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Abstract 

An accurate fault diagnosis of both, faults sensors and real process faults have 

become more and more important for process monitoring (minimize downtime, increase 

safety of plant operation and reduce the manufacturing cost). Quick and correct fault 

diagnosis is required in order to put back on track our processes or products before safety 

or quality can be compromised. In the study and comparison of the fault diagnosis 

methodologies, this thesis distinguishes between two different scenarios, methods for 

multivariate statistical quality control (MSQC) and methods for latent-based multivariate 

statistical process control: (Lb-MSPC). In the first part of the thesis the state of the art on 

fault diagnosis and identification (FDI) is introduced. The second part of the thesis is 

devoted to the fault diagnosis in multivariate statistical quality control (MSQC). The 

rationale of the most extended methods for fault diagnosis in supervised scenarios, the 

requirements for their implementation, their strong points and their drawbacks and 

relationships are discussed. The performance of the methods is compared using different 

performance indices in two different process data sets and simulations. New variants and 

methods to improve the diagnosis performance in MSQC are also proposed. The third 

part of the thesis is devoted to the fault diagnosis in latent-based multivariate statistical 

process control (Lb-MSPC). The rationale of the most extended methods for fault 

diagnosis in supervised Lb-MSPC is described and one of our proposals, the Fingerprints 

contribution plots (FCP) is introduced. Finally the thesis presents and compare the 

performance results of these diagnosis methods in Lb-MSPC. The diagnosis results in 

two process data sets are compared using a new strategy based in the use of the overall 

sensitivity and specificity.  
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Resumen 

La realización de un diagnóstico preciso de los fallos, tanto si se trata de fallos de 

sensores como si se trata de fallos de procesos, ha llegado a ser algo de vital importancia 

en la monitorización de procesos  (reduce las paradas de planta, incrementa la seguridad 

de la operación en planta y reduce los costes de producción). Se requieren diagnósticos 

rápidos y correctos si se quiere poder recuperar los procesos o productos antes de que la 

seguridad o la calidad de los mismos se pueda ver comprometida. En el estudio de las 

diferentes metodologías para el diagnóstico de fallos esta tesis distingue dos escenarios 

diferentes, métodos para el control de estadístico multivariante de la calidad (MSQC) y  

métodos para el control estadístico de procesos basados en el uso de variables latentes 

(Lb-MSPC). En la primera parte de esta tesis se introduce el estado del arte sobre el 

diagnóstico e identificación de fallos  (FDI). La segunda parte de la tesis está centrada en 

el estudio del diagnóstico de fallos en control estadístico multivariante de la calidad. Se 

describen los fundamentos de los métodos más extendidos para el diagnóstico en 

escenarios supervisados, sus requerimientos para su implementación sus puntos fuertes y 

débiles y sus posibles relaciones. Los resultados de diagnóstico de los métodos es 

comparado usando diferentes índices sobre los datos procedentes de dos procesos reales 

y de diferentes simulaciones. En la tesis se proponen nuevas variantes que tratan de 

mejorar los resultados obtenidos en MSQC. La tercera parte de la tesis está dedicada al 

diagnóstico de fallos en control estadístico multivariante de procesos basados en el uso 

de modelos de variables latentes (Lb-MSPC). Se describe los fundamentos de los métodos 

mas extendidos en el diagnóstico de fallos en Lb-MSPC supervisado y se introduce una 

de nuestras propuestas, el fingerprint contribution plot (FCP). Finalmente la tesis  

presenta y compara los resultados de diagnóstico de los métodos propuestos en                  
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Lb-MSPC. Los resultados son comparados sobre los datos de dos procesos usando una 

nueva estrategia basada en el uso de la sensitividad y especificidad promedia. 
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Resum 

La realització d'un diagnòstic precís de les fallades, tant si es tracta de fallades de 

sensors com si es tracta de fallades de processos, ha arribat a ser de vital importància en 

la monitorització de processos (reduïx les parades de planta, incrementa la seguretat de 

l'operació en planta i reduïx els costos de producció) . Es requerixen diagnòstics ràpids i 

correctes si es vol poder recuperar els processos o productes abans de que la seguretat o 

la qualitat dels mateixos es puga veure compromesa. En l'estudi de les diferents 

metodologies per al diagnòstic de fallades esta tesi distingix dos escenaris diferents, 

mètodes per al control estadístic multivariant de la qualitat (MSQC) i l mètodes per al 

control estadístic de processos basats en l'ús de variables latents (Lb-MSPC). En la 

primera part d'esta tesi s'introduïx l'estat de l'art sobre el diagnòstic i identificació de 

fallades (FDI). La segona part de la tesi està centrada en l'estudi del diagnòstic de fallades 

en control estadístic multivariant de la qualitat. Es descriuen els fonaments dels mètodes 

més estesos per al diagnòstic en escenaris supervisats, els seus requeriments per a la seua 

implementació els seus punts forts i febles i les seues possibles relacions. Els resultats de 

diagnòstic dels mètodes és comparat utilitzant diferents índexs sobre les dades procedents 

de dos processos reals i de diferents simulacions. En la tesi es proposen noves variants 

que tracten de millorar els resultats obtinguts en MSQC. La tercera part de la tesi està 

dedicada al diagnòstic de fallades en control estadístic multivariant de processos basat en 

l'ús de models de variables latents (Lb-MSPC). Es descriu els fonaments dels mètodes 

més estesos en el diagnòstic de fallades en MSPC supervisat i s'introdueix una nova 

proposta, el fingerprint contribution plot (FCP). Finalment la tesi presenta i compara els 

resultats de diagnòstic dels mètodes proposats en MSPC. Els resultats són comparats 

sobre les dades de dos processos utilitzant una nova estratègia basada en l'ús de la 

sensibilitat i especificitat mitjana. 
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 Justification, Objectives and Contributions  

Justification 

For centuries the only way to learn about malfunctions and their location was by 

biological senses (changes in shape or color, unusual sounds, unusual vibrations and 

fumes). Later, the great advances in the development of new measuring devices served to 

provide more exact information about important physical variables. However, these 

devices (sensors) also proved prone to malfunction raising the dilemma of false alarms. 

The existence of fault sensors became even more critical in automatic control of machines 

or processes, where the effects of such malfunctions finally derived into more devastating 

real process faults. 

An accurate fault diagnosis of both, faults sensors and real process faults have become 

more and more important for process monitoring (minimize downtime, increase safety of 

plant operation and reduce the manufacturing cost). Nowadays the speed of computers 

has made it realistic to capture faults while they are developing before they lead to 

significant disruptions. Quick and correct fault diagnosis is required in order to put back 

on track our processes or products before safety or quality can be compromised.  

According to this, an essential part of process monitoring is the fault diagnosis stage. 

There is a wide range of fault diagnosis and identification strategies. They can be based 

on a fundamental understanding of the process (mechanistic models) or based on the past 

experience with the process (data driven models). It must be noted that accurate detailed 

mechanistic models of processes are difficult and time consuming to develop what 

supposes that most of the process monitoring methods applied to industrial processes are 
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based on data driven measures. This thesis is going to focus precisely in data driven 

methods for fault diagnosis in monitoring multivariate processes. 

Even though we have only considered data driven diagnosis methods, it is noteworthy 

that the literature still provides an extensive list of different methodologies proposed to 

perform fault diagnosis. Unfortunately, these approaches have been introduced by 

emphasizing their positive or negative virtues generally on an individual basis so it is not 

clear for the practitioner which method should be used in each particular context. Another 

highlight is the lack of proposals in the literature concerning to an efficient way of 

comparing the diagnosis performance of these methods what make us to consider that 

appropriate methodologies to accomplish this objective are required. 

In the study and comparison of the fault diagnosis methodologies, this thesis 

distinguishes between two different scenarios: 

 Methods for multivariate statistical quality control (MSQC)  

These methods only perform reasonably well in data poor environments with a 

reduced number of mildly correlated quality and/or process variables and a well-

conditioned covariance matrix. The proposed diagnosis methods for this scenario 

work in the scale of the original measured variables and aim to the suspected 

responsible variables. After that, the process engineers must diagnose the root cause 

based on the list of suspected variables. 

The MSQC fault diagnosis methods prove unsuccessful to cope with situations 

involving large number of variables with high collinearity as it is usual in data rich 

environments typical of chemical, pharmaceutical and food industry processes. 

 Methods for latent-based multivariate statistical process control: (Lb-MSPC) 
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 These methods are appropriate in data rich environments involving large number 

of variables (hundreds of process variables), measured on-line (sensors with high 

collinearity), high sampling rate (seconds-hours) and missing data problems. The 

proposed diagnosis methods for this scenario are based on the projection to latent 

structures models such as principal component analysis (PCA) (Jackson 1991 and 

Jolliffe 2002) and Partial least squares (PLS) (Wold 1985 and Wold et al. 1987).  

The fault diagnosis methods in Lb-MSPC studied in this thesis are the supervised 

methods. These methods aim directly to the root cause of the faults and they do not 

provide just only a long list of suspected variables. It is remarkable that fault diagnosis 

in Lb-MSPC is not so straightforward as in MSQC as it works in a latent variable 

space and there are also hundreds or thousands of measured variables. It must also be 

noted that only if there is availability of information on the faults (historical data) it is 

feasible to accomplish the objective of the supervised methods.  

Objectives 

The detailed objectives of this thesis are the following: 

 Clarify the relationships and the requirements for the implementation in practice 

of the most important data driven diagnosis methods in MSQC and Lb-MSPC and 

highlight their key weaknesses and strengths. 

 Develop new efficient ways of comparing the performance of the different 

diagnosis methods.  

 Test and compare the performance of different diagnosis methods in MSQC. 

 Propose and test new improved variants of the diagnosis methods in MSQC.  

 Test and compare the performance of different diagnosis methods in Lb-MSPC 

 Propose and test new diagnosis methods in Lb-MSPC. 
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With the previous goals in mind the thesis is structured as follows: 

In the first part of the document, Chapter 1 introduces the state of the art on fault 

diagnosis and identification (FDI). After a general overview of the FDI, chapter looks in 

more detail the detection and diagnosis in multivariate process monitoring based in data 

driven methods. This chapter also presents a glossary for fault detection and diagnosis. 

Chapter 2 presents the material and the process data sets and simulations used for testing 

the diagnosis methods. 

The second part of the document (Chapters 3 to 6) is devoted to the fault diagnosis in 

multivariate statistical quality control (MSQC). Chapter 3 presents the most extended 

methods for fault diagnosis in supervised MSQC. The chapter describes the rationale of 

the different methods and shows the requirements for their implementation, their strong 

points and their drawbacks and establishes the relationships between them. Chapter 4 

presents the performance indices and compares the performance results of the diagnosis 

methods in multivariate statistical quality control (MSQC) described in Chapter 3. The 

diagnosis results in a four variables simulation are explored with a partial least square 

(PLS) model and compared using an analysis of variance (ANOVA). Chapter 5 presents 

new proposed variants in some of the MSQC diagnosis methods described in Chapter 3 

that try to improve their diagnosis efficiency according to the nature of the shortcomings 

detected in Chapter 4. Chapter 6 presents and compare the performance results of the 

improved diagnosis methods in MSQC described in chapter 5. The diagnosis results in a 

seven variables simulation are compared using an analysis of variance (ANOVA).  

The third part of the document (Chapters 7 to 9) is devoted to the fault diagnosis in 

latent-based multivariate statistical process control (Lb-MSPC). Chapter 7 presents some 

of the most extended methods for fault diagnosis in supervised Lb-MSPC. This chapter 

describes the rationale of these methods and shows the requirements for their 
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implementation, their strong points and their drawbacks. Chapter 8 introduces one of our 

proposals, the Fingerprints contribution plots (FCP). Chapter 9 presents and compares the 

performance results of the diagnosis methods in Lb-MSPC described in Chapters 7 and 

8. The diagnosis results in two process data sets are compared using a new strategy based 

in the use of the overall sensitivity and specificity. 

Finally, the fourth part of the document is devoted to the conclusions of this work.  

Chapter 10 presents the conclusions of this dissertation and the future directions of the 

current work. 

 

Contributions 

The main contributions of this work are: 

 The comparison study of the performance of the most extended data driven fault 

diagnosis methods in MSQC and Lb-MSPC. These methods are tested and 

compared under a wide number of different simulated scenarios and real process 

data bases.  

 The development of new efficient ways of comparing the performance of the 

different diagnosis methods. A strategy based in the use of the overall sensitivity 

and specificity is applied to the comparison of the Lb-MSPC performance results. 

A classical analysis of variance (ANOVA) is applied to the comparison of the 

MSQC performance results.  

 The comparison of the performance of different diagnosis methods in MSQC: 

Alt´s method (1985) Doganaksoy, Faltin  and Tucker´s method (1991), Hayter and 

Tsui´s method (1994), Modifications to the Doganoksoy, Faltin and Tucker´s 

method, Murphy´s method (1987), Hawkin´s method (1991,1993), Montgomery 



Justification, Objectives and Contributions 

 

xviii 
 

and Runger´s method (1996), Mason, Tracy and Young´s method (1995, 1997) 

and Step-down method (1958). 

 The development of new improved variants of the diagnosis methods in MSQC: 

two variants of the Mason Tracy and Young method: MTY1 and MTY2; three 

variants of the Hawkins´ method: T2-recursive (T2RH), T2-pre-filtered and 

recursive (T2FRH) and Hawkins’ one single variable method (HSVM); four 

variants of the Montgomery and Runger´s method: recursive methodology (RM), 

sequential extraction methodology (MUSE), pre-filtered and recursive 

methodology (FRM) and pre-filtered and sequential extraction methodology 

(FMUSE) ; finally, two variants of the Murphy´s method: T2-Murphy method 

(T2M) and pre-filtered T2-Murphy  (FT2M). 

 The development of a new supervised diagnosis method in Lb-MSPC: The 

fingerprints contribution plot method (FCP) (Vidal-Puig and Ferrer 2008). This 

method incorporates the historical information of the different types of faults to 

the contribution plot (most classical unsupervised method in Lb-MSPC).  

 The comparison of the performance of different diagnosis methods in Lb-MSPC: 

Fault signature proposed by Yoon S., MacGregor, J.F. (2001), SPE fault 

reconstruction proposed by Dunia R., Qin S.J. (1998), combined index fault 

reconstruction proposed by Yue H., Qin S.J. (2001) and discriminant partial least 

squares (PLS-DA) (Barker et al. 2003 and Wold et al. 2009) 

 The implementation in Matlab of all the diagnosis methods and variants applied 

in this study.    
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Part I 

Introduction 
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Chapter 1:  State of the art 

The objective of this chapter is to review the state of the art in multivariate statistical 

process monitoring and fault diagnosis. Section 1.1 reviews the diverse fault diagnosis 

approaches. Section 1.2 introduces the abundant terminology related to fault diagnosis. It 

presents a glossary of terms that are frequently used in the field of fault diagnosis. The 

last section of this chapter (Section 1.3) is dedicated to describe the statistical process 

control (SPC) methodology. 
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1.1 Fault diagnosis and isolation approaches  

Something that call our attention and can be somewhat misleading for new 

practitioners is that there are many different approaches to fault diagnosis and isolation 

(FDI) problem. Because each of them has their strengths and weaknesses, some practical 

applications may even combine multiple approaches. In this section, we highlight some 

of the major differentiating factors between the different techniques. These approaches 

are surveyed and conveniently classified in Venkatasubramanian et al. (2003). Figure 1.1 

shows a classification of fault diagnosis methods based in Venkatasubramanian´s 

proposal with some minor changes.   

 

 

 

 

 

 

FIGURE 1.1:  Classification of fault diagnosis methods  

In the proposed classification (Figure 1.1), the diagnostic systems are divided based 

on the a priori knowledge used. The basic a priori knowledge that is needed for fault 

diagnosis is the set of failures and the relationships between the observations and the 

failures. The a priori domain knowledge may be developed from a fundamental 

understanding of the process (model-based knowledge) or it may proceed from past 

experience with the process (process history-based knowledge).    
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In the case of the model-based knowledge there are quantitative and qualitative 

models.  In quantitative models this understanding is expressed in terms of mathematical 

functional relationships between the inputs and outputs of the systems. In qualitative 

model equations, these relationships are expressed in terms of qualitative functions 

centered around different units in a process. 

In process history based-knowledge (data driven models) only the availability of large 

amount of historical data can be transformed and presented as a priori knowledge to a 

diagnostic system. This is known as the feature extraction process from the process 

history data. The extraction process can mainly proceed as either quantitative or 

qualitative feature extraction.  

Finally, a third category which includes model free methods (Gertler 1998) can be 

added to complete this classification. The model free methods do not utilize the 

mathematical model of the plant and range from physical redundancy, special sensors, 

limit-checking or spectrum analysis.  

For an overall overview of the wide variety of solutions to the FDI problem a short 

review of all of them based on Venkatasubramanian et al. (2003) classification is 

presented in the following sections.  

1.1.1 First principles model-based methods  

These methods are developed from a fundamental understanding of the physics of the 

process using first-principles knowledge. “First principles” models are often engineering 

design models, reflecting physical laws such as mass balance, energy balance, heat 

transfer relations, and so on. Or, even qualitative models such as causal fault propagation 

models can be considered as “first principles” models if they are based on physical laws 
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or device implementation knowledge, rather than primarily on data. These models are 

also often referred to as using “deep knowledge”.  

1.1.1.1 Quantitative model-based methods 

These methods use an explicit mathematical model of the monitored plant. Most of 

the model based fault detection and diagnosis methods rely on the concept of the 

analytical redundancy where sensory measurements are compared to analytically 

computed values of the respective variable. Such computations use present and/or 

previous measurements of other variables and the mathematical plant model describing 

their nominal relationship to the measured variable. The resulting differences called 

residuals are indicative of the presence of faults in the system. Another class of model 

based methods relies directly on parameter estimation. 

The generation of residuals needs to be followed by residual evaluation, in order to 

arrive at detection and isolation decisions. To facilitate fault isolation, the residual 

generators are usually designed for isolation enhanced residuals, exhibiting structural or 

directional properties. 

The most important residual generation methods are: 

 Kalman filter: The innovation (prediction error) of the Kalman filter can be used 

as a fault detection residual. However fault isolation is somewhat awkward with 

the Kalman filter.  

 Diagnostic observers: The basic idea is to estimate the outputs of the system from 

the measurements by using observers in a deterministic setting (Patton and Chen 

1997). Depending on the circumstances, one may use linear (O´Reilly 1983) or 

nonlinear (Frank 1987) full or reduced order, fixed or adaptive observers.   
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 Parity relations:  They are rearranged and usually transformed variants of input-

output or state space models of the plant (Gertler and Singer 1990). The basic idea 

is to check the parity (consistency) of the plant models with sensor outputs 

(measurements) and known process inputs.  

In general the advantages of using quantitative model-based approach is that we will 

have some control over the behavior of the residuals through the use of enhanced residuals 

(directional or structured residuals). However, several factors such as system complexity, 

high dimensionality, process  nonlinearity and the lack of good data often render it very 

difficult even impractical to develop an accurate mathematical model for the system. In 

addition to the difficulties related to modelling they do not support an explanation facility 

that enable users to understand how conclusions are reached, to be convinced that these 

conclusions are reasonable.  

1.1.1.2 Qualitative model-based methods 

They are based on various forms of qualitative knowledge used in fault diagnosis. The 

need for a reasoning tool which can qualitatively model a system, capture the causal 

structure of the system in a more profound manner than the conventional expert systems 

lead to development of methodologies to qualitatively represent knowledge, and to reason 

from them. These methods can be classified into digraphs, fault trees and qualitative 

physics methods 

 Causal model approaches using digraphs: Diagnosis is concerned with deducing 

the structure from the behavior. This kind of deduction needs reasoning about the 

cause and effects relationships in the process. Cause-effect relations or models can 

be represented in the form of signed digraphs (SDG) that lead from the ‘cause’ 

nodes to the ‘effect’ nodes. SDGs provide a very efficient way of representing 
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qualitative models graphically and have been the most widely used form of causal 

knowledge for process fault diagnosis.  Iri et al. (1979) were the first to use SDG 

for fault diagnosis.  

 Fault trees approaches: Fault trees are used in analyzing system reliability and 

safety. Fault tree is a logic tree that propagates primary events or faults to the top 

level event or a hazard. The tree usually has layers of nodes. At each node different 

logic operations like AND and OR are performed for propagation. Fault-trees have 

been used in a variety of risk assessment and reliability analysis studies. 

 Qualitative physics approaches: They are based on common sense reasoning 

about physical systems and have been an area of major interest to artificial 

intelligence community.  

In general we can say that causal models are a very good alternative when the 

quantitative models are not available but functional dependencies are understood. 

Abstraction hierarchies help to focus the attention of the diagnostic system quickly to 

problem areas. They can also provide an explanation of the path of propagation of a fault. 

They suffer from resolution problems resulting from the ambiguity in qualitative 

reasoning.  

1.1.2 Data driven based methods  

1.1.2.1 Qualitative data-driven methods 
 

Two of the important methods that employ qualitative feature extraction are the 

expert systems and qualitative trend analysis (QTA). 

 Expert system approaches: Rule-based feature extraction has been widely used in 

expert systems for many applications. An expert system is generally a very 

specialized system that solves problems in a narrow domain of expertise. They 

can be used where fundamental principles are lacking but there is an abundance 
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of experience despite not enough detail is available to develop accurate 

quantitative models. Initial attempts at the application of expert systems for fault 

diagnosis can be found in the work of Henley (1984), Chester et al. (1984), Rich 

et al. (1989) and Niida (1985). There are a number of other researchers who have 

worked on application of expert systems for fault diagnosis problems. However 

in all the applications, the limitations of an expert system approach is obvious. 

knowledge based systems developed from expert rules are very system specific 

and they are difficult to update. The advantage though is in the easy development 

and transparent reasoning. 

 
 Qualitative trend analysis approaches:  This method works by representing sensor 

trends as a sequence of certain basic shapes (called primitives) and matching the 

current sensor-trends against the sensor-trends for various faults stored in a 

database. Trend analysis and prediction are important components of process 

monitoring and supervisory control. Trend modelling can be used to explain the 

various important events that happen in a process, do fault diagnosis and predict 

future states. Cheung and Stephanopoulos (1990)  have built a formal framework 

for the representation of process trends. Other interesting results on qualitative 

trend analysis can be found in the work of Janusz and Venkatasubramanian 

(1991), Rengaswamy and Venkatasubramanian (1995) and Rengaswamy et al. 

(2001).  
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1.1.2.2 Quantitative data-driven methods 
 
 

The statistical feature extraction approaches include methods based on statistical 

pattern classifiers, methods based on the multivariate Hotelling´s T2  statistic and methods 

that use projection to latent structures models such as principal component analysis (PCA) 

or partial least squares (PLS). 

 Neural networks approaches (NNs): A neuronal network is a computer 

architecture in which processors are connected in a manner suggestive of 

connections between neurons. The NNs can learn by trial and error and 

adjust its behaviour accordingly. NNs has been conceptualized by some authors 

as non-parametric statistical techniques (Smith, 1993) or as non-linear regression 

techniques (Sarle,1994).  In general, neural networks that have been used for fault 

diagnosis can be classified along two dimensions: (i) the architecture of the 

network such as sigmoidal, radial basis and so on; and (ii) the learning strategy 

such as supervised and unsupervised learning. The most popular supervised 

learning strategy in neural networks has been the back-propagation algorithm. In 

chemical engineering, Watanabe et al. (1989), Venkatasubramanian and Chan 

(1989), Ungar et al. (1990) and Hoskins et al. (1991) were among the first 

researchers to demonstrate the usefulness of neural networks for fault diagnosis. 

About its limitations it must be noted that due to the procedural nature of neural 

network development they lack the explanation and adaptability properties. They 

have also the limitation of their generalization capability outside of the training 

data despite this problem can be alleviated avoiding decision in case there are no 

similar training patterns in that region. They also have problems when multiple 

faults are considered. 
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 Discriminant analysis: Fault diagnosis is cast in a classical statistical pattern 

recognition framework. Distance classifiers use distance metrics to calculate the 

distance of a given pattern from the means of various classes and classify the 

pattern to the class from which it is closest.  

 

 Multivariate statistical approaches based on the Hotelling´s T2 statistic: A wide 

variety of methods specially fitted for multivariate statistical quality control 

(MSQC) have been proposed: Doganaksoy et al. (1991), Hayter and Tsui´s  

(1994),  Murphy (1987), Hawkins (1991,1993), Runger and Montgomery (1996), 

Mason, Tracy and Young (1995, 1997) and Roy (1958). Most of these methods 

are based on computed terms that are equivalent to different decomposition terms 

of the Hotelling´s T2 statistic. These methods work in the original measured 

variable space. The problem with these methods is that they perform reasonably 

well only in scenarios of limited number of mildly correlated variables as it is 

the common case in statistical quality control. In addition to this, in multivariate 

statistical process control (MSPC), where there is a large list of process and 

quality variables involved with high correlations among them, the covariance 

matrix becomes close to singular or ill conditioned and, consequently, all these 

methods present difficulties in the inversion of the covariance matrix.   

 

 Multivariate statistical approaches based on PCA/PLS models (Lb-MSPC): The 

successful applications of latent based multivariate statistical methods to fault 

diagnosis such as Principal Component Analysis (PCA) and Partial Least 

Squares (PLS) have been extensively reported in the literature. Overview of 

using PCA and PLS in process analysis, control and fault diagnosis was given by 
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MacGregor et al. (1991), MacGregor et al. (1994), MacGregor and Kourti 

(1995), Kourti and MacGregor (1996) and Nomikos and MacGregor (1995). In 

unsupervised fault diagnosis MacGregor et al. (1994) and Miller et al. (1993) 

suggested the use of contribution plots on scores and square prediction error 

(SPE). This tool indicates which variables are likely the contributors to inflated 

SPE or scores due to the presence of a fault. In supervised fault diagnosis, Dunia 

and Qin (1998) and Yue and Qin (2001) looked at PCA from a geometric point of 

view and presented a fault reconstruction methodology that analyzed the fault 

subspace for process and sensor fault detection and diagnosis. Alcala and Qin 

(2009) proposed a reconstruction-based contributions approach. Raich and Cinar 

(1996) proposed an integral statistical methodology combining PCA and 

discrimination analysis techniques based on angle discriminants for fault 

diagnosis. Yoon and MacGregor (2001) proposed to extract fault signatures that 

are vectors of movement of the fault in both the model space (PCA/PLS) and the 

residual space. The directions of these vectors are then compared to the 

corresponding vector directions of known faults in a fault library. Another 

important tools for classification is PLSDA (partial least squares discriminant 

analysis) (Sjöström et al. 1985). This classification tool is based on partial least 

square models in which the dependent variable is chosen to represent the class 

membership. Another widely used multi-model approach for fault diagnosis is 

the SIMCA (Soft Independent Modeling of Class Analogies) (Wold 1983) where 

a principal component analysis (PCA) is fitted to data from each class of fault.  
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1.1.3 Model free methods  

These methods include the following techniques: 

 Physical redundancy: Multiple sensors are installed to measure the same physical 

quantity. Any serious discrepancy between the measurements indicates a sensor 

fault.  It  involves extra hardware cost, extra weight and only would serve to 

diagnose sensor faults 

 Special sensors: They may be installed for detection and diagnosis.  

