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Refrigeration absorption machines are again considered as suitable refrigeration systems and they are 

replacing compression machines due to the ban of chlorofluorocarbons (CFCs) and the strict 

regulations of hydrochlorofluorocarbons. Lithium Bromide (LiBr) is one of the most widely used 

absorbents in refrigeration technology. However, the operating conditions of absorption machines 

(high concentration and high temperature) can cause serious corrosion problems in the structural 

materials. Corrosion problems can be enhanced by the hydrodynamic conditions of the system. The 

present work studies of the influence of hydrodynamic conditions on copper corrosion under different 

LiBr conditions. Polarisation potentiodynamic curves obtained following ASTM G-5 were used to 

study the influence of the LiBr concentration and hydrodynamic conditions. Parameters such as 

corrosion current density and corrosion potential were obtained from the potentiodynamic curves. A 

rotating disk electrode (RDE) was used to determine the hydrodynamic conditions. Three LiBr 

solutions of different concentration (400 g/l, 700 g/l, and 850 g/l) at 25 ºC and different rotation rates 

(0 r.p.m. – 3000 r.p.m.) were used during the tests.Results show that an increase of the bromide 

concentration and rotation rate favours copper corrosion and enhances anodic dissolution. The effects 

of the hydrodynamic conditions are smaller at higher LiBr concentrations. 
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1. INTRODUCTION 

The use of chlorofluorocarbons (CFCs) was banned (Montreal Protocol [1], 1987) and their 

substitutes, i.e. hydrochlorofluorocarbons, are subjected to severe regulations (Kyoto Protocol [2], 

1997). Therefore, refrigeration absorption machines are again considered as suitable refrigeration 

systems. Among the different materials used in the manofacture of absorption machines copper is 

commonly used in heat exchangers pipes due to copper`s high thermal conductivity. Absorption 
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machines can use different working fluid such as (NH3-H2O) or (H2O-LiBr). H2O-LiBr is the most 

commonly employed refrigerant/absorbent couple in absorption systems due to its favourable 

thermophysical properties [3, 4]. However, LiBr can cause serious corrosion problems on metallic 

components in refrigeration systems. Bromides, like chlorides, are aggressive ions and their corrosion 

effect may be accelerated in absorption machines due to the high temperatures and concentrations 

reached, particularly in new double-effect systems, which are more efficient. Corrosion of metals in 

aqueous environments involves at least three steps: (1) electrolyte transport from the bulk solution to 

the metal surface, (2) electrode exchange at the electrode/solution interface leading to metal loss, and 

finally, (3) transport of corrosion product from the interface to the bulk solution. Therefore, it is 

necessary to take into account charge transfer as well as mass transfer. The latter may be modified by 

the hydrodynamic conditions of the system. Corrosion problems can be enhanced by the hydrodynamic 

conditions of the fluid [5, 6]. Several works have studied the corrosion of different metals in LiBr 

solutions under different conditions [7-12].  

The present work studies the influence of LiBr concentrations and hydrodynamic conditions on 

the corrosion of copper. Polarisation potentiodynamic curves at 25 ºC were obtained in three different 

concentrations (400 g/l, 700 g/l, and 850 g/l) of LiBr solutions and at different rotation rates (0 r.p.m. – 

3000 r.p.m.). A rotating disk electrode (RDE) system was employed to produce the different rotation 

rates. RDE devices are widely used in studies of flow accelerated corrosion under mass transfer control 

in laminar and turbulent regimes [13-21]. 

 

 

 

2. EXPERIMENTAL PROCEDURE 

2.1. Materials 

The working electrodes were made of copper and were cylindrically shaped (55 mm long and 9 

mm in diameter) and covered with Teflon. An area of 0.64 cm
2
 was exposed to the electrolyte. Prior to 

the electrochemical tests, the samples were wet abraded from 220 SiC (Silicon Carbide) grit to a 4000 

SiC grit finish, and finally rinsed with distilled water. Later, the working electrode was connected to a 

RDE system to change the hydrodynamic conditions. The employed cell was a glass vertical cell with 

different inlets and a thermostatic jacket, which maintained the temperature constant at 25 ºC. The 

potential was measured against an Ag/AgCl with 3M KCl reference electrode. The counter electrode 

was made of platinum.   

