degradation [6,10–12]. It is 

likely that similar lack of product stability due to photocatalytic degradation could also apply to other 

products derived from CO2 reduction such as: formic acid, formaldehyde and even CO. All these 

compounds have been reported to decompose photocatalytically and accordingly a stationary 

maximum concentration should be expected for them in batch experiments [13]. 

Another point of concern is that in those cases in which the concentration of products in the 

photocatalytic CO2 reduction is low, the products could not have been derived from CO2, but from 

impurities present on the surface of the photocatalyst. TiO2 and other metal oxide semiconductors, due 

to their small particle size and large surface area, can adsorb airborne organic compounds that due to 



Int. J. Mol. Sci. 2014, 15 5251 

 

 

contact with the photocatalyst and their higher reactivity with respect to CO2 could be the origin of the 

photoproducts, leading to mistakes about the activity of the photocatalyst for CO2 reduction [14–16]. 

In these cases, in which the weight of photocatalyst in the experiment is high and the product 

concentration is low, it is advisable to submit the photocatalyst to calcinations to remove the organic 

material that could be present on its surface, prior to the photocatalytic experiment.  

3. Photocatalyst Design for CO2 Reduction  

In order to be efficient, one photocatalyst must encompass several features, some of them common 

for any catalyst, such as high surface area and Brönsted centres for fast proton transfer. In addition,  

a photocatalyst should combine the properties of the semiconductor with other new desirable 

properties (Table 2).  

Table 2. Desirable properties of a photocatalyst. 

How to accomplish the property Property Effect 

Small particle size High surface area High adsorption 
Crystalline material Single site structure Homogeneity 
Engineering band gap Light absorption Higher efficiency 
Preferential migration along certain 
direction 

Efficient charge separation Low recombination 

Presence of co-catalysts Long lifetime of charge separation Possibility of chemical reactions 
High crystallinity High mobility of charge carriers More efficient charge separation 
Adequate co-catalysts Selectivity towards a single product Efficient chemical process 

These desired properties are related to light absorption, modification of the activity of the 

semiconductor and the presence of additional components acting as co-catalysts. With respect to light 

harvesting, the optimal photocatalyst should absorb efficiently over the whole wavelength range of the 

solar spectrum. However, this property has not yet been achieved and, in fact, TiO2 and other common 

semiconductors only absorb directly a negligible amount of solar energy. For this reason, light 

harvesting centres having the role of absorbing solar photons and transferring electrons to the 

semiconductor are needed. Among the possible light harvesters, organic molecules are highly efficient, 

but tend to decompose and for this reason organic dyes are in general considered not suitable due to 

low stability even though their initial activity can be very high. Transition metal complexes exhibit in 

general higher stability, but also the presence of organic ligands raises concerns about long term 

stability. Metal polypyridyls such as ruthenium tris(bipyridyl), porphyrins and metal phthalocyanines 

are among the preferred metal complexes for solar light harvesting [17]. In this context, much more 

preferable is the use of a totally inorganic light harvesting centre and noble metal nanoparticles (NPs) 

having a surface plasmon band in the visible range as well as high photocatalytic stability, have 

demonstrated high capability and durability. Some metal NPs, such as gold, silver and copper, when of 

appropriate size and morphology, exhibit absorption bands in the visible region as a consequence of 

the collective oscillation of electrons on the surface of the NPs (“surface plasmon band”). In particular, 

the surface plasmon band absorption of Au NPs appears as a very broad band at λ max around 560 nm 

expanding from 400 to 700 nm [18,19]. The exact position of the λ max of the band depends among 
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other factors on the dielectric constant of the support, the average particle size of Au NPs, the charge 

density, either positive or negative, on the Au NP and some other parameters [20,21]. Specifically,  

Au NPs supported on titania, having characteristic pink-purple colour due to the presence of Au,  

has considerable importance as a thermal catalyst for different types of reactions, including low 

temperature CO oxidation, selective oxidation of alcohols, selective nitro group reduction and epoxide 

rearrangement, among others [22–25]. Due to this interest in catalysis, several reliable methods for 

preparation of Au/TiO2 have been reported and, in fact, this material has become a reference catalyst 

available from the World Gold Council to ensure the consistency and reproducibility of catalytic 

results between different laboratories. This commercially available reference catalyst is prepared by 

depositing on Degussa P25 TiO2 Au NPs between 4–7 nm using the so-called “deposition-precipitation 

method” initially developed by Haruta [22]. In the deposition-precipitation method a solution of 

