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Abstract

Experience shows that static life tables overestimate death probabilities. As a consequence

of this overestimation the premiums for annuities, pensions and life insurance are not what

they actually should be, with negative effects for insurance companies or policy-holders. The

reason for this overestimation is that static life tables, through being computed for a specific

period of time, cannot take into account the decreasing mortality trend over time. Dynamic life

tables overcome this problem by incorporating the influence of the calendar when graduating

mortality. Recent papers on the topic look for the development of new methods to deal with

this dynamism.

Most methods used in dynamic tables are parametric, apply traditional mortality laws

and then analyze the evolution of estimated parameters with time series techniques. Our

contribution consists in extending and applying Lee-Carter methods to Spanish mortality

data, exploring residuals and future trends.
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1 Introduction

The most recent actuarial literature recognises the fact that mortality evolves over time. Mortality

experiences that correspond to different periods display different death probabilities for the same

age. This is supported by the fact that mortality has been seen to gradually decline over time,

although the decrease is not necessarily uniform across age groups. It is therefore important to

be able to measure mortality changes over time accurately, as life insurance policy gains depend

on survival. If the static tables used to calculate annuities and reserves predict higher mortality

probabilities than is actually the case among policy-holders, the latter will have been undercharged

and the insurance company will make a loss.

The concept of a dynamic table seeks to solve this problem by jointly analysing mortality data

corresponding to a series of consecutive years. This approach allows the calendar effect’s influence

on mortality to be studied. A review of dynamic models and their application can be found in

Benjamin and Pollard (1992), Pitacco (2004) and Tabeau et al. (2001).

Since Lee and Carter proposed dynamic life tables in 1992 and use them to study projections

of the mortality rate in US (Lee and Carter, 1992), there have been several papers forecasting

population mortality in other developed countries such as Canada (Nault, 1993), Chile (Lee and

Rofman, 1994), Japan (Wilmoth, 1996), Belgium (Brouhns et al., 2002), Austria (Carter and

Prkawetz, 2001), England and Wales (Renshaw and Haberman, 2003a), Australia (Booth and

Tickle, 2003) and Spain (Guillen and Vidiella-i-Anguera, 2005).

This paper applies the Lee-Carter model with different methods for estimating parameters,

compares all these approaches using mortality data for Spain during the 1980-1999 period, paying

attention to the analysis and study of residuals, and predicts death probabilities and expected

remaining lifetime for future years. In the prediction of expected remaining lifetime, parametric

and non parametric bootstrapping procedures are used as a way to take into account different

sources of uncertainty.
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The paper is structured as follows. Section 2 briefly presents the Lee-Carter methodology to be

used and the bootstrapping techniques. Section 3 is devoted to the application of the Lee-Carter

method to the analysis of Spanish mortality data, including the prediction of specific mortality rates

in the year 2000 (qx,2000) obtained using the adjusted models and the computation of bootstrap

confidence intervals for expected remaining lifetimes. Section 4 establishes the conclusions to be

drawn from the results in the previous section.

2 Adjustment and prediction of qxt

The Lee-Carter Model, developed in Lee and Carter (1992), consists in adjusting the following

function to the central mortality rates,

mxt = exp(ax + bxkt + εxt)

or, its equivalent

ln (mxt) = ax + bxkt + εxt. (1)

In the previous two expressions, the double subscript refers to the age, x, and to the year or unit

of time, t. ax and bx are age-dependent parameters and kt is a specific mortality index for each

year or unit of time. The errors εxt, with 0 mean and variance σ2
ε , reflect the historical influences

of each specific age that are not captured by the model.

In Lee (2000) the author remarks that nothing ensures that the mxt estimations obtained from

(1) will not exceed 1, although this problem can be avoided by modelling the logit death rates. It

is for that reason that we apply this model to logit death probability qxt,

ln
(

qxt

1− qxt

)
= ax + bxkt + εxt. (2)
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Booth et al. (2002) and Renshaw and Haberman (2003b) indicate that the interaction between

age and time can be captured better by adding terms to (2), which would become

ln
(

qxt

1− qxt

)
= ax +

r∑

i=1

bi
xki

t + εxt. (3)

In our application to the Spanish data of mortality we have used (3) with r = 1 and r = 2,

consequently the corresponding models will be named LC and LC2, respectively.