 Limit checking: Plant measurements are compared by computer to preset limits. 

Exceeding the threshold indicates a fault situation. This approach suffers from two 

serious drawbacks: Test thresholds need to be set quite conservatively and the 

effect of a single component may propagate into many plant variables, setting of 

multitude of alarms and making isolation extremely difficult. 

 Spectrum analysis: Most plant variables exhibit a typical frequency spectrum 

under normal operating conditions; any deviation from this is an indication of 

abnormality. Certain types of faults may even have their characteristic signatures 

in the spectrum facilitating fault isolation. 

 

1.2 Glossary for fault detection and diagnosis 

This section presents a glossary of terms that are frequently used in the field of fault 

diagnosis and that in some cases are diversely interpreted and may involve contradictions.  

According to Gertler (1998) definitions:  

Faults: departures from an acceptable range of an observed variable or a 

calculated parameter associated with a process and consequently they are 
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deviations from the normal behavior in the process or its instrumentation. This 

defines a fault as a process abnormality or symptom. The underlying cause of this 

abnormality is called the basic event or the root cause. The basic event is also 

referred to as malfunction or failure. We distinguish between Jump- fault (step 

function) and Drift-fault (ramp function). The faults cannot be handled 

adequately by the controllers. Faults are unknown inputs which we wish to detect 

and isolate. We can classify the faults in the following categories: 

o Process Faults: changes (abrupt or gradual) in some plant parameters. 

Such faults may include surface contaminations, clogging, partial or 

total loss of power, plant leaks and loads.  

o Sensor Faults: discrepancies between the measured and the actual 

values of individual plant variables. Gross error detection or sensor 

validation refers to the identification of faulty or failed sensors in the 

process. Data reconciliation or rectification is the task of providing 

estimates for the true values of the sensor readings. 

o Actuator Faults: discrepancies between the input command of an 

actuator and its actual output 

Disturbances:  nuisances which we wish to ignore. They can be managed by 

standard process controllers (PI controllers, model predictive controllers).  

Fault detection: indication that something is going wrong in the monitored 

system and that a fault has occurred. 

Fault isolation: determination of the exact location of the fault or the component 

which is faulty, identifying the measured variables most relevant to diagnosing 
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the fault. The purpose of this procedure is to focus the plant operator´s and 

engineer´s attention on the subsystems more pertinent to the diagnosis of the fault.   

Fault identification: determination of the magnitude of the fault. 

Fault diagnosis: isolation and identification task together. Statistical fault 

diagnosis aims to the most suspected variables responsible for the fault. Following 

this, process engineers proceed to the fault diagnosis of the root causes.  

Process recovery or intervention: removal of the effect of the fault. In the case 

of a sensor problem, a sensor reconstruction technique can be applied to the 

process to restore in-control operations.   

While detection and isolation is an absolute must in any practical system, the 

identification may not justify the extra effort it requires. In case that only detection and 

isolation is considered we can talk about FDI (fault detection and isolation) systems 

(Gertler 1998). On the contrary another authors prefer FDI as an acronym for fault 

detection and identification systems. The two tasks, detection and diagnosis, may be 

performed in parallel or sequentially. It is most common the sequential strategy where the 

detection task is running permanently and the diagnostic task is triggered only upon the 

detection of the presence of a fault 

Regarding the performance efficiency of the diagnosis systems:  

Sensitivity for a fault fi : proportion of the real faults (fi ) that are correctly classified by the 

diagnosis method. it must be noted that in fault detection the term fault sensitivity is also 

used to describe the ability of the different techniques to detect faults of reasonably 

small size.  
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Specificity for a fault fi : proportion of the real “no fi faults” that are correctly classified by 

the diagnosis method as “no fi fault” .  

Reaction Speed: ability of the technique to detect faults with reasonably small 

delay after their arrival. 

Robustness: ability of the technique to operate in the presence of noise, 

disturbances and modeling errors with few false alarms. 

Isolation performance: ability of the diagnosis system to distinguish faults, 

depends on the physical properties of the plants, size of the faults, noise, 

disturbances, and model errors and on the design of the diagnosis algorithm. 

Multiple simultaneous faults are more difficult to isolate than single faults. 

Further, some faults may be non-isolable from one another because they act in an 

undistinguishable way. 

Regarding the availability or not of faults data sets used for implementing the fault 

diagnosis algorithms:  

Unsupervised fault diagnosis: there is no information about the different types 

of fault. So when a fault is detected, in the diagnosis stage it is decided which 

variables are involved in the fault and then the process engineers have to search 

for the root causes of the fault. 

Supervised fault diagnosis: there exist data sets for the different types of fault. 

In the diagnosis stage it can aim directly to the root cause so it can be much helpful 

to process engineers. 
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1.3 Statistical process control 

The aim of Statistical Process Control (SPC) is to monitor the performance of a 

process along time in order to verify whether the process behaves as it is expected to do 

(i.e. if it is in-control or not), and to detect any unusual (special) event that may occur. It 

will detect the anomalies (special causes) at an early stage (fault detection) and will help 

to identify the causes of the anomalies (fault diagnosis). Significant improvements in the 

process performance can be achieved by eliminating these causes (or implementing them 

if they are beneficial). As it can be seen, the diagnosis of the faults, which is the principal 

topic of this thesis, is an important stage in SPC.  

 

1.3.1 Statistical process control – Detection 

The fault detection is the first stage in the SPC. It is an indication that something is 

going wrong in the monitored system or that there is statistical evidence that a fault has 

occurred in the process. The basic tools for fault detection in the SPC are the control 

charts. These charts require to take data periodically (process or quality variables) from 

the monitored process and plot the evolution of different statistics in special charts. These 

charts allow the process operators to detect the signals of the existence of a fault more 

easily.      

At this point, it is worth noting the difference between the common and special 

variation cause since it is important to distinguish among them in order to implement an 

SPC scheme: 

Common causes are the usual, historical, quantifiable variation in a system. These 

causes produce a stable predictable pattern in the variability of the measured 
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parameter. If only common causes are present, the process is considered “ in statistical 

control”.    

Special causes are unusual, not previously observed and non-quantifiable variation. 

They are associated to faults or anomalies and when they are present the process is 

considered out of statistical control, and consequently, there is no a stable predictable 

pattern in the variability of the measured parameter. When a process is out of control 

then the anomalies must be diagnosed and measures to correct and prevent their 

reappearance (if harmful) taken.  

In industrial processes where process and quality variables are measured there are 

different charts and strategies for fault detection in statistical process control: univariate 

charts for univariate statistical process control (USPC), multivariate charts for classical 

multivariate statistical process control (MSPC), and megavariate charts for Lb-MSPC on 

latent variable models. 

It must be noted that the methods for fault diagnosis are influenced by the different 

charts and strategies used for the fault detection. 

 

1.3.1.1 Univariate statistical process control (USPC) 

In order to implement an USPC scheme, industries have used some univariate control 

charts to monitor one or a few quality variables or key process variables that are suspected 

to be related in some way to the final product quality. The USPC most used charts in the 

literature have been the Shewhart, Cumulative sum (CUSUM) and EWMA charts.  

In the following, a brief overview of such control charts is given.   
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Average run length (ARL) 

The average run length (ARL) is defined as the average number of points that will be 

plotted on a control chart before and out-of-control condition is indicated when one or 

several points exceed the stated control limits.  

There are two types of ARL: the in-control ARL that is measured when the process 

is actually in control and consequently the detected fault corresponds to a false alarm and 

the out-control ARL that is measured when the process is actually out of control and 

consequently the detected fault corresponds to a real alarm. 

The ARL is useful to compare the performance of SPC control charts in terms of fault 

detection. 

Shewhart charts 

This type of chart was developed by Shewhart (1931). Figure 1.2 shows a typical 

example. This chart contains a center line (green line), which represents the in-control 

average value of the sample statistic of the variable to be monitored. Additionally, two 

lines (blue and red lines) are depicted and represent the Upper Control Limit (UCL) and 

Lower Control Limit (LCL). The values of such control limits are chosen in such a way 

that when the process is under control, an expected fraction  of the statistics values lies 

beyond the control limits assuming the sample statistic is normally distributed. Hence, a 

100(1-) percentage of the sample statistic values plotted are expected to fall within the 

confidence region limited by the upper and lower control limits. 

One of the most common Shewhart control charts is the ̅ݔ െ  control chart, which is ݏ

designed from two different charts. The ̅ݔ chart uses the sample mean to monitor the 

process mean whereas the s chart uses the sample standard deviation to monitor the 

process standard deviation at each sampling time point. 
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In a first stage an historic data set generated when the process is in control is analyzed. 

After checking the normal distribution and purging the abnormal data of this data set, the 

in-control mean (µref), the standard deviation (ref) and the upper (UCL) and lower (LCL) 

control limits (µref ± 3ref) for the chart of the monitored parameter (̅ݔ or s),  are 

calculated. The existence of outliers would cause wider control limits, thereby reducing 

the detection capability of the charts. Hence, a previous step consisting of detecting 

potential outliers in data needs to be taken prior to the estimation of the control limits. 

The process is considered out of control when the statistic sample mean of a new 

observation lays out of the bounds defined by the control limits or according to some 

additional rules that attempt to distinguish abnormal from natural patterns based on 

several criteria such as: the absence of points near the centerline, the absence of points 

near the control limits, or other abnormal patterns (systematic, repetition, trend patterns). 

It is worth noting that there are many situations in industry in which the sample size is 1, 

hence, control charts for individual measurements are used.   

As it can be seen in Figure 1.2 the Shewhart chart performs a sequential test on the 

mean for every sample taken from the process. In each observation it is checked if the 

mean for the monitored variable stay in µref  or on the contrary there is enough statistical 

evidence to reject this hypothesis. It is known that even when a process is in control, that 

is, no special causes are present in the system, there is approximately a 0.27% probability 

of a point exceeding 3-sigma control limits so it means that this chart has a type I risk 

=0.0027. For a Shewhart control chart using 3-sigma limits, this false alarm occurs on 

average once every 1/0.0027 = 370.4 observations. Therefore, the in-control ARL of a 

Shewhart chart is 370.4. Meanwhile, if a special cause does occur, it may not be of 

sufficient magnitude for the chart to produce an immediate alarm condition. If a special 

cause occurs, one can describe that cause by measuring the change in the mean and/or 
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variance of the process in question. When those changes are quantified, it is possible to 

determine the out-of-control ARL for the chart.  

It turns out that Shewhart charts are quite good at detecting large changes in the 

process mean or variance (jump faults), as their out-of-control ARLs are fairly short in 

these cases. However, for smaller changes (such as a 1- or 2-sigma change in the mean) 

or drift faults, the Shewhart chart does not detect these changes efficiently. Figure 1.3 

shows that this chart has not many chances to quickly detect a 1-sigma change in the mean 

since the resulting out-of-control ARL is large in size. For instance, using one point 

beyond the limits as the out-of-control rule, in the case of a change in mean from an         

in-control normal distribution (ref=5; ref=1) to an out-of-control normal distribution 

(new=6; ref=1), the resulting out-of-control ARL is equal to 1/P = 44 where P=0.0229 is 

the out-of-control probability for one single observation. It means that on average 44 

observations will be required to detect this small shift in mean and consequently, 

this lack of sensitivity to detect small shifts in the mean urges to use other monitoring 

strategies to detect these types of faults. Other types of control charts have been developed 

to overcome these problems, such as the CUSUM and EWMA charts which detect smaller 

changes more efficiently than the Shewhart Chart by making use of information from 

observations collected prior to the most recent data point. 
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FIGURE 1.2:  Shewhart monitoring chart for an in-control N/(ref=5; ref=1)  
   
 

 

 

FIGURE 1.3:  Change from an in-control N/(ref=5; ref=1)  to an out 
of-control N(new=6; ref=1) at t=100 in a Shewhart monitoring chart 
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CUSUM charts 

The CUSUM chart was originally designed by Page (1961). The basic idea is to plot 

at each stage t the CUSUM of past and present deviations of the selected sample statistic 

zt over its target (in-control) value θref : 

 St	=∑ (zi െ θref)
t
i=1        (1.1)

CUSUM charts are more effective (smaller out-of-control ARLs) than Shewart charts for 

detecting persistent shifts in the process parameter θ, since the former accumulates 

information of several samples. When the process is under control, the CUSUM statistic 

Si will fluctuate around 0 as a random walk. In the case there is a shift in θ the CUSUM 

control chart will signal an upward or downward trend. Care should be taken in the 

interpretation of the trends since it may happens that the process parameter θ is on target 

but the CUSUM value Si is far from 0, giving the appearance that there has been a process 

shift. Control limits in the shape of a V-mask were proposed in the original CUSUM 

control chart to identify statistically significant changes in the slope. An alternative to the 

V-mask based CUSUM control chart is the so-called tabular CUSUM. This involves two 

statistics Si
+ and  Si

- , which are the sum of deviations above the target (referred as one-

sided upper CUSUM) and below the target (referred as one-sided lower CUSUM), 

respectively. 

Both statistics are expressed as: 

 St
+=max൛0, zt െ ൫θref + D൯ + St-1

+ ൟ 

St
ି=max൛0, ൫θref െ D൯ െ zt + St-1

ି ൟ     
(1.2)

where D is the ‘reference value’ to detect a change in the process parameter. This is 

usually set to the difference between the target value θref and the out-of-control value 

 ௡௘௪that we are aiming to detect quickly. The starting value of the aforementionedߠ

statistic is St
+=	St

ି ൌ 0. When any of the two statistic exceeds a stated threshold H, the 
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process is considered to be out of control. ARL based methods are often used to find the 

appropriate values of the parameters H and D. The proper selection of both parameters is 

crucial for the good performance of the control chart in terms of fault detection (Hawkins 

Olwell 1988). 

FIGURE 1.4: :  Change from an in-control N/(ref=5; ref =1)   to an out of-control N(new=6;  ref =1)
at t=100 in a  CUSUM monitoring chart 

 

Figure 1.4 shows an example for a change in mean with a sample of size 1 and              

θref = ref. It can be seen that the slope for the monitored statistic St is more pronounced 

after the fault at  t =100. 

 

EWMA charts 

The Exponentially Weighted Moving Average (EWMA) chart was first introduced by 

Roberts (1959). The control statistic to be charted is an EWMA of present and past values 

of the selected sample statistic zt.  

 Et =  zt + (1 െ ) Et-1    (1.3)
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Where  is a smoothing constant (0 <  ≤1). Considering that the initial value E0 is 

equal to the process target θref , Equation 1.3 can be expressed as: 

 Et	= (1 െ )௧ E0 + ∑ (1 െ )௧ି௜௧
௜ୀଵ zi    (1.4)

The latter expression shows the weight 	(1 െ )௧ି௜ decreasing geometrically with the 

time at which the observation were registered. Hence, the parameter  determines the 

memory of EWMA, i.e. the rate of weighting of past information. When  ൌ 1, the chart 

becomes a Shewhart control chart. On the contrary if   is close to zero, the EWMA 

performs like a CUSUM. The selection of the parameter  should be chosen based on the 

magnitude of the shift to be detected. Usual values for this parameter are 0.05	≤		≤	0.25. 

As commented before, the goal of this chart is to improve the detection of small shifts 

in the monitored process parameter. Typically, this chart has two control limits (red lines 

depicted in Figure 1.5), upper (UCL) and lower (LCL) control limits, which define the 

region where the process can be considered under control. When one or more values of 

Et exceed the control limits, the process is considered to be out of control. The central 

line represented in Figure 1.5 is the process target θref . The EWMA control limits are 

estimated as  

 
	UCL = θref  + LZ ඨ


(2 െ )

ൣ1 െ (1 െ )2t൧ 

	LCL = θref  െ LZ ඨ


(2െ )
ൣ1 െ 	(1 െ )2t൧ 

(1.5)

where L is the width of the control limits and z is the standard deviation of the sample 

statistic zt . Usually, the parameter L is typically set to values between 2.6 and 3. For 

further details, readers are referred to Hunter (1986).  
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FIGURE 1.5: :  Change from an in-control N/(ref=5; ref=1)  to an out-of-control N(new=6; ref=1) in 
EWMA Monitoring Chart at t=150

 

Figure 1.5 shows that EWMA charts give better results than Shewhart charts in the 

detection of slight changes of mean and that, consequently, provides a smaller                   

out-of-control ARL. 

1.3.1.2 Classical multivariate statistical process control (MSPC) 

USPC: Limitations  

Quality is often a multivariate property and univariate control charts ignore 

correlation. This phenomenon can be appreciated from Figure 1.6 where two quality 

variables are monitored using two different univariate control charts and a two-

dimensional control chart that is built by aligning one univariate control chart 

perpendicular to the other. Assume that the control limits of the univariate control charts 

are set to a 99% confidence level. As observed, the bivariate observation lies within the 

in-control region limited by the UCL and LCL when USPC is used to monitor both 

variables. The ellipsoid shown at the top-left in Figure 1.6 represents the control limits 

associated with the in-control bivariate process behaviour at 99% confidence level. It can 

be seen that the observation lies outside the in-control region represented by the ellipsoid, 
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which indicates that the quality of the product is actually deviating from historical normal 

records. Nonetheless the abnormality is not detected by the USPC. This support the claim 

that a monitoring scheme needs to capture the time-varying correlation among variables 

to be capable of detecting severe abnormalities affecting the multivariate data structure. 

This is the role of the multivariate control charts introduced in the following. 

 
FIGURE 1.6:  Univariate control chart limitations

 

Multivariate charts 

There are different types of charts that may be used in MSPC such as Hotelling´s  T2, 

MCUSUM and MEWMA. In the case of the Hotelling´s  T2, the monitored statistic is 

based on the estimated Mahalanobis´s distance. Let xi represent a K-dimensional vector 

of measurements made on a process at sampling time i. Let us assume that when the 

process is in control, the xi are independent and follow a multivariate normal distribution 

with a Kx1 mean vector ref and a KK covariance matrix , i.e. x NK (ref, ). 

For the multivariate normal distribution, the probability density function (pdf) is 

Observation is within the control 
limits of the univariate charts 
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 ݂ሺ࢞ሻ=keି
భ
మ
൫xିref൯

T
-1൫xିref൯ ൌ keି

భ
మ
஽మ    (1.6)

This density function gives the ”likelihood” or “prior probability” of the observation. 

From this expression the Mahalanobis´s squared distance of the observation is defined as: 

 DMahalanobis
2 =൫x െ ref൯

T
-1൫x െ ref൯  (1.7)

It must be noted that this is a stastistical distance and that the larger the likelihood the 

shorter the Mahalanobis´ square distance. 

Figure 1.7 shows a normal distribution bivariate case with a positive correlation, 

where the different ellipses show the set of observations with a similar Mahalanobis´ 

distance. It can be seen that this Mahalanobis´ distance is not a Euclidean but a 

probabilistic distance i.e. the green dot observation is further from a probabilistic point 

of view of the red dot observation (mean)  than the blue dot observation despite there is 

the same Euclidean distance in both cases.  

The Hotelling´s T2 statistic (Jackson 1985, Mason, Tracy and Young 1992) is defined 

as the estimated Mahalanobis´ squared distance from the K-dimensional sample 

observation xi to its sample mean vector x :	

 )()( 12 xxSxx  
ii

T
iT     (1.8)

 

           FIGURE 1.7:  Mahalanobis´ distance   
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where x and S are, respectively, the sample mean vector and covariance matrix calculated 

from a reference (in-control), historical data set having N multivariate observations. 

When the sample observation xi is independent of the estimates xത and S, the distribution 

of Hotelling´s T2 is given by an F-Snedecor distribution: 

 
),(

2

11 KNKFT
))(NK(N

K)N(N





    (1.9)

This Hotelling´s T2 statistic is most frequently monitored in a Shewhart chart.  But it 

must be noted that CUSUM and EWMA variants can also be implemented with this 

statistic. In such case we will obtain the MCUSUM and MEWMA charts that are the 

multivariate extensions of these charts described in Section 1.3.1.1. 

   

1.3.1.3 MSPC on latent variable models 

Classical SPC Limitations 

The classical tools of SPC (USPC and classical MSPC) are extremely inefficient in 

the megavariate context of the XXI century processes (Ferrer 2014). Among the reasons 

of such inefficiency are the high dimensionality of the covariance matrices, the high 

degree of collinearity that is caused by the correlation structure among process and quality 

variables, the common presence of missing data and the existence of a low noise-signal 

ratio in the data. In this context analyzing each variable separately, as if they were 

independent variables, makes the interpretation and the diagnostic of the problems with 

the univariate strategy a very difficult, not to say impossible, task. The ill-conditioned 

covariance matrix is a problem in the computation of the inverse of the covariance matrix, 

which makes that the Hotelling´s T2 statistic (traditionally used in classical MSPC) 

becomes unstable. Indeed, in the case that there are more variables than observations 

the covariance matrix becomes singular and, as a result of this, the Hotelling´s T2 statistic 

cannot be calculated. In addition, Hotelling´s T2 statistic is also affected by the existence 
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of missing data, since when there are missing data the computation of this statistic is not 

possible and it supposes that the information contained in the rest of the measured 

variables is not finally used.  

It is in this context where the use of statistical techniques based on the projection 

to latent structures, such as Principal Component Analysis (PCA) (Jackson 1991), and 

the Partial Least Squares, (PLS) (Geladi and Kowalski 1986, Wold et al. 1987) 

becomes an interesting option. These techniques are relatively robust to the presence 

of missing data and can successfully cope with large ill conditioned covariance 

matrices. These techniques allow to implement the Megavariate Statistical Process 

Control (Mega-SPC) (Ferrer 2007). The PCA and PLS compress the multidimensional 

data in a small number of latent variables which explain the majority of the variability 

in the measured variables and its relationships. It is in this new subspace of notably 

reduced dimension, where it can be explained most of the variability of the measured 

variables and its relationships, and where the classical techniques of the SPC work 

without problems. This approach allows the process operators to indirectly control a 

multitude of process variables through the monitoring of a small number of latent 

variables, and the prediction of the quality parameters from the recorded information 

of the process making use of inferential models known as soft sensors.   

 

Latent variable models 

o Principal component analysis (PCA) 

In a situation where N observations in K measured process variables and M 

quality variables are registered in normal operation conditions of the process, the 

information can be organized in two data matrices, process variables data matrix X 

(N×K) and quality variables data matrix Y (N×M). These matrices usually are mean 
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centered and scaled to unit variance. The PCA can be used to decompose both 

matrices making Z=X or Z=Y in a set of matrices of range equal to 1 according to 

the following expression:   

 
Z ൌ෍ tapa

T+E=Z෡
A

a=1

+E  (1.10)

where the loading vectors pa  are the directions which maximize the variance in the 

subspace Z and define the latent subspace of dimension A (A ≤ range of Z); the score 

vectors ta = Z pa  are the new latent variables, projection of the N observations in the 

A-dimensional latent subspace spanned by the principal directions; and Ẑ is the 

prediction of matrix Z from only the first A principal components. The latent variables 

are orthogonal and can be sorted according to the percentage of explained variance. 

The vectors pa and ta  are the a-th  eigenvectors of matrices ܈T܈ and ZZT, respectively. 

The number of components can be determined by crossvalidation (Wold 1978) in such 

a way that the matrix of the model residuals E does not include a significant predictive 

component. Note than other criteria than crossvalidation may be more appropriate in 

Lb-MSPC (Camacho and Ferrer 2014). 

 The quadratic error in the prediction of the observation i-th is given by the following 

expression: 

 
SPEi=෍ eik

2 =  (

K

k=1

zi െ zොi)
T(zi െ zොi)  

(1.11)

 

This represents the euclidean distance of the observation zi to its own projection 

in the A-th dimensional latent subspace and, consequently, it is an index of the 

goodness of fit of that observation to the latent model. The model of the in-control 

process is defined by the directions p
a
, the mean vector ref	of the original variables 
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and the covariance matrix of the latent variables (diagonal matrix including the 

variances of the A latent variables considered in the model). For each new observation 

znew, the monitoring consists on computing the scores ta,new and the SPEnew, and 

compare them to the region for an in-control process in the corresponding multivariate 

control charts. 

 
The scores ta are linear combinations of the process variables and, as a 

consequence of the central limit theorem, can be approximately modelled by a 

multivariate normal distribution.  Hotelling´s T2 charts on only A components are used 

to monitor the scores. To distinguish this statistic from the normal Hotelling´s T2 

statistic which uses all the components, we will use the notation TA
2 . 

  
 

TA
2 =෍

ta,new
2

sa
2

A

a=1

=෍
pa

T൫znew െ μref൯

aݏ
2

A

a=1
 

(1.12)

 
where sa

2 is the variance of the a-th latent variable.  

The upper control limit of the TA
2 	chart can be obtained by different approaches 

but it is frequent to use the expression given by Tracy et al. (1992) 

 
)AN,AF

)AN(N

1)A(N
UCL -1

2

TA





 (2   
(1.13)

 

where ),( ANAF -1   is the (1-α)100 percentile of the F- Snedecor distribution 

with (A, N-A) degrees of freedom. 