AuCl4
− is contacted at pH > 5 with TiO2 over a long time allowing anchoring of the AuCl4

− species on 

the surface of the TiO2. Subsequently, the solid is recovered and reduced thermally or chemically by 

using alcohols or even hydrogen gas. This Au/TiO2 has been found to be an excellent photocatalyst for 

the solar light generation of hydrogen from a water-methanol mixture [26]. It is proposed that this 

visible light photocatalytic activity derives from Au NPs acting as light harvester centres that upon 

absorption of one photon eject hot electrons that are able to populate the conduction band of TiO2 

(Scheme 1). Similarly, these types of materials containing noble metal NPs or their alloys can act as 

photocatalysts for CO2 reduction as is mentioned later in this paper for the combination of platinum 

and copper(I) oxide. 

Scheme 1. Proposed mechanism for photoexcitation of TiO2 by irradiation of Au 

nanoparticles (NPs). 

TiO2

Au

he‐

TiO2

Aue‐
h+

 

A different approach to introduce visible light photo-response in TiO2 and other wide band gap 

semiconductors is doping by metals or non-metallic elements. While TiO2, being a simple metal oxide, 

has excellent photoactivity upon UV light irradiation, the aim is to expand its photoactivity as much as 

possible towards longer wavelengths without causing detriment to its activity. In the doping process, 

the aim is to reduce the band gap of the semiconductor by introducing extra levels in the gap region. 

These levels can correspond to empty orbitals below the conduction band energy of the semiconductor 

(case of metal doping) or by introducing additional occupied orbitals above the valence band of the 

semiconductor. The main problem of doping is reproducibility of the photocatalytic activity, since it 

has been found that there is an optimal doping level and higher concentrations of the dopant element 

can be extremely detrimental since, besides acting as light harvesters, the doping elements can also act 

as recombination centres [27,28]. Charge recombination is the main deactivation pathway competing 

with photocatalytic activity and should be avoided or minimized as much as possible. What happens is 

that most of the doping procedures, i.e., sol-gel or doping in the solid state, require some calcination 
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step and in this treatment the dopant element can be grafted to or expelled from the framework of the 

semiconductor, making it extremely difficult to know in advance what is going to be the exact amount 

of the dopant that will remain in the material. In addition, all the doped semiconductors must be 

checked for long-term photocatalytic stability since very frequently the activity of the fresh material 

decays during operation due to the spontaneous migration and relocation of the dopant element  

during the photocatalytic reaction. It should be taken into account that photocatalysts are subject to 

considerable framework stress as a consequence of the continued change in the oxidation state of the 

elements involved in the electron/hole separation/recombination. 

Besides light harvesting centres, co-catalysts, meaning some additive or modifier deposited on the 

semiconductor surface, are known to play a crucial role in the photocatalytic efficiency. Once charge 

separation and migration of the charge carriers has taking place, electrons and holes are considered to 

reside preferentially in different centres generally denoted as “traps”. The photocatalytic event requires 

that these trapping sites are present on the external surface of the particle exposed to substrates and 

reagents. Once on the external surface, they should be transferred to the substrates at high reaction 

rates. It should be mentioned that charge accumulation or charge unbalance in a semiconductor particle 

always stops or disfavours charge separation with respect to a neutral particle. Thus, the Fermi levels 

of the semiconductor will depend on the state of charge and this means that an adequate management 

of charge transfer, either electrons or holes, from the particle to the substrate can determine the rate of 

the other events in the photocatalytic mechanism. 

4. Heterogeneous Photocatalysts for CO2 Reduction 

There are two main types of heterogeneous photocatalysts currently employed in the CO2 reduction 

process: bulk semiconductor photocatalysts and so-called matrix-dispersed photocatalysts [29–33]. 

Among all the bulk semiconductor photocatalysts engaged in the CO2 reduction, which comprise  

metal oxides, sulphides, nitrides and oxynitrides, titanium dioxide is the most used material; its 

photocatalytic activity being enhanced especially when appropriate co-catalysts, usually noble metals, 

are employed. In the second category of matrix-dispersed photocatalysts, the photoactive material is 

isolated or entrapped in an inert matrix, which provides extremely good adsorption capacity and large 

surface area. Both categories are briefly discussed below.  