 

2.2. Polarisation potentiodynamic curves 

Polarisation potentiodynamic curves were carried out in three aqueous LiBr solutions of 

different concentrations (400 g/l, 700 g/l, and 850 g/l) prepared from purissimun LiBr of Panreac. 

Table 1 shows the rotation rates in revolutions per minute (r.p.m.) and the Reynolds number for the 

different studied LiBr concentrations.  In all cases, the tests were repeated at least three times. The 

Reynolds number (Re), which is shown in Table 1, could be calculated from the angular velocity: 
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μ·60

ρ·2·π·f·r

υ

ω·r
Re

22



                                                              (1) 

 

where ω is the angular velocity (rad/s), f is the rotation rate (r.p.m.), r is the electrode radius 

(cm), υ is the kinematic viscosity (cm
2
/s), ρ is the solution density (g/cm

3
), and μ is the absolute 

viscosity (g/s·cm). 

 

Table 1. Reynolds numbers of the copper RDE in the different LiBr solutions at 25 ºC. 

 
 

f (r.p.m.) 

Re 

400 g/l LiBr 

υ (cm
2
/s) = 1.27x10

-2
 

700 g/l LiBr 

υ (cm
2
/s) = 1.91x10

-2
 

850 g/l LiBr 

υ (cm
2
/s) = 2.91x10

-2
 

0 0 0 0 

500 834 552 364 

1000 1669 1105 729 

1500 2503 1657 1094 

2000 3338 2209 1458 

2500 4172 2762 1823 

3000 5006 3314 2187 

 

The polarisation curves were made in LiBr aqueous solution deaireated by bubbling nitrogen 

for 30 minutes, prior to immersion. During the test, a nitrogen atmosphere was maintained over the 

liquid surface. The rotation rate of the RDE was set at the beginning of the electrochemical test. Before 

each polarisation experiment, the open circuit potential (OCP) was recorded for one hour; the OCP 

value reported here was the arithmetic mean of the last five minutes recorded values [22]. After the 

OCP test, the specimen potential was reduced progressively to – 1000 mVAg/AgCl; this potential was 

maintained constant for 300 s in order to create reproducible initial conditions. Then the working 

electrode potential was scanned from –1000 mVAg/AgCl to 1000 mVAg/AgCl, using a scan rate of 0.1667 

mV/s,  according to ASTM G-5 [22]. The  polarisation curves were recorded from the cathodic to the 

anodic direction. These curves were used to calculate Corrosion potential (Ecorr), and corrosion current 

density (icorr) as well as  information about the general electrochemical behaviour of the materials was 

also obtained. Additionally, polarisation potentiodynamic curves were obtained under static conditions 

using the patented electro-optical devices P-200002525 and P-200002526 [23-26]. These devices 

permit obtaining images of the electrode surface and electrochemical data simultaneously. Finally, all 

the tested specimens were observed by optical microscopy.  

 

 

3. RESULTS AND DISCUSSION 

3.1. Open circuit potential  

Figure 1 shows the effect of the rotation rate variation and LiBr concentration on the open 

circuit potential values. OCP values decrease when the rotation rate and LiBr concentration increase. 
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Higher LiBr concentrations enhance the presence of aggressive anions and make the corrosive system 

more active. On the other hand, under rotating conditions, the high relative velocity between the 

electrode and the fluid can induce stress acting on the electrode surface. Therefore, the decrease of the 

OCP may be due to the damage or loss of the passive film [27].  
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Figure 1. Effect of the rotation rate on the open circuit potential (OCP) of copper in the different 

aqueous LiBr solutions at 25 ºC.  

