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Abstract

Trace exploration is concerned with techniques that allow computation traces to be dynamically
searched for specific contents. Depending on whether the exploration is carried backward or for-
ward, trace exploration techniques allow provenance tracking or impact tracking to be done. The
aim of provenance tracking is to show how (parts of) a program output depends on (parts of)
its input and to help estimate which input data need to be modified to accomplish a change
in the outcome. The aim of impact tracking is to identify the scope and potential consequences
of changing the program input. Rewriting Logic (RWL) is a logic of change that supplements
(an extension of) the equational logic by adding rewrite rules that are used to describe (non-
deterministic) transitions between states. In this paper, we present a rich and highly dynamic,
parameterized technique for the forward inspection of RWL computations that allows the non-
deterministic execution of a given conditional rewrite theory to be followed up in different ways.
With this technique, an analyst can browse, slice, filter, or search the traces as they come to
life during the program execution. The navigation of the trace is driven by a user-defined, in-
spection criterion that specifies the required exploration mode. By selecting different inspection
criteria, one can automatically derive a family of practical algorithms such as program steppers
and more sophisticated dynamic trace slicers that compute summaries of the computation tree,
thereby facilitating the dynamic detection of control and data dependencies across the tree.
Our methodology, which is implemented in the Anima graphical tool, allows users to evaluate
the effects of a given statement or instruction in isolation, track input change impact, and gain
insight into program behavior (or misbehavior).
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1. Introduction

Dynamic analysis is crucial for understanding the behavior of large systems. Dynamic
information is typically represented using execution traces whose analysis is almost im-
practicable without adequate tool support. Existing tools for analyzing large execution
traces commonly rely on a set of visualization techniques that facilitate the exploration
of the trace content. Common capabilities of these tools include the option to simplify
the traces by hiding some specific contents and stepping the program execution while
searching for particular components. Nearly all modern IDEs, debuggers, and testing
tools currently support this mode of execution optionally, where animation is typically
achieved either by forcing execution breakpoints, instruction simulation, or code instru-
mentation.

Rewriting Logic is a very general logical and semantic framework that is particu-
larly suitable for formalizing highly concurrent, complex systems (e.g., biological sys-
tems (Baggi et al., 2009) and Web systems (Alpuente et al., 2006, 2009, 2010b, 2013a,
2014c)). Rewriting Logic is efficiently implemented in the high-performance system Maude
(Clavel et al., 2011). Roughly speaking, a rewriting logic theory seamlessly combines
a term rewriting system (TRS) with an equational theory that may include equations
and axioms (i.e., algebraic laws such as commutativity, associativity, and unity) so that
rewrite steps are performed modulo the equations and axioms. In recent years, debugging
and optimization techniques based on RWL have received growing attention (Alpuente
et al., 2010a, 2011; Mart́ı-Oliet and Meseguer, 2002; Riesco et al., 2009, 2010), but to
the best of our knowledge, no trace inspection tool or skilled program animator for con-
ditional RWL theories has been formally developed to date.

To debug Maude programs, Maude has a basic tracing facility that allows the user
to advance through the program execution stepwisely with the possibility to set break
points and lets him/her select the statements to be traced, except for the application
of algebraic axioms that are not under user control and are never recorded explicitly
in the trace. All rewrite steps that are obtained by applying the equations or rules for
the selected function symbols are shown in the output trace so that the only way to
simplify the displayed view of the trace is by manually fixing the traceable equations or
rules. Thus, the trace is typically huge and incomplete, and when the user detects an
erroneous intermediate result, it is difficult to determine where the incorrect inference
started. Moreover, this trace is either directly displayed or written to a file (in both cases,
in plain text format) thus only being amenable for manual inspection by the user. This
is in contrast with the enriched traces described in this work, which are complete (all
execution steps are recorded by default) and can be sliced automatically so that they can
be dramatically simplified in order to facilitate a specific analysis. Also, the trace can be
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directly displayed or delivered in its meta-level representation, which is very useful for
further automated manipulation.

Contributions. This paper presents the first semantic-based, parametric trace explo-
ration technique for RWL computations in conditional rewrite theories that involve
rewriting modulo associativity (A), commutativity (C), and unity (U) axioms. Our tech-
nique is based on a generic animation algorithm that can be tuned to work with different
modalities, including incremental stepping and automated forward slicing, which dras-
tically reduce the size and complexity of the traces under examination. The algorithm
is fully general and can be applied for debugging as well as for optimizing RWL-based
tools that manipulate conditional RWL theories. Our formulation takes into account the
precise way in which Maude mechanizes the conditional rewriting process modulo equa-
tional theories that may contain any combination of associativity, commutativity, and
unity axioms for different binary operators, and it revisits all those rewrite steps in an
informed, fine-grained way where each small step corresponds to the application of an
equational axiom, conditional equation, or conditional rule. This allows us to inspect the
execution trace with regard to the set of symbols of interest (input symbols) by tracing
them along the execution trace so that, in the case of the forward slicing modality, all
data that are not descendants of the observed symbols are filtered out. The ideas are
implemented and tested in a graphical tool called Anima, which provides a mighty and
versatile environment for the dynamic analysis of RWL computations.

Related Work. Dependency analysis techniques provide a formal foundation for forms
of provenance that are intended to highlight parts of the program input on which a part
of its output depends (Cheney et al., 2011). This is essentially achieved by computing
the origins of the given results and has proved to be useful in many contexts such as
efficient memorization and caching (Abadi et al., 1996), aiding program debugging via
slicing (Alpuente et al., 2013c, 2014a; Field and Tip, 1994), information-flow security
(Sabelfeld and Myers, 2003) and several other forms of program analysis techniques, just
to mention a few. A great deal of work has been done on each of these topics, and we
refer to (Cheney et al., 2011) for further references that we cannot survey here.

The notion of descendants (Klop, 1990) or residuals 1 (Huet and Lévy, 1970; O’Donnell,
1977) with its inverse notion of ancestors or origins is classical in the theory of rewriting,
both in first-order term rewriting and in higher-order rewriting, such as lambda calculus.
While dependency provenance provides information about the origins of (or influences
upon) a given result, the notion of descendants is the key for impact evaluation, that is,
to assess the changes that can be attributed to a particular input or intervention (Bethke
et al., 2000). For orthogonal term rewriting systems (i.e., left–linear and overlap–free),
a refined version of the descendant/ancestor relation, called origin tracking, was first
introduced in (Klop, 1990). Several variants of this notion have been studied, sometimes
with applications that are similar to the ones described in this paper (see (Bethke et al.,
2000) for references). An extension of (Klop, 1990) for all TRSs is described in (TeReSe,
2003). A method for implementing origin tracking in conditional term rewriting systems
is given in (Van Deursen et al., 1993).

For the rich framework of conditional rewrite theories, an incremental, backward con-
ditional trace slicer is presented in (Alpuente et al., 2012a,b, 2014a). This framework

1 In the literature, the term ‘residual’ is usually reserved for a descendant of a redex (Bethke et al.,

2000).
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generates a trace slice of an execution trace T by tracing back the origins of the set of
symbols of interest along (an instrumented version of) T . This can be very helpful in
debugging since any information that is not strictly needed to deliver a critical part of
the result is disregarded. However, for the dual problem of “which parts of the output
might be impacted by a specific component of the input”, forward expansion is needed.
To date, forward expansion has been mostly overlooked in RWL research.

Program animators have existed since the early years of programming. Although sev-
eral steppers have been implemented in the functional programming community (see
(Clements et al., 2001) for references), none of these systems applies to the animation
and dynamic forward slicing of Maude computations. An algebraic stepper for Scheme is
defined and formally proved in (Clements et al., 2001), which is included in the DrScheme
programming environment. In order to discover all of the steps that occur during the pro-
gram evaluation, the stepper rewrites (or “instruments”) the code. This is in contrast to
our technique, which does not rely on program instrumentation.

A generic, static technique to infer (forward) program slices is defined in (Riesco
et al., 2013). This technique relies on the formal executable semantics of the language of
interest, which is given as a RWL theory. Informally, this kind of slices represent program
fragments that are affected by a particular program statement with respect to a set of
variables of interest. Different from our technique, this technique is static and defines
program slices by using (meta-level) over-approximation.

Plan of the paper. After some preliminaries in Section 2 that recall basic notions
of RWL and summarize the conditional rewriting modulo theories defined in Maude,
Section 3 presents a convenient trace instrumentation technique that facilitates the step-
wise inspection of Maude computations. In Section 4, we formalize trace inspection as
a semantics-based forward procedure that is parameterized by the criterion for the in-
spection. Section 5 presents three different exploration techniques that are mechanically
obtained as an instance of the generic scheme: 1) an interactive program stepper that
allows rewriting logic theories to be stepwisely animated; 2) a partial stepper that is
able to work with partial inputs; and 3) an automated, forward slicing technique that
computes trace summaries by employing unification and that filters out the irrelevant
data that do not derive from some selected terms of interest. Correctness results are
provided for all the considered exploration techniques. The Anima tool is described in
Section 6, where we discuss its suitability for the analysis of complex, textually-large
system computations. Section 7 concludes.

A preliminary version of the forward inspection methodology developed in this article
first appeared in (Alpuente et al., 2013b) and in its superseded version (Alpuente et al.,
2014b). The current approach greatly extends the exploration methodologies of (Alpuente
et al., 2013b) and (Alpuente et al., 2014b) in a number of ways. The most salient novelties
are listed below.
• The current trace exploration technique applies to conditional rewrite theories while

(Alpuente et al., 2013b) and (Alpuente et al., 2014b) can only deal with the much
simpler unconditional rewrite theories.

• In this article, correctness is formally proven for all the exploration modalities, whereas
(Alpuente et al., 2013b) and (Alpuente et al., 2014b) do not provide any formal result
for the behavior of the unconditional forward inspection algorithms;

• The forward trace slicing technique in this article relies on a unification mechanism
to propagate relevant information across the trace slices. This is in contrast with the
previous approach that used a much more involved substitution refinement technique.

4



• Several new features have been included in the Anima system. For instance, the back-
ward trace slicer iJulienne (Alpuente et al., 2014a) has been integrated into Anima
enabling the possibility to explore computations both back and forth in order to val-
idate input data or to locate programming mistakes; the computation space can be
also visualized now as a graph where common subexpressions (e.g., repeated states)
are shared; the tool is now equipped with an online manual; and the (sliced) computa-
tion traces used for the evaluation of the conditions of the rules/equations can be also
inspected now.

Also, the main algorithm has been optimized by porting some of its components to
the C++ language and by reimplementing several Maude system modules containing
non-deterministic functions by means of Maude functional modules containing much
more efficient, deterministic functions. This has greatly improved performance allowing
more complex computations to be quickly analyzed.

2. Preliminaries

Let us recall some important notions that are relevant to this work. We assume some
basic knowledge of term rewriting (TeReSe, 2003) and Rewriting Logic (Meseguer, 1992).
Some familiarity with the Maude language (Clavel et al., 2011, 2007) is also required.

Maude is a rewriting logic (Meseguer, 1992) specification and verification system
whose operational engine is mainly based on a very efficient implementation of rewriting.
Maude’s basic programming statements are equations and rules. Equations are used to
express deterministic computations that lead to a unique final result, while rules natu-
rally express concurrent, nondeterministic, and possibly nonterminating computations.
A Maude program containing only equations (together with the syntax declaration for
sorts, operators, and variables) is called a functional module and essentially defines one
or more functions by means of equations. A Maude program containing rules and possi-
bly equations is called a system module, where the rules define transitions in a possibly
concurrent system. Maude notation will be introduced “on the fly” as required.

2.1. The term-language of Maude

We consider an order-sorted signature Σ, with a finite poset of sorts (S,<) that models
the usual subsort relation (Clavel et al., 2011). The connected components of (S,<) are
the equivalence classes [s] corresponding to the least equivalence relation ≡< containing
<. We assume an S-sorted family V = {Vs}s∈S of disjoint variable sets. τ(Σ,V)s and
τ(Σ)s are the sets of terms and ground terms of sort s, respectively. We write τ(Σ,V) and
τ(Σ) for the corresponding term algebras. A simple syntactic condition on Σ and (S,<),
called preregularity (Clavel et al., 2011), ensures that each (well-formed) term t always
has a least-sort possible among all sorts in S, which is denoted ls(t). The set of variables
that occur in a term t is denoted by Var(t). In order to simplify the presentation, we
often disregard sorts when no confusion can arise.

A position w in a term t is represented by a sequence of natural numbers that addresses
a subterm of t (Λ denotes the empty sequence, i.e., the root position). Given a term t, we
let Pos(t) denote the set of positions of t. By notation w1.w2, we denote the concatenation
of positions (sequences) w1 and w2. Positions are ordered by the prefix ordering, that is,
given the positions w1 and w2, w1 ≤ w2 if there exists a position u such that w1.u = w2.
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Given two positions w1 and w2, we say that w1 and w2 are not comparable iff w1 6≤ w2

and w2 6≤ w1.
Given a set of positions P , and a position p ∈ P , we say that p is minimal w.r.t. P ,

iff there does not exist a position p′ ∈ P such that p′ ≤ p and p′ 6= p (i.e., p′ is strictly
smaller than p). By t|w, we denote the subterm of t at position w, and by t[s]w, we denote
the result of replacing the subterm t|w by the term s in t.

A substitution σ ≡ {x1/t1, x2/t2, . . . , xn/tn} is a mapping from the set of variables V
to the set of terms τ(Σ,V), which is equal to the identity almost everywhere except over
a set of variables {x1, . . . , xn}. The domain of σ is the set Dom(σ) = {x ∈ V | xσ 6= x}.
By ε, we denote the identity substitution. The application of a substitution σ to a term t,
denoted tσ, is defined by induction on the structure of terms (Baader and Snyder, 2001):

tσ =

{
xσ if t = x, x ∈ V
f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn), n ≥ 0

Given two terms s and t, a substitution σ is the matcher of t in s, if sσ = t. The
term t is an instance of the term s (in symbols, s ≤ t), iff there exists a matcher σ of
t in s. By matchs(t), we denote the function that returns a matcher of t in s if such
a matcher exists. Given two substitutions θ and θ′, their composition θθ′ is defined as
t(θθ′) = (tθ)θ′ for every term t. We recall that composition is associative. A substitution
σ is more general than θ, denoted by σ ≤ θ, if θ = σγ for some substitution γ. We say
that a substitution σ is a unifier of two terms t and t′ if tσ = t′σ. We let mgu(t, t′) denote
a most general unifier σ of t and t′ (i.e., σ ≤ θ for any other unifier θ of t and t′). For
any substitution σ and set of variables V , σ |̀V denotes the substitution obtained from σ
by restricting its domain to V , (i.e., xσ |̀V = xσ if x ∈ V , otherwise xσ |̀V = x). Given a
binary relation ;, we define the usual transitive (resp., transitive and reflexive) closure
of ; by ;+ (resp., ;∗).