In the case of matrix-dispersed photocatalysts, one photocatalytic system that has been shown to be 

among the highest activity for photoreduction of CO2 to methanol has been the one in which TiO2  

NPs are incorporated inside the mesopores of SBA-15 silica [34]. SBA-15 ranges among the periodic 

mesoporous silicas with the highest porosity and largest surface area that typically goes above  

1000 m2/g. In addition, one advantage of SBA-15 is its high stability in the presence of water 

compared to other mesoporous silica and MCM-41 in particular, which is notoriously unstable when 

suspended in water. The large pore volume, surface area and adsorption capacity characteristic is the 

reason why SBA-15 has been frequently used to prepare composite materials in which a photoactive 

guest is incorporated inside the rigid matrix provided by SBA-15. In the present case, TiO2 NPs have 

been entrapped inside the mesopores of the SBA-15 (around 10 nm size) by performing an in situ 

hydrolysis and condensation of titanium tetra-isopropoxide in isopropanol, obtaining samples 
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containing between 25–65 wt % TiO2. The crystallinity of TiO2 NPs was increased by calcination of 

the samples at temperatures between 500–550 °C. 

The preparation procedure can be adapted to obtain samples in which copper is also present as  

co-catalyst by simply adding CuCl2 (2 wt %) to the isopropanol solution in which the sol-gel formation 

of the TiO2 NPs is taking place. Scheme 2 summarizes the preparation route leading to Cu-TiO2/SBA-15. 

Characterization of the resulting Cu-TiO2/SBA-15 shows that the crystallinity of the SBA-15 has 

largely remained after the preparation of TiO2 which is mainly in the anatase phase. Particularly notable 

is the high crystallinity of the anatase in which copper is present. The resulting Cu-TiO2@SBA-15 

photocatalysts were tested for the reduction of CO2 in liquid aqueous phase at initial pH = 13. The 

actual pH of the photoirradiation was around 7, meaning that the prevalent species submitted to 

photocatalysis were bicarbonates. Comparing with analogous samples in which copper was deposited 

on TiO2, the photocatalytic activity of Cu-TiO2/SBA-15 was higher in terms of both initial reaction 

rate and final productivity of methanol. Table 3 presents the approximated values of methanol production 

rates for some of the samples that have been tested. The above experiments show how it is possible to 

increase the photocatalytic activity intrinsic of a semiconductor by adequate structuring and particle size 

reduction and by embedding the active photocatalytic components in a porous matrix. It should be 

however noted that these experiments in which the average methanol production rate was 627 µmol·g−1·h−1 

were performed using UV light from a medium pressure metal halide lamp having a maximum light 

intensity at 365 nm. Thus, modification of this type of photocatalytic system to be active under visible 

light and solar light irradiation remains to be achieved. These results are certainly remarkable since, as 

indicated earlier, formation of high concentrations of methanol should not be expected in conventional 

TiO2 photocatalysts due to the fast degradation of this product by oxidation. It seems that in the present 

case, confinement of the photocatalytic centres in a matrix alters the intrinsic reactivity, probably due 

to preferential adsorption of CO2 vs. CH3OH near the photocatalytic centres. 

Zeolites are microporous solids with a negligible photocatalytic activity, but the introduction of 

TiO2 clusters in their pores or grafted to their framework produces a considerable enhancement in 

activity. Matrix dispersed TiO2 included within the zeolite framework has been prepared using 

hydrothermal synthesis. Several periodic titanosilicates such as TS-1, Ti-MCM-41 and Ti-MCM-48 

have been prepared. TS-1 has a small pore size (ca. 5.7 Å) and a bi-dimensional channel structure,  

Ti-MCM-41 has a larger pore size (>20 Å) but a one-dimensional channel structure and Ti-MCM-48 

has both a large pore size (>20 Å) and three-dimensional channels [35,36]. In addition, TiOx(OH)y 

clusters entrapped within the micropores of Y-zeolite have been prepared by ion exchange and 

impregnation [35,37] (Scheme 3). UV irradiation of the catalysts was carried out using a 75 W  

high-pressure Hg lamp (λ > 280 nm) at 328 K. UV-irradiation of the photocatalysts in the presence of a 

mixture of CO2 and H2O led to the evolution of CH4 and CH3OH at 328 K, as well as trace amounts of 

CO, C2H4 and C2H6. Among the series of materials prepared Ti-MCM-48 exhibited the highest 

photocatalytic activity. The higher reactivity and selectivity in the reduction of CO2 with H2O to 

produce methanol in the case of Ti-MCM-48 may be the combined contribution of the high dispersion 

state of the Ti-oxide species and the large pore size having a three-dimensional channel structure. 
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Scheme 2. Steps in the preparation of copper modified TiO2 NPs included in the channels 

of SBA-15. 

