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ABSTRACT4:  7 

 8 

The paper presents a method for the reduction of network models described by a system of 9 

non-linear algebraic equations. Such models are, for example, present when modeling water 10 

networks, electrical networks and gas networks. The approach calculates a network model, 11 

equivalent to the original one, but which contains fewer components. This procedure has an 12 

advantage compared to straightforward linearization because the reduced non-linear model 13 

preserves the non-linearity of the original model and approximates the original model in a 14 

wide range of operating conditions. The method is applicable to hydraulic analysis andhas 15 

been validated by simplifying many practical water network models for optimization studies.  16 

 17 

Keywords: water distribution network, full nonlinear model, full linearized model, reduced 18 

linear model, reduced nonlinear model, Gaussian elimination, large scale WDS simplification.  19 

INTRODUCTION 20 

The paper presents a method for the reduction of network models described by a system of 21 

non-linear algebraic equations. The method will be formulated using an example of a water 22 

pipe network but the same arguments can be directly applied to a network of non-linear 23 
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resistors or other non-linear networks. The function of a water distribution network is to 24 

transport water from sources (rivers, boreholes etc.) to sinks (user demands). Major 25 

components of a network are reservoirs, pipes, valves and pumps. A typical water network 26 

may contain thousands of pipes and only tens of other components. In modeling, this network 27 

of pipes can be replaced by an equivalent reduced network. Control and design problems are 28 

normally solved with optimization techniques. The numerical complexity of optimization 29 

problems is much higher than the equivalent simulation problems, and consequently 30 

simplified models are required to make calculation time acceptable. It was realised (Zessler 31 

and Shamir, 1989), (Brdys and Ulanicki, 1994) that slow progress in developing optimization 32 

methods for water networks among other reasons was due to the lack of efficient model 33 

reduction methods.  34 

There are different techniques of model reduction; the outcome of most of these methods is a 35 

hydraulic model with a smaller number of components than the prototype. The main aim of a 36 

reduced model is to preserve the nonlinearity of the original network and approximate its 37 

operation accurately under different conditions. The accuracy of the simplification depends on 38 

the model complexity and the selected method such as skeletonization (Walski et al., 2003; 39 

Saldarriaga et al., 2008), decomposition (Deuerlein, 2008), usage of artificial neural networks 40 

(ANN) metamodels (Rao and Alvarruiz, 2007; Broad et al., 2010) and variables elimination 41 

(Ulanicki et al., 1996). The skeletonization is the process of selecting for inclusion in the 42 

model only the parts of the hydraulic network that have a significant impact on the behaviour 43 

of the water distribution system (WDS) (Walski et al., 2003) e.g. use of equivalent pipes in 44 

place of numbers of pipes connected in parallel and/or in series. However the skeletonization 45 

is not a single process but several different low-level element removal processes that must be 46 

applied in series. This makes difficult the utilisation of this technique for the online 47 

optimisation purposes. In (Saldarriaga et al., 2008) authors presented an automated 48 
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skeletonization methodology that can be used to achieve reduced models of WDS that 49 

accurately reproduce both, the hydraulics and non-permanent water quality parameters 50 

(chlorine residual) of the original 51 

model. The proposed methodology was based on the resilience concept (Todini, 2000); by 52 

using the resilience index as selection criterion to remove pipes from the prototype, reduced 53 

models that simulate the hydraulics of the real network were achieved. However, the method 54 

is focused on the pipes removal only and thereby it can be mainly applied for looped pipe 55 

networks. Moreover the achievable degree of model reduction is not significant if the pressure 56 

in the simplified model is to be simulated accurately. In (Rao and Alvarruiz, 2007; Broad et 57 

al., 2010) ANNs have been successfully employed to approximate the water network model. 58 

The usage of ANN, due to time demanding training process, is not suitable for online water 59 

network optimisation where adaptation to abnormal structural changes is required. In 60 

(Deuerlein, 2008) a graph-theoretical decomposition concept of the network graph of WDS 61 

was proposed. The approach involves a several-steps decomposition to obtain a block graph 62 

of core of network graph. During that process demands of the root nodes are increased by the 63 

total demand of the connected trees to ensure that the simplified network replicates the 64 

hydraulic behaviour the total network. Also this approach due to its complexity and number of 65 

calculations involved is not applicable for online optimisation requirements. 66 

The approach presented here is an extended version of the conference publication (Ulanicki et 67 

al 1996) and is based on mathematical formalism which finds a network model automatically 68 

in a comparatively short period of time.  69 

The most direct way of reducing a system of algebraic equations would be by analytical 70 

elimination of some variables with the process of back substitution. Unfortunately, such 71 

general techniques do not exist for non-linear systems. The approach proposed here proceeds 72 

by the following steps: formulate the full non-linear model, linearise this model, reduce the 73 
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linear model using the Gauss elimination procedure, and retrieve a reduced non-linear model 74 

from the reduced linear model. The method is applicable to hydraulic analysis especially for 75 

preparing reduced models for optimization studies. The paper has the following structure. In 76 

the Water network model formulation section a nodal model of a water network is presented. 77 

In Fundamentals it is explained how the method works on a very simple example and how 78 

well the reduced model approximate the nonlinearity of the original hydraulic model. 79 

The following sections explain the technical details of the model reduction process which 80 

exploits properties of the non-linear and linearized models of water networks. The non-linear 81 

model is formulated using ideas from (Zehnpfund and Ulanicki 1993) and (Ulanicki et al., 82 

1996) and this model is analogous to models of electrical networks discussed in (Balabanian 83 

and Bickart, 1969). It is shown that the Jacobian matrix of the linearized model has a special 84 

structure which enables the reduction procedure. In the Implementation section two computer 85 

implementations are described, the matrix based and the node by node. Finally the results of 86 

numerical experiments for two case studies are shown using the node by node and the matrix 87 

implementations. 88 

Water network models formulation 89 

Mathematical models of water networks can be derived by analogy with electrical network 90 

models. The specific properties of water networks are determined by the non-linear head-flow 91 

relationships of its components. It is assumed that a pipe model is given by the Hazen-92 