The upper control limit for the SPE can be calculated from approximated solutions 

that are based on cuadratic forms or obtained from a historic data reference in-control 

distribution. Box (1954) demonstrated that the distribution of the SPE is well 

approximated by a non-central chi-square distribution g∙2
(h) where g (scale 

parameter) and h (freedom degree) depend on the eigenvalues (A+1, A+2 ….K) of 
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the covariance matrix of the residuals E. Nomikos and Macgregor (1995) use this 

approach and proceed to estimate the parameters of the non-central chi-square by the 

methods of the moments. That is to say, they equal the mean and the variance of the 

SPE calculated on the reference in-control data set (obtained under normal operating 

conditions, NOC) to the expected values for the chi-square distribution (gh and 2g2h 

respectively). Thus, the following expression for the SPE control limit with a type I 

risk α is obtained: 

 SPEα=


2m
2m2

 , α

2   (1.14)

 

where 2m2

 , α

2  is the (1-α)  100 percentile for a chi-square distribution with 
2m2


 degree 

of freedom. Another approximation is used by Jackson and Mudholkar (1979): 

 

 

SPEα=θ1

ۏ
ێ
ێ
zαට2θ2h0ۍ

2

θ1
+
θ2h0(1 െ h0)

θ1
2

ے
ۑ
ۑ
ې
1

h0
ൗ

 

 

(1.15)

where θk=∑ (j)
kK

j=A+1 	 and  h0=1- ൬2θ1θ3

3θ2
2൘ ൰ and zα is the (1-α)100 percentile for 

a standard normal distribution. 

The TA
2  chart checks if the new observation is inside the normal operation region 

(inside statistical control limits) of the projected subspace and the SPE chart analyses 

if the distance from the new observation to its projection in the model latent variables 

subspace is similar to the case of the in-control observations. As it can be seen in 

Figure 1.8 abnormal variations which break the correlation structure of the model 

would lead to abnormally large values of the SPE whilst abnormal variations that keep 
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the correlation structure of the model would lead to abnormally large values of the TA
2   

statistic. 

FIGURE 1.8:  Faults associated to abnormal values of the SPE and TA
2  

 

Process monitoring with PCA will proceed as described in Figure 1.9: first the 

statistics SPE and T2
A for the new observation are computed, then the SPE is checked 

against the corresponding threshold. If the statistic SPE exceed the threshold then a 

fault is detected and we proceed to the diagnosis. In this case the detected fault has 

broken the correlation structure of the model. On the contrary if the SPE is in-control 

then it continues by checking the T2
A statistic against its threshold. If this statistic 

exceeds the corresponding threshold then a fault is detected. In this case the fault 

keeps the correlation structure of the model but the process seems to have moved to a 

different operational point. In case that both statistics (SPE and T2
A) fall within their 

control limits then the process is considered in control.  
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FIGURE 1.9  Process monitoring with PCA 

 

 

o Hotelling´s T2
A  and SPE statistics versus Hotelling´s T2  statistic  

Equation 1.16 shows that the Hotelling ´s T2 statistic expressed in terms of the latent 

variables of a PCA model with A latent components has two parts: the TA
2  that uses the 

first A major latent components and the THawkins
2  that uses the K-A minor latent 

components (which are not extracted).  

.  
T2 =෍

ta,new
2

sa
2

A

a=1

+ ෍
ta,new
2

sa
2

K

a=A+1

=TA
2 +THawkins

2  

 

(1.16)

It must be noted that the variances sa
2 of the minor latent components are close to 

zero and can be the cause of large values in the Hotelling ´s T2 statistic that are not 

necessarily related to the presence of a fault. The MSPC based on latent variable models 

Residual 
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uses the Hotelling´s T2 statistic on the first A latent components (T2
A) and consequently 

do not present that problem.  

The other monitored statistic in MSPC based on latent variable models is the square 

prediction error SPE. This statistic expressed in terms of the latent variables has the 

following expression: 



K

Aa
aSPE

1

2t .  It can be appreciated that this statistic does not 

present the problems associated to the THawkins
2  as their terms are not divided by small 

variances.  

The consequence of the above is that the Lb-MSPC based on latent variables (T2
A  and 

SPE) have a smaller number of false alarms than the MSPC based on the Hotelling´s T2 

statistic (classical MSPC).  

 

o Partial least squares (PLS): 

The partial least squares PLS model uses the joint information contained in the 

process (matrix X) and quality (matrix Y) variables measured under normal operation 

conditions (NOC) to create an in-control PLS model of the process. The PLS model 

simultaneously reduces the dimension of the matrix X and Y and proceed to select the 

latent variables in X that not only explain the variability associated to the process 

variables but that serves to make a better prediction of the quality variables. This 

model provides online predictions of the quality of the process using process data and 

before laboratory results may be obtained. The PLS model can be expressed as: 

 T
aaaaaaa ptXXwXt   11 ;
 





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a

T
aa
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EptX
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(1.17)
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Where wa and ca are the directions in the space spanned by the matrices X and Y, 

respectively, which maximize the covariance among the latent variables associated to 

both subspaces,	ta and ua. The directions p
a
	are the ones which permit a better 

reconstruction of the matrix X while maintaining the orthogonality between the score 

vector ta and the loading vector wa. In this model the new latent variables in the space 

X, ta =Xa-1 wa represents the projection of the N observations in the directions of 

major variance of the space X which are more correlated to the most important 

variables of Y.  

The number of components to extract are obtained by crossvalidation (Wold 1978, 

Bro et al. 2008). For each observation (xi, yi), two SPE can be calculated, one in the 

X space (
i

SPEX ) and the other in the Y space (
i

SPEY ): 
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(1.18)

 

 
New observations are monitored in a similar way to the PCA through the use of 

control charts constructed from the in-control model obtained from a data set collected 

under normal operation conditions (NOC). As in the PCA, the monitored statistics in 

PLS are the TA
2  and the SPE. In this case, the TA

2  monitors the variation in the process 

variables which have a more important influence in the quality variables.  

 

o NIPALS algorithm: 

In PCA and PLS the components are usually computed in an iterative scheme 

using the NIPALS algorithm (Geladi and Kowalski 1986). This algorithm is specially 
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indicated in the case of a megavariate context with large ill-conditioned data matrices. 

In these cases the use of non-iterative algorithms (like singular value decomposition, 

SVD) is not recommended, not only because they would be more time consuming but 

these methods would experiment difficulties in the calculation of some components 

due to the presence of a high collinearity (created by the eigenvalues close to zero). 

Another advantage of the NIPALS algorithm is that it performs well despite the 

presence of missing data (Nelson et al. 1996). Some authors have studied different 

methods to estimate the scores when there are missing data in the observations 

(Arteaga and Ferrer 2002, Nelson et al. 1996) and the uncertainty associated to the 

scores and SPE computed with these type of observations (Arteaga and Ferrer 2003, 

Nelson 2002). 

 

o PCA and PLS further applications: 

The good performance of these monitoring techniques in continuous processes 

and its superiority in relation to the standard USPC have been proved in many real 

industrial processes (Dayal et al. 1994, Kourti and MacGregor 1996, Tano et al. 

1995). Nomikos and MacGregor (1995) adapted the multivariate statistical method  

based on projection to latent structures PCA and PLS, developed for monitoring 

continuous processes, to the case of batch processes using PCA Multiway Principal 

Component Analysis (MPCA) and Multi-way Partial Least Squares (MPLS) (Wold 

et al. 1987, Geladi 1989). The basic idea of these techniques consists on unfolding 

the tridimensional matrix (batch - variable - time) into a two dimensions matrix X, 

where each row corresponds to the trajectory of each process variables along the batch 

duration. Applications of these techniques can be found at Kourti et al. (1996), Ferrer 

(2002) and Zarzo et al. (2002a y 2002b). The batch-MSPC scheme can be extended 
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to processes that can be split in blocks. These blocks can correspond to different 

physical units, stages or phases of the process or extra information about the process, 

initial conditions of temperature and pressure, quality of the raw materials or 

suppliers, different labour teams, and so on. All these blocks of information in 

addition to the quality variables can be used in a unique SPC scheme throw the use of 

the multi-block projection methods (Wold et al. 1987). These methods permit to 

establish monitoring charts for each block of variables and for the process as a whole 

and reduce the complexity of the implementation for fault detection and diagnosis in 

these situations. Examples of these methods can be found at Kourti et al (1996), 

Kourti and MacGregor (1996), MacGregor et al. (1994), Qin et al. (2001), Westerhuis 

et al. (1998a) and Wold et al. (1996). 

 

1.3.2- Statistical process control - Diagnosis 

Section 1.1 reviews the diverse approaches to perform fault diagnosis that is the main 

goal of this research work. In particular we are especially interested in the FDI process 

history-based approaches with a quantitative feature extraction using statistical methods 

based on latent variable models (PCA/PLS) or multivariate statistics (Hotelling´s T2 

statistic). Particularly, these approaches are frequently used for fault diagnosis 

applications in process industries. The reasons are that they are easy to implement, require 

very little modelling effort and a priori knowledge, and make use of the vast amount of 

data usually registered in actual processes due to communication and information 

technologies.  

In the SPC the fault diagnosis stage is triggered by the detection of a fault and it is 

aimed to determine the root cause of the problem. The final objective is the process 

recovery or the reconstruction of the sensor measurements if it results to be a sensor fault. 
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The latter may be an important issue if the variable is involved in a process loop. In this 

case the sensor fault, if not attended or reconstructed, might finally provoke a more 

serious process fault. As it can be seen in Figure 1.10 there are two general approaches 

based on the availability or not of data sets corresponding to the different types of fault.   

 

FIGURE 1.10 Fault diagnosis scheme

 

There are diagnosis methodologies that are based on the use of fault data sets and that 

are classified as supervised methods. The main advantage of these methods is that they 

can aim directly to the root cause of the problems and consequently ease the work of the 

process engineers. The main problem in applying these methodologies is precisely the 

difficulty of obtaining these fault data sets. If no fault data sets are available, then only 

the unsupervised methods can be used. These methods just aim to the list of variables that 
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can be involved in the root cause of the fault. Then, process engineers will have to 

determine the probable root cause of the problem.  

In addition, the diagnosis procedure is related to the adopted strategy for fault 

detection. Thus, the performance of the different diagnosis methodologies may be in part 

conditioned to an appropriate selection of the best joint strategy for detection and 

diagnosis taking into account the type of process and the nature of the relationships 

existing among the measured variables. We consider three possible scenarios: 

 

Scenario 1: Data poor environments with uncorrelated quality variables 

This is the scenario where the USPC is the most appropriate tool for monitoring the 

process. The univariate charts are appropriate as there is no extra information to consider 

about the correlation among the monitored variables. The selection of the appropriate 

monitoring chart, Shewhart, CUSUM or EWMA is depending on the nature of the faults 

as it was explained in Section 1.3.1.1. For small size faults the CUSUM and EWMA 

charts have a better performance (smaller out of control ARL) than the Shewhart chart.  

In this scenario the fault diagnosis strategy is reduced to detect which charts are giving 

signals for the isolation of the set of observation variables that are out of control. 

Following this, the process engineer has to assign a root cause to the detected problem in 

the process.  

Nowadays, the boom in affordable measure devices and technological advances in the 

industry and communications accounts for the abundance of data rich environments (with 

many process variables measured on line). As the number of the measured variables 

increases it becomes hard to find a situation where variables remain uncorrelated. Due to 

the lack of applicability in modern industrial processes, this scenario 1 is not going to be 

addressed in our research. 
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Scenario 2: Data poor environments with mildly correlations among variables  

This is a good scenario for using multivariate statistical quality control (MSQC) 

methods. These methods are defined in the space of the original measured variables and 

have good performance when there is a reduced number of mildly correlated quality 

and/or process variables with a well-conditioned covariance matrix. The Hotelling´s T2 

statistic is the multivariate statistic most frequently used in the detection stage.  As 

commented in Section 1.1.2.2 there is a wide variety of unsupervised methods proposed 

for fault diagnosis in MSQC. The diagnosis in these methods is mostly based on the use 

of different computed terms that are equivalent to the decomposition terms of the 

Hotelling´s T2 statistic. The terms that becomes statistically significant aim to the original 

measured variables which contributes to a major extent to the abnormal value of 

Hotelling´s T2 statistic and provide the information about what variables are responsible 

for the fault and to diagnose the root causes. The second part of this thesis (Part II) is 

focused in this group of unsupervised methods used in MSQC. All these methods are 

described in full detail in Chapter 3. 

 

Scenario 3: Data rich environments  

In this scenario it is common to have hundreds of process variables measured with 

on-line sensors. It is frequent a high sampling rate (seconds-hours). It is a common feature 

the high-dimensional and collinear data with missing data problems. In this context the 

USPC and classical MSPC do not work and there is room for a new type of approaches 

such as the latent variable models, that take into consideration that the process is driven 

by only a few underlying common cause events.  

Once a fault has been detected we need to know the original measured variables 

responsible for the detected fault (unsupervised method). This is even more important for 
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the Lb-MSPC that uses latent variables that differ from the measured ones. After this, the 

process engineers will have to look for the root causes for process recovery. The diagnosis 

procedure depends on the context: unsupervised vs supervised methods. 

o Unsupervised methods: contribution plots 

This methodology, proposed by MacGregor et al. (1994) and Miller et al. 

(1993), and is an excellent and widespread option when there is no information 

about the different types of fault. In the case of the SPE for a new observation with 

	SPE	=∑ (xk  xොk)
2K

k=1  the contribution of the variable xk to the SPE is given by 

the expression:  

 Cont (SPE; xk)= (xk  xොk)
2

 
  (1.19)

An alternative to the definition of the contribution of the original variables to the 

SPE is to use the square root of these contributions: 

 Cont	(SPE; xk)
 ൌ ඥCont (SPE; xk) ൌ ሺxk  xොkሻ.  (1.20)

The advantage of this definition is that these contributions maintain the sign 

of the differences. These contributions will be used in Chapter 8 as part of a 

novel fault diagnosis approach called the fingerprint contribution plot 

methodology (FCP).  

On the other hand the contributions of the variable xk to individual score “a” 

is equal to	pa,k	ሺxk  xതk)	. As it is common that more than one score may have 

high values, Kourti and Macgregor (1996) suggested that an overall average 

contribution per variable is calculated using the normalized scores with high 

values and keeping only the contributions with the same sign as the score. These 

contributions are calculated with the following expression: 
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 Cont (TA
2 ;a,xk)=

ta
sa
2  pa,k(xk  xതk)=

ta
a

 pa,k(xk  xതkሻ
  

(1.20)

If Cont (TA
2 ;a,xk) is negative it is set equal to zero and then the total contribution 

of variable xk  is calculated as: 

 CONTk=∑ Cont (TA
2 ;a,xk)

K
a=1

  
 (1.21)

This contributions arranged in the corresponding bar charts are known as 

contribution plots and are excellent tools for a quickly identification of the 

observation variables that are related to the detected fault.  

o Supervised methods 

In the last 20 years several supervised approaches have been proposed for 

diagnosis in MSPC based on latent variable models (Lb_MSPC).  As commented 

in Section 1.1.2.2, different methodologies based on fault reconstruction (Dunia 

and Qin 1998, Yue and Qin 2001, Alcala and Qin 2009), on fault signature 

extraction (Yoon and MacGregor 2001) in addition to different classification 

techniques based on the use of PLSDA (partial least squares discriminant analysis) 

(Sjöström et al. 1985) or SIMCA modelling (Wold 1983), were successfully 

applied to fault diagnosis. A good state of the art review of these methods and 

applications developed during the last two decades can be found in Qin (2012),  

Russell et al. (2012) and MacGregor and Cinar (2012). Some studies on diagnosis 

performance in data driven diagnosis methodologies can be found at Yin et al. 

(2012) and Russell et al. (2012). 

 The third part of this thesis (Part III) is focused in this group of supervised methods 

which use latent variable models for diagnosis. In Chapter 7 we will proceed to 

describe the methods under comparison in full detail.  
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Chapter 2:  Material and data sets 

The objective of this chapter is to introduce the material and all the process data bases 

and simulations that have been used to compare the fault diagnosis performance of the 

different proposed strategies. We have worked with processes of diverse nature and with 

varied data sets that can affect the different strategies in different ways. Section 2.1 and 

2.2 describe the hardware and software used for this research. Section 2.3 is dedicated to 

describe the process data sets and simulations. They include data from a pasteurization 

process in pilot plant and a distillation process, and data sets from simulations  
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2.1 Hardware 

All computations carried out along this thesis have been performed with an Intel (R) 

Core (TM) i7-4500U CPU @ 1.80 GHz 2.40 GHz  

 

2.2 Software 

The software package used in this thesis is:  

o Matlab 7.4 and R2010a (The Mathworks, Inc.,Natick, MA, USA).  

All functions, algorithms and scripts used in this thesis are own code implemented in 

Matlab code.   

 

2.3 Process and simulations data sets 

2.3.1 Process data sets  

2.3.1.1 Pasteurization process  

This data set is used in the comparison of the performance of different methods 

proposed for fault diagnosis in Chapter 6 (MSQC) and Chapters 7 to 9 (MSPC). 

 

Plant description 

The process plant trainer PCT23 MKII of ARMFIELD is a bench mounted process 

plant trainer with multiple streams both interacting and noninteracting. The process plant 

incorporates a miniature three-stage plate heat exchanger (recycle, heating and cooling) 

heated from a hot water circulator, two independent feed tanks, a holding tube with 

product divert valve and two variable-speed peristaltic pumps. The equipment 

incorporates electrical fault simulation and control, 
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FIGURE 2.1:  Picture of the PCT23 MKII plant 

The process mimics an industrial high temperature short time pasteurisation process. 

In this process the product stream has to be kept at a predetermined temperature for a 

minimum time, usually for bacteriological purposes. This is achieved by the use of a 

holding tube, which delays the product stream, thus posing particular process control 

problems. The unit includes a wide range of instrumentation for temperature and flow 

measurement.  

An electrical console provides measurement and control of the process plant and 

allows a variety of control techniques including manual operation, on/off control, control 

from an external signal and control from a programmable logic controller (PC or PLC). 

The equipment incorporates electrical fault simulation. 
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Process description 

A pasteurization process works as follows: First the product flows into the system. 

This product is heated by water flowing along it, of which we can control the temperature 

and the flow speed. Next the heated product goes through a curved pipe (holding tube). 

To pasteurize the product it needs to be above a certain temperature for a certain time. 

This is the time the products needs to pass through the holding tube. This tube is coated 

with thermal insulated material so that the loss of heat is reduced to the minimum. When 

it comes out of the holding tube there is a diverter valve where the temperature is 

measured and the system decides whether the product is good or not.  If the temperature 

of the product is still above the required temperature, we know that it is good. If it is not, 

it is thrown away or used to refill the feed tank. Now the good product is used to preheat 

the new product flowing in. Next the temperature is measured again and the system 

decides whether or not it needs to be cooled down more using cold water.  

A flow diagram of the process is shown in Figure 2.2: 

FIGURE 2.2:  Flow diagram of the pasteurization process
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Components of the process unit 

- Feed tanks: they store and feed the system with the fluid to be pasteurized 

- Product feed pump (N1): This is a peristaltic pump that makes the product 

circulate through the system. 

- Hot water tank:  This tank contains the hot water after passing the heat exchanger. 

It is used to increase the temperature of the product undergoing pasteurization. 

The water is on a closed system and after passing the heat exchanger return to the 

hot water tank so it can be heated again until it reaches a predetermined 

temperature. There is a peristaltic pump (N2) that circulates the water through the 

system. The speed of the pump depends on the temperatures in the hot water tank 

and the required outlet temperature at the heat exchanger. The more outlet 

temperature the more speed in the pump N2 as it is needed more heat to transfer. 

On the other side the more is the temperature in the hot water tank the less speed 

is required in the pump N2 for a fixed heat transfer. The tank has a low level 

sensor that warns when the heat resistance is not covered by water and a 

thermostat that shut off the plant if hot water tank goes up higher than 65ºC. The 

electrical resistance has a maximum heating power of 1,92[kW]. 

- Heat exchanger: The plant has a heat exchanger divided in three sections. In the 

first section from left to right the fluid to be pasteurized is heated. In the second 

section the fresh feed is preheated, for energetic reasons, by the already 

pasteurized product. In the third section the pasteurized product can be cooled 

using cold water (external source). 

- Holding tube with a thermal insulating coat. 

- Divert valves: It is a solenoid valve that is placed at the holding tube outlet.  
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Process variables 

There are 13 variables involved in this process described in Table 2.1. Clearly some 

of these variables are highly correlated. For example, a high temperature before going 

into the holding tube, Tª4, implies a high temperature after flowing through the holding 

tube, Tª1.   

TABLE 2.1 Variables measured in the pasteurization model 

Variable Description 

Tank Level 
Level of the water in the tank at the beginning of the process. If 
it drops below a certain limit, the tank is refilled. 

Tª1 
Temperature of the product after flowing through the holding 
tube. This temperature defines whether or not we have a good 
product. 

Tª2 
Temperature of the heating water. 
This is the water which has to heat the product. 

Tª3 
Temperature of the final product. 
This is the temperature of the product when it leaves the system. 

Tª4 
The temperature of the product immediately after heating, i.e. 
before entering the holding tube.. 

Tª5 
Temperature of the product after preheating the new product. 
This temperature defines whether or not the product needs further 
cooling down. 

Flow Speed with which the product flows through the system. 
SPFlow Setpoint of the flow.  
Power 1 
Power 2 
Power 3 

These variables measure the power used to heat the heating water. 

Pump 1 
Percentage that pump 1 is opened. 
Pump 1 controls the flow speed of the product. 

Pump 2 
Percentage that pump 2 is opened. 
Pump 2 controls the flow speed of the heating water. 

 

Process loops controls 

The pasteurization process is an automatic process. This means that it changes by 

itself to correct things when it is not producing good product. The process contains three 

control loops. There is a setpoint for the temperature of the heating water, Tª2. If this 

temperature is not good, the power of the heater is adjusted. There is a second setpoint 

for the temperature right after the product comes out of the holding tube, Tª1. If this 

temperature is not good, the speed with which the heating water is flowing is adjusted by 
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changing the working of Pump 2. Finally, there is a third setpoint for the flow. If the 

product does not flow through the system at the right speed, Pump 1 is adjusted.  

 

Reference and faults data sets 

Several data sets under different conditions (normal operating (NOC) and faulty 

conditions) were registered. The arrangements for the reference data set are the following: 

the setpoint for the temperature of the heating water is 60Cº and the product assumed to 

be good if the temperature T1  is larger than 48Cº, while the setpoint for Tª1 is 50Cº. While 

taking this reference data, the product produced was good. Add to it we also registered 

data sets in which we initialized several faults shown in Table 2.2.  

 

TABLE 2.2 List of possible faults 

Fault 
Set Point T1 

Failure in Pump 1  (Feeding) 
Decay of 30% in Pump 1 (Feeding) 
Sensor  Flow 
Sensor T1  (Down) 
Sensor T1  (Up) 
Sensor T2  (Down) 
Sensor T3  (Up) 
Sensor T4  (Down) 
Sensor T4  (Up) 
Sensor T5  (Down) 
Sensor T5  (Up) 
Failure of the valve which divert the wrong product 
Set Point Flow  (Down to 110) 
Set Point Flow  (Up to 200) 

 

 

2.3.1.2 Distillation process  

A simulink nonlinear model of a binary distillation column developed by Skogestad 

(1996) and modified by Villaba (2012) to obtain a more realistic one was used.  Simulink 
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is an environment for multidomain simulation and model-based design for dynamic and 

embedded systems.  

This data set is used in the comparison of the performance of different methods 

proposed for fault diagnosis in Chapters 7 to 9 (MSPC). 

 

Process description  

Distillation is a process of separating the component substances from a liquid mixture 

by selective evaporation and condensation. Distillation may result in essentially complete 

separation (nearly pure components), or it may be a partial separation that increases the 

concentration of selected components of the mixture. In either case the process exploits 

differences in the volatility of mixture's components. 

Among the different types of distillation processes the selected model is based in a 

fractionation design. Industrial distillation is typically performed in large, vertical 

cylindrical columns known as "distillation or fractionation towers" or "distillation 

columns". The distillation towers have liquid outlets at intervals up the column which 

allow for the withdrawal of different fractions or products having different boiling 

points or boiling ranges. By increasing the temperature of the product inside the columns, 

the components are separated. The "lightest" products (those with the lowest boiling 

point) exit from the top of the columns and the "heaviest" products (those with the highest 

boiling point) exit from the bottom of the column. A schematic representation of this type 

of processes (Wikipedia) is shown in Figure 2.3.  
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FIGURE 2.3:  Scheme representation of  a continuous fractional distillation tower 
separating one feed mixture stream into four distillate and one bottoms fractions 

The feed is introduced more or less centrally into a vertical cascade of stages. Vapour 

rising in the section above the feed (called the absorption, enriching or rectifying section) 

is washed with liquid to remove or absorb the less volatile component. Since no 

extraneous material is added, as in the case of absorption, the washing liquid in this case 

is provided by condensing the vapour issuing from the top, which is rich in more volatile 

component. The liquid returning to the tower is called reflux, and the material 

permanently removed is the distillate, which may be a vapour or a liquid rich in the more 

volatile component. In the section below the feed (stripping or exhausting section), the 

liquid is stripped of the more volatile component by vapour produced at the bottom by 

partial vaporization of the bottom liquid in the reboiler. The liquid removed rich in less 

volatile component, is the residue, or bottoms. Inside the tower, the liquids and vapours 
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are always at their bubble and dew points, respectively, so that the highest temperatures 

are reached at the bottom and the lowest at the top. The entire device is called a 

fractionator.  

Process variables and model assumptions 

The model used corresponds to a fractionator of a mixture of two components 

(methanol and ethanol) operating at constant pressure, constant relatively volatility and 

constant molar flows.   

The scheme of the process is shown in Figure 2.4. The controlled variables are product 

compositions, the column pressure (p) and the liquid holdups in the reflux drum and 

reboiler (MD and MB), respectively. The five manipulated variables are product flow rates 

at the top (D) and at the bottom (B) and internal flow rates at the top (L,VT) and at the 

bottom (VB) of the column. The feed stream is assumed to come from an upstream unit. 

Thus, the feed flow rates (F) cannot be manipulated, but it can be measured and used for 

feedforward control. Other disturbances are temperature (TF) and composition (ݖி) of the 

feed. Figure 2.4 shows the location of this controlled and manipulated variables in the 

binary distillation column. 