2.2. Program Equations and Rules

Our techniques in this article deal with conditional RWL theories. We consider three
different kinds of conditions that may appear in a conditional Maude theory: an equational
condition 2 e is any (ordinary) equation t = t′, with t, t′ ∈ τ(Σ,V); a matching condition
is a pair p := t with p, t ∈ τ(Σ,V); a rewrite expression is a pair t⇒ p, with p, t ∈ τ(Σ,V).

A labelled conditional equation (Maude keyword ceq), or simply (conditional) equa-
tion, is an expression of the form [l] : λ = ρ if C, where l is a label (i.e., a name that
identifies the equation), λ, ρ ∈ τ(Σ,V) (with ls(λ) ≡< ls(ρ)), and C is a (possibly empty)
sequence c1∧. . .∧cn, where each ci is either an equational condition, or a matching condi-
tion. When the condition C is empty, we simply write [l] : λ = ρ and use the keyword eq

to declare it in Maude. A conditional equation [l] : λ = ρ if c1 ∧ . . .∧ cn is admissible, iff

(i) Var(ρ) ⊆ Var(λ)∪
⋃n
i=1 Var(ci), and (ii) for each ci, Var(ci) ⊆ Var(λ)∪

⋃i−1
j=1 Var(cj)

if ci is an equational condition, and Var(e) ⊆ Var(λ) ∪
⋃i−1
j=1 Var(cj) if ci is a matching

condition p := e.
A labelled conditional rewrite rule (Maude keyword crl), or simply (conditional) rule,

is an expression of the form [l] : λ ⇒ ρ if C, where l is a label, λ, ρ ∈ τ(Σ,V) (with

2 A Boolean equational condition b = true, with b ∈ τ(Σ,V) of sort Bool is simply abbreviated as b. A

Boolean condition is a conjunction of abbreviated Boolean equational conditions.
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ls(λ) ≡< ls(ρ)), and C is a (possibly empty) sequence c1 ∧ . . . ∧ cn, where each ci is
an equational condition, a matching condition, or a rewrite expression. Unlike matching
conditions, which can only use equations to evaluate the input term t, rewrite expressions
can apply both equations and rewrite rules for the evaluation. When the condition C is
empty, we simply write [l] : λ ⇒ ρ and use the keyword rl to declare it in Maude. A
conditional rule [l] : λ⇒ ρ if c1 ∧ . . . ∧ cn is admissible iff it fulfills the exact analogy of
the admissibility constraints (i) and (ii) for the equational conditions and the matching
conditions, plus the following additional constraint: for each rewrite expression ci in C
of the form e⇒ p, Var(e) ⊆ Var(λ) ∪

⋃i−1
j=1 Var(cj).

When no confusion can arise, rule and equation labels [l] are often omitted. The term
λ (resp., ρ) is called left-hand side (resp. right-hand side) of the rule λ ⇒ ρ if C (resp.
equation λ = ρ if C).

The set of variables that occur in a (conditional) rule/equation r is denoted by Var(r).
Note that admissible equations and rules can contain extra-variables (i.e., variables that
appear in the right-hand side or in the condition of a rule/equation but do not occur
in the corresponding left-hand side). The admissibility requirements ensure that all the
extra-variables of an admissible rule/equation will become instantiated whenever the rule
is applied.

Matching conditions and rewrite expressions are useful for performing a search through
a structure without having to explicitly define a search function. This is because substitu-
tions for matching p against tσ need not be unique since some operators may be matched
modulo equational attributes. For instance, considering that list concatenation obeys as-
sociativity with unity element nil, we can define two Maude equations to determine
whether an element E occurs in a list L as follows:

ceq E in L = true if L1 E L2 := L .

eq E in L = false [owise] .

where the owise attribute allows the second equation to be applied whenever the first
equation is not applicable.

2.3. Conditional Rewrite Theories

Roughly speaking, a (conditional) rewrite theory (Meseguer, 1992) seamlessly com-
bines a set of conditional rewrite rules (or conditional term rewriting system, CTRS),
with an equational theory (also possibly conditional) that may include equations and ax-
ioms (i.e., algebraic laws such as commutativity, associativity, and unity) so that rewrite
steps are applied modulo the equations and axioms. Within this framework, the system
states are typically represented as elements of an algebraic data type that is specified by
the equational theory, while the system computations are modeled via the rewrite rules,
which describe transitions between states.

More formally, an order-sorted equational theory is a pair E = (Σ,∆ ∪ B), where
Σ is an order-sorted signature, ∆ is a collection of (oriented) admissible, conditional
equations, and B is a collection of unconditional equational axioms (e.g., associativity,
commutativity, and unity) that can be associated with any binary operator of Σ. The
equational theory E induces a congruence relation on the term algebra τ(Σ,V), which is
denoted by =E .
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mod MAZE is

pr NAT .

sorts Pos List State Player .

subsort Pos < List .

op p1 : -> Player [ctor] .

op p2 : -> Player [ctor] .

op nil : -> List [ctor] .

op size : -> Nat .

op wall : -> List .

op exit : -> List .

op empty : -> State [ctor] .

op next : List Nat -> Pos .

op isOk : List -> Bool .

op _in_ : Pos List -> Bool .

op ‘{_,_,_‘} : Player List Nat -> State [ctor] .

op __ : List List -> List [ctor assoc id: nil] .

op <_,_> : Nat Nat -> Pos [ctor] .

op _||_ : State State -> State [ctor assoc comm id: empty] .

vars X Y N M M1 M2 : Nat .

vars P Q : Pos .

vars L L1 L2 : List .

vars PY PY1 PY2 : Player .

eq [s] : size = 5 . --- Assumption: 5x5 maze

eq [wl] : wall = < 1,3 > < 1,5 > < 2,1 > < 2,4 > < 2,5 > < 3,3 > < 3,4 >

< 4,2 > < 4,3 > < 5,4 > .

eq [ok] : isOk(L < X,Y >) = X >= 1 and Y >= 1 and X <= size and Y <= size

and not(< X,Y > in L) and not(< X,Y > in wall) .

ceq [c1] : P in L = true if L1 P L2 := L .

eq [c2] : P in L = false [owise] .

rl [downN] : next(L < X,Y >, N) => < X,Y + N > .

rl [leftN] : next(L < X,Y >, N) => < sd(X,N),Y > .

rl [upN] : next(L < X,Y >, N) => < X,sd(Y,N) > .

rl [rightN] : next(L < X,Y >, N) => < X + N,Y > .

rl [eject] : {PY1, L1 < X,Y > , M1} || {PY2, L2 < X,Y >, M2} => empty .

crl [exit] : {PY, L < X,X >, M} => {PY, exit, M} if X == size .

crl [walk] : {PY, L, M} => {PY, L P, M + 1} if next(L,1) => P /\ isOk(L P) .

crl [jump] : {PY, L, M} => {PY, L P, M + 2} if next(L,2) => P /\ isOk(L P) .

endm

Figure 1. Maude specification of the maze game

A conditional rewrite theory (or simply, rewrite theory) is a triple R = (Σ,∆∪B,R),

where (Σ,∆ ∪ B) is an order-sorted 3 equational theory and R is a set of admissible

conditional rules.

3 Equational specifications in Maude can be theories in membership equational logic, which may include

conditional membership axioms that are not addressed in this paper. Actually, membership axioms can
interact with operator attributes such as assoc and iter in undesirable ways (Clavel et al., 2011), which
can be a major difficulty for a tracing-based tool like ours to work correctly.
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Example 2.1
Consider the Maude system module MAZE of Figure 1, which is inspired by the maze

example in (Riesco et al., 2012). The module is delimited by the Maude keywords mod

and endm, and it encodes a conditional rewrite theory that specifies a maze game in
which multiple players (modeled as terms of sort Player) must reach a given exit point.
Players may enter the maze at distinct entry points, and can move through the maze
by walking or jumping. Furthermore, any collision between two players eliminates them
from the game.

MAZE imports and makes use of the predefined Maude module NAT, which provides the
equational definition for natural numbers together with some common built-in operators
for their manipulation such as addition (+) and subtraction 4 (sd). The operators in
the module signature are declared using the keyword op, while their types structure
is specified using the keywords sorts and subsorts. Module variables are declared by
means of the keyword vars. Roughly speaking, a maze is a size × size grid in which
each maze position is specified by a pair of natural numbers < X,Y > of sort Pos.

Figure 2: The 5×5 grid encoded in MAZE .

The internal maze structure is defined
through the equation wall, which explic-
itly defines those cells that represent the
maze walls (see Figure 2). Each player’s
path 5 in the maze is described by a term
of sort List that specifies a list of (pairwise
distinct) positions by means of the usual
constructor operator nil (empty list) and
the associative, juxtaposition operator __

whose unity element is nil.
System states describe a game scenario

by recording the paths taken by the differ-
ent players from the moment they entered
the game (at their respective entry points).
We use the associative and commutative
operator || (whose unity element is the
constant empty) to model states as multisets of triples of the form {p1, L1, m1} || . . . ||
{pn, Ln, mn}, pi 6= pj for i 6= j, where pi uniquely identifies the ith player, Li is the path
the ith player has hitherto followed since he entered the maze, and mi is the length of
the path Li (which is different from the length of the list because players are allowed to
jump two boxes in a single move), with i = 1, . . . , n.

Given a player’s path L, the next possible player’s moves are nondeterministically
computed by the rules walk and jump, which respectively augment L with the position
P delivered by the rewrite expressions next(L,N) => P, with N = 1 (walk) or N = 2

(jump), occurring in the condition of these two rules. The function next(L, N) models all
the possible N-cell movements that are available from the current player’s location (given
by the last position in L). In both rules, the correctness of the computed subsequent

4 In order to avoid producing negative numbers, natural subtraction is implemented by using the sym-

metric difference operator (sd) that subtracts the smaller of its arguments from the larger.
5 In our specification, only simple paths are considered (i.e., paths that do not contain loops), which

amounts to saying that no position can be revisited by the same player twice.
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position P is verified by means of the function isOK(L P). Specifically, position P is valid
iff it is within the limits of the maze, not repeated in L, and not a part of the maze
wall. Note that the jump rule allows a player to leap over either a wall or another player
provided the position reached is valid.

Collisions between two players are implemented by means of the eject rule, which
checks whether two players bump on the same position and eliminates them from the
maze by replacing their associated triples with the empty state value.

The exit rule checks whether a given player has reached the lower right corner position
< size,size > that we assume to be the maze exit.

Finally, note that the exit and eject operations should be modeled by using equations
rather than rewrite rules in order to provide appropriate, deterministic exit and eject

behavior. Nonetheless, we deliberately specified them by using rules in order to illustrate
the debugging capabilities of our forward exploration technique in Section 5.

The conditional slicing technique formalized in this article is formulated by consider-
ing the precise way in which Maude proves the conditional rewriting steps modulo an
equational theory E = ∆∪B, which we describe in the following section (see Section 5.2
in (Clavel et al., 2011) for more details).

2.4. Rewriting in Conditional Rewrite Theories

Given a conditional rewrite theory (Σ, E,R), with E = ∆∪B, the conditional rewriting
modulo E relation (in symbols, →R/E) can be defined by lifting the usual conditional
rewrite relation on terms (Klop, 1992) to the E-congruence classes [t]E on the term
algebra τ(Σ,V) that are induced by =E (Bruni and Meseguer, 2006). In other words,
[t]E is the class of all terms that are equal to t modulo E. Unfortunately, →R/E is,
in general, undecidable since a rewrite step t →R/E t′ involves searching through the
possibly infinite equivalence classes [t]E and [t′]E .

The Maude interpreter implements conditional rewriting modulo E by means of two
much simpler relations, namely →∆,B and →R,B . These allow rules and equations to be
intermixed in the rewriting process by simply using an algorithm of matching modulo
B. We define →R∪∆,B as →R,B ∪ →∆,B . Roughly speaking, the relation →∆,B uses the
equations of ∆ (oriented from left to right) as simplification rules. Thus, for any term
t, by repeatedly applying the equations as simplification rules, we eventually reach a
term t ↓∆,B to which no further equations can be applied. The term t ↓∆,B is called a
canonical form of t w.r.t. ∆ modulo B. On the other hand, the relation→R,B implements
rewriting with the rules of R, which might be non-terminating and non-confluent, whereas
∆ is required to be terminating and Church-Rosser modulo B in order to guarantee the
existence and unicity (modulo B) of a canonical form w.r.t. ∆ for any term (Clavel et al.,
2011).

Formally, →R,B and →∆,B are defined as follows. Given a rewrite rule [r] : (λ ⇒
ρ if C) ∈ R (resp., an equation [e] : (λ = ρ if C) ∈ ∆), a substitution σ, a term t, and a

position w of t, t
r,σ,w→R,B t′ (resp., t

e,σ,w→∆,B t′) iff λσ =B t|w, t′ = t[ρσ]w, and C evaluates
to true w.r.t σ. When no confusion arises, we simply write t →R,B t′ (resp. t→∆,Bt

′)

instead of t
r,σ,w→R,B t′ (resp. t

e,σ,w→∆,B t′).
Roughly speaking, a conditional rewrite step on the term t applies a rewrite rule/e-

quation to t by replacing a reducible (sub-)expression of t (namely t|w), called the redex,
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by its contracted version ρσ, called the contractum, whenever the condition C is fulfilled.
Note that the evaluation of a condition C is typically a recursive process since it may
involve further (conditional) rewrites in order to normalize C to true. Specifically, an
equational condition e evaluates to true w.r.t. σ if eσ↓∆,B=B true; a matching equation
p := t evaluates to true w.r.t. σ if pσ =B tσ↓∆,B ; a rewrite expression t ⇒ p evaluates
to true w.r.t. σ if there exists a rewrite sequence tσ →∗R∪∆,B u, such that u =B pσ. 6

Although rewrite expressions and matching/equational conditions can be intermixed in
any order, we assume that their satisfaction is attempted sequentially from left to right,
as in Maude.