William formula (Williams and Hazen 1906) 93 

)h(sign|h|g)h(qq 54.0       )()( hSghqq       (1) 94 

where, h is the head drop, i.e. difference between the origin head and destination head, q is a 95 

pipe flow, g is the pipe conductance and )()( 54.0 hsignhhS   is a function relating the 96 

pipe flow to the head drop between the origin and destination nodes. The pipe conductance 97 
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depends on the pipe length, the pipe diameter, and the Hazen-Williams friction coefficient. 98 

The theory presented in this paper is valid for a general pipe characteristic where the flow is 99 

expressed as product of a conductance and some nonlinear function S of the head drop which 100 

is monotonic and crosses the origin. Hence, different explicit approximation of the Darcy-101 

Weisbach equations can also be considered.  102 

The topology of the network can be represented as a directed graph, where the branches are 103 

the network components and the nodes are connections between these components. 104 

Orientation of the branches is used to distinguish between different directions of a branch 105 

flow. For algebraic manipulation it is convenient to represent a network with a node branch 106 

incidence matrix   (Brdys and Ulanicki 1994) which can be portioned in two blocks 107 











f

c

Λ

Λ
Λ , for connection nodes and fixed head nodes respectively. The set of nodes 108 

connected to a given node n is denoted by nN . A branch can be identified either by the 109 

branch index j or by the pair of node indices )m,n( . Transformation from one description to 110 

another is done with the help of the mapping )m,n(j , where j is the branch connected 111 

between nodes n and m. 112 

The mathematical model of a water network can be compactly written using the node-branch 113 

incidence matrix  as follows 114 

dqΛ c      Kirchhoff’s law I for connection nodes (2) 115 

hΛhΔ
T  or f

T
fc

T
c hΛhΛhΔ   conservation of energy law   (3) 116 

)( hΔqq       component law    (4) 117 

where q = vector of branch flows, d  = vector of nodal flows which represents demands and 118 

source flows, fc hh ,  = vector of node heads at connection nodes and fixed grade nodes 119 

respectively, hΔ  = vector of branch head-drops, and 
T

LL hqhq ))(),..,(()( 11 hΔq  is a 120 
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vector function where each function )(  hq  is given by (1). The set of all components will 121 

be denoted by L, the set of all nodes and the set of connection nodes will be denoted by N and 122 

Nc, respectively. It is assumed that the unknown variables are the vectors of branch flows q 123 

and heads at connection nodes ch  whilst heads fh at the fixed grade nodes and nodal flows d 124 

at the connection nodes are known. 125 

These three equations (2), (3), (4) can be combined in different ways resulting in different 126 

models: nodal model, loop model or mixed model.  127 

For later discussions it is convenient to use a model with vector hΔ  as unknown vector which 128 

is obtained by substituting Equation (4) into Equation (2):  129 

dhΔqΛ )(c            (5) 130 

The nodal model of a network involves only nodal variables; vector of nodal heads ch  and 131 

fh  and vector of demands d and is obtained by substituting Equation (3) into Equation (5). 132 

dhΛhΛqΛ  )( f
T

fc
T

cc          (6) 133 

Equation (6) corresponds to Nc scalar equations, each describing the mass balance at a given 134 

connection node. For a node n is 135 

nmn

Nm

mnmnjn dhSg

n




)( ),,),(,    cNn ,...,2,1for     (7) 136 

where the terms on the left side of the equation represent the branch flows connected to the 137 

node n; Nn is a set of nodes connected to the node n; jn,  is an element of  corresponding to 138 

node n and branch j=j(n,m) connected between nodes n and m, mnh ,  is the head drop 139 

between the origin and destination nodes of the branch and finally mng ,  is a conductance of 140 

such a branch.  141 

 142 
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Fundamentals  143 

The fundamental idea of the model reductions is explained in Figure 1. A general approach to 144 

reduce a model is to eliminate some variables and equations by back substitution, at least such 145 

an approach works well for linear models through, for instance, the Gaussian elimination 146 

procedure. Unfortunately, this approach is not directly applicable for a general case of a 147 

nonlinear model. So the idea proposed here is to travel from a ‘nonlinear world’ to a ‘linear 148 

world’, reduce the model in the linear world and to come back to the nonlinear world. 149 

Formally, the idea proceeds in the three following steps:  150 

1. Linearize a full nonlinear model to produce a full linearized model  151 

2. Eliminate some variables from the full linear model using e.g. Gaussian elimination 152 

procedure to obtain a reduced linear model 153 

3. Recover a reduced nonlinear model from the reduced linear model. 154 

The first two steps of linearization and variable elimination are always possible. The third step 155 

of recovering the nonlinear model is possible for network models. Network models have 156 

specific features which are invariant with respect to the Gaussian elimination and hence 157 

making a return to a network nonlinear model possible. The reduced nonlinear model usually 158 

approximates the original nonlinear model over wider range of operating conditions 159 

(demands) than a linearized one.  160 

The fundamental ideas will be illustrated using a simple three node network shown in Figure 161 

2 before being converted into a generalized procedure. The nodal model of this simple 162 

network has the form 163 

2212,1232,3

1212,1131,3

)()(

)()(

dhhSghhSg

dhhSghhSg




       (8) 164 

where mng , =conductance of a pipe connected between nodes n and m and )( mn hhS   is a 165 

branch function defined in equation 1. The first and second equations represent flow balance 166 
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at nodes 1 and 2 respectively. The unknown variables are heads 21 and hh at nodes 1 and 2. 167 

Node 3 is a fixed grade node with a known head 3h . The fundamental idea is to eliminate one 168 

variable e.g. 1h  to reduce the model to one unknown variable 2h . Unfortunately, for a system 169 

of nonlinear simultaneous equations there is no general procedure to do so. So the following 170 

approximate procedure is proposed. Linearize the model described by Equation 8 around the 171 

current operating point where unknowns are current deviations of heads 21 and hh   from the 172 

operating point caused by the known deviations of the demands from the operating point 173 