 

3.2.  Polarisation potentiodynamic curves 

Figure 2 shows the polarisation curves of copper at the different rotation rates in the 400 g/l, 

700 g/l, and 850 g/l LiBr solutions at 25 ºC.  
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a) 0 r.p.m.                                            b) 500 r.p.m. 
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c) 1000 r.p.m.                                  d) 1500 r.p.m. 
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e) 2000 r.p.m.                                          f) 2500 r.p.m. 
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Figure 2. Polarisation curves of copper at the different rotation rates in the three used LiBr solutions at 

25 ºC. 

 

The current density of the cathodic branch of the potentiodynamic curves is higher for the 400 

g/L LiBr solution than for the other solutions.  

This tendency can be related to the increase in solution viscosity, which accompanies the 

increase of LiBr concentration which, subsequently, reduces the cathodic limiting current as shown by 

the Levich relationship [28].  

The current density of the anodic branch is the lowest for the 400 g/l LiBr solution. In the tests 

carried out in the 400 g/l LiBr solution under static and dynamic conditions and in the 700 g/l LiBr 

solution under static conditions, an oscillation area appears in the anodic branch. This area corresponds 
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to a region of rapid formation and dissolution of corrosion products with a certain passivating character 

[29].   

Images of the electrode surface under static conditions taken with the patented electro-optical 

devices are shown in Figures 3 to 5.   

 

 

   
a) – 1 VAg/AgCl b) - 0.255 VAg/AgCl c) 0.050 VAg/AgCl 

   
d) 0.080 VAg/AgCl e) 0.255 VAg/AgCl f) 1 VAg/AgCl 

 

Figure 3. Images of the electrode surface obtained at different points of the polarisation curves taken 

with the electro-optical patented devices in the 400 g/l LiBr solution at 25 ºC under static 

conditions.  

 

In the case of the 400 g/l LiBr solution, when the potentiodynamic curve begins (Figure 3 a)), 

the electrode surface is unaffected and presents a metallic shine. When the corrosion potential is 

reached and current density rises, the anodic dissolution of the electrode begins and the metallic shine 

of the surface disappears (Figure 3 b)).  In the oscillation interval, the corrosion products, which play a 

certain passivating role, are quickly formed and dissolved on the electrode surface as shown in  Figures 

3 c) and d). After that, some corrosion products appear on the electrode surface generating anodic 

peaks in the potentiodynamic curve (Figure 3 e)). Finally, at the end of the potentiodynamic curve, the 

electrode surface appears completely covered by a blue corrosion product (Figure 3 f)). 

In the case of the 700 g/l LiBr solution, the behaviour of the electrode surface is similar. When 

the anodic branch begins the surface starts dissolving and the metallic shine disappears (Figure 4 b)). 

After that, the oscillation interval appears and different films of corrosion product form and disappear 

quickly. On the other hand, when the polarisation curve presents anodic peaks different corrosion 

products form on the electrode surface (Figure 4 e)). At the end of the tests the surface is completely 

covered by the corrosion products. 

 



Int. J. Electrochem. Sci., Vol. 7, 2012 

  

1338 

   
a) – 1 VAg/AgCl b) - 0.255 VAg/AgCl c) 0.190 VAg/AgCl 

   
d) 0.210 VAg/AgCl e) 0.460 VAg/AgCl f) 1 VAg/AgCl 

 

Figure 4. Images of the electrode surface obtained at different points of the polarisation curves taken 

with the electro-optical patented devices in the 700 g/l LiBr solution at 25 ºC under static 

conditions. 

 

 

   
a) – 1 VAg/AgCl b) - 0.200 VAg/AgCl c) 0.100 VAg/AgCl 

   
d) 0.125 VAg/AgCl e) 0.300 VAg/AgCl f) 1 VAg/AgCl 

 

Figure 5. Images of the electrode surface obtained at different points of the polarisation curves taken 

with the electro-optical patented devices in the 850 g/l LiBr solution at 25 ºC under static 

conditions.  
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The evolution of the electrode surface during the polarisation curve of the 850 g/l solution is 

slightly different than in the other solutions. In this case there is no oscillation interval and the 

dissolution of the electrode surface happens only once and after that, different corrosion products cover 

the electrode surface during the dissolution of the copper. 