 



Chapter 2: Material and data sets
 

58 
 

 

FIGURE 2.4:  Controlled and manipulated variables in the binary 
distillation column 

 

 

In the fault diagnosis methods we have considered the following process variables:  

TABLE 2.3 List of the 48 process variables used in fault diagnosis 

Variable Explanation Units 
TF Feed Temperature ºC 

 Feed composition ࡲࢠ
Molar 

Composition 
Fv Reflux Flow L/h 

D Distillate flow L/h 

V Boilup flow (vapour) L/h 

B Bottom flow L/h 

L Liquid Flow L/h 

T1 to T41 41 try temperatures ºC 

 

Process loops controls 

The multiloop control strategy for the distillation column consisted of three 

decentralized single input single output (SISO) loops for level and pressure involving the 

outputs 
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1)  Distillate holdup level (MD) controlled by distillate flow (D) 

2) Bottom holdup level (MB) controlled by bottom flow (B) 

3) Column pressure (p) controlled by condenser vapour flow (VT) 

There is also a control on the product composition. 

 

Faults 

Some of the faults were related to changes in the feed parameters (F, ݖி	and TF) and 

the other types of faults were related to failures in the PI controllers. 

 

2.3.2 Simulations data sets  

This data set is used in the comparison of the performance of different methods 

proposed for fault diagnosis in Chapters 4 and 6 (MSQC). 

Simulations were run for the case of four and seven measured variables. In order to 

compare the proposed methods several faults consisting of small, medium or large shifts 

in the mean of one or more variables under different scenarios of correlation matrices 

were simulated. Different correlation structures where the covariance matrix condition 

numbers tend to increase. Reference data sets for each of the correlation structures were 

obtained using the algorithm proposed by Arteaga and Ferrer (2010). For every 

correlation structure 102 different types of faults were considered. The faults consisted 

in small, medium or large shifts in the mean of one, two or three variables. The shifts 

involving several means happened in both the same or opposite directions. For each type 

of fault, observations were also simulated using the algorithm proposed by Arteaga and 

Ferrer (2010). 
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Part II  

Fault diagnosis in multivariate statistical quality 
control (MSQC) 

 

The first part, including Chapters 3 to 6, is concerned with the Multivariate 

Statistical Quality Control (MSQC). In this part we are going to consider data poor 

environments (scenario 2 described in Section 1.3.2) where the MSQC is the 

preferred option for monitoring the process. These methods are defined in the 

space of the original measured variables and have performed reasonably well 

when there is a reduced number of mildly correlated quality and/or process 

variables with a well-conditioned covariance matrix.   

 

Our research in this part has produced the following results: 

Journal publications 

 S.Vidal and A.Ferrer (2014).“A comparative study of different 
methodologies for fault diagnosis in multivariate quality control”         
Communications in Statistics-Simulation and Computation . Vol 45 
num 5  986-1005 (ISSN 0361-  0918)    
 

Conferences 
 

 “A comparative study of different methodologies for fault diagnosis in 
multivariate quality control “. Proceedings of the 28th Quality and 
Productivity Research Conference 2011 (QPRC) Roanoke, Virginia, 
USA. 

 

 “Fault diagnosis in the on-line monitoring of a pasteurisation process: 
a comparative study of different strategies”. Proceedings of the 5th 
Annual Conference of the European Network for Business and 
Industrial Statistics 2005 (ENBIS) Newcastle, UK. 

 

 “Estrategias para el diagnóstico de fallos en la monitorizacion de 
procesos multivariantes: estudio de revisión”.  Proceedings of the 
XXVIII Congreso Nacional de Estadística e Investigación Operativa 
2004 (SEIO) Cadiz, Spain.  
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Chapter 3:  Fault diagnosis methods in MSQC 

This chapter gives a description of the most common methods used for fault diagnosis 

in unsupervised MSQC. The chapter describes the rationale of the different methods and 

shows the requirements for their implementation, their strong points and their drawbacks, 

and establishes the relationships between them. 
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3.1 Introduction  

Industrial quality control usually involves a vector of measurements of either several 

critical to quality or critical to process parameters rather than a single characteristic. 

Typically, when these measurements are mutually correlated, a more efficient statistical 

process monitoring scheme is obtained by using multivariate control charts rather than 

separate univariate control charts. Among the most popular multivariate control charts is 

the one based on Hotelling´s T2 statistic (Jackson 1985, Mason et al. 1992) that was 

described in Section 1.3.1.2.  This statistic  is defined as the estimated Mahalanobis 

squared distance from the K-dimensional sample observation xi to its sample mean vector 

xത calculated from a reference (in-control) historical data set. A major advantage of the 

above statistic is that it is the optimal single-test statistic for a general multivariate shift 

in the mean vector (Hawkins 1991). However, it has several practical drawbacks: a) it is 

not optimal for more structured mean shifts (i.e. mean shifts in only selected variables); 

b) it is not specific to a shift in mean as it is also affected by changes in the covariance 

matrix; c) it is not immediately interpretable, (i.e. if following a signal, it does not provide 

information on which specific variable or set of variables is out of control). 

In an attempt to improve the interpretability of T2-based fault diagnostics several 

approaches have been proposed in multivariate quality control literature. The Step-down 

method of Roy (1958) assumes that there is a priori ordering among the means of the 

variables and tests subsets sequentially using this ordering to determine the sequence. 

Murphy (1987) suggests a method based on a discriminant distance using Hotelling´s T2 

statistic. Mason, Tracy and Young (1995, 1997) introduce a procedure for decomposing 

Hotelling´s T2 statistic into orthogonal components. Hawkins (1991, 1993) uses 

regression adjustments for each individual variable. Runger and Montgomery (1996) 

define a distance to measure the contribution of a variable to the value of Hotelling´s T2 
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statistic. Doganaksoy, Faltin and Tucker (1991) propose to rank the variables most likely 

to have changed according to their relative contribution to Hotelling´s T2 statistic using a 

univariate t statistic as a criterion. Hayter and Tsui (1994), using a different procedure than 

Hotelling´s T2 statistic as a trigger mechanism for out-of-control detection, propose to build exact 

simultaneous confidence intervals for each of the variable means. Li et al.  (2008) suggest a 

modification of Mason, Tracy and Young´s method based on the use of bayesian 

networks for reducing computational cost and improving the diagnosability. The problem 

with this method is that it can only be applied when a priori relationships among process variables 

and the interrelationships between process variables and quality variables are known. 

To sum up there is a long list of proposed methods for fault diagnosis in MSQC and 

some of them are interrelated. Indeed, Mason, Tracy and Young (1995) show that some of 

these methods: the standardized t–based ranking technique of Doganaksoy, Faltin and 

Tucker, the regression-adjusted variables of Hawkins, the step-down procedure of  Roy 

and the T2 discriminant distance procedure of Murphy, are imbedded in the partitioning 

of Hotelling´s T2. 

In the different sections of this chapter we provide a full description of these methods 

and their interrelationships. 

 

3.2 Fault diagnosis methodologies  

 In the following it is assumed that after a previously established statistical monitoring 

chart detects a new signal, this new observation xnew is used to diagnose the cause of the 

fault. It must be noted that most of the compared methods use the Hotelling´s T2 statistic 

for the detection of out-of-control observations whilst some like Hawkins´ method, Hayter 

and Tsui´s method and the Step-down method use their own detection trigger mechanism. 

It is also assumed that xi represent a K-dimensional vector of measurements made on a 



Chapter 3: Fault diagnosis methods in MSQC 
 

67 
 

process at sampling time i. and when the process is in control, the xi are independent and 

follow a multivariate normal distribution with a Kx1 mean vector ref and a KxK covariance 

matrix , i.e. x NK (ref, ). So that refk,μ is the in-control mean value for the kth variable, and 

newk,μ is the mean value of the kth variable after the change (fault). In practice ref and  

are estimated from the sample vector xതref and sample covariance matrix S using in-control 

data. 

 

3.2.1 Alt´s Method  
 

This was the first methodology proposed for the detection and diagnosis of faults in 

multivariate processes. The diagnosis is based on the use of univariate Shewhart charts 

with a Type I risk calculated according to Bonferroni´s method (Sankoh et al. 1997). This 

method is equivalent to the use of simultaneous confidence intervals for the difference of 

means in the K measured variables. These confidence intervals can be used as a guide to 

find out the most suspected variables for the detected mean change.  

The Type I risk for the individual tests (univariate chart) in the classical approaches 

would be equal to the desired overall Type I risk (). But this approach does not adjust 

appropriately the Type I risk of the individual tests as it does not take into account the 

likely correlation amongst the measured variables. If the correlation among variables is 1 

then the Type I risk () would be appropriate for the individual tests whereas if the 

correlation is 0 then it would be more appropriate to use a Type I risk (/K) where K is 

the number of variables. Moreover if the correlation r amongst the variables is 0 < r < 1, 

then a Type I risk (/q) defined by /K < /q <   and 1< q < K would be the best 

selection.   

Alt´s method proposes the use of a Type I risk (/K) in the individual tests. When 

applied this method to an intermediate situation with a correlation r,  0 < r < 1, the overall 
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Type I risk (false alarm rate) is too conservative so there will be problems of lack of 

power or situations where faults are successfully detected but no variables can be 

diagnosed as responsible for the faults. 

 
 

3.2.2 Doganaksoy, Faltin and Tucker´s method (DFT) 

The diagnostic method proposed by Doganaksoy Faltin and Tucker (1991) is triggered 

by an out of control signal from a Hotelling´s T2 chart. The measured variables are ranked 

according to the univariate t statistic for the difference of two means:  
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(3.1)

where new,kx  is the value of the kth variable in the new observation; ref,kx is the estimated 

mean of the kth variable in the in-control reference data set; 2
kks is the estimated variance 

of the kth variable in the in-control reference data set and N is the size of the reference 

data set. 

This ranking is a valuable guide to diagnose the source of the change. Bonferroni’s 

type of simultaneous confidence intervals for new,ref, kk    (k = 1,…, K) are used to 

provide signals on individual variables. Variables for which the Bonferroni intervals do 

not enclose zero are highly suspect. 

The implementation of this approach is as follows: An observation is considered out 

of control when Hotelling´s T2 statistic for the new observation exceeds the control limit 

(threshold) at the nominal confidence level CLnom. Then, for each variable the smallest 

iis
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confidence level CLind that would yield an individual confidence interval for 

new,ref, kk    (k = 1,..., K) that contains the zero is calculated as (see Appendix 3.1):       

  1)1;(2 computedind  NtTCL    (3.2)

 

where computedt  is the calculated value of the univariate t statistic for a variable and            

T(t ; d) is the cumulative distribution function of the t distribution with d degrees of 

freedom. Variables with larger CLind values are the ones with relatively larger univariate 

t statistics which require closer investigation. For each interval the confidence level 

according to Bonferroni’s proposal BonfBonf 1 CL  is computed: 

if  simsim 1 CL  is the desired nominal confidence level and sim the desired 

overall Type I risk in multiple testing, then  

(Psim  At least one significant individual test | no change in the means) = 

1-P(No significant individual test | no change in the means) = K)1(1 Bonf  and 

 
K

1/K sim
simBonf )1(1


   and  

K

CLK
CLCL 1/K 1sim

simBonf


  

Then, the variables with CLind > CLBonf  are classified as being those which are most likely 

to have changed. Consequently, the proposed method is correspondent to work out the    

p-value of each individual two sample comparisons, and signalling those variables which 

p-value is lower than Bonf . 

The methodology advices to use a smaller confidence level in diagnosis than in 

detection. The reason for this recommendation is that frequently this method does not 

succeed in finding out any variable to which assign the detected fault as p-value > Bonf . 
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This situation is a consequence of the existence of correlation among the variables which 

increases the problem of lack of power in diagnosis. 

 This methodology is similar to the Alt´s method but it incorporates the t ranking 

statistics which help to cope with situations where no variable is finally identified as 

responsible for the detected signal.  

 

3.2.3 Modifications to the Doganoksoy, Faltin and Tucker´s method 

As commented in Section 3.2.1 the Bonferroni test (Sankoh et al. 1997) is the simplest 

multiplicity adjustment procedure to ensure an overall Type I risk in multiple testing      

(K-dimensional measured variables). This method assumes independence throughout the 

different tests. Therefore, this proposal is too conservative when there are many tests 

and/or the tests are highly correlated. Being too conservative in the Type I risk derives in 

less sensitive tests (i.e. lack of power). In this thesis we consider some variants of the 

DFT methodology focused in reducing the risk of being too conservative when applying 

multiple hypothesis tests. Bonferroni’s test will be replaced by different stepwise 

procedures proposed by Holm (1979), Hochberg (1988) and Hommel (1988). These 

approaches are based on the fact that of the K null hypotheses tested, the only ones to 

protect against rejection (at a given step) are those not yet rejected. Bonferroni’s test will 

also be replaced by two ad hoc procedures to take advantage of the correlation 

information amongst the measured variables. All these methods proved to be less 

conservative than the Bonferroni´s approach. 

Holm´s procedure 

It is a step down approach which conducts the testing in a decreasing order of 

statistical significance of the ordered hypotheses, starting from the lower (i.e. last)             

p-value (highest statistical significance). In each test the
*K/1

simHolm )1(1   , where 

K*= K for the 1st test, K*= K-1 for the 2nd test and K*=1 for the Kth test. Significance testing 
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continues until a null hypothesis is accepted. Then, all remaining (untested) null 

hypotheses are accepted without further testing.  

The implementation of Holm´s procedure is as follows: Let (ind,1,…, ind,K) be the 

ordered p-values and H01, H02, ... , H0K the corresponding ordered null hypotheses for the 

K measured means. Then, if ind,K <
K
sim

, reject H0K and go to the next step, otherwise 

stop and accept all the remaining null hypotheses. In the next step, if ind,,(K-1) <
1-K

sim
, 

reject H0(K-1) and go to the next step, otherwise stop and accept all the remaining null 

hypotheses. In general, if ind,k<
k
sim

, reject H0k otherwise stop and accept all the 

remaining null hypotheses H0j,  jk.  

The final adjusted p-values are adj ind,k=maxKind,K , (K-1) ind,K-1,..., k ind,k , 

k=1,2,.....K.  

 

Hochberg´ s procedure 

It is a step up approach which conducts the testing in an increasing order of statistical 

significance of the (ordered) hypotheses starting from the higher p-value (lowest 

statistical significance). Significance testing continues until a null hypothesis is rejected. 

Then all remaining (untested) null hypotheses are rejected without further testing.  

The implementation of Hochberg´s procedure is as follows: Let (ind,1,…, ind,K) be 

the ordered p-values and H01, H02,..., H0K the corresponding ordered null hypotheses for 

the K measured means. Then, if ind,1>
1
sim

, accept H01 and go to the next step, 

otherwise stop and reject the remaining all null hypotheses. In general, if ind,k >
k
sim

, 

accept H0k, otherwise stop and reject all the remaining null hypotheses H0j for j>k. 
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The final adjusted p-values are adj ind,k=minind,1, 2ind,2,..., kind,k, k=1,2,..., K. 

 

Hommel´ s procedure 

It is a step up approach. The implementation of Hommel´s procedure is as follows: 

Let (ind,1 ,……,ind,K) be the ordered p-values as in the Hochberg´s procedure and H01, 

H02, ...,H0K the corresponding ordered null hypotheses for the K measured means. Then, 

find out the largest m for ind,1>sim; ind,1>sim , ind,2>sim/2; ind,1>sim , 

ind,2>2sim/3, ind,3>sim/3; ... ; ind,1>sim , ind,2>sim(m-1) /m, ind, 3>sim(m-2) /m, ..., 

ind, m>sim /m. Then reject H0k for which ind,k < sim/m 

The adjusted p-values are adj ind,k=m ind,k , k=1,2,.....K. 

 

Ad hoc procedures 

The first procedure, proposed by Tukey, Ciminera and Heyse (1985), suggests the 

adjustments: K
kak pp )1(1  and K

k

1

sim )1(1   , where pk and pak are, 

respectively, the observed and adjusted p-values for the kth variable, and αk is the adjusted 

critical -level for the kth hypothesis for k =1,…, K. In the second procedure, proposed 

by Dubey (1985), Armitage and Parmar (1986), and Sankoh, Huque and Dubey (1997), 

the following adjustments were suggested: k
kak pp m)(11   and 

km
sim

1

k )1(1   , where kr
k Km  1  and  




K

kj
jkk Kr r)1( 1  , jkr  being the 

correlation coefficient between the jth and the kth variable.  

These variants signal the variables where adjusted p-values, akp , are lower than 

sim  or, equivalently, those variables whose non-adjusted p-values are lower than αk. 
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3.2.4 Hayter and Tsui´s method  

This procedure (Hayter and Tsui 1994), operates by calculating a set of simultaneous 

confidence intervals for each one of the k variables mean (k) with an overall coverage 

probability of 1-, assuming a known correlation structure. This method is similar to the 

bar plot of normalized errors of the variables discussed in Kourti and MacGregor (1996) 

or the multivariate profile charts proposed by Fuchs and Benjamini (1994). In Hayter and 

Tsui´s method the process is deemed to be out of control whenever any of these 

confidence intervals do not contain its in-control value, fk,μ re , and the identification of 

the errant variable or variables is immediate. For a known covariance structure  and a 

chosen Type I risk , the experimenter first evaluates the critical point	Cα by simulation. 

This critical point is defined by:   

 






















11;

ref
KkforC

x
P α

kk

k,k
 (3.3)

Then, following any new observation },...,,....{ new,new,new1,new Kkxx xx , simultaneous 

confidence intervals for the mean of each of the k measured variables ( kμ ) are obtained: 

  ];[ αnew,αnew, CxCx kkkkkk    (3.4)

These confidence intervals assume a known variance and they are calculated for a fixed 

)1(  confidence level. The process is considered out of control if at least one interval 

does not contain the corresponding reference value refk,μ . This is equivalent to consider 

that a new observation newx  is out of control when: 

 

α
kk

k,k,

Kk

C
x

M 



 

 refnew

1
Max  (3.5)
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The variables xk	whose confidence intervals do not contain refk,μ are identified as those 

responsible for the signal.  

It must be noted that this method uses the M statistics for fault detection instead of the 

traditional Hotelling´s T2 statistic. The M statistic is more sensitive to faults which move 

the mean in the direction of the principal axes of the correlation structure of the process 

than those which move the mean in counter-correlation directions. On the contrary, as it 

was shown in Figure 1.7 and will be explained in Section 3.2.8 the Hotelling´s T2 statistic 

behaviour is just the opposite, resulting more sensitive to the faults that move the process 

mean in counter-correlation directions than to mean changes in directions which are close 

to the principal axes. 

An essential point of this method is the critical point evaluation. For K measured 

variables the value of the 	Cα is determined as follows. For K=2 the critical point can be 

obtained from existing tables. For K=3 or K= 4 it can be obtained by approximation from 

existing tables or by numerical integration. For K  5 it can be obtained by simulation 

methods or by the use of non-parametric methods.  

o Simulation method 

This method assumes that the observed vector x௜ follows a multivariate normal 

distribution. A large number (N=100.000) of observation vectors x1,x2,…, xN from a 

 Σ0,N K  distribution are generated using the sample correlation matrix R from the 

in-control data as an estimation of Σ . Then the M statistic for each vector         

xi= (x1,i, x2,i,... , xK,i)	is computed: Mi= Max
1≤k≤K

หxk,iห	for i = 1, 2,..., N. The (1-)th 

percentile of the sample ሼM1,	M2, …, MNሽ	is a good estimation for the	Cα. The 

empirical cumulative distribution )(F M


 provides an estimation of the	Cα for different 

levels of the Type I risk .  
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o Non-parametric methods 

This approach is recommended when the multivariate normality hypothesis does 

not hold and a reference data set with at least 500 in-control process observations is 

available. The sample mean x  and the sample covariance matrix S are calculated from 

the reference data set. Then the M statistic for each observation vector of the reference 

data set xi= (x1,i, x2,i,..., xK,i)	is computed. 

 

kk

kik

Kk
i s

xx
M






,

1
Max   for  i =1, 2,..., N     (3.6)

The (1-)th percentile of the sample ሼM1,	M2,…, MNሽ	is a good estimation for the 	Cα. 

 

3.2.5 Murphy´s Method  

Murphy´s method (Murphy 1987) is an approach based on a discriminant distance. 

This considers a reference population 0 when the process is in control where the 

observations follow a NK(ref ;) distribution; and a new population  after a change in 

the process, where the observations follow a  NK( ;) distribution.  

Once an out-of-control observation is detected by the Hotelling´s T2 statistic, the 

method searches for the subset of variables which better discriminates between these two 

populations. Given a partition of the K variables in two subsets: k1 variables 1(x  and k2 

variables 
2(x , where K =k1+ k2 ,  in discriminant analysis, the true squared distance 

between the populations  and 0 is defined as )()( ref
1

ref
2 μμμμ Σ  T
KΔ , and the 

reduced squared distance as )()( 1(
ref

1(1
1

1(
ref

1(2

1
μμμμ Σ  T

kΔ  where 1(μ and 1(
refμ  refer to 

the mean population vector of 1(x . Then testing H0: 022

1
 kK ΔΔ  is equivalent to testing 

that the k1 subset of variables discriminates just as well as the full set of K variables. 

Under the assumption that the null hypothesis H0 is true and the reference data set is large, 
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the D statistic, 2

1kK TTD  2 , follows a 2

2k , where 2
KT  is the overall Hotelling´s T2 statistic 

(full squared distance): TT
KT )()( new

1
new

2 xxSxx   and 2

1kT  is the Hotelling´s T2 

statistic based on the subset of  k1 variables 1(x  (reduced squared distance):  

T
new

T
newkT )()( 1(1(1

1
1(1(2

1
xxSxx    where x  and 1(x refer to the sample mean vector 

corresponding to all variables and the subset of  k1 variables respectively using the 

reference (in-control) data, S  is the estimated covariance matrix of x  and 1S is the 

estimated covariance matrix of 1(x . If D is large, the hypothesis that the k1 subset caused 

the signal is rejected; if it remains small then it is accepted. No a priori ordering is 

assumed in this method and all the possible subsets can be tested. The subset of variables 

which best discriminates between these two groups is considered the responsible for the 

observed out-of-control signal and corresponds to the smallest value of the D statistic 

The number of partitions to be considered grows exponentially as the number of 

variables increase.  In order to reduce the computational work, Murphy (1987) proposed 

the following algorithm that reduces the number of terms to be computed: 

1)  Given a new observation ) ..., ,,( new,new2,new1,new Kxxxx  it computes )( newx2
KT .  

If )( new
2 xKT    1

2

K , the process is considered in control and the algorithm ends.  

If )( new
2 xKT >   1

2

K , the process is considered out of control and the algorithm 

goes to 2). 
                      

2) Compute the K terms )( new1 x2T  and the K differences

)()()( new,
2

1new i
2

K1K xTTiD  x  for i =1, 2, ..., K. 

Then, select the minimum difference  )(Min)( 11 iDrD K
i

K    and check for 

statistical significance. 

If )(1 rDK  >    1
2

1K  the algorithm ends and only variable r is considered 
responsible for the detected out-of-control. 

If )(1 rDK      1
2

1K  the algorithm goes to 3). 
 

3) Computes the K-1 differences ),(T)(T),( new,new,
2
,new

2
2 jrjrKK xxjrD  x j: 1 

jr  K. 



Chapter 3: Fault diagnosis methods in MSQC 
 

77 
 

Then select the minimum difference  )(Min),( 22 jr,DjrD K
rj

K    and check for 

statistical significance. 

If ),(2 jrDK  >    1
2

2K , the algorithm ends and the set of variables (r, j) is 
considered responsible for the detected out-of-control. 

If ),(D 2 jrK      1
2

2K , the algorithm goes to 4). 
 

4) The algorithm continues with differences of decreasing order in an iterative 

way until it arrives to the end. If the algorithm arrives to the first order difference 

DK-(K-1) and this difference is not statistically significant, then it is concluded that 

all the variables are responsible of the observed change in the mean of the process.  

 
3.2.6 Hawkins´ Method 

Given a new observation newx , the detection and diagnosis in Hawkins’ methodology 

is based on the perturbation vector newz , whose kth component is the standardized 

perturbation resulting when the kth variable is regressed onto all the other variables of 

newx .  

     

Kkkk

jk
jjkjkk,

k σ

μxβμx

z
1.....1.1.2.3..|

ref,new,ref,new

new,



 

  (3.7)

where Kkkk ...1.1...3.2.1|  is the standard deviation of the conditional distribution of  kx given  

all other variables of x. Note that if newμ differs from refμ  only in its kth component, then 

the optimal test for a shift is one based on newk,z , the kth component of vector newz . These 

newk,z perturbations follow a N(0,1) when the process is in control. Hawkins (1993) 

proposes an easy way of estimating newẑ  by using the vector of scaled residuals. Let 

)( refnew
1

new xxSy    where S  is the estimated covariance matrix, then the kth 

component of newy  is the regression residual when variable kx is regressed on all other 

variables, scaled by factor 2
...1.1...3.2.1| Kkkks  . (see Appendix 3.2) 
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When the process is in control newy  )S0( 1,N  and then newẑ is just a rescaling of newy

(see Appendix 3.2): 

  )(][ˆ newnew
2/11

new refxxAy)S(diagz    (3.8)

where the transformation matrix 11/21  S)S(diagA . Thus, when the process is in 

control )(Nˆ B0;z   where    1/2111/21  )Sdiag(S)Sdiag(B  is the covariance matrix 

for the vector of scaled residuals newẑ .  

The original proposal consists of monitoring the process using separate control charts 

for all of the newˆk,z . If the control chart for one of the newˆk,z  signals while charts of others 

do not, then that indicates that it is newˆk,z that has shifted (Hawkins 1993). Note that the 

original proposal does not make any correction either for multiple testing or correlation 

among the scaled residuals. So it is necessary to adjust the Type I risk with an appropriate 

selection of the number of standard deviations (nd) when calculating the upper control 

limits of the monitoring charts.  

A variant of Hawkins´ methodology to detect faults which affect one single 

variable (Hawkins’ one single variable method) is considered. In this variant, the 

algorithm identifies as responsible the variable with the largest significant residual.  