SBA‐15

Titanium (IV) isopropoxide /isopropanol

Stirring at RT, 45 min

CuCl2

Drying at 100 °C overnight

500 °C, air , 3h

Cu‐TiO2/SBA‐15

Centrifugation

Excess of water

Stirring at RT, 45 min

 

Table 3. Photocatalytic methanol formation rate of various photocatalysts at different 

irradiation times. The values indicated have been obtained by interpolating data from  

reference [34].  

Photocatalyst 
Methanol formation rate (µmol·g−1) at different irradiation times 

60 min 120 min 240 min 480 min 

TiO2 450 900 950 1100 
2 wt % Cu/TiO2 1500 2500 3000 3200 

(2 wt % Cu/TiO2)/SBA-15 1600 2850 3010 4100 

Scheme 3. Pictorial illustration of matrix isolated titania clusters encapsulated inside the 

cavities of zeolite Y acting as photocatalyst for CO2 reduction by H2O. 

Y zeolite

CO2 + H2O

CH4 + CH3OH + …

UV

O2‐ O2‐ O2‐ O2‐

O2‐

O2‐

O2‐

Ti4+ Ti4+
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The effect of Pt-loading on the activity of Ti-MCM-48 and Ti-oxide/Y-zeolite has also been 

investigated. Although the addition of Pt is effective in increasing the activity of both samples, only 

the formation of CH4 is promoted, accompanied by a decrease in the CH3OH yields. The highest value 

of methane production reported by Anpo et al. is 12.5 µmol·(g−1 TiO2)·h
−1 corresponding to two samples; 

namely Pt (1 wt %)-Ti-MCM48 with a ratio Si/Ti = 80 and Pt (1 wt %) and ion exchanged Ti-oxide/ 

Y-zeolite with 1 wt % as TiO2. The highest production of methanol was around 5 µmol·(g−1 TiO2)·h
−1 

for the sample Ti-oxide/Y zeolite with 1 wt % as TiO2 and without Pt.  

Among many other matrices used as support to incorporate Ti-oxide, a very recent study used 

montmorillonite (MMT) to increase the photoactivity of titania [38]. In this study montmorillonite 

modified titania nanocomposites synthesized by a single step sol-gel method were introduced in a 

stainless steel reactor filled with a gas mixture of helium, CO2 (20%) and water vapour and equipped 

with quartz windows. The reactor was irradiated with a 500 W mercury lamp. The effect of 

temperature on the photocatalytic CO2 reduction revealed that the highest yield rate of methane  

(441.5 µmol·g−1·h−1) and carbon monoxide (103 µmol·g−1·h−1) is reached at 393 K when 20 wt % 

MMT/TiO2 nanocomposite was used. 

A similar influence of the temperature increase caused by irradiation was reported by Grätzel and 

co-workers in 1987 when they studied the selective production of CH4 (selectivity bigger than 99%) 

from a mixture of H2 and CO2 in argon, at atmospheric pressure, using highly dispersed Ru/RuOx 

loaded onto TiO2 as a catalyst [39]. The authors suggested that the whole reaction mechanism 

comprises the following steps: (i) carbon dioxide reduction by four electrons provided by the titania 

conduction band taking place on the Ru species and leading to the production of Ru-C species and 

oxide ions (O2−); (ii) hydrogen is oxidized and then reacts with the oxygen ions to form water;  

(iii) methane is generated during the reaction of hydrogen with the carbidic surface carbon (Ru–C) 

followed by regeneration of Ru. The methanation of carbon dioxide takes place even under dark 

conditions but the irradiation of the surface with simulated sunlight boosts the activity of the catalyst 

leading to a methane production rate of about 116 µL·h−1 per 100 g of material. 