21 and dd  . Eliminate the unknown variable 1h  e.g. using the Gaussian elimination 174 

procedure in order to obtain a linear model with the one variable 2h . After that return to a 175 

nonlinear reduced model containing only one variable 2h . Of course this is only possible if 176 

there is one to one relationship between a nonlinear and linearized model. Let for the given 177 

nominal demands 
0
2

0
1 , dd  and the given fixed head 

0
3h  the solutions to model (8) are 178 

0
2

0
1 and hh  and this is an operating point, then the corresponding linearized model is  179 

22
0
2

0
12,1

0
2

0
32,31

0
2

0
12,1

12
0
2

0
12,11

0
2

0
12,1

0
1

0
31,3

)]()([)(

)()]()([

dhhhSghhSghhhSg

dhhhSghhhSghhSg

hhh

hhh












  (9) 180 

where )( ,mnh hS   is the derivative of the characteristic function )( ,mnhS   with respect to the 181 

head drop mnh ,  . 182 

If we introduce the idea of linearized conductance  183 

)]()([)(

)()]()([

0
2

0
12,1

0
2

0
32,32,2

0
2

0
12,11,2

0
2

0
12,12,1

0
2

0
12,1

0
1

0
31,31,1

hhSghhSgphhSgp

hhSgphhSghhSgp

hhh

hhh








  (10) 184 

then at a given operating point the linearized model can be represented as   185 

222,211,2

122,111,1

dhphp

dhphp








         (11) 186 
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The linearized conductance describes how the nodal flow balance is affected by the changes 187 

of the nodal heads. For example, if head 2h  is changed it will changed flows in all pipes 188 

connected to node 2 which is confirmed by the fact that the linearized conductance 2,2p  189 

depends on conductance of all pipes connected to node 2. If head 1h  is changed it affects the 190 

flow balance at node 2 only through flow in the branch (1, 2) which is confirmed by the fact 191 

that the linearized conductance 1,2p  depends only on the conductance pipe 1. The similar 192 

behaviour can be observed when analyzing conductance 1,1p  and 2,1p  respectively. 193 

Let’s eliminate variable 1h  from the second equation with help of the Gauss elimination 194 

procedure 195 

)()(
1,1

1,2
122

1,1

1,22,1
2,2

p

p
ddh

p

pp
p          (12) 196 

and introduce notation for the conductance and the demand of the reduced linear model  197 

)(
1,1

1,22,1

2,2
p

pp
pp r    )(

1,1

1,2
12

p

p
ddd r    198 

Using the new notation the reduced linear model is 199 

rr dhp  2          (13) 200 

The two nodes are left in the model, the fixed grade node 3 and the connection node 2. It is 201 

easy to guess a nonlinear model corresponding to linear model (12), namely 202 

rr dhhSg  )( 23           (14) 203 

where 
)(

1
0
2

0
3 hhS

pg
h

rr






and )
,

(
1,1

1,2
12

p

p
ddd r   204 

One can check by linearization of model (14) that model (12) is obtained. 205 

Model (14) is a reduced nonlinear model derived from original nonlinear model (8). The 206 

properties of the considered models are captured in Figure 3, where head 2h  is plotted as a 207 
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function of a demand 2d  for different models. The following values are assumed for the 208 

calculations, mh 1403  , sld /401  , 716740.821  gg
 and 9493.03 g . The thick 209 

continuous line represents a full nonlinear model, the thin continuous line represent a reduced 210 

nonlinear model and the dashed line represents both a linearized full model and a reduced 211 

linear model (these two models overlap for 2h ) . The following can be observed  212 

 All models share the same operating point mh 24.12020    213 

 The full nonlinear model and the reduced nonlinear model are tangent to the same 214 

linear model represented by the straight dashed line  215 

 Reduced nonlinear model approximates very well the full nonlinear model in the 216 

whole range of operating conditions represented by a demand 2d . 217 

Linearized water network model and its properties 218 

A linearized version of nonlinear model (6) will describe the relationship between small 219 

changes in nodal quantities, heads and demands dh  ,c  about a given operating point 220 

defined by head 0
h  and nodal flow

0
d . 221 

δdhδΛqΛ  c
T

chc          (15) 222 

where  223 

  
Ljjhjh hSgdiag

  )( 0
q         (16) 224 

is a LL diagonal matrix obtained from differentiating the vector function )( hΔq  with respect 225 

to head losses h  and 0
jh  is a head drop for components j at the operating point. 226 

T
chc ΛqΛJ   is called a Jacobian of model (6) and will play a fundamental role in further 227 

considerations. Linearized model (15) can now be presented as  228 

δdhδJ  c            (17) 229 
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Properties of the Jacobian matrix J are summarised below. 230 

Properties of Jacobian matrix J 231 

1. Jacobian J is a NcNc symmetric matrix.  232 

2. The diagonal elements of J are equal to 233 

 


 

nNm

mnhmnnn hhSgJ )( 00
,,

   cNn ,...,2,1for     (18) 234 

 The non-diagonal elements in a row n are 235 










 

nc

ncmnhmn
mn

Nm

NmhhSg
J

,

,
00

,
,

for0

for)(
     (19) 236 

where ncN ,  is a set of connection nodes connected to node n. 237 

3. In a row corresponding to a node connected to a fixed grade node the diagonal element 238 

is greater than the sum of the non-diagonal elements taken with the opposite sign  239 

 




ncNm

mnnn JJ

,

,,
         (20) 240 

whilst in a row corresponding to a node not connected to a fixed grade node the 241 

diagonal element equals to the sum of the non-diagonal elements with the opposite 242 

sign. 243 






ncNm

mnnn JJ

,

,,
         (21) 244 

4. The matrix J is positive definite. 245 

             246 

The theorem is an implication of the special structure of the Jacobian matrix. 247 

For a given operating point let’s introduce the notion of linearized branch conductance  248 

)( 00
,,, mnhmnmnmn hhSgJp  



        (22) 249 

and linearized node conductance  250 
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






nNm

mnnnnn pJp ,,,           (23) 251 

With these denotations the linearized model (17) can be represented in an expanded form as 252 







































































cccccc

c

c

NNNNNN

N

N

d

d

d

h

h

h

ppp

ppp

ppp













......