Rewriting the Hotelling T2 statistic in terms of the residuals ẑ : 









K

k
x

TTT

k

T

1

2

new
2/11

refrefref
1

ref
2

T

ˆ)()()()( z)Sdiag(xxyxxxxSxx

 (3.9)

This relationships gives a decomposition of the Hotelling´s T2 statistic into K variable 

specific terms 2

kxT  according to Hawkins (1991), where each term 2

kxT   

  1
...1.1...3.2.1|kref,

2 ˆ)( 
 Kkkkkkx szxxT

k
 (3.10)
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is formed by two parts: 

 Hawkins´ statistic k,ẑ  which measures the deviation of the observation from the 

conditional distribution of the variable kx  on all the other variables

K1k1-kk xxxxxx  ...  ... | 21  . 

 refk,k xx   which measures the deviation from the marginal distribution of the 

variable kx . 

The terms of this particular decomposition of the Hotelling´s T2 statistic ( 2

kxT ) are 

not orthogonal and do not follow a chi-squared distribution. 

 

3.2.7 Runger and Montgomery´s method 

This methodology (Runger and Montgomery 1996) tries to establish the contribution 

of a variable to the value of Hotelling´s T2 statistic used for monitoring the process when 

a control chart signals. The contribution kc  for variable new,kx is the required change in 

the single variable kx which gives a minimum value of the expression:  

 

    









 











 




 2/11

new1
2/11

new

k
T
k

kk

T

k
T
k

kk cc

eSe

ex
S

eSe

ex
 (3.11)

where ke  is the unit vector in the direction of the kth coordinate axis and   2/11
k

T
k eSe  is a 

scale factor so that kc  can be interpreted as a measure of a Euclidean distance. 

Variables that require large changes ( kc ) aim to the responsible variables. Given a 

partition of the K variables in two subsets: 1k  with K-1 variables                            

x(1=  ) ...  ... ( 21 K1k1-k xxxxx  and 2k  with 1 variable x(2 = kx ,authors proved that the squared 

contribution 2
kc  is equivalent to the Murphy´s D difference. 
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  22

1kk TTDc 2
K   (3.12)

where 2

1kT  is Hotelling´s T2 statistic based on a subset x(1 made up of K-1 variables after 

excluding the kth variable. A large contribution 2
kc  corresponds to a large D statistic, 

therefore, we reject that the k1 subset of variables causes the signal, highlighting the 

variable kx  as responsible for the shift.  Tracy, Mason and Young (1995) show that            

D ~ 2
1-1

1
N,F

N

N 
 

 

3.2.8 Mason, Tracy and Young´s method (MTY) 
 
3.2.8.1 MTY´s decomposition 

 The MTY´s method (Mason, Tracy and Young 1995, 1997) decomposes the 

overall Hotelling´s T2 statistic into independent components, each reflecting the 

contribution of the different variables to the statistic. The Hotelling´s T2 statistic for a new 

observation may be iteratively decomposed according to Rencher (1993) as (see 

Appendix 3.3) :  

  2
1,...2,1|

2
1

2
  KKK TTT  (3.13)

where: 

 2
1KT is the Hotelling´s T2 statistic on the first K-1 variables.  

Then if ),( new,
1(

newnew K

TKT x xx  so that 1(
new

Kx is a K-1 dimensional vector, the component 

2
1KT  may be calculated according to the expression: 

  )()( 1(1(
new

11(1(
new

2
1


  KKTKK

KT xxSxx XX  (3.14)

where XXS is the sub-matrix of the sample covariance matrix S that corresponds to the 

first K-1 variables with (K-1)(K-1)  dimensions.  
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 
2

1.....2,1| KKT is the squared value of the K-th component of the new observation after 

being adjusted by the estimated mean ( 1...2,1|x KK ) and standard deviation )1....2,1| KK(s

of the conditional distribution, 1-KK xxxx   ... | 21 .  Note that in this case this term is 

equal to the squared value of the Hawkins´ statistics 2
Kz  (see Appendix 3.7)    

 
2

2

1....2,1|

1...2,1|new,2
1...,2,1| ˆK

KK

KKK
KK z

s

xx
T 









 





  (3.15)

This expression shows that this type of component is close to zero when the value 

of the variable K in the new observation becomes a reasonable value (in terms of 

likelihood) for the conditional distribution 1-KK xxxx   ... | 21  so that it follows the 

correlation structure observed in the reference data set. In this case it is supposed that 

the reference data set is large enough so that the estimated mean of the conditional 

distribution may be considered as the true population mean. 

In order to calculate this conditional component, the estimated mean 1...2,1|x KK  is 

computed according to the expression obtained in Appendix 3.4. 

  )(ˆ 1(1(
new11,2.....|


  KKT

KKKK xx xxβ  (3.16)

      where:    Kx  is the sample mean of the K-th variable in the reference data set. 

xX
1

XXsSβ K
ˆ  is the estimated coefficients vector in the regression of the       

K-th variable on the K-1 first variables.   

The estimated standard deviation of 1...2,1|x KK  is calculated with the following 

expression (see Appendix 3.5): 

 
xX

1
XXxX sSs 

  T
xxKK ss 22

1.....2,1|   (3.17)

 

where 







 2

xx
T sxX

xXXX

s

sS
S  

 



Chapter 3: Fault diagnosis methods in MSQC 
 

82 
 

 
 Each decomposition iteratively leads to one unconditional component and K-1 

conditional components, as given by the expression: 

 




 

1

1

2
1,2.....1

2
1

2
11,2,....|

2
1,2|3

2
1|2

2
1

2 .......
K

k
k|kKK TTTTTTT  (3.18)

 Since this method does not assume any special order in the variables, there are K! 

different decompositions of the T2, each one with K independent components. As 

commented in Section 3.2.8.2 then, all the components are compared against its 

corresponding component distribution thresholds, and the variables with significant 

components are identified as responsible for the detected fault. In this thesis, the 

computational scheme proposed by Mason, Tracy and Young (MTY) (Section 

3.2.8.4) is implemented. 

 

3.2.8.2 Interpretation of the significant components 

As shown in equation 3.18 and Appendix 3.4 there are two types of components:  

a) The unconditional components 

2

ref,new,2








 


kk

kk
k s

xx
T measure the “marginal” 

contribution of the variable kx to the statistic T2 and, therefore, record changes in 

variable magnitudes but does not account for the correlation structure in the data. 

Assuming normality, these components 2
kT  are distributed as 1,1

2 1



 Nk F

N

N
T , 

(see Appendix 3.6) where N is the number of observations of the reference data 

set. The component 2
kT  is the squared univariate t statistics for the variable kx and 

detect when the value of one of the observation variables is out of the normal 

operational range. A significant component means that the observation is placed 
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out of the K-dimensional volume delimited by the univariate control limits at a 

particular statistical significance level of the K observation variables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.1:  Observations with significant unconditional terms  

Figure 3.1 shows different situations where the unconditional components for 

a two variables (x1 and x2) case become significant. All the observations in Figure 

3.1 have a significant Hotelling´s T2 statistic since they fall outside the squared 

control region (in blue). 

Figure 3.2 shows the existence of two zones (in red) where the observations 

have significant unconditional components (fall outside the blue region) while the 

observations have non-significant Hotelling´s T2 statistics (are within the elliptical 

control region). 

 

 

 

Observation with a significant unconditional component  

Observation with a significant unconditional component   

x1

x2 

m2 

m1 

Regression model x2|x1 

m
1+

3
1 

m
1-

3
1 

m2-32

m2+32

Squared control region (two dimensions) delimited by the 
univariate control limits of the two observed variables. 

Elliptical control region for the Hotelling´s T2 statistic 

Observation where the two unconditional components are 

significant:  and   
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FIGURE 3.2: Observations with significant unconditional components and non-significant 
Hotelling´s T2 statistic 

 
   

b) The conditional components for a particular order and subset of variables can be 

expressed as 

2

1....2,1|

1...2,1|2
1....2,1| 









 







kk

kknew,k
kk s

xx
T for k=2,..., K. These components 

measure the contribution of variables newk,x  to the value of the T2 statistic after 

being adjusted by a regression onto a subset of the other variables and, therefore, 

they are useful to record events that break the in-control correlation structure 

(Figure 3.3). 

The conditional components are distributed as (see Appendix 3.6): 

 
11,

2
1,2,.. )1(

)1)(1(



 MN..M|k F

MNN

NN
T  (3.19)

where N is the number of observations of the reference data set and M the number 

of variables conditioning the distribution of the components. 
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Zones where the unconditional components are statistically 
significant but the Hotelling´s T2 statistic is not.  
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FIGURE 3.3:  Faults that keep (a) or break (b) the correlation structure that is present in the 
reference data set 

 

In an example of two variables: 

  2
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2
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
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
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
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s

e

sc

e

s

xx
T = Squared standardized residual   (3.20)

where:     

e : Residual of the observation in the linear regression model x2|x1       

ress : Standard deviation of the residuals of the regression model x2|x1. 

 c ൌ	ටNM 1

N 1
	: Constant which adjusts the degrees of freedom between 1|2s  (the 

estimation of the standard deviation for the conditional distribution x2|x1 and ress  

(see Appendix 3.5). For a large number of observations and one explicative 

variable this coefficient is close to 1. 

Figure 3.4 shows the existence of two zones where the Hotelling´s T2 statistics 

becomes significant whilst the univariate control charts do not. The Hotelling´s T2 

signals due to the abnormal values in the conditional components of the MTY 

decomposition. The abnormal value in these components is accounted for the large 

residuals “e” of the new observation in the regression model x2|x1 or the 

regression model x1|x2. 

 

   b) A change that breaks the correlation structure 
    between x1 and x2 

x1 

x2 

a) A change that keeps the correlation structure between 
x1 and x2 

x1 

x2 
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FIGURE 3.4 : Zones of observations with a statistically significant Hotelling´s T2 statistic and 

where no unconditional component becomes significant  
 

This situation is an indication that the correlation structure between x1	and x2	of 

the in-control process conditions may be broken.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.5: Residuals in the regressions model x2|x1and x1|x2 
 

Figure 3.5 shows that the abnormal large residuals are always associated to 

the zones where the conditional components signal. The same observation has 
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been considered in the two plots. In this case the two conditional components 2
2|1T

and 2
1|2T  signal for this observation. 

Figure 3.6 shows the values for x2 and x1 in a new observation (x1, x2) that 

would be acceptable (no statistically significant Hotelling´s T2 statistic) and that 

will not cause a signal in MTY conditional components. If the value for x1 is out 

of the limits for acceptable values in x1|x2 distribution, then the conditional 

component 2
2|1T  will be statistically significant. Similarly, if the value for x2 is out 

of limits for acceptable values in x2|x1 distribution, then the conditional 

component 2
1|2T  will be statistically significant. As the values for the variables	x1 

and x2 in the new observation (Figure 3.5) are both out of the limits, then the two 

conditional components 2
2|1T   and 2

1|2T will be statistically significant.        

 

 

 

 

 

 

 

 

 

 
FIGURE 3.6: Acceptable values for the conditional distributions: x1|x2 and x2|x1  

 

 

 

Elliptical control region for the Hotelling´s T2 statistic 
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3.2.8.3 Computing the components 

As an illustration see an example of Mason, Tracy and Young decomposition for 

3-variables: 

                                         

2
2.3|1

2
3|2

2
3

2

2
1.3|2

2
3|1

2
3

2

2
3.2|1

2
2|3

2
2

2

2
1.2|3

2
2|1

2
2

2

2
3.1|2

2
1|3

2
1

2

2
2.1|3

2
1|2

2
1

2

TTTT

TTTT

TTTT

TTTT

TTTT

TTTT













 

Since this method does not assume any special order in the variables, there are K! different 

decompositions of the T2 , each one with K independent components. The total number of 

components in all the decompositions are KK!. Without considering the redundant 

components the total number of components to compute is K2(K-1).  

Number of components to compute: 12232 131  KK  

Components to compute: 2
1T , 2

2T , 2
3T , 2

2|1T , 2
3|1T , 2

1|2T , 2
3|2T , 2

1|3T , 2
2|3T , 2

3.2|1T , 2
3.1|2T , 2

2.1|3T  

 
In this case components such as 2

2.1|3T  and 2
1.2|3T  are redundant because the regression 

result does not depend on the order of the explicative variables. But it is not the same for 

the pair of components 2
2|1T , 2

1|2T   since the change in the dependent variable supposes the 

use of a different direction for measuring the residuals of the observations in the 

estimation of the regression model. As the number of the measured variables grows up 

the number of non-redundant components to be computed increases exponentially as can 

be seen in Table 3.1. Mason et al. (1997) propose a method to reduce the number of 

components to compute without losing diagnosis power. This algorithm is described in 

Section 3.2.8.4.   
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TABLE 3.1 Number of MTY´s components for different number of variables 

Nº 
Variables 

Nº 
Components 

Nº 
Variables 

Nº 
Components 

n=3 12 n=8 1024 

n=4 32 n=9 2304 

n=5 80 n=10 5120 

n=6 192 n=20 10485760 

n=7 448 n=30 16106127360 
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3.2.8.4 MTY’ s algorithm: 

Yes 

No 

Step  1 
 Calculate the unconditional components    

(i =1,2,…, K) 
 Eliminate the variables with significant terms. They are 

considered responsible for the out-of-control situation.

Step 2 
 Calculate all the components   

 Eliminate all the pairs of variables xi	,	xj with significant 
components. They are considered responsible for the   
out-of-control situation 

Check if the sub-vector with the 
remaining variables gives a 
signal in the Hotelling´s T2 

End of the 
algorithm 

Continue in an iterative way increasing the number 
of predictor variables in every loop until the 
algorithm stops or until all the variables are 
considered to be responsible for the out-of-control 
situation.

Check if the sub-vector with the 
remaining variables gives a 
signal in the Hotelling´s T2 

No 

End of the 
algorithm 

Yes 
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3.2.8.5 Additional aspects of the MTY´s method 

There are some aspects, such as, collinearity or a bad model specification that can 

affect the diagnosis performance of this method 

Collinearity   

    The conditional component for the variable Kx  on the other K-1 variables may be 

expressed as:  

   
)1( 2

1....2,1|
2

2
1...2,1|2

1....2,1|



 




KKKK

KKK
KK rs

xx
T  (3.21)

where 2
11,2...| .KKr  is the square value of the multiple correlation coefficient  between Kx

and the other variables 1-Kxx x   ..., 21, . 

The denominator of the expression shows that collinearity (i.e multiple correlation 

coefficient close to one) will lead to large values in the conditional components. So, the 

reason for an abnormal value may be a collinearity problem instead of a large discrepancy 

between the predicted and the measured value for the variable as it is happens in a real 

fault. 

Model misspecification  

The MTY decomposition components are calculated on the residuals of different 

regression models estimated from all the possible subsets that we can select with the 

measured variables of the process. Large residuals would lead to large decomposition 

components and it may be interpreted that the relationships between the measured 

variables in the process are different to the ones prevailing in the reference data set. But 

there is another explanation for large residuals as they can also be caused by a model 

misspecification. So a better knowledge of the functional relationships among the 

variables or a better model specification will improve the sensibility for detection and 

diagnosis of the faults in the MTY methodology. It is convenient to use all the theoretical 
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knowledge and the expert opinion of process engineers to select the most suitable process 

variables to monitor the process and its more appropriate functional shape (linear, 

logarithm, inverse, …).  Data exploration methods may also be useful for this task. To 

improve the sensibility of the T2 in the detection of faults Mason et al (1999) propose in 

the case of sharp changes, to look for a better description of the functional relationship in 

the phase I. If some autocorrelation is detected it can be incorporated into the regression 

models. In the case of small consistent changes they recommend the use of T-components 

charts on some selected conditional components which may facilitate the observation of 

drifts in the residuals. 

 

3.2.9 Step-down method 

The step-down methodology proposed by Roy (1958) and Wierda (1993) assumes a 

certain a priori ordering among subsets that can be formed with the K measured variables. 

According to the ordering, the step-down procedure uses partitions of the mean vector of 

the new observation new	and the mean vector of the reference data ref into Q subvectors: 

1,new,  2,new, …, q,new …, Q,new and 1,ref,  2,ref, …, q,ref …, Q,ref , respectively. 

 Then, it sequentially tests 1(
0H : 1,new= 1,ref  versus 1(

1H : 1,new   1,ref ; then   

2(
0H : 2,new = 2,ref  versus 2(

1H : 2,new   2,ref  given 1,new = 1,ref; then 3(
0H : 3,new = 3,ref  

versus 3(
1H : 3,new = 3,ref  given 1,new   1,ref and 2,new = 2,ref ; and so on. 

The test statistics associated with testing these sub-hypotheses, 2
qG , are independently 

distributed under H0, where
))1/((1 2

1

2
1

2










NT

TT

q

qq2
qG  , q = 1...Q, T2

q  is the MTY 
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unconditional T2
 term  for the first Lq variables with 




q

i
iq kL

1

, ki  is the number of 

elements of subset i, and 02
0 T .  

Under H0 assumption it follows that ),(
1)(

qq
q

q2
q LNkF

LN

kN
~G 




 and it is possible 

to use separated control charts for monitoring them with a critical value (i.e. upper control 

limit, UCL) for the sub-hypothesis q given by:  

 
),(

1
qqα

q

q
q LNkF

LN

)k(N
UCL

q





  for q=1,2,...,Q (3.22)

where ),( qq LNkF
q

  is the 100)1(  q  percentile of the ),( qq LNkF   distribution. 

The overall type I risk is: 

 
)1

1
q

Q

q
(1  


 (3.23)

In the different tests for each subset of hypothesis, the variables used in the precedent 

tests are used as covariates taking into account the correlation structure among the 

variables. The process is considered out of control if at least one Gq
2 exceeds the 

corresponding threshold UCLq.  

Key drawbacks of this methodology are: a) it assumes the existence of an a priori 

order among the different types of faults; and b) it is impossible to implement this 

methodology when there are faults that share common measured variables.  

Additional aspects on the Step-down method: 

 The Step-down methodology signals the first of the ordered Q subsets of variables to 

be considered as responsible for the detected signal. Nothing can be concluded about 

the subset of means to be tested in the sequence after we encounter the first test with 

a null hypothesis rejection result. 
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 The probability of a correct diagnosis increases when the real change takes place in 

the last subsets of variables as it is in the last tests where the correlation structure 

among variables is fully taken into account. So it is advisable to put in the first order 

positions the variables with less probability of suffering changes and employ a minor 

Type I risk q for testing these subsets. 

 If more information about the a priori distributions of the mean is available, it is 

recommended to adapt the order of the variable subsets to be tested according to this 

available information. It is not advisable to employ this methodology when there is 

no information about an a priori order for the means subsets. 
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Appendix 3.1 

The resulting confidence interval for the difference of means would contain the zero if 

ref,new,
2/
1

ref,new,
kkN

kxkx
xxs t 

  => Computed1 tt α/2
N   .  Then, according to Figure 3.7, the    

p-value is equal to αind for each individual test,   

 

 

 

 

FIGURE 3.7: density probability function (left) and cumulative distribution function (right )for 

1Nt   

 

If 0computed t   
2

1)1;( ind
computed


NtT  

1)1;(2))1;(1(211 computedcomputedindind  NtTNtTCL   

If 0computed t   
2

)1;( nd
computed

iNtT


  

)1)1;(2()1;(211 computedcomputedindnd  NtTNtTCLi   

and then, 1)1;(2 computedind  NtTCL  

 

Appendix 3.2 

The elements of the inverse of the estimated covariance matrix 1S can be expressed 

in terms of the regression coefficients and the residual variances of the regression of each 

variable kth onto all the other variables: the diagonal elements   12
...1.1...3.2.1|

1  ),(



  KiiisiiS  

and the others elements 
2

...1.1...3.2.1|

,1
ˆ

 ),(
Kiii

ji

s
ji



 



S  with i  j  
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ind/2 

CLind 

ind/2 
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0
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T(t;d) 
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where: 

222
..1.1..3.2.1|

ˆ
ij

ij
ijiiKiii sss 


     (A 3.1) 

 
Let demonstrate this for the bivariate case  )( 21 x ,x and N observations.   

Regression of 2x on 1x  

RSS (Residual Sum of Squares) = 2
obs.11

1obs
0obs.2 )ˆˆ( xx

N

 


 (A 3.2) 

In order to get the least square estimation of the parameters 0 , 1  we differentiate 

with respect both estimators and set the derivatives to zero: 
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Replacing the least square estimation of the parameters 0̂  (A 3.3) in expression (A 3.2) 
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and replacing 1̂   (A 3.4)  in  (A 3.5) 
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If we divide by N-1 degrees of freedom and generalizing to the regression of ix  on 

Kii xx,xx ,x  ,..., ..., , 11-21   
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 (A 3.6) 

 

where 1̂  is the estimated coefficient of the regression of 2x  on 1x and 2̂  is the estimated 

coefficient of the regression of 1x  on 2x . 

Then we can use the expression A 3.6 of the inverse of the covariance matrix 1S in 

the bivariate case to confirm that the kth component of )( refnew
1

new xxSy    is the 

regression residual when variable kx  is regressed on all other variables, scaled by factor

2
...1.1...3.2.1| Kkkks  : 
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where jie | is the regression residual when variable ix  is regressed onto variable jx . 
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Verification of the Rencher´s decomposition for k=2   

For a sample variance-covariance matrix: 
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Unfolding the expression: 
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And applying the Rencher´s decomposition (Equation 3.13) for K=2: 
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Replacing  
in (A 3.8) 
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So (A 3.9)=(A 3.7) and the Rencher´s decomposition expression is verified for k=2. 
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Derivation of the expression: 
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Appendix 3.5 
 
Checking of the expressions for K=2  
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In the bidimensional case, using the linear regression model expressions for (x2|x1) 
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Appendix 3.6 
 

Unconditional components distribution 
 

For a new observation ix  where k variables are measured and the sample covariance 

matrix computed from a reference data set is S, the value of the unconditional component 

for the k-th variable, 2
kT , for that observation is provided by: 
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If H0 is true (i.e. there is not a change in the position of the distribution of the process), it 
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Considering the squared of this expression: 
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So we finally get the distribution for the unconditional components:  
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Conditional components distribution 
 
For the bivariate case: k =2 
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So that 
 
 
 
 
 
If   H0:    x2  Conditional distribution (x2|x1)  is true    
 
 
then,  
                                                                  
                                                                    
 
 
In normal populations:  
 
            
                                                                                     
 
 
where M is the number of predictor variables (in this case M =1) 
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Taking into account the relationship between the MSE and 2

1|2s   (Appendix 3.6):                              
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So, we finally get the distribution for the conditional components:  
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Chapter 4:  Diagnosis performance in MSQC (I) 

In this chapter we proceed to compare the diagnosis performance of the different fault 

diagnosis methodologies in MSQC described in chapter 3. The methods are tested in a 

simulation procedure for 4 measured variables. In the simulation a wide variety of 

different types of fault with different correlation structures have been considered. The 

simulation tries to highlight the strong and weak points of the different methods. 
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4.1 Simulation procedure for 4 variables 

4.1.1 Simulation data generation  

In order to compare the methods described in chapter 3, several faults consisting of 

small, medium or large shifts in the mean of one (or more) variables under different 

scenarios of correlation matrices will be simulated. In the simulation, the different 

methodologies are applied to a case of four measured variables under eleven different 

correlation structures shown in Table 4.1 where the covariance matrix condition numbers 

tend to increase its value from C1 to C11. The standard deviations of the four variables 

were uniformly distributed between 0.3 and 0.4. Scenarios leading to unfeasible 

covariance matrices were discarded. Reference data sets of 50.000 observations for each 

of the 11 correlation structures were obtained using the algorithm proposed by Arteaga 

and Ferrer (2010). These reference data sets were used to adjust the Type I risk when the 

methodologies under comparison used a different detection trigger mechanism in the 

detection of the out-of-control observations other than Hotelling´s T2 statistic (i.e. 

Hawkins´ method, Hayter and Tsui´s method and Step-down method). For every 

correlation structure 102 different types of faults were considered. The faults consisted 

in mean shifts in one, two or three variables. The size of the shifts were small (1.25 to 

1.66 standard deviations), medium (2.5 to 3.33 standard deviations) or large (5 to 6.6 

standard deviations). The shifts involving several means happened in both the same or 

opposite directions. For each type of fault, 500 observations using the algorithm proposed 

by Arteaga and Ferrer (2010) were simulated. 

In this study we have only considered faults affecting the mean of the process and 

excluded faults affecting the covariance structure. The rationale for this decision is: i) this 

approach is most commonly used to address the performance of different diagnostic 

methods; ii) this allows the appropriate comparison of the methods described in chapter 
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3 especially as some of them are not suited for the detection of changes in the covariance 

matrix of the process. 

TABLE 4.1.  Correlation structures. 