 

3.3. Corrosion potential  

Table 2 shows the corrosion potentials of copper in the three LiBr concentrations at the 

different rotation rates.  

 

Table 2. Corrosion potential values (Ecorr) of copper at the different rotation rates in the 400 g/l, 700 

g/l, and 850 g/l LiBr solutions at 25 º C.  

 

Ecorr (mVAg/AgCl) 

f (r.p.m.) 400 g/l LiBr 700 g/l LiBr 850 g/l LiBr 

0 - 374 - 443 - 443 

500 - 397 - 462 - 467 

1000 - 400 - 466 - 470 

1500 - 407 - 470 - 483 

2000 - 410 - 475 - 486 

2500 - 415 - 480 - 494 

3000 - 420 - 483 - 498 

 

Corrosion potential shifts to more negative values with the rotation rate and LiBr concentration. 

This trend is similar that observed in the OCP evolution, although Ecorr values are more negative than 

OCP ones due to the applied polarisation [30, 31]. 

Figure 6 represents the Ecorr in function of ln ω (rad/s). Power, Richie, and Brossard [32, 33] 

proposed that studying the corrosion potential variation with the rotation rate it is possible to 

distinguish different corrosion mechanisms:  

1) When the Δ(Ecorr)/ Δ (ln ω (rad/s)) is positive, the cathodic reaction is controlled by 

diffusion and the anodic reaction is electrochemically controlled (case 1). 

2) When the Δ(Ecorr)/ Δ (ln ω (rad/s)) is zero, two cases can be possible: the anodic and 

cathodic reactions are controlled by diffusion (case 2). Otherwise, the reactions are under 

electrochemical control (case 3).  

3)   When the Δ(Ecorr)/ Δ (ln ω (rad/s)) is negative, the cathodic reaction is 

electrochemically controlled and the anodic reaction is controlled by diffusion (case 4).  

For the three studied LiBr solutions the  Δ(Ecorr)/ Δ (ln ω) value obtained was negative: - 21.54 

mV in the case of the 400 g/l LiBr solution, - 19.3 mV for the 700 g/l solution, and – 18.0 mV for the 

850 g/l LiBr solution. Therefore, it corresponds to case 4 when the anodic reaction is controlled by 

diffusion (under mass transport control) and the cathodic reaction is electrochemically controlled 

(under activation control). 
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Figure 6. Corrosion potential (Ecorr) of copper in function of the ln ω (rad/s) in the different aqueous 

LiBr solutions at 25 ºC.  
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Figure 7. Evolution of the corrosion potential of copper with the logarithm of the LiBr concentration 

for every rotation rate value at 25 ºC.  

 

In solutions with complexing agents, such as bromide, the anodic dissolution of copper is 

controlled by the formation of soluble copper species in the Cu(II) state. Then, anodic dissolution of 

copper is given by the following reaction  [33-36]: 

 

Cu + 2  Br
-
  (CuBr2)S

-
 + 1 e

-
                                              (2) 

 

After that, the (CuBr2
-
)S complexes pass from the metallic surface to the bulk solution (CuBr2

-

)E, this step being the controlling step: 
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(CuBr2
-
)S  (CuBr2

-
)E                                                       (3) 

       

In summary, the corrosion of copper under flowing conditions in deaireated and concentrated 

LiBr solutions was controlled mainly by the mass transport of the CuBr2
-
 complexes from the metallic 

surface to the bulk solution through the CuBr film and the diffusion boundary layer [35].  

 Regarding the LiBr concentration effect, the corrosion potential values shift towards more 

active values as the concentration is higher. Figure 7 shows the corrosion potential evolution with the 

logarithm of the bromide concentration for every rotation rate value. Corrosion potential values vary 

linearly with the logarithm of the bromide concentration. This behaviour is the similar under static and 

dynamic conditions. Therefore, a higher bromide concentration favours copper corrosion.    

 

3.4. Corrosion current density 

Table 3 presents the corrosion current density for the different LiBr concentrations at the 

different rotation rates.  