...

.........

...

...

2

1

2

1

,2,1,

,22,21,2

,12,11,1

      (24) 253 

Conductance matrix J is sparse and for a row n elements mnp ,  are non-zero for connection 254 

nodes connected to the node n (i.e., ncNm , ), and zero for other nodes; additionally from 255 

(21) it is clear that the diagonal element is a sum of non-diagonal elements for the nodes not 256 

connected to fixed grade nodes. 257 

Another useful interpretation of the linearized model (15) is obtained by grouping relevant 258 

terms to obtain the linearized model in terms of the head differences  259 

δdhδqΛ hc           (25) 260 

where c
T

c hδΛhΔδ   is the variation of the vector of head differences hΔ  about the given 261 

operating point when the nodal flow at the connection nodes changes. 262 

Equation (25) corresponds to Nc scalar equations, each describing the linearized mass balance 263 

at a connection node. For nodes cNn ,...,2,1  is 264 

nmn
Nm

mnmnjn dhp
n

 


)( ,,),(,         (26) 265 

Each term on the left side of Equation (26) represents a flow in a branch connected to node n, 266 

and complies with the standard Ohm’s law; the flow is equal to the conductance of the branch 267 

mnp ,  multiplied by the branch head difference mnh , . Model (26) is a linearized version of 268 

model (7) and clearly, there is a one to one mapping between these two models.  269 
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Both models have the same topology described by matrix cΛ  and the relationship between 270 

the non-linear branch conductance mng ,  and the linearized branch conductance mnp ,  is given 271 

by )( ,
0

,, mnhmnmn hSgp   .  272 

If one wants to return from the linearized model (26) to nonlinear model (7) the following 273 

should be used.  274 

nmn
Nm mnh

mn
mnjn dhS

hS

p

n





 

)(
)(

,
,

0

,
),(,        (27) 275 

 276 

Reduced linear model and its properties  277 

The process of the Gauss-elimination (Gill et al. 1991), will be applied to the linearized model 278 

given by (15) and (24). For example, to remove node 1 from the model it is necessary to apply 279 

one step of the Gauss-elimination procedure as follows 280 







































































1

1,1

1,

1

1,1

1,2

2
2

,1

1,1

1,

,2,1

1,1

1,

2,

,1

1,1

1,2

,22,1

1,1

1,2

2,2

......

)(...)(

.........

)(...)(

d
p

p
d

d
p

p
d

h

h

p
p

p
pp

p

p
p

p
p

p
pp

p

p
p

c

c
c

c

c

cc

c

c

cc

N

NNN

N

NN

N

N

NN









  (28) 281 

The reduced model involves variables 
cNhhh  ,...,, 32 , whereas variable 1h  has been 282 

removed from the model. The demand 1d  has been redistributed among other nodes 283 

connected to node 1 and if node 1 was not connected to a fixed grade node than the total 284 

demands in the full model and in the reduced model are the same. 285 

c

c

c N

N

N dddd
p

p
dd

p

p
d   ...)(...)( 211

1,1

1,

1

1,1

1,2

2  286 

The matrix J has a dominant diagonal so the normal Gauss-elimination is numerically stable 287 

and is equivalent to the elimination with pivoting.  288 
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If (𝑁𝑐 − 𝑟) connection nodes are to be removed from the model then the corresponding rows 289 

have to be placed at the first (𝑁𝑐 − 𝑟) positions in the matrix J, and (𝑁𝑐 − 𝑟) steps of the 290 

Gauss-elimination procedure are to be performed. The reduced model will have r nodes and 291 

the corresponding Jacobian matrix and the nodal flow vector will be denoted by 
r

J  and 
r

d  292 

respectively.  293 

With these notations the reduced r model takes the form 294 

rr
c

r
dδδhJ            (29) 295 

where 





















c

c

N

rN

r
c

h

h





...

1

δh  is a vector composed of the last r elements of the full vector cδh . The 296 

properties of the linearized model described previously are invariant with respect to the 297 

Gaussian elimination procedure and consequently reduced matrix 
r

J  has the same properties 298 

as matrix J  i.e. represents a linearized model of a network.   299 

Properties of reduced matrix 
r

J  300 

1. Matrix 
r

J  has the same properties as matrix J, in particular the properties (1), (3) and (4) 301 

are true. 302 

2. If the removed connection nodes are not connected to the fixed grade nodes then the total 303 

demands in the full model and in the reduced model are the same. 304 






r
cc N

n

r
n

N

n

n dd
11

           (30) 305 

where f
r
c NrN   is the number of connection nodes in the reduced model. One should 306 

remember that the fixed grade nodes are not removed and hence the following relationships 307 

are satisfied fc NNN   for the full model and f
r
c NNr   for the reduced model.  308 
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The proof can be completed with mathematical induction of which the first step has already 309 

been completed in the form of model (28). 310 

The properties of matrix 
r

J  allow to interpret reduced linear model (29) as representing a 311 

network with r nodes and a new topology described by matrix 
r

J    312 





























r

NN

r

N

r

N

r

N

rr

r

N

rr

r

r
c

r
c

r
c

r
c

r
c

r
c

ppp

ppp

ppp

,2,1,

,22,21,2

,12,11,1

...

............

...

...