However, after a comprehensive study of Grätzel’s work, it has been suggested that the 

photocatalytic reduction of CO2 with hydrogen over Ru/RuOx sensitized TiO2 catalyst occurs due to a 

thermal effect rather than involving a genuine photocatalytic reaction [40]. Actually, since the reaction 

between CO2 and H2, indicated in Equation (8), is a downhill reaction (ΔG0 < 0), in principle, a large 

range of catalysts could be suitable to promote this process even at room temperature and in the 

absence of light. The problem arises when considering the solar-driven CO2 photo reduction by water, 

since this process can be envisioned as a combination of photocatalytic splitting of water to provide 

hydrogen (Equation (9)), followed by thermal methanation (Equation (8)). According to this, one 

possibility for the overall process of photo-methanation of CO2 could be a photocatalytic hydrogen 

generation and a dark, catalytic methanation of CO2. 

CO2 + 4H2 → CH4 + 2H2O ΔG0 = −114 kJ·mol−1 (8)

H2O → H2 + 1/2O2 ΔG0 = 237 kJ·mol−1 (9)

Conventional TiO2 materials are constituted by individual NPs in an unstructured way forming a 

powdered material. Ordering and structuring is one of the general methodologies that can lead to an 

increase in photocatalytic efficiency. The reason for this is because migration of charge carriers can 
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take place for much longer distances when the material has a preferential morphology like rods or 

nanotubes. In this context, one of this type of photocatalyst that has exhibited among the highest 

efficiencies is composed of TiO2 nanotube (NT) arrays of about 130 µm lengths, 95 nm pore size and 

20 nm wall thickness [41]. These titania NT arrays were doped with nitrogen and in this way the  

N-doped TiO2 NT array absorbs up to wavelengths shorter than 500 nm. Doping with nitrogen  

takes place spontaneously during the anodization of titanium metal foil using ammonium fluoride  

as electrolyte under ambient atmospheric conditions. In addition to doping and structuring, the 

photocatalyst in the form of a porous film was further modified by depositing platinum and copper as 

co-catalysts. This system of structured array of N-doped TiO2 NT with Pt and Cu co-catalyst combines 

some of the components that are known to increase the photocatalytic activity of semiconductors, 

including control of the morphology of the semiconductor to favour preferential charge migration, 

doping to increase visible light photoactivity and the presence of co-catalysts to increase the dark 

elementary steps related to charge transfer management to the substrates with adequate balance of 

electrons and holes. The systems studied include a series of TiO2 NT arrays containing platinum, 

copper or platinum and copper in different regions (Scheme 4). These metals were introduced by direct 

current sputtering. Electron microscopy characterization of the NT arrays shows that in the case of 

platinum, this metal forms islands of about 40 nm located in the pore mouth of the NTs but without 

blocking the entrance of the pores. It can be assumed that similar features could be also observed in the 

deposition of copper, but further characterization including location and size of copper, its distribution 

in the different oxidation states would be necessary. Notable influence of the co-catalyst on the 

photocatalytic activity was observed depending on the nature of the metal. In particular, platinum 

exhibits more than three times higher activity for hydrogen generation while copper has higher 

efficiency than platinum for hydrocarbon generation (see Table 4). Furthermore, if the UV light from 

the sun is filtered, no hydrogen is produced using the photocatalyst consisting of Cu deposited on  

N-doped TiO2 nanotube arrays and only CO2 reduction is observed. These experimental results, as well 

as others in the same direction reported in the literature, point to the fact that the presence of Cu NPs 

on the surface of the photocatalyst enhances the selectivity towards methane vs. hydrogen generation 

or other CO2 reduction products. 

Scheme 4. Architecture of N-doped TiO2 NT array acting as solar light photocatalyst for 

CO2 reduction by water. 
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Table 4. Photocatalytic conversion of CO2 over nitrogen-doped TiO2 NT array  

films loaded with single or binary platinum and copper co-catalysts under different 

irradiation conditions. The formation rate values have been estimated by interpolating  

data from reference [41].  

Photocatalyst Irradiation conditions 
Formation rate (ppm·cm−2·h−1) 

Hydrocarbon Hydrogen Carbon monoxide

Pt/N-TiO2 NT Solar light 85 190 2 

Cu/N-TiO2 NT 
Solar light 105 60 10 

Visible light 30 – 19 
PtCu/N-TiO2 NT Solar light 111 160 – 

Other experiments have shown the effect of temperature on the product formation rate. Since 

increased irradiation intensity is always accompanied by an increase in temperature, the investigation 

of the nitrogen-doped titania NT array films loaded with platinum and copper under different solar 

irradiation conditions revealed a significant increase of the total hydrocarbon formation rate from 

around 90 ppm·cm−2·h−1 at 1 Sun to about 450 ppm·cm−2·h−1 under 3.5 Sun, which corresponds to a  

5-fold increase in the hydrocarbon yield [42]. 