2.1 Estimation

Given a solution of (2), (ax, bx, kt), any transformation of the type (ax, bx/c, ckt) or (ax+cbx, bx, kt−

c), ∀c, is also a solution. In order to avoid this trouble and to get a single solution, Lee and Carter

(1992) propose constraining the bx to sum to 1 and the kt to sum to 0. The estimations of the

parameters of the model can be carried out following the Lee-Carter’s approach, which uses the first

term of the singular value decomposition, SV D, the method proposed by Currie et al. (2004), which

use conditional generalized linear models, GLM , or by means of maximum-likelihood estimations,

ML, as Brouhns et al. (2002) propose and that we have adapted for the equation (2). Next we

briefly present how to obtain the parameter estimation by means of the methods SV D and GLM .

2.1.1 Lee-Carter-SVD

a) The estimation of ax is,

ǎx =

∑
t

ln
(

qxt

1− qxt

)

T
,

with T number of years.

b) The values bx and kt are estimated from the first term of SV D applied to the matrix,
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ln
(

qxt

1− qxt

)
− ǎx =

min(n,T )∑

i=1

siui
xvi

t, (4)

with n number of ages, and si, ui
x and vi

t the (ordered) singular values and respective left

and right singular vectors (Renshaw and Haberman, 2003b).

Then k̂SV D
t = s1v1

t and b̂SV D
x = u1

x. As
∑

x

b̂SV D
x = c 6= 1, we normalize with the transfor-

mation b̂x =
b̂SV D
x

c
and ǩt = ck̂SV D

t .

c) The estimated values in b) can show discrepancies between observed and predicted deaths

due to the fact that they are based on logit of deaths rates. To avoid this problem, kt is

reestimated, using ǩt as initial values, by means of the equation

Dt =
∑

x

(
Ext

exp(ǎx +
∑

i ktb̂x)

1 + exp(ǎx +
∑

ktb̂x)

)
, (5)

where Ext is the number of initial exposed to risk at age x in year t and Dt =
∑

x

Dxt is

total deaths in year t, with Dxt the number of death at age x in year t. The solution of (5)

is k̃t. The final solution requires a translation,

k̂t = k̃t −mean(k̃t) and âx = ǎx + b̂xmean(k̃t).

2.1.2 Lee-Carter-GLM

The former solution (âx, b̂x, k̂t) can be improved by conditional GLM models, as Currie et al. (2004)

did when applying GLM to force of mortality. The GLM fitting process allows random components

to have a distribution other than the normal. We have considered a Binomial distribution for

Dxt ∼ Bi(Ext, qxt) with a logit link as more appropriate for the death rate with values between 0

and 1. In fact, the law of mortality proposed by Heligman and Pollard (1980) already suggested the
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use of logit death rate as a response variable. Other advantages of conditional GLM are described

in Booth et al. (2002).

For the GLM fitting we proceed as follows,

a) for each x, using

ln
(

qxt

1− qxt

)
= offset(âx) + bxk̂t,

where âx and k̂t are the estimations obtained with the previous method, we obtain b̌GLM
x

with
∑

x

b̌GLM
x = s 6= 1,

b) then for each t, using

ln
(

qxt

1− qxt

)
= offset(âx) + b̌GLM

x kt,

we obtain ǩGLM
t with

∑
x

ǩGLM
t 6= 0,

c) finally,

b̂GLM
x =

b̌GLM
x

s

k̂GLM
t = sǩGLM

t −mean
(
sǩGLM

t

)

âGLM
x = âx +

∑

i

b̂GLM(i)
x mean

(
sǩGLM

t

)
.

Now the solution satisfies the constraints. The correction (5) has not been done now because,

although the total number of annual deaths may not be reproduced exactly, this loss is outweighed

by the greater accuracy in reproducing the age distribution of deaths (Booth et al., 2002).