Under appropriate conditions on the rewrite theory, a rewrite step s→R/E t modulo
E on a term s can be implemented without loss of completeness by applying the following
rewrite strategy (Durán and Meseguer, 2010):

(1) Equational simplification of s in ∆ modulo B, that is, reduce s using →∆,B

until the canonical form w.r.t. ∆ modulo B (s ↓∆,B) is reached;
(2) Rewrite (s ↓∆,B) in R modulo B to t′ using →R,B , where t′ ∈ [t]E .
A computation (trace) C for s0 in the conditional rewrite theory (Σ,∆∪B,R) is then

deployed as the (possibly infinite) rewrite sequence

s0 →∗∆,B s0↓∆,B →R,B s1 →∗∆,B s1↓∆,B→R,B . . .

that interleaves →∆,B rewrite steps and →R,B rewrite steps following the strategy men-
tioned above. Note that, following this strategy, after each conditional rewriting step
using→R,B , generally the resulting term si, i = 1, . . . , n, is not in canonical normal form
and is thus normalized before the subsequent rewrite step using→R,B is performed. Also,
in the precise strategy adopted by Maude, the last term of a finite computation is finally
normalized before the result is delivered.

Therefore, any computation can be interpreted as a sequence of juxtaposed→R,B and
→∗∆,B transitions, with an additional equational simplification →∗∆,B (if needed) at the
beginning of the computation as depicted below.︷ ︸︸ ︷

s0 →∗∆,B s0↓∆,B →R,B s1 →∗∆,B s1↓∆,B →R,B s2 →∗∆,B s2↓∆,B . . .︸ ︷︷ ︸
We define a Maude step from a given term s as any of the sequences s →∗∆,B s↓∆,B

→R,B t →∗∆,B t↓∆,B that head the non-deterministic Maude computations for s. Note
that, for a canonical form s, a Maude step for s boils down to s →R,B t →∗∆,B t↓∆,B .
We define mS(s) as the set of all the non-deterministic Maude steps stemming from s.

3. Instrumented Computations

In this section, we introduce an auxiliary technique for instrumenting computations.
The instrumentation allows the relevant information of the rewrite steps, such as the
selected redex and the contractum produced by the step, to be traced explicitly despite

6 Technically, to properly evaluate a rewrite expression t ⇒ p or a matching condition p := t, the term

p is required to be a ∆-pattern modulo B —i.e., a term p such that, for every substitution σ, if xσ is
a canonical form w.r.t. ∆ modulo B for every x ∈ Dom(σ), then pσ is also a canonical form w.r.t. ∆
modulo B.
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the fact that terms are rewritten modulo a set B of equational axioms that may cause
their components to be implicitly reordered. Given a computation C, let us show how C
can be expanded into an instrumented computation T in which each application of the
matching modulo B algorithm that is used in →R,B-steps and →∆,B-steps is explicitly
mimicked by the specific application of a bogus equational axiom, which is oriented from
left to right and then applied as a rewrite rule in the standard way.

Typically hidden inside the B-matching algorithms, some pertinent term transforma-
tions allow terms that contain operators obeying equational axioms to be rewritten into
supportive B-normal forms that facilitate the matching modulo B. In the case of AC-
theories, these transformations allow terms to be reordered and correctly parenthesized in
order to enable subsequent rewrite steps. Basically, this is achieved by producing a single,
auxiliary representative of their AC congruence class (i.e., the AC-normal form). An AC-
normal form is typically generated by replacing nested occurrences of the same AC op-
erator by a flattened argument list under a variadic symbol, sorting these arguments un-
der some linear ordering and combining equal arguments using multiplicity superscripts
(Eker, 2003). For example, the congruence class containing f(f(α, f(β, α)), f(f(γ, β), β))
where f is an AC symbol and subterms α, β, and γ belong to alien theories might be rep-
resented by f∗(α2, β3, γ), where f∗ is a variadic symbol that replaces nested occurrences
of f . A more formal account of this transformation is given in (Eker, 1995).

As for purely associative theories, we can get an A-normal form by just flattening
nested function symbol occurrences without sorting the arguments. This case has prac-
tical importance because it corresponds to lists. C-normal forms are just obtained by
properly ordering the arguments of a commutative binary operator. Finally, for function
symbols that satisfy the unit axiom U, the unity element of U is not included in the U-
normal form, and variables under a U symbol can always be assigned the unity element
through U-matching (Eker, 1995).

Then, rewriting modulo B in Maude proceeds by using the special form of matching
called B-matching on the internal representation of terms as B-normal forms, where B
may contain, among others, any combination of associativity, commutativity, and unity
axioms for different binary operators. Moreover, at each Maude step, the resulting term
is shown in B-normal form (without multiplicity superscripts).

In the following, we discuss how we can simulate B-matching in our framework by
means of specific “fake” axioms that mimick the B-matching transformation of terms
that occur internally in Maude. This allows these transformations to be unhidden and
explicitly revealed in the output trace. This artifice is only a means to reveal the term
transformations of subterms that are forced by the step so that any position can be
properly traced across rewriting steps.

Example 3.1
Consider a binary AC operator f together with a simple, standard lexicographic order-

ing over constant symbols. Given the term f(b, f(f(b, a), c)), let us reveal how this term
matches modulo AC the left-hand side of the rule [r] : f(f(x, y), f(z, x)) ⇒ x with AC-
matching substitutions {x/b, y/a, z/c} and {x/b, y/c, z/a}. For the first solution, this

is mimicked by the transformation sequence f(b, f(f(b, a), c))
toACnf−→ f∗(a, b2, c)

fromACnf−→
f(f(b, a), f(c, b)), where 1) the first step corresponds to a term transformation that ob-
tains the AC-normal form f∗(a, b2, c), and 2) the second step corresponds to the inverse,
an unflattening transformation that delivers the AC-equivalent term f(f(b, a), f(c, b))

12



that syntactically matches the left-hand side of rule r with substitution {x/b, y/a, z/c}.
Note that an alternative unflattening transformation is possible f∗(a, b2, c)

fromACnf−→ f(f(b,
c), f(a, b)), which actually delivers the second AC-matcher {x/b, y/c, z/a}. When several
B-matchers exist, we only consider those that are effectively computed by means of the
Maude internal rewriting strategy.

In our implementation, rewriting modulo B proceeds by using the standard form of
B-matching on B-normal forms supported by Maude, where the left-hand sides of the
rules are always normalized and the right-hand sides are (partially or totally) normalized
when convenient (typically, when the unity element needs to be removed).

Example 3.2
Consider two binary AC operators f and g and the rules [r1] : f(c, b, a)⇒ g(c, b, a) and

[r2] : f(c, f(b, a)) ⇒ g(c, g(b, a)), whose left-hand (resp. right-hand) sides are pairwise
equivalent modulo B. When the specification that contains them is loaded, the two rules
are respectively normalized by Maude into the B-equivalent rules [r′1] : f(a, b, c) ⇒
g(a, b, c) and [r′2] : f(a, b, c) ⇒ g(c, g(a, b)). Note that the left-hand side f(c, b, a) of r1

is reordered as f(a, b, c) in r′1, whereas the left-hand side f(c, f(b, a)) of r2 is not only
reordered but also flattened as f(a, b, c) in r′2.

As for the right-hand sides of the rules, the right-hand side g(c, b, a) of r1 is reordered
as g(a, b, c) in r′1 whereas the right-hand side of r2 is not flattened in r′2 and only the
subterm at position 2 (i.e., g(b, a)) is reordered; hence, the whole term in the right-hand
side of r2 is neither ordered nor flattened in r′2.

In the sequel, when no confusion can arise, we refer to a given program’s rule and its
corresponding, internally normalized version by using the same label.

Therefore, any given instrumented computation consists of a sequence of conditional
rewrite steps using the conditional equations (→∆), conditional rewrite rules (→R), equa-
tional axioms, and (internal) B-matching transformations (→B). More precisely, each

rewrite step s
r,σ,w→R,B t (resp., s

e,σ,w→∆,B t) is broken down into a rewrite sequence

s→∗B s′
r,σ,w→R,∅ t

′ →∗B t (resp., s→∗B s′
e,σ,w→∆,∅ t

′ →∗B t), where s′ =B s and s′ syntacti-
cally matches the (normalized) left-hand side of the equation e or rule r that is applied
in the considered rewrite step. We define the rewrite relation →K as →R ∪ →∆ ∪ →B .
By instrument(C), we denote a function that takes a computation C and delivers its in-
strumented counterpart.

Example 3.3
Consider the rewrite theory of Example 2.1 together with the following computation

that consists of a single Maude step, which makes a downward movement from the current
position modeled by the one-element list < 1,1 >:

C = next(< 1,1 >,1)
downN−→R,B < 1,1+1 >

builtIn(+)−→∆,B < 1,2 >

The corresponding instrumented computation T , which is produced by instrument(C),
is as follows:

T = next(< 1,1 >,1)
fromAUnf−→B next(nil < 1,1 >,1)

downN−→R < 1,1+1 >
builtIn(+)−→∆ < 1,2 >
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where the first, extra step next(< 1,1 >,1)
fromAUnf−→B next(nil < 1,1 >,1) has been

added to describe the internal transformation that affixes the unity element nil of the
AU list operator __ to the one-element list < 1,1 >. This is simply formalized as a
rewrite step by using the bogus axiom rl [fromAUnf] : < 1,1 > => nil < 1,1 >.
This transformation enables the subsequent application of the rewrite rule downN.

Note that the instrumented version of the Maude step reveals that the rewrite rule
downN is not actually applied into the initial term next(< 1,1 >,1), but rather into the
AU -equivalent term next(nil < 1,1 >,1), which is chosen to syntactically match the
left-hand side of the (already normalized) applied rule.

Nevertheless, in order to improve readability, we omit B-matching transformations
and the evaluation of built-in operators 7 when displaying Maude steps (unless explicitly
stated otherwise). This is consistent with the strategy adopted by Maude for the case
of B-matching transformations, and it is the default option in our tool. As described in
Section 6, by using the tool Anima, the user can choose to visualize either the simplified
view of a rewrite step or the complete and detailed instrumented version of the step.

4. Exploring Computation Trees

Given a conditional rewrite theory R, the transition space of all computations in R
from the initial term s can be represented as a computation tree, 8 TR(s). RWL compu-
tation trees are typically large and complex objects to deal with because of the highly-
concurrent, nondeterministic nature of rewrite theories. Also, their complete generation
and inspection are generally not feasible since some of their branches may be infinite as
they encode nonterminating computations.

Example 4.1
Consider the rewrite theory of Example 2.1 together with the system state

{p1,< 4,4 >,1} || {p2,< 3,5 >,1}

that specifies two initial configurations for two players p1 and p2 in the maze. In this case,
the computation tree describes all of the possible trajectories that the two players p1 and
p2 (respectively starting at positions < 4,4 > and < 3,5 >) can take when they move
simultaneously in the same maze. The paths are built by repeated (and independent)
applications of the walk and jump rules, while the eject and exit rules respectively
implement the expulsion of colliding players and the output of game players who reach
the exit. A fragment of the computation tree is shown in Figure 3. For simplicity, we have
chosen to decorate tree edges only with the labels of the rules that have been applied
at each rewrite step, while other information such as the computed substitution and the
rewrite position are omitted in the depicted tree.

7 Maude provides efficient (C-like) built-in operators such as the addition (+) of natural numbers. This
is thanks to a built-in mechanism called iter (short for iterated operator), which permits the efficient

manipulation of very large stacks of unary operators, and an efficient binary representation of unbounded
natural number arithmetic (Clavel et al., 2011).
8 In order to facilitate trace inspection, computations are visualized as trees, although they are internally

represented by means of more efficient graph-like data structures that allow common subexpressions to
be shared.
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{ p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 > , 1 }

S0

{ p1 , < 4 , 4 >  < 4 , 5 > , 
2 } || { p2 , < 3 , 5 > , 1 }

S4 rl: walk

{ p1 , < 4 , 4 > , 1 } || { p2 , 
< 3 , 5 >  < 4 , 5 > , 2 }

S6 rl: walk
{ p1 , < 4 , 4 > , 1 } || { p2 , 
< 3 , 5 >  < 5 , 5 > , 3 }

S8 rl: jump

{ p1 , < 4 , 4 >  < 4 , 
5 > , 2 } || { p2 , < 
3 , 5 >  < 4 , 5 > , 2 }

S12 rl: walk

{ p1 , < 4 , 4 > , 1 } 
|| { p2 , < 3 , 5 >  < 
4 , 5 >  < 4 , 4 > , 3 }

S15 rl: walk
{ p1 , < 4 , 4 > , 1 } 
|| { p2 , < 3 , 5 >  < 
4 , 5 >  < 5 , 5 > , 3 }

S18 rl: walk

empty

S20 rl: eject

empty

S22 rl: eject
{ p1 , < 4 , 4 >  
< 4 , 5 > , 2 } || 
{ p2 , < 3 , 5 >  
< 4 , 5 >  < 4 , 4 
> , 3 }

S26 rl: walk

{ p1 , < 4 , 4 >  < 4 , 5 >  < 
5 , 5 > , 3 } || { p2 , < 3 , 5 
>  < 4 , 5 >  < 4 , 4 > , 3 }

S32 rl: walk

{ p1 , < 4 , 4 >  < 4 , 5 >  < 
3 , 5 > , 3 } || { p2 , < 3 , 5 
>  < 4 , 5 >  < 4 , 4 > , 3 }

S38 rl: walk

{ p1 , < 4 , 4 >  < 4 , 5 >  
< 5 , 5 >  < 5 , 3 > , 5 } || 
{ p2 , < 3 , 5 >  < 4 , 5 >  
< 4 , 4 > , 3 }

S44 rl: jump
{ p1 , < 4 , 4 >  < 4 , 5 >  
< 5 , 5 >  < 3 , 5 > , 5 } || 
{ p2 , < 3 , 5 >  < 4 , 5 >  
< 4 , 4 > , 3 }

S50 rl: jump

{ p1 , exit , 3 } || 
{ p2 , < 3 , 5 >  < 4 , 
5 >  < 4 , 4 > , 3 }

S53 rl: exit

･･
･

･･
･

･･
･

･･
･

･･
･

･･
･

･･
･ ･･
･

Figure 3. Computation tree

The instrumented version of a computation tree TR(s) can be constructed from TR(s)
by expanding each computation in TR(s) into its corresponding instrumented counterpart
as explained in Section 3. Also, it is possible to switch from the instrumented compu-
tation tree to the non-instrumented one by simply hiding the intermediate B-matching
transformations and built-in evaluations that occur in the instrumented tree. In the se-
quel, we let T +

R (s) denote the instrumented computation tree that originates from the
state s.