J        (31) 313 

where elements r
jip ,   play a role of a linearized conductance of the reduced model and if 314 

0, r
jip  for ji   it means that nodes i and j are not connected. Matrix  𝐉𝐫 is more dense than 315 

the original matrix 𝐉 but is much smaller and hence less time consuming to solve.  316 

It is worth to notice that the resulting reduced model doesn’t depend on the order in which the 317 

nodes for the removal are placed, however the order significantly affects the time required for 318 

the Gaussian elimination procedure.  319 

Changing order of the nodes for removal corresponds to multiplication of the incidence matrix 320 

cΛ  and respective variables by an appropriate permutation matrix Π  (Gill et al. 1991). In our 321 

case the full nonlinear model (6) becomes  322 

𝚷𝚲𝑐𝐪(𝚲𝐜
𝑇𝚷𝑇𝚷𝐡𝑐 + 𝚲𝐟

𝑇𝐡𝑓) = 𝚷𝐝      323 

and the linearized model (15) becomes  324 

(𝚷𝚲𝑐𝐪𝚫𝐡𝚲𝐜
𝑇𝚷𝑇)𝚷𝛅𝐡𝐜 = 𝚷𝛅𝐝       325 

Considering that the permutation matrix   is orthogonal, IΠΠ T  and non-singular 326 

T
ΠΠ 1  (Gill et al. 1991) after few manipulations applied to the two models above the 327 

original models (6) and (15) are obtained.  328 

Moreover, the permutations are applied only to the connection nodes designated for removal 329 

and not to the connection nodes which remains in the reduced model, subsequently it can be 330 
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proven that the order of connection nodes for removal doesn’t affect the outcome i.e. the 331 

reduced model. 332 

There are special rows/columns re-ordering algorithms which accelerate significantly the 333 

model reduction calculations, for instance the minimum degree ordering algorithm proposed 334 

for the first time in (Rose, 1970). The more discussion on the re-ordering is presented in the 335 

‘Node by node implementation’ section.  336 

Recovering a reduced nonlinear model 337 

 338 

Reduced linear model (29) is obtained by performing 𝑁𝑐 − 𝑟 steps of the Gauss-elimination 339 

procedure which is equivalent to multiplying both sides of an original model (17) by a unit 340 

lower triangular matrix M (Gill et al. 1991).  341 

δdMδhJM c           (32) 342 

The resulting product JM   has the block structure seen in the equation below 343 

dδM
δh

δh

J0

QU
















 

r
c

rN
c

r

c

         (33) 344 

where U is an )()( rNrN cc   upper triangular matrix, and 
r

J  is a rr  invertible matrix 345 

from equation (29) and Q is an (𝑁𝑐 − 𝑟) × (𝑁𝑐 − 𝑟) matrix block resulting the Gaussian 346 

elimination procedure . 347 

Due to a special structure, equation (33) decomposes into two parts, one of which is a reduced 348 

linear model (29) 349 

dδMδhJ
)(rr

c
r            (34) 350 

where )(r
M  denotes the last r rows of matrix M . By comparing right side of equations (29) 351 

and (34) the demand of the reduced model can be expressed as  352 

dδMδd
)(rr            (35) 353 
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Since matrix 
r

J  of the reduced linear model has the same properties as the matrix of the full 354 

linear model it can be considered to represent a linear network of conductance elements. The 355 

reduced model has r nodes and a new topology determined by 
r

J . A non-zero entry at a 356 

position )m,n(  indicates a branch between nodes n and m, a zero entry indicates no 357 

connection between these nodes. If two nodes were connected in the original model the 358 

branch orientation between these two nodes stays the same in the reduced model. If two nodes 359 

were not connected the branch orientation is given by the sign of the head difference at them 360 

and after that applied consistently in all equations. 361 

The new node-branch incidence matrix can be denoted by r
Λ , with 

r
cN and rL  signifying 362 

the number of nodes and branches respectively in the reduced model. There has been 363 

established, in the section on the properties of a linearized model, one to one mapping 364 

between linearized model (26) and non-linear model (7) in the form of equation (27). 365 

Applying the same format the following reduced nonlinear model is obtained.  366 

r
nmn

Nm

r
mn

r
jn dhSg

r
n




)( ,,,    cc NrNn ,...,1for     (36) 367 

with 
)( 0

,

,

,

mnh

r
mnr

mn
hS

p
g






         (37) 368 

where jn
r

, =elements of a topology matrix r
Λ  of the reduced model, 

r
nN =a set of nodes 369 

connected to a node n in the reduced model, ),( mnjj   is an index of a component 370 

connected between nodes n and m, 000
, mnmn hhh   corresponds to the original operating 371 

point and 
r
nd = an element of the demand vector dMd

)(rr  with )(r
M defined in equations 372 

(34) and (35).  373 

Model (36) can be presented in a vector form as  374 

dMhΔqΛ
)()( rrrr

c            (38) 375 
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where f
T

f
r
c

Tr
c

r
hΛhΛΔh )()(   or in terms of vector 

r
ch  as  376 

dMhΛhΛqΛ
)())()(( r

f
T

f
r
c

Tr
c

rr
c         (39) 377 

where T

LL

rr
rr hqhq ))(),..,(()( 11 hΔq  is a rL  vector function describing the non-linear 378 

branch law for all new components 
rLj ,...,2,1 given by equation (1), and the elements of 379 

𝐌(𝑟) are simply multipliers applied to the original set of nodal demands that produce an 380 

equivalent set of demands at the nodes remaining in the reduced modelThe results of the 381 

above discussion are collected together below.  382 

Properties of the reduced nonlinear model  383 

The reduced nonlinear model represented by equation (38) or (39) and the full nonlinear 384 

model represented by equation (5) or (6) are ‘tangent’ to one another at the operating point 385 

which means that: 386 

1. Linearization of a model (38) leads to a reduced linear model (29) obtained by 387 

variable elimination of a full linearized model (17). 388 

2. The full nonlinear model (5) and the reduced nonlinear model (38) have the same 389 

operating point with respect to the last r components of vector 
0

h . 390 

3. The difference between the solution (heads) of a full nonlinear model (5) and a 391 

reduced nonlinear model (38) is of a second order 392 

The proof of property 1 can be done by checking the steps of the linearization procedure 393 

starting with a model (38). Property 2 follows from the manner the reduced nonlinear model 394 

has been constructed (equation (37)) around the given operating point. Property 3 is a 395 

consequence that both models have identical linearized models (with respect to the last r 396 

components) and the first order terms in the Taylor expansion of both models cancel one 397 

another. Although the formal proof is important from a practical perspective one should also 398 



 19 

notice that the good accuracy is not only local around the operating point but also stretches 399 

over wide range of demands, in the simple case of Fig 2  from sld /202   to sld /602  . 400 