If we want to estimate (3) with r = 2 we will use two terms of the SV D decomposition, obtaining

two estimations for bx and kt from the initial values, k̂SV Di
t = sivi

t and b̂SV Di
x = ui

x, i = 1, 2.
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2.2 Residuals

Little attention appears to have been paid to the definition and analysis of residuals in the literature.

Renshaw and Haberman (2003a) and Booth et al. (2002) are exceptions. Our work focuses on SV D

residuals,

ε̂xt = ln
(

qxt

1− qxt

)
−

(
âx +

r∑

i=1

k̂i
tb̂

i
x

)
, (6)

where r is the number of singular values used.

The graphs of residuals against age and year are used to detect if any pattern is present. The

model performance is evaluated with two measures, the Mean Absolute Percentage Error (MAPE)

and Mean Square Error (MSE). The first, used by Felipe et al. (2002), is defined by,

MAPE(q̂xt) =

∑
x

|q̇xt − q̂xt|
q̇xt

n
, t = 1, . . . , T

and it measures the mean absolute error weighted with the inverse of the crude estimates q̇xt.

These weights allow us to reduce the effect of the errors associated with high values of q̇xt, usually

associated with intermediate and old ages. The second, defined by,

MSE(q̂xt) =

√∑
x

(q̇xt − q̂xt)2

n
, t = 1, . . . , T

measures the error of estimations without any correction.

2.3 Model forecasts

Forecast of qxt are generated by first modelling k̂t as a time series by using Box-Jenkins methodo-

logy. Usually, in many of these applications, a good model for the kt is an ARIMA(0, 1, 0),

k̂t = c + k̂t−1 + ut,
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where c a is constant and ut is a white noise. With this model, the prediction of kt varies in a linear

way and each death rate predicted varies at a constant exponential rate. Booth et al. (2002) have

introduced some modifications to the Lee-Carter method, particularly an improved fit of the base

model, the identification of the optimal fitting period for the lineal ARIMA, and the incorporation

of age-time interaction in the base model.

2.4 Bootstrap confidence intervals for expected remaining lifetimes

The Lee-Carter model is designed to produce values for the dynamic expected remaining lifetimes

at different ages. For a year t, the hypothetical number of people alive at the start of each age

interval [x, x + 1) is given by iterative formula l(x+1)t = lxt(1− qxt), with arbitrary value l0. This

leads to a number of deaths dxt = lxt − l(x+1)t, and the corresponding number of person-years

Lxt = l(x+1)t + 1/2dxt. Therefore, the total future remaining lifetime of Lxt people who attain age

x is Txt =
∑

i≥x Lit. The future remaining lifetime for individuals from age-grouping x is given by

ext =
Txt

lxt
.

In their original paper, Lee and Carter predict confidence intervals for the expected remaining

life time taking into account only forecast errors in the projected ARIMA kt parameters. Never-

theless, another source of error is due to sampling errors in the parameters of the Binomial model. A

way to combine these two sources of uncertainty is to use bootstrapping procedures as Brouhns et al.

(2005) and Koissi et al. (2006) do. In the first paper the authors use a parametric bootstrapping,

while the second paper is devoted to a nonparametric one.

We have carried out both bootstrapping procedures. For the parametric case we use the Bi-

nomial distribution of Dxt. Starting from the observations (Ext, dxt), we simulate N bootstrap

samples (Ext, d
n
xt), n = 1, 2, . . . , N , where dn

xt are realizations from Binomial distribution with
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parameters (Ext, q̇xt). For each bootstrap sample, the ax’s, bx’s and kt’s are estimated, and the

kt’s are then projected on the basis of the ARIMA model selected from the original data. This

yields N realizations of an
x , bn

x , kn
t and projected kn

t which are used to compute expected remaining

lifetimes. The confidence intervals are the percentile intervals, IC95 = [p0.025, p0.975].

For the non parametric case, the N bootstrap samples are simulated from the SV D residuals

(6) obtained with the original data. Each sample furnishes an estimated ̂logit(qxt)
n

by means of

the inverse of formula (6)

̂logit(qxt)
n

= logit(q̇xt)− ε̂n
xt,

where logit(q̇xt) are computed from the observations (Ext, dxt). From this point we proceed as in

the parametric case. The extension of bootstrap methods to the LC2 models is immediate.