The rest of this section presents a generic, slicing-based exploration technique that
allows the user to incrementally generate and inspect a fragment of the instrumented
computation tree T +

R (s) by expanding (slices of) its computation states into their de-
scendants starting from the root node. The exploration is an interactive procedure that
can be completely controlled by the user, who is free to choose the computation states
to be expanded. Roughly speaking, in our slices, certain subterms of a term are omitted,
leaving “holes” that are denoted by special variable symbols.

4.1. Term Slices and Instrumented Computation Slices

A term slice of the term s is a term s• that hides part of the information in s; that
is, the irrelevant data in s that we are not interested in are simply replaced by special
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•-variables of appropriate sort, denoted by •i, with i = 0, 1, 2, . . .. More precisely, in
our framework, the term slice s• can be seen as the term s plus a mask that hides
the irrelevant symbols of s via •-variables. In this way, the irrelevant part of s• can be
conveniently recovered from s• at any time by simply unhiding the masked symbols,
which we formalize using the function unhide(s•) = s for every term slice s• of s.

Given a term slice s•, a meaningful position p of s• is a position p ∈ Pos(s•) such
that s•|p 6= •i, for all i = 0, 1, . . .. By MPos(s•), we denote the set that contains all the
meaningful positions of s•. Symbols that occur at meaningful positions of a term slice
are called meaningful symbols.

Basically, term slicing focuses on the information the user wants to observe of a given
term. The next auxiliary definition formalizes the function Tslice(t, P ), which allows a
term slice of t to be constructed w.r.t. a set of positions P of t. The function Tslice relies
on the function fresh• whose invocation returns a (fresh) variable •i of appropriate sort
that is distinct from any previously generated variable •j .

Definition 4.2 (Term Slice) Let t ∈ τ(Σ,V) be a term and let P be a set of positions
s.t. P ⊆ Pos(t). Then, the term slice Tslice(t, P ) of t w.r.t. P is computed as follows.

Tslice(t, P ) = recslice(t, P,Λ), where

recslice(t, P, p) =


f(recslice(t1, P, p.1), . . . , recslice(tn, P, p.n))

if t=f(t1, . . . , tn), n ≥ 0, and p ∈ P̄
t if t ∈ V and p ∈ P̄
fresh• otherwise

and P̄ = {u | u ≤ p ∧ p ∈ P} is the prefix closure of P .
Roughly speaking, the function Tslice(t, P ) yields a term slice of t w.r.t. a set of po-

sitions P that includes all symbols of t that occur within the paths from the root of t to
any position in P , while each subterm t|p, whose position p is minimal w.r.t. Pos(t) \ P̄ ,
is replaced by a freshly generated •-variable.

Example 4.3
Consider the specification of Example 2.1 and initial state t = {p1,< 4,4 >,1} || {p2,

< 3,5 >,1}. Consider the set P = {1.1, 1.2.1, 1.2.2, 2.1} of positions in t. Then,

Tslice(t, P ) = {p1,< 4,4 >, •1 } || {p2, •2, •3}

and the set of meaningful positions MPos(t•) = {Λ, 1, 1.1, 1.2, 1.2.1, 1.2.2, 2, 2.1}.

Definition 4.4 (Inspection Criterion) An inspection criterion is a function I(s•,
s→K t) that, given a rewrite step s→K t and a term slice s• of s, computes a term slice
t• of t.

Roughly speaking, inspection criteria allow us to control the information content con-
veyed by term slices resulting from the execution of→K-rewrite steps. It is worth noting
that distinct implementations of the inspection criteria may produce distinct slices of the
considered rewrite step. Several examples of inspection criteria are discussed in Section
5. We assume that the special value fail is returned by the inspection criterion whenever
no slice t• can be computed by I.
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(frag)
V • = I(U•, U → V ) ∧ V • 6= fail

〈U → V →∗ W,S••→∗ U•〉 =⇒ 〈V →∗ W,S••→∗ U••→ V •〉

Figure 4. The inference rule frag of the transition system (Conf ,=⇒).

Given the instrumented computation T = (s0 →K s1 · · · →K sn), with n ≥ 1, an
instrumented computation slice of T w.r.t. the inspection criterion I is either the empty
computation nil or the sequence T •I = (s•0•→ s•1•→ · · · •→ s•n), which is generated
by sequentially applying I to the steps that compose T . We often write T • for an
instrumented computation slice T •I when the inspection criterion I is clear from the
context.

Let us formalize a calculus to generate instrumented computation slices by means of
a transition system (Conf ,=⇒) (Plotkin, 2004) where:

- Conf is a set of configurations of the form 〈T ,F•〉, where T is an instrumented
computation and F• is an instrumented computation slice;

- the transition relation =⇒ implements the calculus of instrumented computation
slices and is the smallest relation that satisfies the inference rule frag given in Figure
4.

Roughly speaking, the rule frag transforms the configuration 〈U →K V →∗K W,S••→∗K
U•〉 into the configuration 〈V →∗K W,S••→∗ U••→ V •〉 where the first step U →K V
has been consumed and its corresponding slice U••→ V • w.r.t. I has been added to
S••→∗ U•. The rule frag only applies when the inspection criterion I generates a term
slice V • that is not the fail value.

The sequential application of the considered inference rule allows the instrumented
computation T to be traversed in order to produce the sliced counterpart T • of T w.r.t.
I. More formally,

Definition 4.5 (Instrumented Computation Slice) Given the instrumented com-
putation T = (s0 →K s1 →K · · · →K sn), with n ≥ 1, the instrumented computation
slice T • of T w.r.t. the inspection criterion I and term slice s•0 of s0 is defined by the
function Cslice(s•0, T , I), which is defined as follows.

Cslice(s•0, T , I) = if 〈T , s•0〉 =⇒∗ 〈nil, T •〉 then T • else nil

where nil denotes the empty computation. Note that the second component s•0 of the
initial configuration 〈T , s•0〉 matches the sequence S••→∗ U• in rule frag by taking s•0 for
U• and considering a sequence S••→∗ U• consisting of zero steps.

Computation slices can be concretized by replacing all the •-variables that appear in
the slices with suitable •-free terms. More formally,

Definition 4.6 Let R = (Σ,∆ ∪ B,R) be a conditional rewrite theory, and T be an
instrumented computation in R. Let I be an inspection criterion.

Given the instrumented computation T = (s0
r1,σ1,w1→K s1

r2,σ2,w2→K · · · rn,σn,wn→K sn), and
the instrumented computation slice T • = (s•0•→ s•1•→ · · · •→ s•n) of T w.r.t. I and a term
slice s•0, an instrumented computation slice concretization T ′ of T • is any instrumented

computation s′0
r1,σ

′
1,w1→K s′1

r2,σ
′
2,w2→K · · · rn,σ

′
n,wn→K s′n such that each s•i is a term slice of

s′i ∈ τ(Σ,V), for all i = 0, . . . , n.
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function expand(s, s•,R, I)

1. A = ∅

2. for each M∈ mS(s)

3. M• = Cslice(s•, instrument(M), I)

4. if M• 6= nil then A = A ∪ {M•}

5. end

6. return A

endf

Figure 5. The one-step expand function.

4.2. Instrumented Computation Tree Slices

Instrumented computation tree slices are formally defined as follows.

Definition 4.7 (Instrumented Computation Tree Slice) Let T +
R (s0) be an instru-

mented computation tree for the term s0 in the conditional rewrite theory R = (Σ,∆ ∪
B,R); let s•0 be a term slice of s0; and let I be an inspection criterion. An instrumented
computation tree slice for s•0 in R w.r.t. I is a tree T +

R,I(s•0) (simply denoted by T +
R (s•0)

when no confusion can arise) such that:
(1) the root of T +

R (s•0) is s•0;
(2) each branch of T +

R (s•0) is an instrumented computation slice T • w.r.t. I and s•0 of
a computation T in T +

R (s0).
(3) for each instrumented computation T in T +

R (s0), there is one, and only one, in-
strumented computation slice T • of T in T +

R (s•0).
In the following section, we show how tree slices of a given instrumented computation

tree in R = (Σ,∆ ∪ B,R) can be generated by repeatedly unfolding the nodes of the
original tree.

4.3. Exploring the Computation Tree

In our methodology, instrumented computation tree slices are incrementally con-
structed by expanding tree nodes (i.e., term slices), starting from the root node (i.e.,
the initial term slice). Formally, given the term s and the term slice s• of s, the ex-
pansion of s in the rewrite theory R = (Σ,∆ ∪ B,R) w.r.t. the inspection criterion
I is defined by the function expand(s, s•,R, I) of Figure 5, which unfolds the term
slice s• by deploying and then slicing all the possible instrumented Maude computa-
tion steps stemming from s that are given by mS(s). In other words, for each Maude
step M = s→∗∆,B s↓∆,B →R,B t→∗∆,B t↓∆,B , we first compute its instrumented version
and then the corresponding instrumented Maude step slice M• is generated, which is
finally added to the set A.

The overall construction methodology for instrumented computation tree slices is spec-
ified by the function explore, defined in Figure 6. Given a rewrite theory R, a term slice
s•0 of the initial term s0, and an inspection criterion I, the function explore essentially
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function explore(s•0,R, I)

1. T +
R (s•0) = s•0

2. while((s• = pickLeaf (T +
R (s•0))) 6= EoE) do

3. T +
R (s•0) = addPaths(T +

R (s•0), s•, expand(unhide(s•), s•,R, I))

4. od

5. return T +
R (s•0)

endf

Figure 6. The interactive explore function.

formalizes an interactive procedure that is driven by the user starting from an elemental
tree slice fragment, which only consists of the sliced root node s•0. The instrumented
computation tree slice T +

R (s•0) is built by choosing, at each loop iteration of the al-
gorithm, the tree leaf that represents the term slice to be expanded by means of the
auxiliary function pickLeaf (T +

R (s•0)), which allows the user to freely select a leaf node
from the frontier of the current tree T +

R (s•0). Then, T +
R (s•0) is augmented by calling

addPaths(T +
R (s•0), s•, expand(unhide(s•), s•,R, I)), where unhide(s•) recovers the origi-

nal term s from s•. This function call adds all the instrumented computation slices w.r.t.
I and s• that correspond to the Maude steps that originate from the term s.

The special value EoE (End of Exploration) is used to terminate the inspection pro-
cess: when the function pickLeaf (T +

R (s•0)) is equal to EoE, no term to be expanded is
selected and the exploration terminates delivering (a fragment of) the computation tree
slice T +

R (s•0).

5. Exploration Modalities

The methodology given in Section 4 provides a generic scheme for the exploration
of (instrumented) computation trees w.r.t. a given inspection criterion I that must be
selected or provided by the user. In this section, we show three implementations of the
criterion I that produce three distinct exploration strategies. In the first case, the con-
sidered criterion allows an interactive program stepper to be derived in which conditional
rewriting logic theories can be stepwisely animated. In the second case, we implement
a partial stepper that allows computations with partial inputs to be stepped. Finally,
in the last instantiation of the framework, the chosen inspection criterion implements
an automated, forward slicing technique that simplifies the traces and allows relevant
control and data information to be easily identified within the computation trees.

Since equations and axioms are both interpreted as rewrite rules in our formulation,
throughout this section, notation λ ⇒ ρ if C is often abused to denote rewrite rules as
well as (oriented) equations and axioms.

5.1. Interactive Stepper

Given an instrumented computation tree T +
R (s0) for an initial state s0 and a condi-

tional rewrite theory R, the stepwise inspection of the computation tree can be directly
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{ p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 > , 1 }

S0

{ p2 , < 3 , 5 > , 1 } || { p1 , 
< 4 , 4 > , 1 }

S1 fromACnf
{ p1 , < 4 , 4 > , 1 } || { p2 , 
< 3 , 5 >  < 4 , 5 > , 1 + 1 }

S5 rl: walk
{ p1 , < 4 , 4 > , 1 } || { p2 , 
< 3 , 5 >  < 5 , 5 > , 1 + 2 }

S7 rl: jump

{ p2 , < 3 , 5 > , 1 } || { p1 , 
< 4 , 4 >  < 4 , 5 > , 1 + 1 }

S2 rl: walk

{ p2 , < 3 , 5 > , 1 } || { p1 , 
< 4 , 4 >  < 4 , 5 > , 2 }

S3 eq: builIn(+)

{ p1 , < 4 , 4 >  < 4 , 5 > , 
2 } || { p2 , < 3 , 5 > , 1 }

S4 toACnf

{ p1 , < 4 , 4 > , 1 } || { p2 , 
< 3 , 5 >  < 4 , 5 > , 2 }

S6 eq: builtIn(+)
{ p1 , < 4 , 4 > , 1 } || { p2 , 
< 3 , 5 >  < 5 , 5 > , 3 }

S8 eq: builtIn(+)

Figure 7. Inspection of the state s0 w.r.t. Istep .

implemented by instantiating the exploration scheme of Section 4 with the basic inspec-

tion criterion Istep(s, s
r,σ,w→K t) = t, which simply returns the reduced term t of the rewrite

step s
r,σ,w→K t. This way, by starting the exploration from a term slice that corresponds

to the whole initial term s0 (i.e., s•0 = s0), the call explore(s0, s
•
0,R, Istep) generates (a

fragment of) the instrumented computation tree T +
R (s0) whose topology depends on the

program states that the user decides to expand during the exploration process.

Example 5.1
Consider the rewrite theory R in Example 2.1 and the computation tree in Exam-

ple 4.1. Assume the user starts the exploration by calling explore(s0, s
•
0,R, Istep), with

s0 = s•0, which allows all the Maude steps that stem from the initial term s0 to be
expanded w.r.t. the inspection criterion Istep . This generates the instrumented computa-
tion tree fragment T +

R (s0) in Figure 7, where the instrumentation is made explicit. Now,
the user can either quit or carry on with the exploration of nodes s4, s6, and s8, which
would result in the instrumented version of the tree fragment that is shown in Figure 3.