 

Table 3. Corrosion current density values (icorr) of copper at the different rotation rates in the 400 g/l, 

700 g/l, and 850 g/l LiBr solutions at 25 º C.  

  

icorr (μA/cm
2
) 

f (r.p.m.) 400 g/l LiBr 700 g/l LiBr 850 g/l LiBr 

0 6 11 23 

500 15 22 33 

1000 25 31 42 

1500 30 37 45 

2000 39 44 50 

2500 48 56 55 

3000 53 60 61 

 

The corrosion current density increases with the rotation rate [37]. The effect of increasing 

velocity is an increase of the surface concentration of the corrodent or a decrease of the surface 

concentration of the corrosion product. Therefore, the corrosion rate increases with increasing velocity. 

At 2500 r.p.m., and 3000 r.p.m. the corrosion current density increases with the LiBr concentration up 

to the 700 g/L, from this value the corrosion current density remains constant.  At higher  anion 

concentrations, the bromide anion can be absorbed on the electrode surface and showing down the 

corrosion process [38], corrosion that is favoured by the mobility of the anions at highest rotation rates. 

This can explain the stabilisation of the corrosion current density with the concentration at high 

rotation rates.  

Corrosion current density values increase with the rotation rate at all the studied LiBr 

concentrations. If the diffusion of copper under flow conditions is governed by mass transport, a 

certain effect of fluid velocity on corrosion will be expected as a result of changes in the hydrodynamic 
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conditions. A general dependence of the corrosion rate on fluid velocity can be determined using the 

following potential relation between corrosion rate and Reynolds number  [39-42]: 

 

icorr = constant · Re
a                                                                                                     

(4) 

 

Figure 8 a) shows the logarithm of icorr versus the logarithm of the Reynolds number for the 

different LiBr concentrations used in the tests. The experimental exponent (a) in the equation 4 can be 

in the range from 1 to 3 depending upon the corrosion mechanism and flow regime. For mass transport 

the value of the exponent is closed to 1, while for erosion corrosion the value is up to 3. For mixed 

control of a chemical step and mass transport, the exponent value is between 1 and 0, depending on the 

mass transport. The exponent values obtained for the studied LiBr concentrations were: 0.70 for the 

400 g/l LiBr solution, 0.56 for the 700 g/l LiBr solution, and 0.35 for the 850 g/l LiBr solution. 

According to the exponent, the control of the process is a mixed control between mass transport and 

chemical step. This exponent is lower as the LiBr concentration is higher. A greater number of 

bromide ions results in a higher diffusion rate. Therefore, at higher LiBr concentrations the control by 

diffusion decreases.  

Figure 8 b) shows the Levich representation of the logarithm of icorr versus the logarithm of the 

angular velocity  The control of the process can also be studied through the Levich equation [43]. 

This equation relates the corrosion current density with the square root of the angular velocity. If the 

slope value Δ(log icorr)/ Δ(log ω (rad/s)) is 0.5, the process is under diffusion control [43]. The slope 

values for the different concentrations were: 0.30 for the 400 g/l LiBr solution, 0.24 for the 700 g/l 

LiBr solution, and 0.15 for the 850 g/l LiBr solution. All the slope values were lower than 0.5, i.e. the 

process was not under diffusion control.  
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Figure 8. a) Logarithm of icorr versus the logarithm of the Reynolds number in the different aqueous 

LiBr solutions at 25 ºC. b) Logarithm of icorr versus the logarithm of the angular velocity 

the different aqueous LiBr solutions at 25 ºC. 
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This confirms that the reaction is under mixed control and the influence of diffusion is lower as 

a consequence of the high LiBr concentration. This fact is in agreement with the corrosion potential, 

which indicated that the cathodic reaction was under activation control and the anodic reaction was 

under diffusion control. Then, the global reaction is under mixed control. 

 

3.5. Microscopic characterisation  

Figures 9 to 11 show the images of the electrode surface after the test in the 400, 700 and 850 

g/l LiBr solutions, respectively.  

 

  
 

  

a) 0 r.p.m. b) 500 r.p.m. c) 1000 r.p.m. d) 1500 r.p.m. 