3 Analysis of mortality data in Spain

3.1 Data

The models described in Section 2 have been used to adjust Spanish mortality data corresponding

to the period 1980-1999, for a range of ages from 0 to 96. Data for men and women are adjusted

separately. The population of Spain in the last census carried out in 2001 was 40,847,371.

The crude estimates of qxt have been obtained by means of the procedure used by the Spanish

National Institute of Statistics (INE, Instituto Nacional de Estad́ıstica),

q̇xt =
1/2(dxt + dx(t+1))

Pxt + 1/2dxt
,

where dxt are the deaths in year t at age x, dx(t+1) are the deaths in year t + 1 at age x, and Pxt

is the population that on December 31st of year t was aged x. The formula can be applied to all

ages, except for 0, due to the concentration of deaths in the first few months of life. The expression
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used for age 0 is,

q̇0t =
0.85d0t + 0.15d0(t+1)

P0t + 0.85d0t
.

3.2 Model adjustment

The high number of parameters estimated in the LC model, 97×2+20 = 214 for men and women,

cannot be fully presented in a paper of this extent. We prefer to present them instead in the form

of a graph in Figure 1. As a general comment, we must point out that the differences among the

estimations obtained with SV D method (LC-SVD), GLM method (LC-GLM ) and ML method

(LC-ML) are very small in ax values for both sexes. For bx and kt, they are not appreciable for

women, but this is not the case for men.

More specifically, the comparison of parameter ax for both sexes shows that mortality for women

is lower than for men. The hump in Figure 1(a) reveals an increase of mortality in the range of

ages from 11 to 40 for men that some authors (Guillen and Vidiella-i-Anguera, 2005) attribute to

an accidental mortality.

The negative values of parameter bx for intermediate ages (24 to 40 for men and 28 t0 32 for

women) and for advanced ages (more than 92 for both sexes) indicate that mortality in these age

groups does increase over time. For the range of ages from 24 to 40 this increasing over time

could be explained by the effect of the AIDS epidemic as Felipe et al. (2002) and Guillen and

Vidiella-i-Anguera (2005) point out.

Figure 2 shows the estimations obtained with the LC2 model. The behaviour of ax, b1
x and k1

t is

similar to the one observed for the model LC. b2
x (Figure 2(d)), corresponding to the second term,

shows larger values for ages in the range from 20 to 40, which implies that the effect of adding

a second term acts more specifically on this age group, particularly for LC2-SVD and LC2-GLM

methods. With regards to k2
t (Figure 2(e)), LC2-SVD and LC2-GLM methods do not display

any clear trend, it decreases for the first two years, increases until 1990 and decreases for the later
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Figure 1: Estimated values for men (solid line) and for women (dotted line) for the LC models.

years, with fewer variations for the women than for men. It can be assumed, for both methods,

that a slightly increasing trend exists for the first years, which changes to a decreasing trend later.

In the LC2-ML method the estimation of k2
t shows a clearly decreasing trend.

As far as we know, only Felipe et al. (2002) and Guillen and Vidiella-i-Anguera (2005) have

studied the evolution of Spanish mortality with dynamic models. The first use the Heligman-

Pollards laws to research the way in which the calendar time (1975-1993) affects mortality patterns

in the Spanish population for a range of ages from 0 to 90. The second use a Poisson log-bilinear

version of the Lee-Carter model, proposed by Wilmoth (1993) and Brouhns et al. (2002), for

Spanish mortality data during the 1975-1998 period and a range of ages from 0 to 105. Our results

about the evolution of mortality rates are similar to those obtained by these authors.