Correlation 
Structure 

Correlation Values 

Extreme 
Correlations 

(0.9) 

Condition 
number 

CN=
min

max




 

C1: Weak correlations Weak correlation coefficients uniform 
distributed, U[-0.1 , +0.1] 

No 1.57 

C2: Moderate positive  
       correlations 

Moderate positive correlation coefficients 
uniformly distributed, U[+0.1 , +0.4] 

No 3.24 

C3: Moderate mixed    
      correlations 

Moderate mixed positive-negative 
correlations. Absolute correlation 
coefficients uniformly distributed,   
U[+0.1 , +0.4] 

No 4.91 

C4: Moderate negative   
      correlations 

Moderate negative correlation coefficients 
uniformly distributed, U[-0.1 , -0.4]  

No 22.32 

C5: Weak correlations 
       with one extreme  
       correlation 

Weak correlation coefficients uniformly 
distributed, U[-0.1 , +0.1] with one 
coefficient  +0.9 

Yes 20.38 

C6: Moderate positive  
       correlations with one  
       extreme correlation 

Moderate positive correlation coefficients 
uniformly distributed, U[+0.1 , +0.4] with 
one coefficient  +0.9 

Yes 21.49 

C7: Moderate mixed  
       Correlations with one 
       extreme correlation 

Moderate mixed positive-negative 
correlations. Absolute correlation 
coefficients uniformly distributed, U[+0.1 , 
+0.4] with one coefficient  +0.9 

Yes 29.92 

C8: Strong positive  
       correlations 

Strong positive correlation coefficients 
uniformly distributed, U[+0.5 , +0.8] 

No 17.37 

C9: Strong positive  
       correlations with one 
       extreme correlation 

Strong positive correlation coefficients 
uniformly distributed, U[+0.5 , +0.8] with 
one coefficient  +0.9 

Yes 38.07 

C10: Strong mixed           
        correlations 

Moderate strong positive-negative 
correlations. Absolute correlation 
coefficients uniformly distributed, U[+0.5 , 
+0.8] 

No 17.91 

C11: Strong mixed  
        correlations with one 

   extreme correlation 

Moderate strong positive-negative 
correlations. Absolute correlation 
coefficients uniformly distributed, U[+0.5 , 
+0.8] with one coefficient  +0.9 

Yes 39.35 

 

4.1.2 Performance indices 

These faulty data sets were processed under the different proposed fault diagnosis 

methodologies and their performance were measured and compared according to several 

performance indices that were computed for every correlation structure and a particular 

type of fault. The considered performance indices were the following: 
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o 0PTC : Proportion of observations correctly diagnosed  

PTC0 ൌ
∑ P0,i

500
i=1

500
 

where P0 =1 if all the variables in the observation are correctly diagnosed, and P0 

= 0 on the contrary. 

o PTCv : Proportion of faulty variables correctly diagnosed (i.e., true positives in 

variables)    

PTC ൌ
∑ P,i

500
i=1

500
 

Where P,i= 	Ndf,i Nf,i⁄   with Ndf,i equals to the number of correctly diagnosed faulty 

variables in the ith observation, and Nf,i  equals to the number of faulty variables 

in the ith observation.  

o 0PWC  Proportion of observations with any non faulty variable wrongly 

diagnosed (i.e. false positives in observations)  

PWC0 ൌ
∑ W0,i

500
i=1

500
 

where W0 =1 if there is any non-faulty variable in the observation wrongly 

classified, and W0 = 0 on the contrary. 

o PWCv : Proportion of non faulty variables wrongly diagnosed (i.e. false positives 

in variables) 

PWC ൌ
∑ W,i

500
i=1

500
 

Where W,i= 	NWdf,i Nnf,i⁄   with NWdf,i  equals to the number of wrongly diagnosed 

non-faulty variables in the ith observation, and Nnf,i equals to the number of non-

faulty variables in the ith observation.  

o PND : Proportion of faulty observations which are not detected as faults. This is 

related to the lack of detection power 
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	PND ൌ
∑ Pd,i

500
i=1

500
 

where Pd,i =1 if the ith observation is not detected as a faulty observation, and Pd,i 

= 0 on the contrary. 

o PNF : Proportion of detected faulty observations in which no variable is found as 

responsible. This is related with the lack of isolation power    

	PNF=
∑ Pf,i

500
i=1

500
 

where Pf,i =1 if the ith observation is detected as a faulty observation but no 

variable is found as responsible, and Pf,i = 0 on the contrary. 

 

4.1.3 Type I risk considerations 

In order to check the accuracy and precision of the adjusted Type I risk for the 11 

covariance matrices under different detection trigger mechanisms, 10 reference data sets 

under each correlation matrix were simulated and the real Type I risk for each data set 

were computed. In the methodologies based on Hotelling´s T2 statistic the real Type I risk 

is centered in the desired value as it expected since the Type I risk level is adjusted from 

a theoretical distribution that takes into account the correlation between variables. 

Hawkins´ methodology assumes that the marginal distribution of the monitored residuals 

follows a standardized normal distribution. The overall Type I risk depends on the number 

of hypotheses tests and the Type I risk  of each of the hypotheses tests. In the case of 

four independent variables, the overall Type I risk is .)1(1 4  For a desired overall 

rate of 05.0overall , 01274.0)1(1 4/1  overall  so the number of standard 

deviations to consider for a two-tail hypothesis test is 2.49.   
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a)                                              b) 
FIGURE 4.1: Type I risk ( 100overall  ) for the 11 correlation structures: 

 a) Original Hawkins´ method; b) Adjusted Hawkins´ method  
 

Figure 4.1 a) shows the Type I risk of Hawkins´ methodology after Bonferroni correction 

for the 11 correlation structures simulated. The underestimation of overall  in most 

scenarios is due to the lack of independence between the monitored residuals. The B 

matrix of the Hawkins´ methodology (section 3.2.6) shows that the monitored 

standardized normal residuals are correlated and, consequently, it is necessary to adjust 

for the Type I risk in every case. Table 4.2 shows the selection of the number of standard 

deviation (nd) to use in the construction of the upper control limit (UCL) in Hawkins´ 

methodology in order to get an overall Type I risk, overall=0.05 in the 11 correlation 

matrices situations of the simulation. The values of Table 4.2 were selected according to 

the results shown in Appendix 4.1 (Table 4.4) where the Type I risk for 20 different nd 

values were calculated in the 11 correlation matrix scenarios. 

 
TABLE 4.2.  Selected  number of standard deviations (nd) to use in the construction of the UCL in 

Hawkins’ methodology for an overall Type I risk, overall=0.05, in the 11 correlation matrix 
scenarios 

 
C  1 2 3 4 5 6 7 8 9 10 11 

 nd 2.49 2.44 2.48 2.44 2.31 2.47 2.41 2.46 2.44 2.46 2.45 
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The Type I risk corresponding to this nd selection was computed on new 10 test data sets 

for the corresponding 11 correlation matrix scenarios. Figure 5.1 b) shows that after the 

adjustment the objective of overall Type I risk of 5% is accomplished. 

In the case of Hayter and Tsui´s and the Step-down´s methodologies the monitored 

statistic follows known theoretical distributions what makes easier to adjust them for the 

overall Type I risk (overall=0.05). 

 

4.2 Fault diagnosis performance comparison   

In order to compare the methodologies first we started with an exploratory partial 

least squares (PLS) regression study over the data to investigate the relationships among 

the different methodologies and the proposed indices PTC0, PTCv, PWC0, PWCv, PND 

and PNF. In a second step, the results for the different performance indices obtained from 

the simulation study were analyzed with a multifactor analysis of variance (ANOVA)  

 

4.2.1 PLS initial exploratory study 

A PLS model is fitted for 6 response variables: PTC0 , PTCv, PWCo, PWCv, PND,  

PNF and for 33 predictor variables: diagnosis method (14 methods), correlation scenario 

(11 different scenarios), number of faulty variables (1 to 3), size of the fault (small, 

medium or large faults), strength of correlation (low and high). The 14 methods are 

labeled according to Table 4.3. 

In the step-down method, two a priori ordering among the different types of faults 

were considered: profile 1-1-1-1 (fault in x1, fault in x2, fault in x3, fault in x4) in M12 

and profile 1-1-2  (fault in x1, fault in x2, fault in x3 and x4) in M13. A variant of Hawkins´ 

methodology (M14) to detect faults affecting one single variable (Hawkins’ one single 
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variable method) was also considered. In this variant, the algorithm identifies as 

responsible the variable with the largest significant residual ẑk,new. 

 
TABLE 4.3.  List of diagnostic methods  

                   

Label Method 
M1 Hawkins 
M2 Hayter and Tsui 
M3 Doganaksoy, Faltin and Tucker (Bonferroni) 
M4 Doganaksoy, Faltin and Tucker (Holm) 
M5 Doganaksoy, Faltin and Tucker (Hochberg) 
M6 Doganaksoy, Faltin and Tucker (Hommel) 
M7 Doganaksoy, Faltin and Tucker (TCH) 
M8 Doganaksoy, Faltin and Tucker (D/AP) 
M9 Murphy 
M10 Mason, Tracy and Young (MTY)  
M11 Montgomery and Runger 
M12 Step-down with profile (1-1-1-1) 
M13 Step-down with profile (1-1-2) 
M14 Hawkins’ one single variable  

 

The PLS results shows that the first two PLS components jointly explain a 45.1 % of 

the variability ( 2
YR ) of the response variables with a predictive ability of 44.9% ( 2Q ). 

Figure 4.2 a) shows the w*c1 /w*c2 weighting plot corresponding to these PLS 

components for the most relevant factors. The size of the fault (Sf) accounts for the most 

of the first component. Large faults (Sf(3)) yield large values for PTCv and PTCo, so the 

larger the size of the fault the better the classification results. On the other hand, the lack 

of power indices PND and PNF are inversely related to the true classification percentages 

PTC0 and PTCv, and the lower the size of the fault the higher the lack of the detection 

and isolation power. In Figure 4.2 b), the t1/t2 score plot shows three clusters along the 

first component which correspond to small Sf(1), medium Sf(2) and large Sf(3) size of 

faults. The first component has to do with the inverse relationship between PND and PNF 

with PTC0 and PTCv. The Step-down methods (M12 and M13) and the M14 cannot be 

compared against the other methodologies in all the faults as they only cover some 

specific types of the faults and, consequently, these methods presented the worse results 
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in PTCv. The second component has to do with the false positives indices (PWCv and 

PWC0) in which Murphy´s (M9), Montgomery´s (M11) and Hawkins´ (M1) methods had 

the worst results. 

  

  
FIGURE 4.2  PLS model:  a) w*c1 /w*c2 weighting plot  b) t1/t2	score plot: small size (blue), 

medium size (green) and large size (red) faults 
 

The PLS regression coefficients plots in Figure 4.3 allow to study the statistical 

significance of the predictor variables for the response variables PTC0 , PTCv, PWCo, 

PWCv, PND and  PNF.   

 

 In PTC0  the methods M1, M9, M11, M12, M13, M14 perform significantly worse 

than methods M2 to M8 and M10. The plot shows that PTC0  improves with small 

correlation scenarios (C1 and C2), one single variable faults and  large-sized 

faults.  

 In PTCv, the methods M2, M12, M13 and M14 perform worse than the rest. There 

are no special problems with M1, M9, M11 which allows us to conclude that the 

bad performance in PTC0 of these methods is mainly due to an excesive number 

of false positive diagnosis. The method with the best results in PTCv is the M10. 

The plot shows that  PTC v improves in large-sized faults of one single variable. 
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In contrast to what happens in the PTC0 it performs better in strong correlation 

scenarios.  

 PWC0 and PWCv coefficients plots shows clearly that the problems with methods 

M1, M9, M11 is a problem of an excesive false positives and that the problem is 

associated to the high correlation scenarios. 

 PND coefficient plot shows that only method M2 has special problems of lack of 

detection which is specially associated to small faults in small correlation 

scenarios. 

 PNF coefficient plot shows that DFT and its variants (M3 to M8) are the only 

methods with lack of power in diagnosis. The ad hoc variants M7 and M8 perform 

better than methods M3 to M6. This problem is specially associated to small faults 

in high correlation scenarios. 
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FIGURE 4.3:  PLS Regression Coefficients Plot (CoeffCS): a) PTC0 , b) PTCv, c) PWCo, d) PWCv, e) PND and f) PNF           

(95% confidence level)  
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4.2.2 Interpretation of the ANOVA Results 

 
In order to check for the statistical significance of the PLS results a multifactor 

analysis of variance (ANOVA) was performed considering the factors: number of faulty 

variables, Nf  (3 levels: 1, 2 and 3 faulty variables); diagnosis method, M (14 levels, see 

Table 4.3); and correlation structure, C (11 levels, see Table 4.1). The ANOVA results 

(see Appendix 2) show that all the factors and most of their interactions are statistically 

significant (p-value< 0.05) for all the performance indices. 

The mean and 95% least significance difference (LSD) intervals plots displayed in 

Figure 4.4 show similar results than those obtained from the PLS regression coefficients 

in Figure 4.3. MTY (M10), the ad hoc and Bonferroni variants of the DFT method (M3, 

M7, M8) have the best results in PTC0. The MTY also presents the best results in PTCv 

and a medium performance in PWC0 and PWCv. The Hawkins’ (M1), Murphy’s (M9) and 

Montgomery’s (M11) methods exhibit serious problems of false positives in diagnosis, 

as it can be concluded from the large values in PWC0 and PWCv, yielding low 

performance in terms of correct diagnosis (PTC0).  

The interaction plots displayed in Figure 4.5 shows that one of the main reasons why 

the interaction between correlation structure and the diagnosis method is statistically 

significant is the different effect of the correlation structure in the performance in PTC0, 

PWC0 and PWCv of the methods M1, M9, M11. The performance of these methods is 

much more more sensitive to changes in the correlation structure than the others. 
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Figure 4.6 shows the PTC0, PTCv,, PWC0,  PWCv,  PND and PNF for the methods 

M1, M9, M11. It can be appreciated that the PTC0 drops, while PWC0 and PWCv rise, for 

correlation scenarios with a bad condition number (high correlations).  

The interaction plots between the number of observation variables involved in the 

fault (Nf) and the fault diagnosis method displayed in Figure 4.7 show that although M12 

and M14 are the best methods in PTC0 for one single variable faults they do not perform 

well when the number of variables involved in the fault is 2 or 3. This account for their 

bad performance in PTC0 as shown in Figure 4.7 a). By contrast methods M1,  
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FIGURE 4.4:  Means and 95% LSD intervals plot: a) PTC0 , b) PTCv , c) PWC0 , d) PWCv , e) PND ,  f) PNF.
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e) f) 
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FIGURE 4.5  Interaction plots for diagnosis method  covariance structure: 

a) PTC0  ,  b) PWC0  c) PWCv 

Arrows in the plots indicate the direction of increment of condition number of the correlation structures. 
 

 

 

 

 

 

 

 

 

M9, M11 and M13 perform badly in PTC0 no matter the number of variables involved in 

the fault. Regarding PTCv, Figure 4.7 b) shows that the M1 has the best performance for 

one single variable faults while the M10 gives the best diagnosis performance for to 2 and 

3 variables faults. Methods M12, M13 and M14 perform badly for 2 and 3 variables faults. 

This explains their bad performance in PTCv  shown in Figure 4.7 b). 

Interaction Plot

M
P

T
C

o

C
1
2
3
4
5
6
7
8
9
10
11

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Condition 
 number 

Interaction Plot

M

P
W

C
v

C
1
2
3
4
5
6
7
8
9
10
11

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

c) 
Interaction Plot

M

0

0,2

0,4

0,6

0,8

1

P
W

C
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
1
2
3
4
5
6
7
8
9
10
11

b) 

a) 

b) c) 

FIGURE 4.6  PTC0 , PTCv ,PWC0 , PWCv , PND and PNF under the different correlation structures 
a) Hawkins’, b) Murphy´s and c) Montgomery´s methods 
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a) b) 
Interaction Plot
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 In the case of one single variable faults, Figure 5.9 a) shows that M14 (Hawkins´ one 

single fault method) and M12 (Step-down method with 1-1-1-1 subsets) perform better 

in PTC0 than the rest of the methods. Figures 4.8 b) and c) shows that M12 and M14 

present small values for PWC0 and PWCv. The good performance of these methods in 

diagnosing single variable faults can be explained by the fact that they are especially 

designed for this situation. On the contrary, these methods give bad results when the 

actual fault involves more than one variable as already shown in Figure 5.8. Another 

drawback in the Step-down method is the difficulty in implementing the monitoring plots 

when two different types of faults share a common out-of-control variable (i.e. if one type 

of fault supposes that the variables 1 and 2 become out of control and a second type of 

fault supposes that variable 1 and 3 become out of control). 

 If the size of the fault Sf (3 levels: small, medium and large) is introduced as a new 

factor in the ANOVA we observe an interesting result in Figure 4.9 whereby ANOVA 

interaction plots between the diagnosis method and the size of fault show that large and 

medium faults are particularly responsible for the excessive false positive rates in 

methods M1, M9 and M11  
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As it can be seen in Figures 4.10 a) the PND is equal on methods M3 to M11 since 

the detection on these methods is based on the Hotelling´s T2 statistic. Methods M1, M12 

and M13 have slightly larger PND in all the correlations structures. It can be appreciated 

that PND higher values are obtained in the weakest correlation structures C1, C2 and C3 

for all the methodologies with the exception of the M2. The M2 presented a singular 
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a)  PWC0,, b) PWCv 
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FIGURE 4.8  One single variable fault interaction plots: diagnosis method  covariance structure: 

 a) PTC0 ,   b) PWC0, c) PWCv. 
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behavior since the PND results become close similar in all the correlation structures. This 

method has the worst results in PND.  

 
 
 

 

 
 
 

FIGURE 4.10  Interaction plots: diagnosis method  correlation structure: a) PND b) PNF 
 
 
 
 
 

 
 
 
 

FIGURE 4.11:  PNF Interaction plot: diagnosis method  fault size 
 

Figure 5.11 b) and 5.5 f) shows that the DFT methods (from M3 to M8) give high 

values on PNF, thus indicating a lack of diagnostic power. Figure 5.12 shows that the bad 

PNF results are mainly associated to the small-sized faults, being particulary problematic 

in M3 to M6 methods. Among the DFT method and its variants the ad hoc variants (D/AP 

and TCH) (M7 and M8) have smaller values in PNF than M3, M4, M5 and M6. 

 

 

4.3 Summary and Conclusions 

The simulation results let us to conclude: 

 The MTY method has a better diagnosis performance than the rest of the methods 

because it achieves better results in PTCv while keeping a similar performance in 

PTC0 to the other methods. Moreover, the MTY provides an easy interpretation 

of the significant terms and the relationships between variables and distinguishes 
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situations in which the correlation structure among the variables is broken from 

situations in which the correlation structure is still valid.  

 Hawkins´, Murphy´s and Montgomery´s methods increase the number of false 

positives in the case of strong correlations and, consequently, yield a bad 

performance in PTCo.  

 DFT method and its variants showed problems of “lack of power in fault isolation” 

(PNF). The ad hoc methods D/AP and TCH showed a better power in fault 

isolation and PTC0 values in the case of faults involving three variables or small 

faults, than the Bonferroni´s variant. The Holm´s, Hochberg´s and Hommel´s 

variants had the worst results in all the scenarios simulated.  

 The step-down method with profile 1-1-1-1 and the Hawkins´method for faults in 

one single variable yielded the best results in the case of one single variable faults. 

The problem with these methods is that they cannot be used to diagnose faults in 

which there are more than one responsible variable.   

 These results show that most of the compared methodologies have problems with 

false positives that have often not been reported in literature. Research is needed 

to introduce variants in these methods or improve the algorithms to reduce the 

impact of the PWC indices in the diagnosis performance of these methodologies 

and, consequently, improve their classification results. This is the goal of Chapter 

5. 
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Appendix 4.1 
 
 

 Nº Standard Deviations 
 Correlation 

Matrix 
Scenarios 2.3 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 

1 0.0824 0.0803 0.0783 0.0762 0.0744 0.0725 0.0706 0.0686 0.0668 0.0651
2 0.0722 0.0703 0.0685 0.0667 0.0651 0.0634 0.0618 0.0602 0.0587 0.0572
3 0.0813 0.0792 0.0772 0.0753 0.0734 0.0715 0.0696 0.0678 0.0659 0.0643
4 0.0716 0.0698 0.0682 0.0665 0.0649 0.0633 0.0617 0.0602 0.0585 0.057
5 0.0518 0.0505 0.0493 0.048 0.0469 0.0457 0.0446 0.0435 0.0425 0.0414
6 0.0772 0.0753 0.0734 0.0716 0.0697 0.068 0.0663 0.0646 0.0629 0.0613
7 0.0663 0.0646 0.063 0.0615 0.06 0.0585 0.0569 0.0554 0.054 0.0525
8 0.0754 0.0735 0.0718 0.0699 0.0682 0.0663 0.0647 0.063 0.0613 0.0596
9 0.0723 0.0707 0.069 0.0672 0.0656 0.0639 0.0623 0.0607 0.0592 0.0577

10 0.0752 0.0735 0.0717 0.07 0.0684 0.0667 0.0651 0.0633 0.0618 0.0602
11 0.0744 0.0726 0.0708 0.069 0.0673 0.0657 0.064 0.0624 0.0607 0.0592

       Nº Standard Deviations 
Matriz 
Covar 2.4 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 

1 0.0634 0.0616 0.06 0.0584 0.0568 0.0554 0.0539 0.0524 0.051 0.0496
2 0.0557 0.0543 0.053 0.0516 0.0503 0.049 0.0477 0.0464 0.0451 0.0438
3 0.0626 0.0609 0.0592 0.0576 0.0561 0.0546 0.0532 0.0518 0.0503 0.0489
4 0.0555 0.0541 0.0527 0.0513 0.0499 0.0486 0.0472 0.0459 0.0447 0.0436
5 0.0403 0.0392 0.0382 0.0373 0.0364 0.0354 0.0345 0.0336 0.0329 0.032
6 0.0597 0.0582 0.0567 0.0553 0.0538 0.0524 0.0511 0.0498 0.0485 0.0472
7 0.0512 0.0498 0.0486 0.0473 0.0461 0.0448 0.0436 0.0425 0.0414 0.0402
8 0.0581 0.0565 0.0552 0.0537 0.0523 0.051 0.0497 0.0484 0.0471 0.0458
9 0.0562 0.0547 0.0533 0.0519 0.0505 0.0493 0.0479 0.0466 0.0453 0.044

10 0.0587 0.0573 0.0558 0.0544 0.0529 0.0515 0.0502 0.049 0.0478 0.0464
11 0.0576 0.0563 0.0548 0.0535 0.0521 0.0506 0.0491 0.0478 0.0466 0.0452

 
TABLE 4.4:  Selection of the number of standard deviation (nd) to use in the construction of the 

UCL in Hawkins´ methodology in order to get an overall Type I risk, overall =0.05 in the 11 
correlation matrix scenarios.  

(The final selection is marked in bold font). 
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Appendix 4.2 
 
 
Multifactor ANOVA 
Dependent variable: PTCo 
Factors: 
Nf: Number of faults 
M: Diagnostic Method  
C: Correlation Structure 

 
 

Analysis of Variance for PTCo - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
A:Nf                        39,8789      2        19,9395     242,13     0,0000 
B:M                         295,449     13        22,7268     275,98     0,0000 
C:C                         3,47592     10       0,347592       4,22     0,0000 
 
INTERACTIONS 
AB                          99,7702     26        3,83731      46,60     0,0000 
AC                           1,3626     20      0,0681298       0,83     0,6822 
BC                          48,0837    130       0,369874       4,49     0,0000 
 
RESIDUAL                     1276,93  15506      0,0823505 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            2069,61  15707 
-------------------------------------------------------------------------------- 
 
Analysis of Variance for PTCv - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
A:Nf                        6,61053      2        3,30527      42,84     0,0000 
B:M                         121,702     13        9,36166     121,33     0,0000 
C:C                         12,8711     10        1,28711      16,68     0,0000 
 
INTERACTIONS 
AB                          51,0124     26        1,96202      25,43     0,0000 
AC                          6,88896     20       0,344448       4,46     0,0000 
BC                          9,48221    130      0,0729401       0,95     0,6576 
 
RESIDUAL                     1196,38  15506      0,0771563 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            1567,52  15707 

 
 

Analysis of Variance for PWCo - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:Nf                        3,36662      2        1,68331      51,63     0,0000 
 B:M                         374,171     13        28,7824     882,80     0,0000 
 C:C                         37,7596     10        3,77596     115,82     0,0000 
 
INTERACTIONS 
 AB                           13,952     26       0,536615      16,46     0,0000 
 AC                          6,33112     20       0,316556       9,71     0,0000 
 BC                          120,106    130       0,923893      28,34     0,0000 
 
RESIDUAL                     505,548  15506      0,0326034 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            1267,47  15707 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
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Analysis of Variance for PWCv - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:Nf                         12,258      2        6,12902     244,17     0,0000 
 B:M                         241,267     13         18,559     739,35     0,0000 
 C:C                         28,0647     10        2,80647     111,80     0,0000 
 
INTERACTIONS 
 AB                          15,9675     26       0,614133      24,47     0,0000 
 AC                          5,58864     20       0,279432      11,13     0,0000 
 BC                          92,0882    130       0,708371      28,22     0,0000 
 
RESIDUAL                     389,228  15506      0,0251017 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            948,837  15707 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 

 
Analysis of Variance for PND - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:Nf                        25.2997      2        12.6498     255.52     0.0000 
 B:M                         12.3138     13       0.947218      19.13     0.0000 
 C:C                         37.8173     10        3.78173      76.39     0.0000 
 
INTERACTIONS 
 AB                         0.816611     26      0.0314081       0.63     0.9234 
 AC                          9.03737     20       0.451868       9.13     0.0000 
 BC                          4.76283    130      0.0366372       0.74     0.9881 
 
RESIDUAL                      767.65  15506      0.0495067 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            873.571  15707 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
 
 
Analysis of Variance for PNF - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:Nf                        0.23255      2       0.116275      27.12     0.0000 
 B:M                         9.65712     13       0.742855     173.25     0.0000 
 C:C                         2.03821     10       0.203821      47.53     0.0000 
 
INTERACTIONS 
 AB                          0.36364     26      0.0139862       3.26     0.0000 
 AC                         0.208887     20      0.0104443       2.44     0.0003 
 BC                          4.35935    130      0.0335334       7.82     0.0000 
 
RESIDUAL                     66.4869  15506     0.00428782 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            86.7313  15707 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
 
 

 



127 
 

Chapter 5:   New proposed variants for MSQC 
fault diagnosis  

 

As it was stated in Chapter 4, some methods for fault diagnosis employed in MSQC 

suffer from a high false positives rate in scenarios of strong correlations among variables, 

degrading their classification performance. In this chapter we propose some new variants 

to improve the diagnosis performance of these methods through the reduction of the 

number of false positives in Mason, Tracy and Young´s, Hawkins´, Murphy´s and Runger 

and Montgomery´s algorithms. 



Chapter 5: New proposed variants for MSQC fault diagnosis  
 

 

128 
 

  



Chapter 5: New proposed variants for MSQC fault diagnosis  
 

 

129 
 

5.1 Variants of the Mason Tracy and Young Method  (MTY) 

Mason et al. (1995,1997) (Section 3.2.8) describe in their methodology that in the  

interpretation of new observations in which a conditional component, i.e. a pair-wise 

variables term, such as k|jT  where j  k , becomes significant, it is concluded that the 

relationship between both variables xj and xk in the new observation is different to the 

relationship observed in the reference data set. Therefore, the two variables are suspected 

to be responsible of the detected problem as there is no reason to consider one of them 

more suspicious than the other.  

In our opinion in scenarios with a certain number of variables involved, the last 

recommendation could lead to high false positive rates. For instance, if we are monitoring 

several observation variables and there is a problem in the process or a  sensor that cause 

a change in the mean of only one single variable, the size of the change may not be large 

enough to cause the unconditional terms to be significant but many correlations of this 

variable with the others may be affected. Under this situation in the diagnosis there will 

be a dominant variable appearing in most of the significant conditional terms. In this case 

this variable must be considered the responsible for the fault and not the others. 

According to this we are going to propose two variants of the MTY´s algorithm. 