 401 

Implementation 402 

The presented model reduction algorithm can be implemented as a computer program using a 403 

formal Gaussian elimination procedure applied to a Jacobian matrix J or using a ‘node by 404 

node’ elimination rules which will be explained later in this section. 405 

Matrix implementation  406 

Normally water network models are implemented as data files used by simulation packages 407 

such as Epanet (Rossman 2000). The model reduction software can be linked to a simulator 408 

and work by reading in a simulation file with an original model and generating a file with a 409 

reduced simulation model. The matrix implementation involves five steps: 410 

 Preparing a full nonlinear model  411 

 Preparing an operating point  412 

 Preparing a Jacobian matrix 
T

chc ΛqΛJ    413 

 Applying the Gaussian elimination procedure to Jacobian 414 

 Generating a reduced nonlinear model 415 

The purpose of the first step is to define a set of nodes to be removed from the model and 416 

reordering all nodes so the nodes to be removed are at the beginning and the fixed grade 417 

nodes at the end of the respective arrays. The prepared model is simulated to generate an 418 

operating point at which the model is linearized. At this operating point a Jacobian matrix is 419 

evaluated  and subsequently a reduced Jacobian matrix is calculated. From the reduced 420 

Jacobian matrix the topology, the values of the pipe conductance and new allocation of 421 
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demands of the reduced model can be obtained. Having this information a file containing a 422 

reduced nonlinear model can be generated.    423 

The matrix Gaussian elimination approach has been employed to reduce models for many 424 

applications such as optimal pressure control (Ulanicka et al. 2001) and optimal scheduling 425 

(Bounds et al. 2006). In the scheduling study the model was reduced from 4388 to 414 426 

components and the simplification process took approximately 2 minutes on a Pentium 4 427 

2.2GHz PC. In the pressure control study the model has been reduced from 5332 to 1118 428 

components, the significant number of nodes was preserved to maintain the structure of the 429 

system which included 24 subsystems (zones).  430 

Node by node implementation 431 

There is a strict correspondence between symmetric positive definite matrices and graph 432 

theory and the two views complement one another in solving important network problems.  433 

The reduction procedure can be translated into a set of rules and implemented as a computer 434 

program which operates directly on  the water network graph. Consider a network shown in 435 

Figure 4a and assume that node 1 is selected for removal from the network model. One should 436 

take the following steps: 437 

a) Calculate the pipe linear conductance, mnp , , for all pipes connected to node 1, according to 438 

equation (22); 439 

b) Calculate node 1 nodal conductance, 1,1p , according to equation (23); 440 

c) Calculate the new conductance between each pair of nodes connected to node 1. The new 441 

conductance between nodes  𝑛1 and 𝑛2 is 442 

1,1

,1,1

,,
21

2121 p

pp
pp

nn

nn

r
nn           (40) 443 

Moreover, if there was no branch between two nodes, a new branch appears between these 444 

nodes with a respective conductance. An additional conductance between nodes 13  and nn  is 445 
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1,1

,1,1

,
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13 p

pp
p

nnr
nn   446 

and between nodes 23  and nn  is  447 

1,1

,1,1

,
23

23 p

pp
p

nnr
nn   448 

The formula (40) can be interpreted as a parallel connection of 
21,nnp and a composite branch 449 

which in turn comprises the series connection of 
21 ,11,   and  nn pp . However, when calculating 450 

an equivalent conductance for the series connection the product 
21 ,11,   nn pp  is divided by the 451 

nodal conductance 1,1p  rather than by the sum of these two branches conductance. 452 

d) Demand 1d  is redistributed between nodes connected to node 1 proportionally to the 453 

conductance of each branch, so the new demands at the 1N  nodes are 454 

 ,   ,   , 1
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n      (41) 455 

The resulting network model is depicted in Figure 4b. 456 

After the first step a new partially reduced model is obtained and a next node for elimination 457 

can be selected.  The procedure is repeated many times until the required level of reduction is 458 

achieved. Once all required nodes are removed, the nonlinear model may be obtained. The 459 

new pipes conductance should be translated into length, diameter and roughness coefficient.  460 

The length can be assumed to be equal to the distance between the two nodes concerned, 461 

roughness can assume a standard value 100C  and the diameter can be evaluated from the 462 

calculated value of the conductance and remaining assumed values of the length and the 463 

roughness. Also the flow rate through the new pipes can be computed, if needed, following 464 

equation (27),   465 
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

         (42) 

466 

being oriented from the node of higher head to the node of lower head .  467 

The experience achieved during solving many case studies indicates that the following 468 

recommendation should be followed for both implementation methods. All fixed head nodes 469 

and control components, including all pumps and regulating valves, should be kept in the 470 

reduced model and as a consequence its end nodes.  Also the nodes connected to fixed grade 471 

nodes  must be kept to avoid redistribution of their nodal demands, which in turn will improve 472 

the accuracy of the storage trajectories. Also nodes with multiple demands, emitters or 473 

injection flow must be preserved. The demand pattern of a removed node must be the same of 474 

the adjacent nodes; in other case it has to be kept. This applies to nodes with unusual demands 475 

and its adjacent nodes. However simple throttle valves which are not controlled can be 476 

reduced by assimilating its properties to an equivalent pipe. If the network has a complex 477 

structure with many subsystems (zones) it maybe worthwhile to preserve the boundary nodes 478 

in order to maintain the major structure of the model. Also nodes of particular interest (e.g 479 

minimum pressure) can be kept additionally. 480 

The operating point should be representative for normal operations of the network and should 481 

be chosen for average demand conditions while keeping at least one pumping unit working at 482 

each pumping station in order to avoid zero flow pipes. Before parallel pipes are removed, an 483 

equivalent pipe should be introduced by summing their conductance.  During the reduction 484 

process the addition of new pipes of very low conductance compared with the nodal 485 

conductance of the joined nodes can be avoided, thus reducing the computing time. However 486 

tiny values for the nodal conductance must be avoided to reduce the error propagation, which 487 

is solved by fixing a minimum value (e.g. 10
-10

 ft
2
/s). For large networks the reduction time 488 

tends to increase exponentially at the last stages. There is a significant scope to accelerate the 489 
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model reduction process by re-ordering the nodes. The general problem of finding the best 490 

ordering is an NP-complete problem (George and Liu, 1989) but there are very efficient 491 

heuristic algorithms. The nodes can be pre-ordered in advance before the reduction starts 492 