5.2. Partial Stepper

The computation states produced by the program stepper defined above do not include
•-variables. However, sometimes it may be useful to work with partial information and
hence with term slices that “abstract some data” by using •-variables. This may help
the user focus on those parts of the program state that he/she wants to observe, while
disregarding pointless information or unwanted rewrite steps.

We define the following inspection criterion

Ipstep(s•, s
r,σ,w→K t) = if s•

r,σ•,w→K t• then t• else fail

Roughly speaking, given a conditional rewrite step s
r,σ,w→K t, the criterion Ipstep returns a

term slice t• of the reduced term t, whenever s• can be conditionally rewritten to t• using
the very same rule r at the same position w with the corresponding matching substitution
σ•. The particularization of the exploration scheme given by the criterion Ipstep allows an
interactive, partial stepper to be derived, in which the user can observe a distinguished
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{ p1 , < 4 , 4 > , 1 } || ･1

S0

･1 || { p1 , < 4 , 4 >  < 4 , 5 > , 
2 }

S3 rl: walk

･1 || { p1 , < 4 , 4 >  < 4 , 5 >  
< 5 , 5 > , 3 }

S6 rl: walk

･1 || { p1 , < 4 , 4 >  < 4 , 5 >  
< 3 , 5 > , 3 }

S9 rl: walk

･1 || { p1 , < 4 , 4 >  < 4 , 5 >  
< 3 , 5 >  < 5 , 5 > , 5 }

S12 rl: jump

･1 || { p1 , < 4 , 4 >  < 4 , 5 >  < 3 , 5 >  
< 5 , 5 > < 5 , 3 > , 7 }

S15 rl: jump

･1 || { p1 , exit , 5 }
S17 rl: exit

Figure 8. Computation tree slice fragment for s•0 w.r.t. Ipstep .

part of the state, thereby producing more compact and focused representations of the
visited fragment of the (instrumented) computation tree.

The following example describes a simple partial stepper session. To improve its read-
ability, here we omit the B-matching transformation steps and the calls to the + built-in
operator.

Example 5.2
Consider the computation tree of Example 4.1 and the initial state

s0 = {p1,< 4,4 >,1} || {p2,< 3,5 >,1}

Let s•0 = {p1,< 4,4 >,1} || •1 be a term slice of s0 where only the triple structure
of player p1 is observed. Assume that the inspection criterion Ipstep is used to generate
computation tree slice fragments. The computation tree slice fragment shown in Figure 8
is obtained by first expanding the node s•0 into s•3, then the node s•3 into s•6 and s•9, then
the node s•9 into s•12, and then the node s•12 into s•15 and s•17. Note that the adopted partial
stepping strategy allows a simplified view of (a part of) the considered computation tree
to be constructed. More precisely, given the input encoded into the initial term slice
s•0, the computation can evolve by simply applying the rule walk to p1 triple structure.
By isolating p1 movements in the tree slice fragment computed by partial stepping, the
user can immediately observe and analyze why the player does not leave the game after
reaching the exit but continues wandering for a while, which is an unnoticed side effect
of declaring exit as a rule. To prevent exit from being nondeterministically applied in
competition with other rules such as walk or jump, exit must be programmed as an
equation to be deterministically used for normalizing the system state after the player
has reached the maze exit. Note also that the eject rule does not appear in the tree slice
fragment since player p2 has been filtered out from the initial term slice s•0 and therefore
eject cannot be applied. Indeed, two players are required to match the left-hand side of
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the considered rule.

5.3. Stepper and Partial Stepper Correctness

In this section, we provide a notion of correctness, which we call universal correctness,
that holds for each instrumented computation slice computed by the stepper and the
partial stepper described in Section 5.1 and Section 5.2, respectively. Universal correct-
ness of an instrumented computation slice is formally defined as follows.

Definition 5.3 Let R be a conditional rewrite theory. Let T = (s0
r1,σ1,w1→K · · ·

rn,σn,wn→K sn)
be an instrumented computation in the rewrite theory R, with n > 0, and let s•0 be a term
slice of s0. Let I be an inspection criterion. Then, an instrumented computation slice
s•0•→ · · · •→ s•n of T w.r.t. I and s•0 is universally correct iff, for every instance s′0 of s•0,

there exists an instrumented computation slice concretization s′0
r1,σ

′
1,w1→K · · ·

rn,σ
′
n,wn→K s′n.

Roughly speaking, Definition 5.3 ensures that, given an instrumented computation
slice T • = (s•0•→ · · · •→ s•n), for every instance s′0 of s•0, there exists an instrumented
computation slice concretization T ′ of T • in which the rules involved in T • can be
applied again, at the same positions. This amounts to saying that we can reproduce all
the relevant information of T • in any rewrite sequence that instantiates T •.

The following proposition states that non-empty instrumented computation slices that
are generated using the inspection criterion Ipstep are always universally correct.

Proposition 5.4 Let R be a conditional rewrite theory. Let T = (s0
r1,σ1,w1→K · · ·rn,σn,wn→K

sn) be an instrumented computation in the rewrite theory R, with n > 0, and let s•0
be a term slice of s0. Let Ipstep be the partial stepper inspection criterion. Then, every
instrumented computation slice s•0•→ · · · •→ s•n of T w.r.t. Ipstep and s•0 is universally
correct.

Proof. The proof proceeds by induction on the length n of T •.
Base case: n = 1. Let us consider the one-step, instrumented computation slice s•0•→
s•1. By Definition 4.5, s•0•→ s•1 has been obtained by calling the function Cslice(s•0,

s0
r1,σ1,w1→K s1, Ipstep). Hence, T •1 = (s•0•→ s•1) = Cslice(s•0, s0

r1,σ1,w1→K s1, Ipstep). This

implies that the following transition 〈s0
r1,σ1,w1→K s1, s

•
0〉 =⇒∗ 〈nil, s•0•→ s•1〉 has been

performed in the transition system (Conf ,=⇒) by means of one application of the frag

rule. By definition of the frag rule (see Figure 4), s•1 = Ipstep(s•0, s0
r1,σ1,w1→K s1). Now,

by definition of Ipstep , s•1 = Ipstep(s•0, s0
r1,σ1,w1→K s1) iff s•0

r1,σ
•,w1→K s•1. To complete the

proof, it suffices to observe that the rewriting relation →K is stable (i.e., it is closed

under substitution applications). This amounts to saying that s•0σ
′ r1,σ

•σ′,w1→K s•1σ
′, for

every substitution σ′.

Hence, for every instance s′0 = s•0σ
′ of s•0, s′0

r1,σ
•σ′,w1→K s•1σ

′ = s′1 is an instrumented
computation slice concretization, which implies that s•0•→ s•1 is a universally correct
instrumented computation slice.

Inductive case: n > 1. Let us consider the instrumented computation slice T • = (s•0•→
s•1•→ · · · •→ s•n), with n > 1, w.r.t. Ipstep and s•0. By the induction hypothesis, the
instrumented computation slice s•0•→ s•1•→ · · · •→ s•n−1 w.r.t. Ipstep and s•0 is universally
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correct, that is, for every instance s′0 of s•0, there exists an instrumented computation
slice concretization

s′0
r1,σ

′
1,w1→K · · ·

rn−1,σ
′
n,wn−1→K s′n−1. (1)

Now, let us consider the last sliced step s•n−1•→ s•n of T •. By applying an argument
similar to the one in the base case, we can show that s•n−1•→ s•n is a universally correct
instrumented computation slice. In other words, for every instance s′′n−1 of s•n−1, there
exists an instrumented computation slice concretization

s′′n−1

rn,σ
′′
n ,wn→K s′′n. (2)

By choosing s′′n−1 = s′n−1, we can glue together the rewrite sequences 1 and 2 thereby
obtaining that, for every instance s′0 of s•0, there exists an instrumented computation
slice concretization

s′0
r1,σ

′
1,w1→K · · ·

rn−1,σ
′
n−1,wn−1→K s′n−1

rn,σ
′
n,wn→K s′n. (3)

Hence, T • is a universally correct instrumented computation slice w.r.t. Ipstep and s•0.
�

Observe that a correctness result can be automatically obtained for the stepper in-
spection criterion Istep for free since Ipstep is a conservative generalization of Istep , which
allows •-variables to appear in instrumented computation slices. In other words, Ipstep
boils down to Istep when computation slices do not contain •-variables. Therefore, since
the stepper only works with •-free instrumented computation slices (i.e., instrumented
computations), the following result holds.

Corollary 5.5 Let R be a conditional rewrite theory. Let T = (s0
r1,σ1,w1→K · · ·

rn,σn,wn→K sn)
be an instrumented computation in the rewrite theory R, with n > 0. Let Istep be the
stepper inspection criterion. Then, T coincides with the instrumented computation slice
T • of T w.r.t. Istep and s•0 = s0.

Proof. Immediate by the fact that s0 is a term that does not contain •-variables, so
Istep behaves as Ipstep and generates a universally correct instrumented computation
slice s0•→ · · · •→ sn by Proposition 5.4. The slice is unique as Istep cannot introduce
•-variables in the computation slice that can be bound to arbitrary terms. Therefore, T •
is the very same T . �

For I ∈ {Istep , Ipstep}, the universal correctness of instrumented computation slices
can be easily lifted to universal correctness of instrumented computation tree slices as
follows.

Theorem 5.6 (Universal Correctness) Let R be a conditional rewrite theory. Let
I ∈ {Istep , Ipstep}. Let s•0 be a term slice of term s0. Let T +

R (s•0) be (a fragment of)
the instrumented computation tree slice in R w.r.t. I and s•0 computed by the function
explore(s0, s

•
0,R, I). Then, each branch s•0•→ · · · •→ s•n in T +

R (s•0) is a universally correct
instrumented computation slice w.r.t. I and s•0.

Proof. Immediate. It suffices to apply Proposition 5.4 to each Maude step of each branch
of T +

R (s•0) when I = Ipstep and to apply Corollary 5.5 when I = Istep . �
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Figure 9. Meaningful descendants of a rewrite step s
r,σ,w→K t.

Note that universal correctness of an instrumented computation tree slice T +
R (s•0)

directly implies the universal correctness of the associated computation tree slice TR(s•0).
This is because TR(s•0) is obtained from T +

R (s•0) by simply removing those sliced steps
that correspond to instrumentation transformations.

5.4. Forward Trace Slicer

Forward trace slicing is a program analysis technique that allows computations to be
simplified w.r.t. a selected slice of their initial term. More precisely, given an instrumented
computation T with initial term s0 and a term slice s•0 of s0, forward slicing yields a
simplified view T • of T in which each term s of the original instrumented computation
is replaced by the corresponding term slice s• that only records the information that
depends on the meaningful symbols of s•0, while irrelevant data are simply pruned away.

In the following, we define an inspection criterion Islice that implements the forward
trace slicing for a single conditional rewrite step. Given a conditional rewrite step µ =

(s
r,σ,w→K t) and a term slice s• of the term s, it delivers the term slice t• that results from

a dependency analysis of the meaningful information in s• and the term transformation
modeled by the rewrite rule r. During this analysis, the condition of the applied rule is
recursively processed in order to ascertain the meaningful information that may depend
on the conditional part of r.

Intuitively, our trace slicing algorithm enforces a notion of meaningful descendant that

is as follows. Given a conditional rewrite step µ = (s
r,σ,w→K t) and a term slice s• of s, the

computed term slice t• that contains the meaningful descendants of s• by Islice w.r.t. the
rewrite step µ and s• is given by the following relations, that are illustrated in Figure 9.

(1) (Context) Each meaningful symbol sym in t• that occurs at a position w′ such that
w′ < w, or w and w′ are not comparable is a meaningful descendant of the very
same symbol sym in s•.

(2) (Redex-contractum) Each meaningful symbol in t•|w that is introduced by the non-
variable part of the right-hand side of the rule r is a meaningful descendant of all
the meaningful symbols in s•|w that match the non-variable part of the left-hand
side of r;
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(3) (Common-variables) Each meaningful symbol sym in t•|w that is introduced by a

binding x/t′ of σ, for any variable x in the left-hand side of the rule r, is a meaningful
descendant of the very same symbol sym in s•|w;

(4) (Extra-variables) Each meaningful symbol in t•|w that is introduced by a binding

z/t′ of σ, where z is an extra-variable of the rule r, is a meaningful descendant of
all those symbols in s•|w from which t′ descends (to compute this dependency, the

recursive inspection of the condition of r is required);
The meaningful descendant notion is illustrated in the following example.

Example 5.7
Consider the conditional rewrite rule crl [r] : f(X,Y) => h(Z,X) if Z := g(X,Y)

that contains an extra-variable Z in its right-hand side, together with the equational def-
inition eq [sum] : g(X,Y) = X + Y. Let us consider the one-step trace

T = c(f(2,3),a)→ c(h(5,2),a)

that uses the rule r and equation sum.
In order to slice T w.r.t. the term slice c(f(2,•1),•2), we need to analyze the internal

computation trace Tint = g(2,3) → 2 + 3 → 5 for the evaluation of the matching
condition Z := g(X, Y), which instantiates the extra-variable Z to the value 5.

The analysis determines that the computed value 5 in Tint descends from the input
values 2 and 3 given to the variable arguments X and Y of the functions g and f. Thus, we
conclude that the value 5 is a descendant (by the extra-variables relation) of the observed
value 2 of the initial term slice c(f(2, •1 ), •2 ). This is the key to compute the trace
slice T • = c(f(2, •1 ), •2 ) → c(h(5,2), •2 ) with the inspection function given in
Figure 10.

Also note that symbol h is a descendant of the symbol f (by the redex-contractum
relation), and the value 2 in the term slice c(h(5,2), •2 ) descends from the input value
2 in c(f(2, •1 ), •2 ) (by the common-variables relation). Finally, the root symbol c in
c(h(5,2), •2 ) descends from the same symbol c in c(f(2, •1 ), •2 ) (by the context
relation).