In recent times, statistical techniques have improved the study of mortality behaviour at very

old ages. Pitacco (2004) remarks that the mortality at very old ages is slowly increasing in many

countries. Spanish mortality evolution holds with this fact as Figure 3 shows.
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Figure 2: Estimated values men(solid line) and women(dotted line) for LC2 models.
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Figure 3: Logit rates versus year (1980-1999) for old ages.
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3.3 Goodness-of-fit

Residuals corresponding to the adjustment of the LC model with the three methods are plotted

in Figures 4 and 5, displaying a cyclic pattern indicating a poor fit. A better fit is obtained when

a second term is introduced in the Lee-Carter model, LC2 model, as the plot of the corresponding

residuals shows in Figures 6 and 7.
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Figure 4: SVD residuals for the LC model versus year
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Figure 5: SVD residuals for the LC model versus age

Figure 8 shows the MAPE values for different adjustments. These values confirm the best
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Figure 6: SVD residuals for the LC2 model year
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Figure 7: SVD residuals for the LC2 model versus age
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behaviour of the LC2 model. The LC model fits worse for the most recent years. The explanation

of this fact can be found in the diminution of the accident hump in these years. This poorer

adjustment is not observed in the case of the LC2 model because, as we have already pointed out,

the introduction of the second term better adapts the model for the ages involved in the accident

hump. The GLM and ML methods produce better adjustments than the SV D method in both

models. The adjustment for women is in general better than for men, particularly with the GLM

method.
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Figure 8: MAPE values over the years (solid line for men and dotted line for women).
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3.4 Forecasting

The prediction of mortality rates needs the previous adjustment of a time series to mortality

indexes, kt, which is carried out by means of the Box-Jenkins methodology using an R code

developed by Shumway and Stoffer (2006). As we have already said, the most appropriate model

turns out to be an ARIMA model because the first or second differences are seen to be a stationary

series for both sexes. The standard Autoregressive Integrated Moving Average (ARIMA) models

are denoted ARIMA(p, d, q) where p, d and q are autoregressive, difference and moving average

orders, respectively (Diggle, 1990).

The ARIMA models adjusted for each model and method are shown in Table 1.

SVD GLM ML
Men Women Men Women Men Women

LC kt (0,1,0) (0,1,0) (0,1,0) (0,1,0) (0,1,0) (0,1,0)
constant -0.9226 -1.6550 -1.0217 -1.5556 -0.7715 -1.5308

LC2 k1
t (0,1,0) (0,1,0) (0,1,0) (0,1,0) (0,1,0) (0,1,0)

constant -0.7815 -1.7115 -0.7222 -1.7170 -0.6804 -0.4341
k2

t (0,2,0) (0,2,0) (0,2,0) (0,2,0) (0,1,0) (0,1,0)
constant 0 0 0 0 -1.8403 -2.2799

Table 1: ARIMA models for mortality index

The underlying assumption is that the two time series corresponding to k1
t and k2

t are indepen-

dent. This assumption made also by Booth et al. (2002) and by Renshaw and Haberman (2003b)

represents a potencial weakness as Renshaw and Haberman (2003b) recognize. An example of how

the model can be expanded to include dependence and co-integration effects is given in Renshaw

and Haberman (2003c).

3.4.1 Predictions for year 2000

As Sithole et al. (2000) point out, “... for each experience analysed, determining a model that

provides the best fit to the data did not present many problems. The difficulty was in identifying
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a model that not only provided a good fit for the data, but also had a good shape for the purpose

of making projections.”

In order to check how the adjusted models perform when predicting, the predictions of qx,2000

have been obtained. The crude estimates, q̇xt, are known and we also have mortality data for the

year 2001. A summary of these predictions in terms of MAPE and MSE is shown in Figure 9. It

can be seen that all adjustments perform better for women than for men, as women display greater

linearity and a lesser variability. With respect to models and methods, these results confirm those

obtained in Section 3.2 in the sense of a better behaviour of the LC2 model. When comparing

crude estimates with their predictions, all methods show a lack of fit for high values of q̇xt. This

can be seen in Figure 10 that shows predictions versus crude estimates for some of the adjustments.
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Figure 9: MAPE and MSE of predicted mortality rates for the year 2000.