(static re-ordering proposed by Cuthill and McKee, 1969) and dynamically (on-line) during 493 

the reduction process, for instance using minimum degree ordering algorithm proposed by 494 

Rose (1970) in his PhD. 495 

George and Liu (1989) in their review paper suggest to apply two stages, first to fix the initial 496 

ordering with a static approach before passing it to a dynamic ordering routine (e.g. minimum 497 

degree ordering). Preliminary experience with water networks indicates that the optimized 498 

ordering can reduce the computing time more than 1000 times for big networks. At the end of 499 

the reduction procedure there are still many pipes with very low conductance (relatively to 500 

other pipes), such pipes can be removed from the model. 501 

The accuracy of the reduced model over the wide range of changes in demands or in the 502 

control elements settings has not been proven formally but has been illustrated on many 503 

examples shown in the paper and other practical applications. It is important to remember to 504 

keep all control elements, including all pumps, valves and pipes with check valves or pipes 505 

directly controlled by rules in the reduced model. 506 
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Case studies 507 

The model reduction procedure, described above, was validated using a large number of real 508 

world networks. Two case studies are presented here, the first model is a small benchmark 509 

model and the second is a large-scale real water distribution system in UK. The first model 510 

was reduced using the node-by-node implementation whilst the second using the matrix 511 

approach. 512 

Case study 1 513 

This is a small scale "Network 1" of the EPANet examples (Rossman 2000) which consists of 514 

12 pipes, 9 junctions, one pump, one tank and one reservoir as depicted in Figure 5a. 515 

Demands at the junctions vary according to a 24-hour demand pattern of which the first time 516 

step was used for the reduction procedure since it is equal to the average demand. The model 517 

was reduced to two junctions and two pipes as shown in Figure 5b. Junction 10 was not 518 

removed since it is connected to a pump and junction 12 was not removed since it is 519 

connected, by a pipe, to a non-demand junction, the tank. Therefore the pipe connected to the 520 

tank was not changed. The properties of the pipe connecting junctions 10 and 12 were 521 

changed as shown in Figure 5b. The total demand of the model was redistributed between 522 

junctions 10 and 12 to be 140.34 GPM and 959.66 GPM respectively. When comparing the 523 

water levels of the tank, over a period of 24 hours, between the full and reduced models it was 524 

found that the maximum deviation of the reduced model was 0.01ft. 525 

 526 

 527 

 528 

Case study 2 529 

The network is a typical large-scale regional network supplying many towns and cities with 530 

the schematic shown in Figure 6a. The model of the network includes 3535 nodes, 3279 531 

pipes, 10 tanks, 7 reservoirs and 418 valves as illustrated in Table 1. The model reduction was 532 
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required to calculate optimal pump and valve schedules for energy optimization, since the 533 

original model was too big to accomplish the optimization task. 534 

The full model was subjected to the reduction procedure. Initially the calculations were 535 

carried out on an Intel i7 980X six-core processor without the use of parallel computing, i.e. 536 

only one CPU core was utilized; the calculation time was 1 hour and 35 minutes. 537 

Subsequently, a version of the algorithm which employs parallel computing was run on the 538 

same machine and the calculation time was reduced to 12 minutes. Finally using the minimum 539 

degree ordering  the computing time was reduced to few seconds. The schematic of the 540 

reduced model is depicted in Figure 6b, it contains 1023 nodes and 1340 pipes, keeping the 541 

tanks, reservoirs and valves. This corresponds to a reduction of 3.46 times in number of nodes 542 

and of 2.45 times in number of pipes as summarized in Table 1. The original model contains a 543 

significant number of valves (418). Some of these valves are permanently open and some are 544 

permanently closed; if they were replaced by equivalent pipes before carrying out the 545 

reduction, the ratio would be even higher. Extended period simulations were carried out for 546 

both full and reduced models with identical input data. The results are presented in Table 2 547 

and in Figures 7 – 10.  548 

The net tank flow balance was used to compare simulation results from the original and the 549 

reduced model. The tank flow for each tank was integrated over time horizon of 24 hours and 550 

denoted by 𝑁𝑜 for the original model and 𝑁𝑟 for the reduced model, 𝑁𝑜 and 𝑁𝑟 correspond 551 

also to the difference between the initial and the final volume of the tank in the respective 552 

models. The difference 𝑑 = 𝑁𝑜 − 𝑁𝑟 and the relative error  
𝑑

𝑉𝑡
× 100% with respect to the 553 

tank volume  𝑉𝑡 were used as a measure of quality of the reduced model and are presented in 554 

Table 2. For eight tanks, T1, T2, T4, T5, T6, T7, T8 and T9 the relative error is smaller than 555 

1%. The smallest error is for T5 and is equal to 0.0016%, while the biggest error is for T3 and 556 

is equal to 6.6971%. The relative error between total mass balance in tanks in the original and 557 
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simplified model is equal to 1.7909 % and is smaller than 2%. In order to improve accuracy 558 

for the ‘underperforming’ tanks, T3 and T12 it would be necessary to preserve more nodes in 559 

the neighborhood of these tanks. Additionally, the results are presented in graphical form as 560 

head trajectories for selected tanks. The head trajectories for the biggest tank T1 with capacity 561 

of 36 Ml are displayed in Fig. 7. The least accurate is T3 and the most accurate is T5 with 562 

trajectories displayed in Fig. 8 and Fig. 9, respectively. For comparison, the head trajectories 563 

for an ‘averagely accurate’ tank T9 are depicted in Fig. 10. The comparison of head at an 564 

important critical connection node is depicted in Figure 11, the approximation error is less 565 

than 0.1%. The flow patterns from individual sources in both models were also almost 566 

identical this is consistent with the method being invariant with respect to demands and 567 