 

5.1.1  Variant 1:  MTY1 

The first variant of the algorithm proposes that when a dominant variable is detected 

it will be withdrawn from the set and considered as one of the responsible variables of the 

detected change. Then, the algorithm continues checking if the Hotelling´s T2 statistic 

calculated on the remaining set of variables is significant.  
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The procedure to be considered a dominant variable is as follows. Firstly, it is 

computed the number of times, h, the different variables appear in the significant 

conditional terms for each loop of the algorithm. Secondly, the variables are ranged 

according to this number h. Thirdly, the ratio between the two more frequent variables 

hfirst/hsecond  is worked out. Fourthly, if this ratio is larger than a threshold, the first variable 

is considered as a dominant variable. In our simulations we have used three threshold 

values 1.5, 2 and 3, to study the performance of the proposed variant. The larger is the 

selected threshold the higher is the resemblance of the proposed variant to the original 

Mason et al´s algorithm. The proposed algorithm is presented in detail as follows: 

 

5.1.2  Variant 2:  MTY2 

In this variant, after computing the different significant conditional terms for the 

current loop of the algorithm, they are sorted by magnitude from the largest significant 

term to the smallest, selecting the variables in each term as suspicious if the term does not 

include any variable that has been already considered suspicious. 

An example of how this variant will proceed to select the suspicious variables in a 

case with three significant terms in conditional terms with two variables follows:  

2.182|1 T , 5.103|2 T  and 5.95|4 T , then variables x1	and x2		become suspicious 

because the most significant conditional term in the second loop includes these two 

variables. The significant conditional term 3|2T  depends on the variables x2	and x3. But in 

this case, given that the variable x2 has already been considered as responsible in a 

previous term it is assumed that is x2 which account for most of this significant conditional 

term and not x3. The last significant term 5|4T  depends on the variables x4	and x5. As these 
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variables are not already considered suspicious in the previous significant terms, then the 

variables x4	and x5 are both considered as suspicious. 

 

5.2 Variants of the Hawkins´ method (HM) 

As commented in Section 3.2.6 the detection and diagnosis in Hawkins’ methodology 

is based on the residual vector ẑ , whose kth component is the standardized residual when 

the kth variable is regressed onto all the other variables of x.  

When applying a univariate shewhart chart scheme for monitoring the individual K 

residuals, the overall Type I risk is overestimated as a consequence of the presence of 

correlation among the scaled residuals. So it makes necessary to adjust the Type I risk 

according to the actual correlation structure with an appropriate selection of the number 

of standard deviations (nd) when calculating the upper control limits of the monitoring 

charts. In section 3.2.6 a variant of Hawkins´ methodology to detect faults which affect 

one single variable (Hawkins’ one single variable method) was considered. In this variant, 

the algorithm identifies as responsible the variable with the largest significant residual 

kẑ .   

In order to reduce the false positives rate three new variants of Hawkins´ algorithm 

are proposed. Our reasoning to consider these variants are going to improve the 

performance of the Hawkins´ algorithm is based on the fact that all the computed Hawkins 

residuals kẑ  are affected by all the variables whose mean changes. The only way to 

reduce the effect in the regressions is the recursive extraction of the suspected variables. 

For instance, if there is a mean shift only in the variable 1x , 1z  is probably going to be 
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significant but also the other residuals kẑ for other variables kx  that are obtained with 1x  

acting as an outlier regressor.  

 

5.2.1  Variant 1:  Recursive Hawkins´ methodology (RH) 

In this variant, Hawkins´ methodology is applied recursively, extracting one single 

variable as responsible in each loop. To extract a second suspected variable, the algorithm 

proceeds to compute again the kẑ residuals from the remaining variables checking for 

their significance. The algorithm proceeds in recursive loops until the observation in the 

remaining variables does not cause signal in the monitoring statistics. In the case of a 

mean shift in e.g. 1x , the 1z  residual corresponding to variable 1x , which is the largest 

residual, is isolated and, then, when the Hawkins´ methodology is applied in a second 

loop all the regressions to compute the different residuals, where 1x  is now excluded, are 

going to fit well and no large residuals are going to be expected. This algorithm is 

expected to perform better than the original Hawkins proposal not only for one variable 

fault but for faults which include more variables.       

 

5.2.2  Variant 2:  Pre-Filtered Recursive Hawkins´ methodology (FRH) 

When the number of variables involved in the fault increases, the impact in the 

regression residuals may be important and a way to reduce this impact is pre-filtering the 

most suspected variables before applying Hawkins´ methodology. Our proposal is to filter 

out those variables having significant unconditional terms from Mason et al´s procedure. 

These variables with values out of the normal operational range act as gross outliers in 

Hawkin´s regressors and affect the results notably.  
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The first step is the computation of the unconditional terms of Mason et al´s method 

and the selection of the variables which are out of their normal operational region as 

suspicious of being responsible of the fault. Once the suspicious variables are filtered out, 

the method applies Hawkins´ methodology in a recursive way to sequentially extract the 

variables. As shown in Section 3.2.8.1 and Appendix 3.8, Hawkins´ kẑ residuals  are 

equivalent to the square root of the higher order conditional terms of Mason et al´s 

methodology ( 2
1...1,-1...| KkkkT  ) and, therefore, applying Hawkins´ method in a recursive way 

is similar to compute the different conditional terms of Mason et al´s method. The 

difference is that in our proposal these terms are calculated from the larger order terms to 

the lower order terms (backward strategy) while Mason et al´s algorithm proceeds from 

lower order to larger order terms (forward strategy). We consider the backward strategy 

is more appropriate because in determining whether a variable is or not responsible for 

the fault it uses the information contained in the relation with all the remaining variables. 

 

5.2.3  Variant 3: Hawkins´ variants with a Hotelling´s T2 detection 

trigger mechanism 

 

Hawkins´ methodology and the proposed variants RH and FRH need to be adjusted 

to a fixed Type I risk. In this third variant a Hotelling T2 statistic is used to detect the out-

of control and can be easily adjusted to the required Type I risk based on the assumed in-

control Hotelling T2 known distribution, yielding: 

 Variant 3.1   T2-Recursive Hawkins  (T2RH) 

 Variant 3.2   T2-Pre-Filtered Recursive Hawkins (T2FRH) 
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In these variants the number of standard deviations (nd) to consider as threshold for 

the different kẑ  residuals tests is an adjustment parameter. In a first approach, for variant 

3.2 we will use the Bonferroni approach considering two times the number of variables 

as the number of tests to consider. Also we will study the effect of changing the value of 

this parameter on the diagnosis performance. Additionally, when diagnosing the case of 

one variable faults they will be compared to Hawkins’ one single variable method. In this 

methodology the variable detected by the algorithm as responsible is the one with the 

largest significant kẑ residual so that this method can only be applied to diagnose one 

variable faults. 

 

5.3 Variants of the Montgomery and Runger´s method 

Four variants of the Montgomery and Runger´s algorithm (MR) are proposed 

5.3.1 Variant 1:  Recursive Montgomery and Runger´s methodology   
(RM) 

 

When the Hotelling´s T2 decomposition in Rencher (1993) is applied starting by the 

k-th variable, it follows that  

   
2

1..Kk 1..-1,2,.k|k
2

1K
2 TTT    (5.1)

where  
2

1KT   is the Hotelling´s T2 statistic on the K-1 variables excluding in this particular 

case the k-th variable. Writing  2
1)(

2

1  Kk TT   and from Equation 3.12 it follows: 

  22222
1)(

22
1... 1...-1,2,...| ˆ

1 kkkkKKkkk zDcTTTTT    (5.2)

According to this expression, the D statistics are equivalent to the conditional terms of 

maximum order of Mason et al´s methodology. These conditional terms are the squared 

residuals when each one of the K variables are regressed onto the remaining K-1 variables 
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(see Appendix 3.8). All the statistics distances kD  are affected when one single mean 

changes as it happened in Hawkins´s methodology. A way to solve this problem is 

applying Montgomery´s methodology in a recursive way, eliminitating one significant 

single variable per cycle.     

 

5.3.2 Variant 2:  Montgomery and Runger´s method under a sequential 

extraction methodology (MUSE) 

 

The statistics distances kD  are computed only one time and ranged from the smallest 

to the largest, then the suspected variables are extracted sequentially. After the selection 

of the first suspected variable it is checked whether the Hotelling´s T2 for the remaining 

K-1 variables is significant or not. If it is significant the algorithm proceeds to extract a 

second suspected variable, otherwise the algorithm ends.  

 

5.3.3 Variant 3: Pre-filtered recursive Montgomery and Runger´s 

methodology (FRM) 

 

The first step is the computation of the unconditional terms of the Mason et al´s 

method and the selection of the variables which are out of their normal operational region 

as suspicious of being responsible of the fault. Once the suspicious variables are filtered 

out, the method applies the recursive Montgomery methodology (RM) 
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5.3.4 Variant 4: Pre-filtered Montgomery and Runger´s method under 

a sequential extraction methodology (FMUSE) 

 

Once the suspicious variables according to the unconditional Mason et al´s terms are 

filtered out, the method applies the Montgomery´s method under a sequential extraction 

methodology. 

 

5.4 Variants of the Murphy´s method 

Two variants of the Murphy´s algorithm (M) are proposed. 

5.4.1 Variant 1: T2-Hotelling Murphy´s methodology  (T2M) 

In this variant, the decision to proceed to the next loop is not based on the distribution 

of the statistic kD .  For each loop, it is checked whether the subvector with the remaining 

variables gives a signal in the Hotelling T2  statistic or not.  

 

5.4.2 Variant 2:  Pre-filtered T2-Murphy´s methodology (FT2M) 

In this method the Variant 1 of Murphy´s algorithm is applied after filtering out those 

variables having significant unconditional terms for Mason et al´s procedure.  
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Chapter 6:   Diagnosis performance in MSQC (II) 

In this chapter we proceed to compare the diagnosis performance of the new variants 

for Mason, Tracy and Young´s, Hawkins´, Murphy´s and Montgomery´and Runger´s 

algorithms proposed in Chapter 5. The methods are tested in a simulation procedure for 

7 measured variables. A wide variety of different types of fault with different correlation 

structures have been considered. Finally the improved methods were used in the 

pasteurization process data set.  
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6.1 Simulation procedure for 7 Variables 

6.1.1 Simulation data generation 

In order to compare the new variants of the methods proposed in Chapter 5, we use a 

simulation for 7 variables in which the performance of these methods is measured for 

different types of faults and different correlation scenarios in the same way as we did in 

section 4.1 for a four variables simulation case. In this simulation, the different 

methodologies are applied under ten different correlation structures shown in Table 6.1 

where the covariance matrix condition numbers tend to increase its value from C1 to C10. 

The standard deviations of the seven variables were uniformly distributed between 0.3 

and 0.4. Scenarios leading to unfeasible covariance matrices were discarded. Reference 

data sets of 50.000 observations for each of the 10 covariance structures were obtained 

using the algorithm proposed by Arteaga and Ferrer (2010). These reference data sets 

were used to adjust the Type I risk when the methodologies under comparison used a 

different detection trigger mechanism in the detection of the out-of-control observations 

(Hawkins´ method and its variants). For every correlation structure 102 different types of 

faults were considered. The faults consisted in mean shifts in one, two or three variables. 

The size of the shifts were small (1.25 to 1.66 standard deviations), medium (2.5 to 3.33 

standard deviations) or large (5 to 6.6 standard deviations). The shifts involving several 

means happened in both the same or opposite directions. For each type of fault, 500 

observations using the algorithm proposed by Arteaga and Ferrer (2010) were simulated. 
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TABLE 6.1  Correlation structures. 

Correlation 
Structure 

Correlation Values 

Extreme 
Correlations 

(0.9) 

Condition 
Number 

min

max




 

C1: Weak correlations Weak correlation coefficients uniform 
distributed, U[-0.1 , +0.1] 

No 1.94 

C2: Moderate positive  
       correlations 

Moderate positive correlation coefficients 
uniformly distributed, U[+0.1 , +0.4] 

No 5.25 

C3: Moderate negative   
      correlations 

Moderate negative correlation coefficients 
uniformly distributed, U[-0.1 , -0.3]  

No 68.66 

C4: Moderate mixed    
      correlations 

Moderate positive correlations mixed with 
three negative correlations Absolute 
correlation coefficients uniformly 
distributed,   U[+0.1 , +0.4] 

No 12.71 

C5: Weak correlations 
       with one extreme  
       correlation 

Weak correlation coefficients uniformly 
distributed, U[-0.1 , +0.1] with one 
coefficient  +0.9 

Yes 22.11 

C6: Moderate positive  
       correlations with one  
       extreme correlation 

Moderate positive correlation coefficients 
uniformly distributed, U[+0.1 , +0.4] with 
one coefficient  +0.9 

Yes 43.02 

C7: Moderate mixed  
       correlations with one 
       extreme correlation 

Moderate positive correlations mixed with 
three negative correlations. Absolute 
correlation coefficients uniformly 
distributed, U[+0.1 , +0.4] with one 
coefficient  +0.9 

Yes 2026.7 

C8: Strong positive  
       correlations 

Strong positive correlation coefficients 
uniformly distributed, U[+0.5 , +0.8] 

No 40.91 

C9: Strong positive  
       correlations with one 
       extreme correlation 

Strong positive correlation coefficients 
uniformly distributed, U[+0.5 , +0.8] with 
one coefficient  +0.9 

Yes 1244.1 

C10: Strong mixed           
        Correlations 

Positive correlations coefficients uniformly 
distributed U [+0.3 +0.6] mixed with two 
negative correlations 

No 542.29 

 

6.1.2 Performance indices 

These faulty data sets were processed under the different proposed fault diagnosis 

methodologies and their performance were measured and compared according to the 

indices described in Section 4.1.2: 0PTC , PTCv , 0PWC , PWCv , PND  and PNF .  In this 

section three additional new combined indices which try to measure the overall 

classification performance will be introduced:  

 TCI (True Classification Index): which takes into account the joint results in PTC0 

and PTCv and gives them an equal weight according to the following expression:  
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  2/)( v0 PTCPTCTCI   (6.1)

 WCI (Wrong Classification Index): which takes into account the joint results in 

PWC0 and PWCv and gives them an equal weight according to the following 

expression:  

  2/)( v0 PWCPWCWCI   (6.2)

 GCI (Global Classification Index): which takes into account the joint results in 

PTC0, PTCv, PWC0 and PWCv and gives them an equal weight according to the 

following expression:  

    WCI-TCI =PWCPWCPTCPTCGCI vv 2/)()( 00   (6.3)

 

6.1.3 Type I risk considerations 

Among all the tested methods, only the Hawkins´ methodology and our proposed 

variants on this method require a Type I risk adjustment. The others methodologies and 

proposed variants use the Hotelling´s T2 statistic in the detection step which follows an 

in-control known distribution. In order to check the accuracy and precision of the adjusted 

Type I risk for the 10 covariance matrices under different detection trigger mechanisms, 

10 reference data sets under each correlation matrix were simulated and the real Type I 

risk for each data set were computed.  In the methodologies based on the Hotelling´s T2  

the real Type I risk is centered in the desired value as it was expected since the Type I 

risk level is adjusted from a theoretical distribution that takes into account the correlations 

between variables.  

In the Hawkins´ methodology it is assumed that the monitored residuals follow a unit 

variance normal distribution. The overall Type I risk depends on the number of 

hypotheses tests and the Type I risk  of each of the individual hypothesis tests. In the 
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case of seven variables the overall Type I risk for the recursive Hawkins´ methodology 

(RH) is .)1(1 7  For a desired overall rate of 05.0overall  , the 

0073.0)1(1 7/1
overall    and the number of standard deviations to consider for a 

two-tale hypothesis test is 2.685 . The pre-filtered recursive Hawkins´ methodology 

(FRH) performs 7 hypotheses tests in the pre-filter step and 7 hypotheses tests in the first 

loop of the recursive procedure. The overall Type I risk for FRH is 05.0)1(1 14   . 

For a desired overall rate of 05.0overall  , the 0036571.0)1(1 14/1
overall    so 

the number of standard deviations to consider for a two-tale hypothesis test is 2.92. In 

both cases it is necessary to adjust the Type I risk according to the selected correlation 

matrix because the Type I risk may be underestimated and these values of 2.685 and 

2.92 can be considered a first tentative approach. In order to select the best number of 

standard deviation (nd) in every correlation scenario, the Type I risk corresponding to 

different nd selections in the neighborhood of the first tentative approach were calculated 

in Appendix 6.6 (Tables 1 and 2) and the best values for nd are shown in Table 6.2 and 

Table 6.3. 

 
TABLE 6.2: Selected number of standard deviations (nd) to use in the construction of the UCL in 

Hawkins’ methodology and its Variant 1 for an overall Type I risk ( 05.0overall  ) in the 10 

correlation matrix scenarios 
 

C  1 2 3 4 5 6 7 8 9 10 

nd 2.68 2.68 2.36 2.65 2.66 2.64 2.38 2.66 2.50 2.39 
 
 
 

TABLE 6.3:  Selected number of standard deviations (nd) to Use in the Construction of the UCL in 

the Variant 2 of the Hawkins’ methodology for a prefixed Type I risk ( 05.0overall  ) in the 10 

correlation matrix scenarios 
 

C  1 2 3 4 5 6 7 8 9 10 

nd 2.74 2.81 2.79 2.84 2.77 2.81 2.77 2.83 2.75 2.77 
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As a final verification, the Type I risk corresponding to these n selections was computed 

on new 10 test data sets for the corresponding 10 correlation matrix scenarios. Figure 6.1 

shows that after the adjustment the objective of overall Type I risk of 5% is accomplished 

for the proposed variants of the Hawkins´ methodology. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6.1: Type I risk ( 100overall  ) in the different correlation scenarios  

a) Adjusted Recursive Hawkins´ Methodology (RH)   
b) Adjusted Prefiltered Recursive Hawkins´ Methodology  (FRH) 

 

6.2 Fault diagnosis performance comparison  

In order to study the performance of the proposed methodologies and variants 

under different correlation scenarios a multifactor analysis of variance (ANOVA) is 

carried out. Firstly, the original algorithms will be compared with the new proposed 

variants according to the PTC0, PTCv, PWC0, PWCv, PND and PNF indexes defined in 

section 4.1.2. Then, to conclude, a final ANOVA study is used to compare the best 

variants of each methodology 

 

 

 

 

a) b) 
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6.2.1 MTY´s Methodology 

6.2.1.1 Significance level for the decomposition terms 

In this methodology we have considered an overall type I risk  =5% for fault 

detection. But once a fault has been detected, it is necessary to select an appropriate 

significance level (terms) for the Hotelling´s T2 decomposition terms. The analysis of 

variance (ANOVA) was performed considering the factors: terms (1% 5% and 10%); 

correlation structure, C (10 levels, see Table 6.1); number of faulty variables, Nf  (3 levels: 

1, 2 and 3 faulty variables) ; and size of the fault (3 levels: small, medium or large faults). 

The ANOVA results (see Appendix 6.1) show that all the factors and most of their 

interactions are statistically significant (p-value< 0.05) for all the performance indices. 

 Figure 6.2 shows the results on PTC0, PTCv, PWC0, PWCv, PND and PNF when 

applying terms = 1%, 5% and 10%. It shows that a change in the significance level for the 

Hotelling´s T2 decomposition terms affects the MTY final classification results in all the 

indices. In PTC0, using terms equal to 1% and 5% perform better than using a 10% and 

that in high correlation scenarios (C8 to C10) a 5% gives the best results. These results 

are consistent with the high PWC0 obtained with terms equal to 10%. In PTCv, the results 

with terms equal to 5% are close to the ones obtained with a 10% proving superior to the 

results with a 1%. Figure 6.2 also shows that there are situations of lack of power in the 

diagnosis (PNF) when terms is equal to 1%.   
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a) b) 

c) d) 

e) f)
 

 
FIGURE 6.2:  Interaction terms  (1=0.01; 2=0.05; 3=0.10) covariance structure  

 for MTY´s Methodology 
 a) PTC0 , b) PTCv , c) PWC0 , d) PWCv , e) PND and  f) PNF 

 
 
 

Figure 6.3 shows that terms equal to 5% gives the best results in PTC0 , stay close to  

the results for PTCv with terms equal to 10%  and does not present problems of lack of 

power for 2 and 3 variables faults.  
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a) b) 

c) 
 

FIGURE 6.3:  Interaction terms  (1=0.01; 2=0.05; 3=0.10)  NF (Number of faulty variables) 
for MTY´s Methodology 

a) PTC0 , b) PTCv  and c) PNF 
z 

Figure 6.4 shows that problems of lack of power is specially related to small-sized 

faults and terms equal to 1%. it also shows that performance in PTC0 and PTCv improves 

with the size of the fault. 

a) b) 

c) 
 

FIGURE 6.4:  Interaction terms  (1=0.01; 2=0.05; 3=0.10)  Size of fault (1-Small; 2-
Medium; 3-Large) for MTY´s Methodology.  a) PTC0 , b) PTCv  and c) PNF 
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  The interaction plots for the combined indices in Figure 6.5 shows that the TCI 

achieves best results for terms equal to 5%, the WCI achieves best results for terms equal 

to 1% except for C9 and C10 where the best results were obtained for terms = 5%. The 

global index GCI gives the best results for terms equal to 1% for C1 to C6 and for terms 

equal to 5%. for the strongest correlations scenarios C7 to C10. The global index also 

presents the best results in 2 and 3 variables faults for terms equal to 5%.  

According to all these results it can be concluded that in our simulation a significance 

level in the decomposition terms terms equal to 5% gives overall good classification 

performance. 

a) b) 

c) d) 

e) 
FIGURE 6.5: Interaction plots for the combined indices TCI, WCI and GCI in MTY´s Methodology 
terms  (1=0.01; 2=0.05; 3=0.10)   covariance structure   a) TCI , b) WCI , c) GCI     
terms  (1=0.01; 2=0.05; 3=0.10)   NF (Number of faulty variables)   d) GCI   
terms  (1=0.01; 2=0.05; 3=0.10)   Size of fault (1-Small; 2-Medium; 3-Large)   e) GCI 
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6.2.1.2 MTY´s variants performance 

In the MTY1 (Variant 1 of the MTY´s algorithm explained in section 5.1.1) three 

different ratio hfirst/hsecond values for the condition of dominant variable: 1.5, 2 or 3 have 

been considered. The analysis of variance (ANOVA) was performed considering the 

factors: Method (4 levels: MTY, MTY1 hfirst/hsecond = 1%, 5% and 10%); correlation 

structure, C (10 levels, see Table 6.1); number of faulty variables, Nf  (3 levels: 1, 2 and 

3 faulty variables); and size of the fault (3 levels: small, medium or large faults). The 

ANOVA results (see Appendix 6.1) show that all the factors and most of their interactions 

are statistically significant (p-value< 0.05) for all the performance indices. 

Figure 6.6 shows that the MTY1 outperforms the classification results yielded by the 

original MTY´s algorithm in the high correlation scenarios (C8 to C10). The good 

classification results were mainly a consequence of the improvement in the PTC0 , PWC0 

and PWCv indices. For C1 to C7 correlation scenarios, the results were only slightly better 

for the MTY1 than in the original MTY´s algorithm. Figure 6.6 also shows that the 

number of variables involved in the faults and the size of the fault have a similar effect in 

all these methods, and that the best classification results in our simulation were obtained 

with a ratio hfirst/hsecond equal to 1.5.  

Figure 6.7 shows that the MTY2 (Variant 2 of the MTY´s algorithm explained in 

section 6.1.2) yields similar results in PTC0 and PTCv than the original MTY algorithm. 

The MTY2 reduces the PWC0 and PWCv indices in high correlation scenarios (C8-C10) 

but this improvement is not transferred to the PTC0 index which stays close to the values 

of the original MTY. In other words, the method is successful in reducing the number of 

false positive variables but this reduction is not enough to increase the number of correctly 

diagnosed observations. Consequently, it can be concluded that the MTY1 outperforms 

the results yielded by the MTY2. 
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a) b) 

c) d) 

e) f) 

g) h) 
FIGURE 6.6:  Interaction plot covariance  method ; NF  method; size  method with  =5% terms = 5% 
Methods: M1: MTY;  M2: MTY1 hfirst/hsecond =1.5;  M3: MTY1  hfirst/hsecond =2;  M4: MTY1 hfirst/hsecond =3 
Method   covariance structure   a) PTC0 , b) PTCv ,  c) PWC0 and d) PWCv  
Method  NF (Number of faulty variables)   e) PTC0 and f) PTCv   
Method  size of fault (1-Small; 2-Medium; 3-Large)   g) PTC0 and h) PTCv 
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a) b) 

c) d) 

e) f) 

g) h) 
FIGURE 6.7: Interaction plot covariance  method ; NF  method; size  method with   =5% terms = 5% 
Methods: M1: MTY;  M2: MTY1 hfirst/hsecond =1.5;  M3: MTY2 
Method   covariance structure   a) PTC0 , b) PTCv ,  c) PWC0 and d) PWCv  
Method  NF (Number of faulty variables)   e) PTC0 and f) PTCv   
Method  size of fault (1-Small; 2-Medium; 3-Large)   g) PTC0 and h) PTCv 
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a) b) 

c) d) 

e)
FIGURE 6.8: Interaction plots for the combined indices TCI, WCI and GCI in MTY´s Methodology 

       Methods: M1: MTY;  M2: MTY1 hfirst/hsecond =1.5;  M3: MTY2 
Method   covariance structure    a) TCI , b) WCI and c) GCI     
Method  NF (Number of faulty variables)  )   d) GCI   

       Method  size of fault (1-Small; 2-Medium; 3-Large)   e) GCI 
 
 

The combined indices confirm these results. Figure 6.8 shows that MTY1 performs 

better in TCI (large values) and WCI (small values) than methods MTY and MTY2 in 

scenarios with high correlations (C8 to C10). In relation to the number of variables 

involved in the fault, the MTY1 gives better results in GCI for 1, 2 or 3 variables faults. 

The MTY1 also has better results in small and medium-sized faults than the others. For 

large-sized faults the performance is similar in the three methods.  
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The above results let us to conclude that in our simulation the MTY1 outperforms the 

other methods (MTY, and MTY2) specially due to a better performance in high 

correlation scenarios. 