3.4.2 Prediction for future years

Figure 11 shows the prediction of mortality ratios for years 2000 to 2011 obtained with the different

models and methods. In order to facilitate the interpretation of these results we have represented

the ages from 10 to 50 years, for every 10 years. The greatest differences between the different

adjustments are observed in the ages 20 and 30. The best behaviour is observed for the LC2-GLM

and LC2-ML methods because, as we have already said, the inclusion of the second term adapts

the model to the changes of trend better. However, this reasoning cannot be applied to the LC2-

SVD method, that also incorporates a second term, because, contrary to the other two methods,
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Figure 10: Predicted vs observed values for some methods for the year 2000.
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the evolution of its estimations of the mortality index k2
t does not allow a good adjustment of

the corresponding time series. This fact is well observed in the predictions for women with ages

of 20 and 30 years, whose evolution with LC2-SVD method increases in a unreasonably. These

comments can be extended to the intermediate ages whose graphs do not appear in the figure.

For old ages there are no great differences, although the LC2-GLM and LC2-ML methods are

those showing the smoothest increase.

3.5 Bootstrap confidence intervals for e65t

Tables 2 and 3 show the confidence intervals for the prediction of expected remaining lifetimes at

the age of 65 years, e65t, obtained by means of bootstrap techniques described in Section 2.4. The

prediction has been carried out for the period 2000-2011. The first table contains the results for

the Lee-Carter model with only one term, LC. The results for the model with two terms are shown

in the second table.

We can see from the two Tables that the expected remaining lifetime is higher for women than

for men, and there is a clear trend indicating an increase in e65t. Specifically, this expected increase

varies for men from 0.84 to 1.06 years depending on the model, adjustment method and bootstrap

method. For women, the increase varies from 1.05 to 1.64 years. These results are slightly higher

than those obtained by Guillen and Vidiella-i-Anguera (2005).

As far as the bootstrap method is concerned, the amplitude of the intervals obtained by means

of the parametric method is, in general, smaller than the one obtained with the non-parametric

one. With regard to the models, the LC2 model provides intervals of smaller amplitude for men,

although this good behaviour does not hold for women, because only the LC2-ML method obtains

better intervals than its homologous LC-ML.

It must be pointed out that our prediction intervals for forecasted life expectancies in tables

2 and 3 are narrow. This fact has attracted attention of other researchers in this field, Lee and
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Table 3: Bootstrap confidence intervals for the LC2 model
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Carter (1992), Lee (2000), Booth et al. (2002) and Koissi et al. (2006), which provide different

explanations. In our case the resultas agree with the evolution of values published by INE.

4 Conclusions

The most important conclusion drawn for the results of our analysis is that the LC2 model performs

better than the LC model. It fits the Spanish mortality data better, it also predicts the values of

qx,2000 better and provides bootstrap confidence intervals that display in general smaller amplitude.

When analysing the results by sex, the LC2 model also display better behaviour. This is

more evident in the case of men, due to the fact that male mortality fluctuations for the ages in

the accident hump are difficult to capture over the period of time under consideration, and the

inclusion of a second term in (3) improves the versatility of the model. As women display greater

linearity and homogeneity, their fits with LC and LC2 models are more similar.

When comparing our results with the work of Felipe et al. (2002), who use the Heligman and

Pollard second law for studying Spanish mortality data, they are similar in the case of men but the

LC2 model fits better in the case of women. The reason for a poorer behaviour in women for the

Heligman and Pollard model is because, unlike men, mortality in Spanish women does not present

the accident hump that this law presupposes for the intermediate ages.

In Guillen and Vidiella-i-Anguera (2005), the authors study the impact on forecast of accidental

mortality splitting Spanish mortality data. They obtain confidence intervals for e65t based on

projected mortality index kt for both, natural and overall mortality. Compared with the bootstrap

confidence intervals we have computed, the average values of e65t are similar, but with a range

slightly higher in our case. As far as precision is concerned, the intervals that we have obtained

by means of parametric bootstrap for the LC2 model are narrower, even than those they have

obtained for data of mortality by natural causes.
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Let us indicate finally that, although the results are satisfactory, these models continue to show

a poor adjustment for the highest mortality ratios (see Figure 10), most of them corresponding

to old ages. All these models assume independence in the observations, a hypothesis difficult to

maintain as the graphical representation of the residuals demonstrates. A solution to this problem

may consist in modelling the residuals dependence by means of suitable techniques, a future line

of research to explore.
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