A precise formalization of the inspection criterion Islice is provided by the function
given in Figure 10. By adopting the inspection criterion Islice , the exploration scheme
of Section 4 automatically turns into an interactive, forward trace slicer that expands
computation states using the slicing methodology encoded into the inspection criterion
Islice . In other words, given an instrumented computation tree T +

R (s0) and a user-defined
term slice s•0 of the initial term s0, any instrumented computation slice s•0 •→ s•1 · · · •→ s•n
in the tree T +

R (s•0), which is computed by the explore function, is the forward sliced
counterpart of an instrumented computation s0 →K s1 · · · →K sn (w.r.t. the term slice
s•0) in the instrumented computation tree T +

R (s0).
Roughly speaking, the inspection criterion Islice works as follows. When the rewrite

step µ = (s
r,σ,w→K t) occurs at a position w that is not a meaningful position of s• (in

symbols, w 6∈ MPos(s•)), trivially µ does not contribute to producing the term slice
t•. Actually, the rewriting position w might not even occur in s•, hence we consider the
prefix w′ of w that points to a •-variable in s•, i.e., s•|w′ is a •-variable. This position
exists and is unique. Now, since no new relevant information descends from the term
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function Islice(s•, s
r,σ,w→K t) /*Assumption : [r] : λ⇒ ρ if C*/

1. if w ∈MPos(s•) then

2. ψ0 = mgu(λ, (s•|w))|̀Var(λ)

3. for i = 1 to n do /*Assumption : C = c1 ∧ . . . ∧ cn*/

4. ψi = process-condition(ci, σ, ψi−1)

5. od

6. θ = {x/fresh• | x ∈ Var(r)}

7. t• = s•[ρψnθ]w

8. else

9. t• = s•[fresh•]w′ with w′ ≤ w ∧ s•|w′ = •i, for some i

10. fi

11. return t•

endf

Figure 10. Inspection criterion that models the forward slicing of a conditional rewrite step.

slice s•, Islice returns a variant s•[fresh•]w′ of s• where the subterm of s• at the position
w′ has been replaced by a new fresh •-variable that completely abstracts the contractum
computed by µ.

Example 5.8
Consider the Maude specification of Example 2.1 and the following rewrite step

µ :{p1,< 4,4 >,1} || {p2,< 3,5 >,1} walk→K {p1,< 4,4 >,1} || {p2,< 3,5 > < 4,5 >,1+1}.

Let s• = {p1,< 4,4 >,1} || •1 be a term slice of {p1,< 4,4 >,1} || {p2,< 3,5 >,1}.
Since the rewrite step µ occurs at position 2 6∈ MPos({p1,< 4,4 >,1} || •1 ), which is
not a meaningful position of s•, the inspection criterion Islice returns the variant of s•

{p1,< 4,4 >,1} || •2, where •2 is a fresh variable generated by the function fresh•.

On the other hand, when w ∈ MPos(s•), the computation of t• requires a more
in-depth analysis of the conditional rewrite step that is based on a recursive slicing
process that involves the conditions of the applied rule. This process is necessary for all
descendants of s•|w in t• to be properly tracked while any other information is disregarded.

More specifically, given the rewrite step µ : s
r,σ,w→K t, with [r] : λ⇒ ρ if C, and the term

slice s•, we proceed in two phases; in both phases, the •-symbols in s• are handled as
existentially quantified variables, in contrast to the partial stepper of Section 5.2, where
•-symbols were interpreted to be universally quantified. The first phase retrieves the
relevant information contained in the term slice s•|w of the redex s|w, while the second

phase recognizes relevant symbols that result from evaluating the rule condition (remind
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function process-condition(c, σ, ψ)

1. case c of

2. (p := m) ∨ (m⇒ p) : /* matching conditions and rewriting expressions */

3. if (mσ = pσ)

4. δ = mgu(p,mψ)|̀Var(p)

5. else

6. ((mσ)••→+ (pσ)•) = Cslice(Tslice(mσ, MPos(mψ)),mσ →+
K pσ, Islice)

7. δ = mgu(p, (pσ)•)|̀Var(p)

8. fi

9. return δψ

10. e : /* equational conditions */

11. return ψ

12. end case

endf

Figure 11. The condition processing function.

that Maude admits extra-variables that appear in the condition of an equation or rule
while they do not appear in the corresponding left-hand side).
Phase 1. This phase first computes the most general unifier ψ0 between the sliced redex
s•|w and the left-hand side λ of the applied rule [r] : λ ⇒ ρ if C restricted to the
variables in λ. This allows the meaningful information of the sliced redex s•|w to be
caught while those data that do not appear at meaningful positions are disregarded
and not carried on by the rewrite step.

Note that the use of unification within our forward slicing methodology somehow
resembles the unification-based, parameter-passing mechanism that is used in narrow-
ing (Fay, 1979; Slagle, 1974). However, in our approach, we restrict unification to λ’s
variables and the computed unifiers are not propagated, by the inspection mechanism,
to the whole term slice that we compute, but are only used to determine the relevant
part of the contractum. Let us see an example.

Example 5.9
Consider the rewrite rule

rl [downN] : next(L < X,Y >, N) => < X,Y + N > .

in Example 2.1 together with the following rewrite step C = next(< 1,1 >,1)
downN−→K

< 1,1+1 > and the term slice next(•1,1). In Phase 1, we compute the substitution
ψ0 such that

ψ0 = mgu(next(L < X,Y >, N), next(•1, 1))|̀{L,X,Y,N} = {N/1}.
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Note that ψ0 catches the meaningful value 1 for the variable N of the left-hand side of
the rule downN.

It is worth noting that the most general unifier computation is essential for this kind
of analysis and cannot be replaced by a simpler matching mechanism. Indeed, it could
happen that there exists no matcher between the left-hand side λ of the rule and the
term slice s•|w, whereas an mgu can be computed. Hence, matching cannot guarantee
that meaningful values for λ’s variables can be detected.

Example 5.10
Consider Example 5.9. Note that the term next(•1, 1) does not match the left-hand

side next(L < X,Y >, N). Hence, if we replaced the mgu computation in Example 5.9
by matchnext(L < X,Y >, N)(next(•1, 1)), we could not get the binding N/1 that encodes
the meaningful value 1 for the variable N.

Phase 2. This phase detects relevant information that originates from the rule condi-
tion. Let Cσ = c1σ∧ . . .∧cnσ be the instance of the condition in the rule r that enables
the rewrite step µ. We process each (sub)condition ciσ, i = 1, . . . , n by using the aux-
iliary function process-condition given in Figure 11 that generates a substitution ψi,
such that ψi is used to further refine the partially ascertained substitution ψi−1 that
has been computed by incrementally analyzing the (sub)conditions c1σ, . . . , ci−1σ.

When the whole condition Cσ has been processed, we get the substitution ψn, which
basically encodes all the relevant instantiations discovered by analyzing the conditional
rewrite step µ w.r.t. s•|w.

Now, we consider the substitution θ = {x/fresh• | x ∈ Var(r)} that binds all the
variables of the rule r to irrelevant information. By composing ψn with θ, we get a
substitution that associates each variable of r with either a relevant or irrelevant value.
Specifically, the composition ψnθ includes all the relevant bindings encoded in ψn plus the
bindings of the form x/• for every variable x that is not in the domain of ψn. The term
slice t• is now computed from s• by replacing its subterm at position w with the instance
(ρψnθ ) of the right-hand side of the applied rule r. This way, all the relevant/irrelevant
information detected is transferred into the resulting sliced term t•.

The process-condition function handles matching conditions, rewrite expressions, and
equational conditions differently. Specifically, the substitution ψi that is returned after
processing each condition ci is computed as follows.
– Matching conditions. Let c be a matching condition with the form p := m in the

condition of rule r. During the execution of the step µ : s
r,σ,w→K t, recall that c is

evaluated as follows: first, mσ is reduced to its canonical form mσ↓∆,B , and then the
condition mσ↓∆=B pσ is checked. In our framework, this corresponds to producing an
internal instrumented computation that transforms mσ into pσ.

The analysis of the matching condition p := m during the slicing process of µ is
implemented in process-condition by distinguishing the following two cases.
Case i. If pσ = mσ, then there is no need to generate the canonical form of mσ,

since pσ and mσ are the same term. Hence, we discover new (possibly) relevant
bindings for variables in p by computing the mgu δ between p and mψ restricted
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to p’s variables. Then, the algorithm returns the substitution composition δψ that
updates the input substitution ψ with the new bindings encoded in δ.

Unlike most unification-based procedures, note that the resulting substitution δψ
is obtained by composing the input substitution ψ with the updating substitution
δ in reverse order of their computation (ψ was obtained before δ). This is because
bindings of the form x/•, possibly existing in ψ, must be overridden with meaningful
bindings x/t, with t 6= •, eventually appearing in the updating substitution δ. This
is achieved by composing {x/t}{x/•}, whereas the meaningful binding {x/t} would
be lost if we composed {x/•}{x/t}. Since the co-domains of ψ and δ contain no
variables apart from •-symbols, the reverse composition ordering is harmless for any
other bindings different from x/•.

Case ii. When pσ 6= mσ, the slicing of the (internal) instrumented computation
Tint = mσ →+

K pσ is required. The slicing process is done by recursively invok-
ing the function Cslice(Tslice(mσ, MPos(mψ)),mσ →+

K pσ, Islice) whose outcome
is the computation slice (mσ)••→+ (pσ)• from which new relevant bindings for p’s
variables can be derived. This is done by computing the mgu δ between p and (pσ)•

restricted to the variables in p; then, the substitution composition δψ that updates
ψ with these new bindings is returned.

– Rewrite expressions. The case when c is a rewrite expression m ⇒ p is handled
similarly to the case of a matching equation p := m, with the difference that m can be
reduced by using the rules of R in addition to equations and axioms.

– Equational conditions. Unlike the evaluation of matching conditions and rewrite
expressions, the equational conditions do not instantiate variables during the applica-
tion of a rewrite step. This means that no new relevant instantiations can be detected
for variables that appear in equational conditions. Therefore, in this case, the substi-
tution, which is returned by process-condition, is just the input substitution ψ.

Example 5.11
Consider the Maude specification of Example 2.1 and the following rewrite step

µ : {p1,< 4,4 >,1} || {p2,< 3,5 >,1} walk,σwalk,2→K

{p1,< 4,4 >,1} || {p2,< 3,5 >< 4,5 >,1+1}.
Let •1 || {•2, < 3,5 >, •3} be a term slice of {p1,< 4,4 >,1} || {p2,< 3,5 >,1}.

Since the rewrite step µ occurs at position 2, which is a meaningful position of
•1 || {•2, < 3,5 >, •3}, the two-phase procedure described above is applied.
Phase 1. The substitution ψ0 is computed as follows.

ψ0 = mgu({PY, L, M}, {•2, < 3,5 >, •3})|̀{PY,L,M} = {PY/•2, L/< 3,5 >, M/•3},

where {PY, L, M} is the left-hand side of the walk rule of Example 2.1. Note that the
variable L in ψ0 is bound to meaningful information, while PY and M are not considered
to be relevant.

Phase 2. We first analyze the rewrite expression next(L,1) => P by calling the func-
tion process-condition(next(L, 1) => P, σwalk, ψ0). In this specific case, we have to
consider the internal computation

Tint = next(< 3,5 >,1)
rightN→K < 3+1,5 >

builtIn(+)→K < 4,5 >

whose computation slice w.r.t. Islice and next(L, 1)ψ0 coincides with Tint, since

next(L,1)ψ0 = next(< 3,5 >,1).
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Hence, δ = mgu(P, < 4, 5 >)|̀{P} = {P/< 4,5 >}. Observe that, by computing δ, we
discover that the value bound to the variable P is meaningful. The evaluation of the
condition next(L,1) => P terminates by returning the composition

ψ1 = δψ0 = {P/< 4,5 >}{PY/•2, L/< 3,5 >, M/•3}

that updates the information of ψ0 with the discovered binding in δ.
Subsequently, the condition isOk(LP) is processed. Since it is an equational condi-

tion, the function call process-condition(isOk(LP), σwalk, ψ1) returns a substitution ψ2

such that ψ2 = ψ1, which implies that no new relevant information has been detected.
Finally, the term slice of {p1,< 4,4 >,1} || {p2,< 3,5 > < 4,5 >,1+1} is com-

puted by replacing the subterm at position 2 of •1 || {•2, < 3,5 >, •3} with the instance
{PY,L P,M+1}ψ2θ of the right-hand side of the walk rule, where

ψ2θ = ψ1θ = δψ0θ = {P/< 4,5 >}{PY/•2, L/< 3,5 >, M/•3}{PY/•4, L/•5, M/•6, P/•7}
= {P/< 4,5 >, PY/•2, L/< 3,5 >, M/•3}

In symbols,

•1 || {•2, < 3,5 >, 1}[{PY, L P, M + 1}ψ2θ]2 = •1 || {•2, < 3,5 > < 4,5 >, •3+1}.

Since built-in operators are not provided in Maude with an explicit rule-based speci-
fication, the Islice algorithm could not be directly applied to rewrite steps that involve
these operators, hence we handle them in a special way. Given a built-in operator op

and an instrumented computation T , the idea is to handle every reduction a op b → c

that occurs in T as an ordinary rewrite step, which is done by adding the extra equa-
tion a op b = c to the equational theory E considered for trace slicing. This way, every
application of op that occurs in T is mimicked by applying its corresponding built-in
equation, as we illustrate in the following example.

Example 5.12

Consider the rewrite step µ : 1+1
builtIn(+),σ+,Λ→K 2, and let •1+1 be a term slice of 1+1.

Now, we first consider the supplementary ground equation [builtIn(+)] 1+1 = 2 that
explicitly models the reduction of the term 1+1, and only then we compute Islice(•1+1, µ)
that in this case yields the reduct 2, thus producing the sliced step •1+1 •→ 2.

Note that, even if the first argument of the term slice •1+1 is not considered meaningful,
in the sliced step the computed reduct 2 is relevant. This happens because Islice(•1+1, µ)
is obtained by using the ground equation 1+1 = 2 that preserves the constant contractum
(i.e., the term 2) in the generated term slice.