 

   
e) 2000 r.p.m. f) 2500 r.p.m. g) 3000 r.p.m. 

 

Figure 9. Images of the electrode surface after the tests in the 400 g/l LiBr solution at 25 ºC at the 

different rotation rates.  

 

In the case of the 400 g/l LiBr solution, the surface is homogeneously attacked during the 

potentiodynamic curve under static conditions (Figure 9 a)). Under the dynamic conditions the 

peripheral area of the electrode is more severely affected than the central area. The extension of the 

peripheral area affected by corrosion is greater with the rotation rate (Figures 9 b) to 9 g)).  

Furthermore, the depth of the damage increases with the rotation rate and it is greater in the external 

area of the electrode surface. On the other hand, the final corrosion products that cover the electrode 

surface under the static conditions have different appearance than the corrosion products observed 

under dynamic conditions. This may be due to the removal of the layer of corrosion products by 

erosion, leading to the formation of new corrosion products. Furthemore, in the 400 g/l LiBr solutions 

2 mm 
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no flow lines appear at any rotation rate and the damage is greater in the external area of the electrode 

than in the centre.  

 

    

a) 0 r.p.m. b) 500 r.p.m. c) 1000 r.p.m. d) 1500 r.p.m. 

 

   

e) 2000 r.p.m. f) 2500 r.p.m. g) 3000 r.p.m. 

Figure 10. Images of the electrode surface after the tests in the 700 g/l LiBr solution at 25 ºC at the 

different rotation rates. 

 

The images of the electrode surface after the polarisation curves in the 700 g/l LiBr solution 

show the effects of the hydrodynamic conditions (Figure 10). Under static conditions, generalised 

corrosion is observed without preferencial attacked areas (Figure 10 a)). Under dynamic conditions 

(Figures 10 b) to 10 g)), the damage on the electrode grows as the rotation rate increase and it is 

located at the peripheral area of the electrode surface. On the other hand, some flow lines appear in the 

tests at 2500 and 3000 r.p.m. These lines begin in the center of the sample in the case of the 3000 

r.p.m. test and flow line are closer together than in the 2500 r.p.m test.  

Tests carried out in the 850 g/l LiBr solution under static conditions show that the surface is 

homogenously attacked, the depth of the attack being higher than in the 400 and 700 g/l solutions 

(Figure 11 a)). On the other hand, at 500 r.p.m. the attack is deeper on the peripheral area than in the 

center of the electrode surface. At 1000 r.p.m, some flow lines appear in the electrode surface as the 

the rotation rate increases. The distance between the flow lines decreases and the center of the 

electrode surface is more severely affected. The depth of the attack also grows with the rotation rate 

and more material is lost. In the case of the test at 3000 r.p.m. the flow lines go from the center to the 

limit of the electrode surface, i.e. corrosion damage increases with the rotation rate and the number of 

flow lines is greater.  
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a) 0 r.p.m. b) 500 r.p.m. c) 1000 r.p.m. d) 1500 r.p.m. 

 

 

   

 e) 2000 r.p.m. f) 2500 r.p.m. g) 3000 r.p.m. 

 

Figure 11. Images of the electrode surface after the tests in the 850 g/l LiBr solution at 25 ºC at the 

different rotation rates. 

 

 

 

4. CONCLUSIONS 

Lithium bromide-water absorption machines powered by renewable energies can contribute to 

the rational utilisation of energy and the protection of the environment. In this work the effect of the 

hydrodynamic conditions and LiBr concentration on the corrosion of copper in LiBr solutions was 

studied. The main conclusions of this work are: 

1. OCP and corrosion potential values decrease with the rotation rate and LiBr concentration.  

2. The corrosion current density values increase with the rotation rate and LiBr concentration.  

3. The cathodic reaction is under activation control and the anodic reaction is under diffusion 

control of corrosion products from the electrode surface.  

4. The global process is under mixed control and the influence of diffusion decreases as the 

LiBr concentration increases. 

5. The damage of the electrode surface is greater at high rotation rates increase and 

concentrations.  
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