Further refinements in this TiO2 NT array system, by coating the undoped titania double-walled NT 

arrays with coaxial Cu-Pt bimetallic layers as well as using a much higher pressure inside the 

photoreactor, allow improved hydrocarbon productivity of the photocatalyst. Under these conditions 

the photocatalysts demonstrate at least a fourfold improvement in CO2 conversion rates obtaining, under 

1 Sun irradiation and room temperature conditions, a hydrocarbon production rate of 574 nmol·cm−2·h−1 

that is among the highest CO2 conversion rates reported so far [43]. Even though the CO2 conversion 

rate under these conditions is one of the highest values so far reported, the novelty of this study is also 

in the effectiveness of these photocatalysts for the reduction of non concentrated carbon dioxide 

(0.998% in N2), these materials being capable of reaching an average hydrocarbon production rate of 

610 nmol·cm−2·h−1. 

Such results clearly show that in order to obtain high CO2 reduction rates it is essential to design 

and develop bifunctional co-catalysts with proper nanostructuring and adequate properties. In this 

respect, a recent work presented the design and preparation of an efficient binary co-catalyst for CO2 

reduction in the presence of H2O [44]. In this work, the preparation of TiO2-loaded Pt and Cu binary 

co-catalysts was performed using a photodeposition technique in which, first the Pt NPs were 

introduced onto TiO2 providing Pt/TiO2 with a 0.9 wt % Pt content, and then the deposition of Cu was 

carried out at different irradiation times leading to the synthesis of several Cu/Pt/TiO2 materials. Using 

this type of preparation procedure, core-shell structures, in which the Pt NPs are covered by a Cu shell, 

have been developed, the Cu contents varying from 0.59–1.7 wt % after 1 and 5 h of irradiation, 

respectively. The characterization of the samples revealed that copper was preferentially deposited on 

Pt NPs and its oxidation state in the shell is one, as Cu2O, while the mean size of the core-shell 

structured particles was around 7.3 nm. The performance of the photocatalytic CO2 reduction with 

water leads to the formation of CO, CH4 and H2, with the 5 h photodeposited Cu/Pt/TiO2 material 

having the highest selectivity for CO2 reduction of 85%.  
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Concerning the actual reported productivity values it should be commented that these numbers have 

only relative importance since they depend on different experimental factors and reaction conditions. 

Thus, the same material can exhibit higher or lower CO2 conversion rate depending on factors such as 

photoreactor design, CO2 pressure and concentration, intensity and type of light, photocatalyst 

concentration and placement inside the photoreactor together with others. Therefore, in order to make 

a good comparison about the performance of different photocatalysts, future studies in the field  

of photocatalytic CO2 reduction should take into account the ten IUPAC recommendations [45].  

For instance, the absorbed radiation should be properly determined (either by actinometry or by proper 

calculation) and the radiation source should have reached steady-state regime, among others. 

5. Conclusions and Future Prospects 

In this paper we have tried to convey the interest of developing CO2 reduction by photocatalytic 

means in the context of searching for alternatives to the depletion of fossil resources. It is clear that the 

current state of the art is still far from having identified an optimal photocatalyst for CO2 reduction 

which may be applied commercially. Since solar fuel production derived from CO2 is the principal 

goal, it is obvious that further work in photocatalyst design must combine in an appropriate manner 

every possibility to improve the solar light response of the photocatalyst. In this context, photocatalytic 

CO2 reduction is highly dependent on photocatalyst modification with co-catalysts to control the 

efficiency and selectivity of the process. 

Application of theoretical calculations and in situ spectroscopic techniques will help to improve 

understanding of the elementary steps occurring in the photocatalytic carbon dioxide reduction 

process. The in situ monitoring of the surface reaction intermediates, the investigation of the rate 

limiting step and the process dynamics of adsorption and desorption of these species by using 

temperature-programed studies will boost our knowledge of photocatalytic CO2 reduction and finally 

should lead to the synthesis of new photocatalysts with higher efficiency, selectivity, long-term 

stability and economic competitiveness. Considering current performance, it is necessary to increase 

conversion efficiency by several orders of magnitude since the actual conversions are quite low and 

still far from practical application. In this context, engineering of the photocatalyst including 

nanostructuring is crucial, offering a good possibility to enhance the overall photocatalytic activity of 

these materials.  
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