The following example describes the interactive construction of a fragment of an in-
strumented computation tree slice based on the Islice criterion. The example also demon-
strates how forward trace slicing can be fruitfully employed to debug RWL specifications.
For the sake of readability, in the resulting computation tree slice fragment we omit all
instrumentation steps, as in Example 5.2.
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{ p1 , < 4 , 4 > , ･1 } || ･2

S0

{ p1 , < 4 , 4 >  < 4 , 5 > , 2 } || ･2

S4 rl: walk

{ p1 , < 4 , 4 >  < 4 , 5 >  
< 5 , 5 > , 3 } || ･2

S10 rl: walk

{ p1 , < 4 , 4 >  < 4 , 5 >  
< 3 , 5 > , 3 } || ･2

S16 rl: walk

empty

S24 rl: eject
{ p1 , < 4 , 4 >  < 4 , 5 >  < 3 , 5 >  
< 5 , 5 > , 5 } || ･2

S22 rl: jump

empty

S26 rl: eject

Figure 12. Computation tree slice fragment for s•0 w.r.t. Islice .

Example 5.13
Consider the computation tree of Figure 3 whose initial term is s0 = {p1,< 4,4 >,1}

|| {p2,< 3,5 >,1}. Let s•0 = {p1,< 4,4 >, •1 } || •2 be a term slice of s0 where only
player p1 and its corresponding positions are observed. We get the computation tree slice
fragment shown in Figure 12 by first expanding (w.r.t. the inspection criterion Islice) the
node s•0 into s•4, then the node s•4 into s•10 and s•16, and then the node s•16 into s•22, s•24

and s•26.
The slicing process automatically computes a computation tree slice fragment that

represents a partial view of the maze game interactions from player p1’s perspective.
Actually, irrelevant information is hidden and rules applied on irrelevant positions are
directly ignored, which allows a simplified slice to be obtained thus favoring its inspection
for debugging and analysis purposes. In fact, by isolating p1 movements in the tree slice
fragment computed by slicing, the user can immediately observe and debug the program.
Specifically, by expanding the term slice s•16 = {p1,< 4,4 > < 4,5 > < 3,5 >,3} || •2
into s•22 by an application of the jump rule, and expanding s•16 also into s•24 and s•26 by an
application of the eject rule, the user can immediately realize that the player continues
wandering for a while despite being ejected from the game, which clearly reveals the
bug in the applied eject rule. To prevent eject from being nondeterministically applied
in competition with other rules such as walk or jump, eject must be programmed as
an equation to be deterministically used for normalizing the system state after a player
is ejected. Note that the computation tree slice fragment shown in Figure 12 cannot be
deployed by means of partial stepping since the chosen slicing criterion is overly restrictive
to perform a partial rewrite step.

5.5. Forward Trace Slicer Correctness

Forward trace slicing produces computation slices that are generally not correct in
the sense of Definition 5.3. This is because •i symbols in the Islice inspection criterion
are interpreted as existential variables, while the partial stepper criterion Ipstep handles
them as universally quantified variables. Let us see an example.
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Example 5.14
Consider the rewrite theory that consists of the following rewrite rule [r] : f(a, x) ⇒

x, where a is a constant operator and x is a variable together with the rewrite step

µ : f(a, b)
r,{x/b},Λ→K b and the term slice f(•1, b) of f(a, b). Then, we can compute the

computation slice µ• of µ w.r.t. Islice and f(•1, b) by applying the function Cslice:

µ• = Cslice(f(•1, b), µ, Istep) = f(•1, b)•→ b.

Observe that µ• is not universally correct according to Definition 5.3. Indeed, for every
instance of f(•1, b) that replaces •1 with a term that is different from the constant a,
there exists no computation slice concretization of µ•.

Nonetheless, every computation T can be always reconstructed from a non-empty
computation slice T • of T by suitably instantiating all the •-variables that appear in
T •. This allows us to formalize the following notion of existential correctness.

Definition 5.15 Let R be a conditional rewrite theory. Let T = (s0
r1,σ1,w1→K · · ·

rn,σn,wn→K sn)
be an instrumented computation in the rewrite theory R, with n > 0, and let s•0 be a term
slice of s0. Let I be an inspection criterion. Then, an instrumented computation slice
s•0•→ · · · •→ s•n of T w.r.t. I and s•0 is existentially correct iff every si is an instance of
s•i , with i = 0, . . . , n.

Example 5.16

Consider the trace slice µ• = (f(•1, b)•→ b) of f(a, b)
r,{x/b},Λ→K b w.r.t. Islice and f(•1, b)

in Example 5.14. Then, µ• is existentially correct.

The following proposition states that any non-empty computation slice, which is gen-
erated by means of the inspection criterion Islice , is existentially correct.

Proposition 5.17 Let R be a conditional rewrite theory. Let T = (s0
r1,σ1,w1→K · · ·

rn,σn,wn→K

sn) be an instrumented computation in the rewrite theory R, with n > 0, and let s•0
be a term slice of s0. Let Islice be the forward slicing inspection criterion. Then, every
instrumented computation slice s•0•→ · · · •→ s•n of T w.r.t. Islice and s•0 is existentially
correct.

Proof. Let R be a conditional rewrite theory. Let T = (s0
r1,σ1,w1→K · · ·rn,σn,wn→K sn) be an

instrumented computation in the rewrite theory R, with n > 0, and let s•0 be a term slice
of s0. Let Islice be the forward slicing inspection criterion. Let us consider an arbitrary
instrumented computation slice T • = (s•0•→ · · · •→ s•n) of T w.r.t. Islice and s•0. The
proof proceeds by induction on the length n of T •.
Base case: n = 1. Let us consider the one-step, instrumented computation slice s•0•→ s•1

of s0
r1,σ1,w1→K s1. We distinguish two cases.

Case w1 ∈MPos(s•0). By hypothesis, s•0 is a term slice of s0, thus s0 is an in-
stance of s•0 (in symbols, s•0 ≤ s0). Now, observe that s•0•→ s•1 has been ob-

tained by calling the function Cslice(s•0, s0
r1,σ1,w1→K s1, Islice). Hence, T •1 = (s•0•→

s•1) = Cslice(s•0, s0
r1,σ1,w1→K s1, Islice). This implies that the following transition
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〈s0
r1,σ1,w1→K s1, s

•
0〉 =⇒∗ 〈nil, s•0•→ s•1〉 has been performed in the transition sys-

tem (Conf ,=⇒) by means of one application of the frag rule. By definition of the

frag rule (see Figure 4), s•1 = Islice(s•0, s0
r1,σ1,w1→K s1). Now, by Definition of Islice ,

s•1 = Islice(s•0, s0
r1,σ1,w1→K s1) = s•0[ρψmθ]w1 , where ψm is the substitution obtained by

applying the inspection criterion Islice w.r.t. the rule [r1] : λ1 ⇒ ρ1 if c1 ∧ . . . ∧ cm,
and θ = {x/fresh•|x ∈ Var(r1)}.

Now, it is immediate to prove (by a simple induction on m) that ψm ≤ σ1. Indeed,
each binding in ψm either belongs to σ1 or is of the form x/•j , for some natural
number j. Moreover, ψmθ ≤ σ1 as bindings in θ are all of the form x/•j . Hence,

s•1 = s•0[ρψmθ]w1
≤ s•0[ρσ1]w1

(by ψmθ ≤ σ1)

≤ s0[ρσ1]w1 = s1 (by s•0 ≤ s0).

This proves that s•1 ≤ s1. Finally, since s•0 ≤ s0 and s•1 ≤ s1, s•0•→ s•1 is existentially
correct.

Case w1 6∈ MPos(s•0). In this case, s•0•→ s•1 = s•0[•f ]w′ where w′ ≤ w1, s•0|w′ is a

•-variable, and •f is a fresh •-variable that has been generated by invoking fresh•.
Again, by hypothesis, s•0 ≤ s0. Hence, there exists σ•0 such that s0 = s•0σ

•
0 . Now,

consider the substitution composition σ•1 = σ•0{•f/s1|w′}. Since w′ ≤ w1, we have

that s1|w′ includes the contractum computed in the rewrite step s0
r1,σ1,w1→K s1. We

immediately get s•1 = s•0[•f ]w′ ≤ s•0σ•0 [•f{•f/s1|w′}]w′ = s•0[•f ]w′σ
•
1 = s1. Therefore,

s•i ≤ si for i = 0, 1, and we can conclude that s•0•→ s•1 is existentially correct.
Inductive case: n > 1. Let us consider the instrumented computation slice T • = (s•0•→
s•1•→ · · · •→ s•n), with n > 1, of T = (s0

r1,σ1,w1→K · · ·
rn,σn,wn→K sn) w.r.t. Islice and s•0. By the

induction hypothesis, the instrumented computation slice s•0•→ s•1•→ · · · •→ s•n−1 w.r.t.
Islice and s•0 is existentially correct; that is, for every instance s•i , with i = 0, . . . , n− 1,
s•i ≤ si. Now, let us consider the last sliced step s•n−1•→ s•n of T •. By proceeding
similarly to the base case, we can show that s•n−1•→ s•n is an existentially correct

instrumented computation slice of sn−1
rn,σn,wn→K sn w.r.t. Islice and s•n−1. Therefore,

we also have s•n ≤ sn, which completes the proof.
�

The results in Proposition 5.17 can be directly lifted to (fragments of) instrumented
computation tree slices that are generated by means of the forward slicing criterion Islice ,
thereby providing an existential correctness result for the overall forward slicing explo-
ration technique.

Theorem 5.18 (existential correctness) Let R be a conditional rewrite theory. Let
Islice be the forward slicing inspection criterion. Let s•0 be a term slice of term s0. Let
T +
R (s•0) be (a fragment of) the instrumented computation tree slice in R w.r.t. Islice

and s•0 computed by the function explore(s0, s
•
0,R, Islice). Then, each branch in T +

R (s•0)
is an existentially correct instrumented computation slice w.r.t. Islice and s•0 of some
instrumented computation in R that originates from s0.

Proof. Immediate. It suffices to apply Proposition 5.17 to each instrumented Maude step
slice in each branch of T +

R (s•0). �

33



The existential correctness of the computation tree slice TR(s•0) naturally derives from
the existential correctness of its instrumented counterpart T +

R (s•0). In fact, TR(s•0) is ob-
tained from T +

R (s•0) by hiding all the B-matching transformations and built-in evaluations
that occur in the considered instrumentation.

6. Implementation

The exploration methodology developed in this paper has been implemented in the
Anima tool, which is publicly available at http://safe-tools.dsic.upv.es/anima/.

MongoDB

Anima Client

Anima Core

Anima Web Service

JAX-RS API

Initial State

Rewriting Logic 
Speciication

Animation

Figure 13: Anima architecture.

The underlying rewriting machinery of An-
ima is written in Maude and C++ and con-
sists of about 250 Maude function defini-
tions (approximately 2000 lines of source
code) together with the implementation in
C++ of metaReducePath, a new Maude
command provided by our implementation
that is described in Section 6.1. Anima also
comes with an intuitive Web user interface
based on AJAX technology, which allows
users to graphically animate their programs
and display fragments of computation trees.
The core exploration engine is specified as a
RESTful Web service by means of the Jer-
sey JAX-RS API. The architecture of An-
ima is depicted in Figure 13 and consists of
five main components: Anima Client, JAX-
RS API, Anima Web Service, Database,
and Anima Core. The Anima Client is purely implemented in HTML5 Canvas 9 and
JavaScript. It represents the front-end layer of our tool and provides an intuitive, versatile
Web user interface, which interacts with the Anima Web Service to invoke the capabil-
ities of the Anima Core and save partial results in the MongoDB Database component,
which is a scalable, high-performance, open source NoSQL database that perfectly fits
our needs.

6.1. The metaReducePath command

One of the main challenges in the implementation of a trace-based Maude tool such
as Anima is to make explicit the concrete sequence of internal term transformations oc-
curring in a particular Maude computation, which is generally hidden and inaccessible
within Maude’s rewriting machinery. For the case of rule applications, this sequence can
be easily retrieved by means of the Maude metaSearchPath command, but a similar
command does not exist to ascertain the sequence of built-in operators and equations
applied. These are only recorded in a raw text output trace, which cannot be manipu-
lated as a meta-level expression by Maude. In order to overcome this drawback, we have

9 For the sake of efficiency, browsers limit the maximum dimensions of a canvas object (e.g., Chrome
limits a canvas to a maximum width or height of 8192 pixels). Exceeding these limits may cause the
inability to properly display the current exploration.
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implemented our own Maude command, named metaReducePath, which returns the de-
tailed sequence of transformations (using equations, built-in operators, and any internal
normalizations) applied to a term until its canonical form is reached.

The operator metaReducePath takes as arguments the metarepresentation R̄ of a
system module R and the metarepresentation t̄ of a term t. Its formal declaration is as
follows.

sort ITrace ITraceStep .

subsort ITraceStep < ITrace .

op {_,_,_} : Equation Substitution Context -> ITraceStep [ctor] .

op metaReducePath : Module Term ~> ITrace? [special (...)] .

For a term t in R, metaReducePath(R̄,t̄) returns a term of sort ITrace that consists
of a list of terms of sort ITraceStep, each of which is associated with a reduction step
of the computation leading to the canonical form of t. The information recorded in
ITraceStep terms can be accessed by means of the following observer functions:

op getEquation : ITraceStep -> Equation .

op getSubstitution : ITraceStep -> Substitution .

op getContext : ITraceStep -> Context .

More specifically, given a reduction step s
e,σ,w→ ∆,B t, these selectors respectively re-

turn: (i) the equation e, (ii) the substitution σ, and (iii) the context 10 surrounding the
redex and in which the replacement takes place.

Maude is implemented thinking primarily of efficiency. However, this comes at the
expense of subtle peculiarities of Maude’s implementation that only became apparent
during the development of Anima and that we addressed carefully. One of them shows
up when the same equation is applied more than once in a single Maude step because
a common redex appears more than once in the term, as illustrated in the following
example that shows how Maude groups three applications of equation EQ1 in a single
“multi-reduction” step.

Example 6.1
Observe the reduction of the input term g(f(a, b), f(a, b), f(a, b)) in the following

functional module:
fmod EXAMPLE is

sort Elem .

ops a b c : -> Elem [ctor].

op f : Elem Elem -> Elem .

op g : Elem Elem -> Elem [ctor assoc comm] .

vars X Y : Elem .

eq [EQ1] : f(X,Y) = c .

endfm

Maude> reduce in EXAMPLE : g(f(a, b), f(a, b), f(a, b)) .