spatial flow distribution.  568 

 569 

CONCLUSIONS 570 

 The method presented in the paper performs the model reduction by transferring the problem 571 

into a linear domain and then back into the non-linear domain and is well suited to hydraulic 572 

optimization studies. The user can select the nodes to be preserved in the model and the 573 

algorithm calculates the topology and the parameters of the components of the reduced 574 

network. The method is invariant with respect to the total load and operating point defined by 575 

the nodal variables. From the algorithmic point of view the method is very simple and fast. A 576 

model containing many thousands of components can be reduced in a matter of tens of 577 

minutes. The method is also very robust and has direct physical interpretation. The algorithm 578 

can be implemented on a computer or be executed manually and is very similar to finding an 579 

equivalent resistance for water network models. The case studies indicate that the reduced 580 

models are valid in a wide range of operating conditions, and are more accurate than 581 

straightforward linear models. The method was used to prepare many models for pressure 582 
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control and optimal scheduling studies.  Recently it has been applied with success by (Shamir 583 

and Salomons, 2008) to optimize the operation in real-time of Haifa water distribution 584 

network using the reduced model to speed up hydraulic calculations. The method has been 585 

applied to many practical case studies with astonishingly good results.  If accuracy with 586 

respect to the tank trajectory was not satisfactory, it was rectified by the selection of  587 

additional nodes for the reduced model.  Existing experience indicates that for the three 588 

important variables, tank trajectory, pump station flow and minimum pressure, it was always 589 

possible to achieve an error smaller than 2%.  The future work will focus on implementation 590 

more efficient re-ordering algorithms and on the on-line implementation of the software 591 

where models can be reduced in real time to reflect changes in the water distribution system 592 

due to both planned and unexpected events.  593 

 594 
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 599 

Notation 600 

The following symbols are used in this paper: 601 

d  = vector of demands at connection nodes 602 

0
d   = value of the demand vector at the operating point 603 

r
d   = vector of demands in the reduced nonlinear model 604 

mng ,   = conductance of a pipe connected between nodes n and m 605 

ch   = vector of head at connection nodes 606 

0
ch   = value of the head vector at the operating point  607 

fh   = vector of head at fixed grade nodes 608 
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J  = Jacobian of the full model 609 

r
J   = Jacobian of the reduced model 610 

),( mnj  = identifier of a pipe connected between nodes n and m 611 

L  = number of pipes 612 

rL   = number of pipes of the reduced model  613 

M   = Gaussian elimination matrix 614 

)(r
M   = matrix composed of last r rows of the Gaussian elimination matrix 615 

cN   = number of connection nodes in the full model 616 

fN   = number of fixed grade nodes in the full model 617 

nN   = a set of nodes connected to a node n in the full model 618 

r
cN   = number of connection nodes in the reduced model 619 

r
nN   = a set of nodes connected to a node n in the reduced model 620 

mnp ,    = linearized conductance in the full model between nodes n and m 621 

r
mnp ,   = linearized conductance in the reduced model between nodes n and m 622 

)( hΔq   = vector of component flows as a function of the head drop in the full  623 

   model 624 

)( rr
hΔq  = vector of component flows as a function of the head drop in the reduced  625 

   model 626 

)( ),mnhS   = characteristic function of a pipe equation 627 

)( ,mnh hS   = derivative of the characteristic function of a pipe equation 628 

hΔ   = vector of head drops in the full model 629 

δd   = deviation of the demand in the full model from the operating point  
0

d  630 

r
δd   = deviation of the demand in the reduced model from the operating point   631 

cδh   = deviation of the heads at connection nodes from the operating point in 632 

the full model 633 

r
cδh   = deviation of the heads at connection nodes from the operating point in 634 

the reduced model 635 

hδΔ   = deviation of the head drop vector from the operating point in the full 636 
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 model 637 

Λ   = topology matrix in the full model 638 

cΛ   = topology matrix corresponding to connection nodes in the full model 639 

fΛ   = topology matrix corresponding to fixed grade nodes in the full model 640 

r
cΛ   = topology matrix corresponding to connection nodes in the reduced 641 

model 642 

𝚷  = permutation matrix 643 

 644 
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 698 

FIG. 1. Network reduction procedure  699 

FIG. 2. A simple three node water distribution network 700 

FIG. 3. Characteristics of the full nonlinear model, the linearized model and the reduced 701 

nonlinear model of a simple network 702 

FIG. 4. A node elimination from a network model 703 

FIG. 5a. EPANet Network 1 full model 704 

FIG. 5b. EPANet Network 1 reduced model 705 

FIG. 6a. Major regional water supply and distribution network original model 706 

FIG. 6b. Major regional water supply and distribution reduced model 707 

FIG. 7. Comparison of simulated tank trajectories for Tank 1 708 

FIG. 8. Comparison of simulated tank trajectories for Tank 3 709 

FIG. 9. Comparison of simulated tank trajectories for Tank 5 710 

FIG. 10. Comparison of simulated tank trajectories for Tank 9 711 

FIG.11. Comparison of simulated pressure trajectories at a critical node 712 

 713 

714 
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Table 1. Statistics of Case study 2 model  715 

 716 
components nodes pipes tanks reservoirs pumps valves

3535 3279 10 7 19 418

1023 1340 10 7 19 418

reduction 

ratio 3.46 2.45

Original model

Reduced model

717 
 718 

  719 
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Table 2. Difference in the tank mass balance between the original and the reduced model  720 

Tank Tank volume Vt

Difference in tank mass balance d=No-Nr 

[Ml]

Relative error       d/Vt *100 

[%]

T1 36 0.0486 0.1351

T2 24.3 0.0061 0.025

T3 21.39 1.4325 6.6971

T4 11.4 0.0324 0.2842

T5 11.1 0.0002 0.0016

T6 1.2 0.0104 0.8677

T7 6.1 0.0009 0.014

T8 11.6 0.0007 0.0063

T9 21.8 0.0291 0.1336

T12 27.3 1.5229 5.5784

Total 172.19 3.0838 1.7909721 
 722 

 723 