10A context is a term C[2], with a hole 2 at a distinguished position, that can be filled with a term.
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*********** equation

eq f(X, Y) = c [label EQ1] .

X --> a

Y --> b

f(a, b)

--->

c

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Elem: g(c, c, c)

These unorthodox multi-steps are the side effect of two efficient implementation opti-
mizations, namely the alliance of identical subterms using multiplicity superscripts (as
in f(α2, β3, γ)) (Eker, 2003) and in-place rewriting (Eker, 2014), which means that equa-
tional rewriting destroys the DAG structure representing the term that is rewritten at
each rewrite step. This is great for efficiency, but it is a major obstacle for exploring
the computations. The new command metaReducePath provided by Anima detects and
standardizes the multi-steps at the meta-level by spreading them out into the necessary
number of single reduction steps, one for each single equation application, while explicitly
recording the associated context information.

Example 6.2
For the specification and input term of Example 6.1, the standardized reduction trace

that is obtained by invoking the command metaReducePath is as follows. 11

Maude> reduce in META-LEVEL :

metaReducePath(upModule(’EXAMPLE, false),

’g[’f[’a.Elem,’b.Elem],’f[’a.Elem,’b.Elem],’f[’a.Elem,’b.Elem]]) .

rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)

result ITrace:

{eq ’f[’X:Elem,’Y:Elem] = ’c.Elem [label(’EQ1)] .,

’X:Elem <- ’a.Elem ; ’Y:Elem <- ’b.Elem,

’g[[],’f[’a.Elem,’b.Elem],’f[’a.Elem,’b.Elem]]}

{eq ’f[’X:Elem,’Y:Elem] = ’c.Elem [label(’EQ1)] .,

’X:Elem <- ’a.Elem ; ’Y:Elem <- ’b.Elem,

’g[’c.Elem,[],’f[’a.Elem,’b.Elem]]}

{eq ’f[’X:Elem,’Y:Elem] = ’c.Elem [label(’EQ1)] .,

’X:Elem <- ’a.Elem ; ’Y:Elem <- ’b.Elem,

’g[’c.Elem,’c.Elem,[]]}

Technically, the execution of metaReducePath can be split into two phases: equational
simplification and lifting to the meta-level. In the simplification phase, the input term is
reduced to canonical form by using Maude’s equational simplification. For each applied

11At the meta-level, constants are quoted identifiers that contain the constant’s name and its type

separated by a ‘.’, (e.g., ’0.Nat). Similarly, variables contain their name and type separated by a ‘:’,
(e.g., ’N:Nat). Composed terms are constructed in the usual way, by applying an operator symbol to a
nonempty list of terms (Clavel et al., 2011).
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equation and internal normalization transformation, our command additionally collects
all the relevant information that we need to subsequently reconstruct the performed
steps. This includes not only built-in evaluation but also memoization and other internal
transformations such as the aforementioned iter, which replaces chains of iterations of
a unary operator by a single instance of the iterated function, raised to the number
of iterations, e.g., s(s(s(0))) as s3(0). Once the term has reached its canonical form,
the lifting phase consists of raising to the meta-level all the collected information and
assembling the resulting instrumented computation.

equational simplification meta-level lifting

n rewrites time (s.) \ size |T | time (s.)

5 22 0 78 26 0

10 265 0 957 319 0

15 2,959 0.02 10,704 3,568 0.04

20 32,836 0.24 118,800 39,600 0.73

25 364,177 3.41 1,317,603 439,201 10.18

Table 1. Execution results of the metaReducePath command for fibo(n).

Table 1 provides some figures regarding the execution of the metaReducePath com-
mand. We tested our command on a 3.3GHz Intel Xeon E5-1660 with 64GB of RAM
by reducing different calls to the fibo function given in Figure 14. In Table 1, we dis-
tinguish the two phases mentioned above, namely equational simplification and lifting.
For the equational simplification phase, the number of rewrites and the reduction times
are given. For the lifting phase, we show the problem size, the length of the resulting

fmod FIBONACCI is pr NAT .

op fibo : Nat -> Nat .

var N : Nat .

eq fibo(0) = 0 .

eq fibo(1) = 1 .

eq fibo(s s N) = fibo(N) + fibo(s N) .

endfm

Figure 14: Benchmark problem for the
metaReducePath command.

instrumented computation, and the
processing times. The problem size
(column \ size) is measured as the num-
ber of expressions (applied equation,
substitution, and context for each step)
that are manipulated. The length of
the resulting instrumented computa-
tion (column |T |) is measured as the
number of rewrite steps. Note that for
extremely huge computations such as
the trace of fibo(25), which consists
of 439,201 rewrite steps, the number of manipulated terms can be very high (more than
1,300,000) yet the execution time is reasonable (a few seconds) and comparable to exist-
ing Maude meta-commands that process millions of terms (Eker, 2003).

Finally, it is worth mentioning that metaReducePath takes into account the Church-
Rosser and termination properties of functional modules assumed by Maude. Therefore,
it returns just one possible simplification sequence that perfectly reproduces the normal-
ization carried out by Maude following its internal strategy while ignoring the rest of the
alternative normalizations.
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6.2. Features

The main features of Anima include the following:
(1) File uploading. Maude specifications can be uploaded in Anima either as a simple

.maude file or as a compressed .zip file, which must contain all the required files
for the specification to work properly.

(2) Inspection strategies. The tool implements the three inspection strategies described
in Section 5. As shown in Figure 15, the user can select the desired strategy by
using the selector provided in the option pane.

(3) Selection of meaningful symbols for slicing. State slices can be specified by high-
lighting with the mouse the state symbols of interest directly on the nodes of the
tree.

(4) Expansion/Folding of program states. The user can expand or fold states of the tree
by left-clicking with the mouse on their state label, or by right-clicking with the
mouse on the node and then selecting either the Expand Node option, the Expand
Subtree option, or the Fold Node option that are offered in the contextual menu.
The Expand Subtree option allows the user to automatically expand, up to a given
depth k, for k ≤ 5 (with default depth k = 3 , which can be tuned by means of a
slider), the subtree hanging from the considered node by following a breadth-first
strategy.

When a state slice that is situated at the frontier of the computed tree slice
fragment is selected for Expansion/Folding, the whole branch leading from the
root of the tree to the selected node is highlighted, as illustrated in Figure 15.
Common actions like dragging, zooming, and navigating the tree are allowed. Also,
when a tree node is selected, the position of the tree on the screen is automatically
rearranged to keep the chosen node at the center of the scene.

(5) Display of instrumented steps. The user can freely choose to display either a default,
simplified view of a rewrite step (where only the applied rewrite rule is displayed),
or the complete and detailed sequence of steps in the corresponding instrumented
trace that simulates the step. This facility can be locally accessed by clicking on
the +/− symbols that respectively adorn the standard/instrumented view of the
rewrite step, or by checking/unchecking the Instrumented steps option in the Anima
option pane for the entire computation tree.

(6) Tree Query mechanism. The search facility illustrated in Figure 16 implements a
pattern language that allows the selected information of interest to be searched in
huge states of complex computation trees. The user only has to provide a filtering
pattern (the query) that specifies the set of symbols that he/she wants to search
for, and then all the states matching the query are automatically highlighted in the
computation tree.

(7) Showing rewrite step information. Anima facilitates the inspection of any rewrite
step s→ t of the computation tree by underlining the differences between the two
states (typically the selected redex of s and its contractum in t). In the case of a
non-instrumented step s →∆,B t (resp. s →R,B t), we generally cannot highlight
the redex and contractum of the step as they might not exist in s and t because of
the matching modulo B that precedes the rewrite step and the normalization that
occurs after the rewrite step. Actually, recall that s and t are eventually reordered,
augmented with unity elements, and parenthesised, yielding the B-equivalent terms
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Substitution

L / < 4 , 4 >

M / 1

P / < 4 , 5 >

PY / p1

Figure 15. Anima at work.

s′ and t′ that star in an intermediate rewrite step s′ →∆ t′ (resp., s′ →R t′). In

this case, we underline the antecedents in s of the reduced redex in s′ (and the

descendants in t of the contractum that appears in t′).

Furthermore, by clicking on the corresponding edge label of the tree, additional

transition information is also displayed in the transition information window that

shows up at the top, including the computed substitution and the normalized

rule/equation applied.

(8) Showing trace information. By right-clicking a tree node and by selecting the Show

trace information option, the user can obtain the complete information of the ex-

ecution trace from the root to the selected node. This information is presented in

a table that includes the labels of the rules and equations applied, the terms that

result from the application of each rule or equation and the computed trace slice (if

applicable) as shown in Figure 17. Moreover, Anima offers the possibility to export

the displayed trace into meta-level representation, so the user can easily transfer

the selected trace to any other Maude trace analyzer tool like the online backward

trace analysis tool iJulienne (Alpuente et al., 2013c), for example.

(9) Computation graph. Even if the computation space for a given input term is hierar-

chically organized as a tree in order to systematize its exploration, Anima addition-

ally supports the interactive inspection of a graph representation for the different

space exploration modalities, namely (i) computation graph, which is available in

all exploration modalities, (ii) partial graph, which is only available in the partial
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Figure 16. Anima search mechanism.

stepping modality, and (iii) sliced graph, which is only available in the forward
slicing modality.

(10) Graphic representation of meta-terms. Anima facilitates the exhaustive inspection
of any state of the computation tree by graphically representing the syntactic tree
structure of its corresponding meta-term, including the exact position of each of
its subterms.

(11) Forward-Backward slicing integration. In order to facilitate the exhaustive and in-
cremental inspection of a given trace, Anima offers the possibility to export the trace
to iJulienne (Alpuente et al., 2013c), which allows the origins or antecedents of a
given expression (that is, those symbols in the initial state from which the observed
expression descends) to be identified. This is done by tracing back all control and
data dependencies.

Backward trace slicing can be achieved by right-clicking on a given state of
the trace and then selecting the Send trace to iJulienne option. Reciprocally,
iJulienne permits to export any state of the trace being inspected back to Anima,
which accomplishes the full integration of both tools and greatly improves the trace
inspection capabilities of our inspection frame.

(12) Inspection of conditions. As shown in Figure 18, Anima facilitates the inspection
of the conditions satisfied during the application of a conditional rule or equation
by right-clicking on the generated state and then selecting the Inspect condition
option, which allows the user to export the traces deployed by evaluating the rule
conditions to iJulienne for further analysis.
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Trace information

Step RuleName Execution trace

1 'Start { p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 > , 1 }

2 walk { p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 >  < 4 , 5 > , 1 + 1 }

3 builtIn { p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 >  < 4 , 5 > , 2 }

4 walk { p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 >  < 4 , 5 >  < 5 , 5 > , 2 + 1 }

5 flattening { p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 >  < 4 , 5 >  < 5 , 5 > , 1 + 2 }

6 builtIn { p1 , < 4 , 4 > , 1 } || { p2 , < 3 , 5 >  < 4 , 5 >  < 5 , 5 > , 3 }

7 unflattening { p2 , < 3 , 5 >  < 4 , 5 >  < 5 , 5 > , 3 } || { p1 , < 4 , 4 > , 1 }

8 walk { p2 , < 3 , 5 >  < 4 , 5 >  < 5 , 5 > , 3 } || { p1 , < 4 , 4 >  < 4 , 5 > , 1 + 1 }

9 builtIn { p2 , < 3 , 5 >  < 4 , 5 >  < 5 , 5 > , 3 } || { p1 , < 4 , 4 >  < 4 , 5 > , 2 }

10 flattening { p1 , < 4 , 4 >  < 4 , 5 > , 2 } || { p2 , < 3 , 5 >  < 4 , 5 >  < 5 , 5 > , 3 }

11 unflattening { p1 , < 4 , 4 >  < 4 , 5 > , 2 } || { p2 , < 3 , 5 >  < 4 , 5 >  < 5 , 5 > , 3 }

12 exit { p1 , < 4 , 4 >  < 4 , 5 > , 2 } || { p2 , exit , 3 }

Tota l s ize: 840

Figure 17. Anima trace information.
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Figure 18. Inspection of a condition with Anima.

(13) Showing statistics. Finally, detailed statistics of the current computation tree can be
accessed by selecting the Statistics option that appears in the contextual menu for
any node in the tree. This shows, among others, the number of terms (normalized
or not) that are reachable from this node, its number of children and depth in the
tree, and the global size of the computation tree.
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7. Conclusions

This paper presents a rich and highly dynamic, parameterized technique for the trace
inspection of conditional rewrite theories that allows the nondeterministic execution of
a given RWL theory to be followed up in different ways. Our technique is based on a
generic animation algorithm that can be tuned to work with different modalities, in-
cluding incremental stepping and automated forward slicing, which drastically reduces
the size and complexity of the computations under examination. The algorithm is fully
general and can be applied for debugging as well as for optimizing any RWL-based tool
that manipulates conditional RWL theories that involve rewriting modulo associativity
(A), commutativity (C), and unity (U) axioms.

The proposed methodology is implemented and tested in the graphical tool Anima,
which provides a skillful and highly dynamic interface for the dynamic analysis of RWL
computations. This makes Anima attractive for Maude users, especially taking into ac-
count that program debugging and trace analysis in Maude is tedious with current
state-of-the-art tools. The tool is useful for Maude programmers in two ways. First,
it graphically exemplifies the semantics of the language, allowing the evaluation rules to
be observed in action. Secondly, it can be used as a debugging tool, allowing the users
to step forward and backward while slicing the trace in order to validate input data or
locate programming mistakes. The tool can be tuned to reveal all relevant information
(including applied equation/rule, redex position, and matching substitution) for each
single rewrite step that is obtained by applying a conditional equation, algebraic axiom,
or rule, which greatly improves the standard view of execution traces in Maude and their
meta-representations.

As already mentioned, the present version supports the instrumentation of matching
modulo associativity, commutativity, and (left-, right- or two-sided) unity. In addition,
Anima has an extensible design so that instrumentation for other equational axioms such
as idempotency can be easily added in the future. We are also interested to extend our ex-
ploration technique to more sophisticated rewrite theories that may include membership
axioms.

As for future work, we plan to exploit the dynamic dependencies exposed by our
conditional trace slicing methodology to endow Anima with a program slicing capability
that can identify those parts of a Maude theory that can (potentially) affect the values
computed at some point of interest (Tip, 1995; Field and Tip, 1994).
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