 

6.2.2 Hawkins´ methodology 

6.2.2.1 FRH and RH variants performance 

An analysis of variance (ANOVA) was performed considering the factors: Method (4 

levels: Hawkins, HSVM, RH and FRH); correlation structure, C (10 levels, see Table 

6.1); number of faulty variables, Nf  (3 levels: 1, 2 and 3 faulty variables); and size of the 

fault (3 levels: small, medium or large faults). The ANOVA results (see Appendix 6.2) 

show that all the factors and most of their interactions are statistically significant (p-

value< 0.05) for all the performance indices. 

Figure 6.9 shows that the original Hawkins´ methodology (H) yields good results in 

the PTCv index but that unfortunately they are accompanied by a high rate of false 

positives (PWCv  and PWC0) in strong or negative correlations scenarios (C3). The poor 

results in PWCv and PWC0 accounts for the bad performance in PTC0 in these scenarios. 

The recursive (RH) and the pre-filtered recursive (FRH) Hawkins variants successfully 

reduce the number of false positives and therefore outperform the original algorithm (H) 

in the PTC0 index.  

In the case of one single variable faults the RH and FRH methods give excellent 

results in PTC0 and PTCv which are similar to the results of the Hawkins’ one single 

variable method (HSVM). An advantage of the RH and FRH methods is that they can 

also be applied to diagnose multiple variable faults with good results. Figure 6.9 also 

shows that the FRH variant give slightly better results for PTC0 than the RH variant in 

faults involving more than one single variable and large-sized faults.  
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a) b) 

c) d) 

 

e) f) 

g) h) 
FIGURE 6.9:  Interaction plot covariance  method; NF  method; size  method with  =5% terms = 5% 
Methods:  M1: H;  M2: HSVM;  M3: RH; M4: FRH 
Method   covariance structure   a) PTC0 , b) PTCv ,  c) PWC0 and d) PWCv  
Method  NF (Number of faulty variables)   e) PTC0 and f) PTCv   
Method  size of fault (1-Small; 2-Medium; 3-Large)   g) PTC0 and h) PTCv  

 
 

The above results let us to conclude: 

 The recursive variants of Hawkins, RH and FRH give better classification results 

than the standard Hawkins´ method and the Hawkins´ one single variable method.  
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 The results of the FRH are slightly better than the RH results.  

 Despite the original Hawkins method gives the best results in PTCv it finally yield 

a poor classification performance as a consequence of the bad results in PWC0 and 

PWCv 

6.2.2.2 T2FRH and T2RH variants performance 

As commented in Section 5.2.3 in the T2RH and T2FRH variants, after the 

Hotelling´s T2 statistic has detected a fault, the significance of the Hawkin´s ̂ݖ residuals 

is checked by comparison against the corresponding threshold limits. Different thresholds 

(terms) has been tested and the results demonstrate that the classification performance in 

the RH and FRH is affected by the introduction of a Hotelling´s T2 trigger mechanism for 

fault detection. 

In order to select an appropriate value for the terms, the results on the combined indices 

TCI, WCI and GCI for terms equal to 1%, 5% and Bonferroni´s adjusted are compared. 

Figure 6.10 shows that for the GCI index the T2RH with terms equal to 1% and 

Bonferroni´s adjusted outperforms the 5% adjustment. The bad performance in the case 

of a 5% adjustement is explained by the large value in the WCI index (false positives). 

Figure 6.10 also shows that the T2RH has a better performance in GCI for high correlation 

scenarios than the RH.  

Figure 6.11 shows that the GCI index in the T2FRH with terms equal to 1% and 

Bonferroni´s adjusted also outperform the 5% adjustment. But in this case the FRH gives 

slightly better results than the corresponding Hotelling T2 variant.  

In figure 6.12 and 6.13 the T2RH and T2FRH with the best selection for terms (1%) 

are compared to the RH and FRH. They show that T2FRH has slight better results in the 

PTC0 and PTCv indices than the T2RH. It can be seen that the PWCv in large correlation 

scenarios in the T2RH is larger than in the case of the T2FRH. Figure 6.12 shows that 
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there are not important differences between T2FRH and FRH results in PTC0 and PTCv. 

Similarly, the T2RH has close results to the RH in the PTC0 index but gives slightly better 

results for the PTCv.  

According to the number of variables involved in the fault (Figure 6.13), the T2RH 

give similar results to the RH, and the T2FRH in 2 and 3 variables faults has better results 

than the FRH in PTC0 and PTCv. 

a) b) 

c) d) 

e) 
FIGURE 6.10: Interaction plots for the combined indices TCI, WCI and GCI   
Methods:  M1: T2RH  Bonferroni terms; M2: T2RH terms = 5% ; M3: T2RH terms = 1%; M4: RH; 
Method   covariance structure   a) TCI , b) WCI , c) GCI     
Method    NF (Number of faulty variables)   d) GCI   
Method   Size of fault (1-Small; 2-Medium; 3-Large)   e) GCI 

 
 
In the PND there are only small differences in the RH. The T2RH and T2FRH have a 

certain levels of lack of power (PNF) while this problem does not exist in the RH and 

FRH. The PNF in the T2RH is slightly larger than in the FRH and the worst results are 
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associated to the C3 correlation scenario where negative correlations are involved. A part 

of the out-of-control observations classified as PND in the RH or FRH are now detected 

as PNF in the T2RH and T2FRH. The fact that these variants use different trigger 

mechanisms in detection accounts for the PND to PNF conversion. Even if the T2 based 

variants were exactly adjusted to the same overall Type I risk of the others, the  

a) b) 

c) d) 

e) 
FIGURE 6.11: Interaction plots for the combined indices TCI, WCI and GCI   
Methods:  M1: T2FRH  Bonferroni terms; M2: T2FRH terms = 5% ; M3: T2FRH terms = 1%; M4: FRH 
Method   covariance structure   a) TCI , b) WCI , c) GCI     
Method    NF (Number of faulty variables)   d) GCI   
Method   Size of fault (1-Small; 2-Medium; 3-Large)   e) GCI 
 

methods would present some small discrepancies in PND and PNF since the sets of 

detected out-of-control observations are not necessarily identical. 

The above results let us to conclude:  

 T2RH performs better for high correlation scenarios than the RH.  
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 The T2FRH has similar results to the FRH 

 Part of the out-of-control observations classified as PND in the RH or FRH are 

detected as PNF in the T2RH and T2FRH.  

 The T2RH and T2FRH are alternatives to the RH and FRH. One of the advantages 

of these T2 variants is that the type I risk can be adjusted in a straightforward way 

since the monitored statistic for fault detection follows a known Snedecor-F 

distribution. 

 

a) b) 

c) d) 
  

 
e) 

 
f) 

 
FIGURE 6.12: Interaction plot covariance  method ; NF  method; size  method with  =5%   
Methods:  M1: RH; M2: FRH; M3: T2RH terms = 1%; M4: T2FRH terms = 1% 
Method   covariance structure   a) PTC0 , b) PTCv , c) PWC0 , d) PWCv , e) PND and  f) PND  
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a) b) 

c) d) 

e) f) 
 

FIGURE 6.13: Interaction plot NF  method; size  method with   =5%   
Methods:  M1: RH; M2: FRH; M3: T2RH terms = 1%; M4: T2FRH terms = 1% 
Method  NF (Number of faulty variables)   a) PTC0 , b) PTCv , c) PWC0 and  d) PWCv  
Method  size of fault (1-Small; 2-Medium; 3-Large)   e) PTC0 , f) PTCv 

 
 

6.2.3 Murphy´s methodology 

An analysis of variance (ANOVA) was performed considering the factors: Method (3 

levels: M, T2M and FT2M); correlation structure, C (10 levels, see Table 6.1); number 

of faulty variables, Nf  (3 levels: 1, 2 and 3 faulty variables); and size of the fault (3 levels: 

small, medium or large faults). The ANOVA results (see Appendix 6.3) show that all the 

factors and most of their interactions are statistically significant (p-value< 0.05) for all 

the performance indices. 
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Figure 6.14 shows that Murphy´s methodology has similar problems to the Hawkins´ 

methodology. Despite this method gives good results in the PTCv, it presents serious 

problems with high rates of false positives (PWCv and PWCo) in scenarios of strong or 

negative correlations which ruin the performance in the PTC0 index. The proposed 

variants T2M and FT2M (Variants of the Murphy´s algorithm explained in section 6.4) 

achieve better results in PTCo than the original Murphy´s algorithm.  

 

a) b) 

c) d) 
 
FIGURE 6.14: Interaction plot covariance  method with   =5% terms = 5%   
Methods:  M1: M; M2: T2M; M3: FT2M prefilt. = 5%; M4:  FT2M prefilt. =  Bonf 
Method   covariance structure   a) PTC0 , b) PTCv , c) PWC0 , and d) PWCv 
 
 
 

Figure 6.14 shows that the FT2M (Pre-Filtered T2-Hotelling Murphy´s Methodology) 

clearly outperforms the T2M (T2-Hotelling Murphy´s Methodology) and the original 

Murphy´s algorithm. Figure 6.15 shows that the T2M has serious problems of false 

positives for large and medium-sized faults and 2 or 3 variables faults in moderated and 

strong correlation scenarios. It can be seen that T2M only has similar performance to the 

FT2M when one single variable faults are considered. 
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a) b) 

c) d) 

e) f) 
 

FIGURE 6.15: Interaction plot NF  method; size  method with   =5% terms = 5% 
Methods:  M1: M; M2: T2M; M3: FT2M prefilt. = 5%; M4:  FT2M prefilt. =  Bonf 
Method  NF (Number of faulty variables)   a) PTC0 , b) PTCv , c) PWC0 and  d) PWCv 
Method  size of fault (1-Small; 2-Medium; 3-Large)   e) PTC0 , f) PTCv 

 
 

Figure 6.16 shows that the combined indices confirm this results. The WCI shows 

that the original Murphy´s method has a serious problem of false positives. The FT2M 

performs better than the T2M in WCI. This results are transferred to the other combined 

indices so that the FT2M results in the GCI and TCI indices are better than the results in 

the T2M method.  

In relation to the terms adjustment, Figure 6.16 shows that FT2M with Bonferroni´s 

adjusted terms gives better results than with the 5%. It also shows that the large-sized faults 
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and a reduced number (1 or 2) of variables involved in the fault accounts for this 

difference.  

 

a) b) 

c) d) 

e)
FIGURE 6.16: Interaction plots for the combined indices TCI, WCI and GCI   
Methods:  M1: M; M2: T2M; M3: FT2M prefilt. = 5%; M4:  FT2M prefilt. =  Bonf 
Method   covariance structure   a) TCI , b) WCI , c) GCI     
Method    NF (Number of faulty variables)   d) GCI   
Method   Size of fault (1-Small; 2-Medium; 3-Large)   e) GCI 
 

 
The above results let us to conclude:  

 The Murphy´s method has a poor classification performance as a consequence of 

the bad results in PWC0 and PWCv . 

 The T2M and FT2M give better classification results than the standard Murphy´s 

method.   
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 FT2M perfoms better than the T2M. The T2M has problems of false positives for 

large and medium-sized faults and 2 or 3 variables faults in moderated and strong 

correlation scenarios. 

 FT2M with Bonferroni´s adjusted terms gives better results than with the 5%.  The 

large-sized faults and a reduced number of variables involved in the fault accounts 

for this difference.  

 

6.2.4 Montgomery and Runger´s Methodology 

An analysis of variance (ANOVA) was performed considering the factors: Method (5 

levels: MM, RM, FRM, MUSE and FMUSE); correlation structure, C (10 levels, see 

Table 6.1); number of faulty variables, Nf  (3 levels: 1, 2 and 3 faulty variables); and size 

of the fault (3 levels: small, medium or large faults). The ANOVA results (see Appendix 

6.4) show that all the factors and most of their interactions are statistically significant     

(p-value< 0.05) for all the performance indices. 

Figure 6.17 shows that the original Montgomery´s method (MM) has similar 

problems to Hawkins´ and Murphy´s methodologies with a high rate of false positives 

(PWCv and PWC0) in strong or negative correlations scenarios that account for the bad 

performance in the PTC0 index. The results in PTC0 of the RM (Recursive Montgomery 

and Runger´s methodology) clearly outperform the MUSE (Montgomery and Runger´s 

Method under a sequential extraction methodology) and the MM. The PTC0 results of the 

RM are similar to the results of the pre-filtered variants, FMUSE and FRM. The high 

PWC0 and PWCv indices in MM and MUSE account for their bad diagnosis performance.  

The FMUSE and FRM give better results in the PTCv index than the RM. Figure 6.18 

shows that the RM results in PTC0 and PTCv decay for 2 and 3 variables faults. Figure 

6.18 and 6.19 show that the RM has a certain level of lack of diagnosis power (PNF) 
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which do not exist in the others methods and this level increases in the case of small size 

faults and 2 or 3 variables faults .  

So it can be concluded that the pre-filtered versions FMUSE and FRM improved the 

classification performance of MUSE and RM and clearly outperform the MM reducing 

the number of false positives in strong or negative correlations scenarios. Figure 6.20 

shows that the FRM presented the best results on the different combined indices. 

 

a) b) 

c) d) 

e)
FIGURE 6.17: Interaction plot covariance  method with  =5% terms =  Bonf   
Methods:  M1: MM; M2: RM; M3: FRM; M4: MUSE; M5: FMUSE 
method   covariance structure   a) PTC0 , b) PTCv , c) PWC0 , d) PWCv  and e) PNF  
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a) b) 

 
c) d) 

e)
FIGURE 6.18: Interaction plot NF  method with  =5% terms =  Bonf   
Methods:  M1: MM; M2: RM; M3: FRM; M4: MUSE; M5: FMUSE 
Method  NF (Number of faulty variables)   a) PTC0 , b) PTCv , c) PWC0, d) PWCv and  e) PNF  
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a) b) 

c) 
 
FIGURE 6.19: Interaction plot size  method with  =5% terms =  Bonf   
Methods:  M1: MM; M2: RM; M3: FRM; M4: MUSE; M5: FMUSE 
Method  size of fault (1-Small; 2-Medium; 3-Large)   a) PTC0 , b) PTCv  and  c)  PNF 
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a) b) 

c) d) 

e)
FIGURE 6.20: Interaction plots for the combined indices TCI, WCI and GCI   
Methods:  M1: MM; M2: RM; M3: FRM; M4: MUSE; M5: FMUSE with  =5%  terms =  Bonf   
Method   covariance structure   a) TCI , b) WCI , c) GCI     
Method    NF (Number of faulty variables)   d) GCI   
Method   Size of fault (1-Small; 2-Medium; 3-Large)   e) GCI 
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6.2.5 Performance comparison 

In this section we are going to compare the performance of the Mason et al. original 

algorithm (MTY), which is the most commonly used for diagnosis in multivariate quality 

control, with the most promising variants according to the previous sections: MTY1 ratio 

hfirst/hsecond =1.5, Hawkins T2FRH Bonf, Murphy FT2M prefilt. = Bonf and Montgomery and 

Runger´s FRM Bonf . An analysis of variance (ANOVA) was performed considering the 

factors: Method (5 levels: MTY, MTY1 hfirst/hsecond =1.5, Hawkins T2FRH, Murphy 

FT2M and Montgomery and Runger´s FRM); correlation structure, C (10 levels, see 

Table 6.1); number of faulty variables, Nf  (3 levels: 1, 2 and 3 faulty variables); and size 

of the fault (3 levels: small, medium or large faults). The ANOVA results (see Appendix 

6.5) show that all the factors and most of their interactions are statistically significant     

(p-value< 0.05) for all the performance indices. 

 

a) b) 

c) d) 
 
FIGURE 6.21: Interaction plot covariance  method with   =5%    
Methods:  M1: Mason; M2: Mason hfirst/hsecond =1.5; M3: T2FRH  Bonf; M4: FT2M prefilt. =  Bonf;  
                 M5: FRM  Bonf 
Method   covariance structure   a) PTC0 , b) PTCv , c) PWC0 , and d) PWCv  
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Figure 6.21 shows that all the proposed variants outperform the MTY results in PTC0. 

The Hawkins T2FRH and the Montgomery FRM reach the top results in PTC0 in all the 

correlation scenarios. The MTY1 also outperforms the original MTY in all the correlation 

scenarios. 

 

a) b) 

c) d) 

e) f) 
FIGURE 6.22: Interaction plot NF  method; size  method with  =5%    
Methods:  M1: Mason; M2: Mason hfirst/hsecond =1.5; M3: T2FRH  Bonf; M4: FT2M prefilt. =  Bonf;   
                 M5: FRM  Bonf 
Method  NF (Number of faulty variables)   a) PTC0 , b) PTCv , c) PWC0 and  d) PWCv  
Method  size of fault (1-Small; 2-Medium; 3-Large)   e) PTC0 , f) PTCv 
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the new combined indices which try to measure an overall classification performance. It 

shows that in the TCI index, the Montgomery FRM and the Hawkins T2FRH outperform 

the others methods in strong correlation scenarios. In the WCI index, the MTY had the 

worst results in strong correlation scenarios and the Montgomery FRM had the best 

results. In the global performance index GCI all the proposed variants outperform the 

MTY in strong correlation scenarios. The Hawkins T2FRH and the Montgomery FRM 

give excellent results not only in strong correlation scenarios but also in weak correlation 

scenarios.  

a) b) 

c) d) 

e)
FIGURE 6:23: Interaction plots for the combined indices TCI, WCI and GCI   
Methods:  M1: Mason; M2: Mason hfirst/hsecond =1.5; M3: T2FRH  Bonf; M4: FT2M prefilt. =  Bonf;  
                 M5: FRM  Bonf 
Method   covariance structure   a) TCI , b) WCI , c) GCI     
Method    NF (Number of faulty variables)   d) GCI   
Method   Size of fault (1-Small; 2-Medium; 3-Large)   e) GCI 
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Hawkins T2FRH and Mongomery FRM close results can be explained by the relation 

between the Montgomery´s statistics D and the Hawkins´s residuals	̂ݖ (see section 5.3.1). 

and that in both the fault detection is based in the Hotelling´s T2 statistic.  

  222
1... 1...-1,2,...| ˆkkkKkkk zDcT   (6.4)

The T2FRH performance also seems to be slightly affected by the number of variables in 

the fault.  

6.3 Performance in the pasteurization process 

To compare the methods described in the previous sections in a real context, we use 

data from the pilot plant of a pasteurization process described in section 3.1.1. There are 

13 variables involved in this process as described in Table 6.4.  

TABLE 6.4. Variables measured in the pasteurization model 

Nr Variable Description 

X1 Tank Level Level of the water in the tank at the beginning of the process. If it drops below 
a certain limit, the tank is refilled. 

X2 Tª1 Temperature of the product after flowing through the curved pipe. This 
temperature defines whether or not we have a good product. 

X3 Tª2 Temperature of the heating water. 
This is the water which has to heat the product. 

X4 Tª3 Temperature of the final product. 
This is the temperature of the product when it leaves the system. 

X5 Tª4 Temperature of the product immediately after heating, i.e. before entering the 
curved pipe. 

X6 Tª5 Temperature of the product after preheating the new product. 
This temperature defines whether or not the product needs further cooling 
down. 

X7 Flow Speed with which the product flows through the system. 

X8 SPFlow Setpoint of the flow.  

X9 

X10 

X11 

Power 1 

Power 2 

Power 3 

These variables measure the power used to heat the heating water. 

X12 Pump 1 Percentage that pump 1 is opened. 
Pump 1 controls the flow speed of the product. 

X13 Pump 2 Percentage that pump 2 is opened. 
Pump 2 controls the flow speed of the heating water. 
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From this model we got several data sets. To start, we collected data under normal 

operating conditions. For this process that means that we have a value of 140, 160, 180 

or 200 ml/min  for the setpoint of the flow and that the product is not cooled down at the 

end of the process in any case. The setpoint for the temperature of the heating water is 

60Cº and the product is assumed to be good if the temperature T1 is larger than 48Cº, 

while the setpoint for Tª1 is 50Cº. While taking this reference data, the product produced 

was good. Next to these data sets we also produced data sets in which we initialized faults. 

We kept track of where we initialized which fault, so we can compare the different 

methods to see which one finds the fault fastest and also which one is most accurate in 

naming the cause of the fault. We generated two kinds of faults, sensor faults and process 

faults. A sensor fault means that for one variable a different value is registered than the 

real value, due to we are dealing with an automatic process this eventually may become 

a process fault. We generated the following sensor faults: 

 Flow:  the setpoint of the flow was changed to 0 (Fault 1) or to 1500 (Fault 2). 

The sensor fault in the flow will make Pump 1 work more (or less). This will cause 

the temperatures Tª4, Tª1, Tª5 and Tª3 to decrease (or increase), because the water 

has less (or more) time to heat. So this sensor fault will change into a process fault. 

The expected signals immediately after the fault are X7 (Flow sensor) and X12 

(Pump 1) as a result of the loop control activation.  

 Tª2 (Fault 3), the value for Tª2 was set to 0. For Tª2 the sensor fault will lead to a 

higher temperature of the heating water. Because the process thinks that the value 

for Tª2 is 0, it will start heating more to reach the setpoint for the temperature of 

the heating water (Pump 2). This also leads to higher temperatures for Tª1, Tª3, Tª4 

and Tª5, so this sensor fault will also influence the process. The expected signal 

immediately after the fault is X3 (Tª2 sensor) 
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On the other hand, a process fault means that a part of the process stops working or 

starts working when it is not supposed to do so. We generated the following process 

faults: 

 Pump 1 (Fault 4), the pump stops working. All the pump failures influence 

the whole process. They will change the temperatures and because of the 

loop controls this will change almost everything in the process. The 

expected signals immediately after the fault are signals in the whole 

process.  

 Test for good product (Fault 5), the system throws away good product. 

When the process starts to throw away good product (and also when it 

starts to throw away bad product) this will influence several things. The 

flow will be influenced, because now the product is sent through another 

pipe, with a different length. This change in the flow will result in a change 

in Pump 1. Also Tª3 and Tª5 will be influenced. These temperatures will 

go down, because the product in the pipes, where the temperatures are 

measured, is not flowing anymore, so no new warm product is coming in. 

The expected signals immediately after the fault are signals in X7 (Flow 

sensor), X12 (Pump 1), X4 (Tª3 sensor)and X6 (Tª5 sensor). 

Table 6.5 shows the expected fault signals in the different types of faults and the 

variables that were actually detected as responsible in the different methodologies. The 

results in Table 6.5 shows show that in the pasteurization process Hayter´s and DFT 

methods with its variants were successful in the detection and identification of faulty 

sensors but they got poor results when diagnosing process faults. The Step-down method 

could not be implemented as there were faults that shared common variables, and the 

Hawkins´ one single variable method gave bad results in process faults since they 
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involved more than one variable. In fact these methods aimed to the same variables for 

the sensors faults and the process faults (X7 and X12). These methods do not account for 

correlations breakage among variables and, consequently, had more difficulties to assign 

the root causes of a process fault. 

The original Hawkins´, Montgomery and Runger´s and Murphy´s methods gave too 

excessive signals which caused an excessive false positive rate in fault diagnosis. On the 

contrary, the Hawkins´ one single fault method signalled only the X7 variable in the faults 

F1, F2, F4 and F5, and the X3 in the fault F3 and, consequently, as only one variable was 

signaled the diagnosis of the process faults was difficult. 

The MTY method was more successful in the fault diagnosis than the previous 

methods. The MTY and MTY1 hfirst/hsecond =1.5 had similar results in F2, F3, F4 and F5 

but the MTY1 outperformed the original MTY in the case of the fault F1. In the 

observation 506 for fault F1 the MTY1 detected a dominant variable and could signal to 

the X7 as responsible, while the MTY could only signal to 10 different variables. In the 

case of the fault F2 both methods signaled the X7 and X12 as responsible variables and 

both signaled the X3 in the case of fault F3. In the process fault F4, the MTY and MTY1 

found significant the unconditional terms for X7 and X12 and a large quantity of 

conditional terms related to X4, X6, X8, X10, X11 and X13 variables. The significant 

unconditional terms aim to a problem in the flow or the pump 1. The number of terms 

and variables involved in the significant conditional terms shows that this fault influence 

the whole process, as it can be expected for a pump 1 fault. In the case of the process fault 

F5, both methods found significant the unconditional terms for X7 and X12 and the 

conditional terms related to the pairwise variables (X4, X6) and (X13, X3). The MTY 

significant terms match with the expected result for this kind of fault. Additionally the 

MTY provides an easy interpretability of the terms and relationships between variables 
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classifying the cases of out of control in situations that may break or not the correlation 

structure between the variables. In the case of the pasteurization process the easy 

interpretability of the terms allowed to correctly diagnoses the process fault F4   

In the pasteurization process the results of the T2-prefiltered recursive 

Hawkins´method (T2FRH) were similar to the prefiltered recursive Montgomery and 

Runger´s method (FRM). The use of the Hotelling´s T2 as trigger mechanism for detection 

makes unnecessary to apply the recursive methodology to all the observations, but only 

to the observations which has been previously detected as out-of-control. An interesting 

option is to implement these methods in addition to the MTY1. Given that the conditional 

or unconditional terms of Mason et al´s methodology provides an easy interpretability of 

the terms and relationships between variables classifying the out-of-control cases in 

situations that may break or not the correlation structure between the variables, the use of 

the modified Mason et al´s method MTY1 in addition to one of the methods T2FRH or 

FRM would improve the interpretability of the detected signals. 
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TABLE 6.5.  Responsible variables for F1 F2 F3 F4 and F5 faults according to the different fault diagnosis methods 

Faults 
Expected 

Fault 
Signals 

Hawkins 
 

Hawkins 
1 S.V 

Hawkins 
Chi-Filter 

Rec 
(T2FRH) 

Hayter Murphy 
FTM 

Murphy 

F1:   

X7: Sensor Flow 0 
X7:182 147 55 
          Obs(506)  Obs(507) 
 
Obs(506) 
======= 
Obs(507) 

X7  X12 

X7 X8 
========= 

X7 X12 

------------- 
X5X8 X11X13 

X7 
========= 

X7 

Recursive X7 
========= 
Prefilter:X7  

Recursive: X12 

No Detection 
========== 

X7 
 X12 

X3 X7 X8 

===== 
X7 X8 X12 X5 X13X11X4 

X10 X1 X2 

Prefilter: - 
Recursive: X3 X7 

========= 

Prefilter:  X7 
Recursive: X12 

 
 

F2 

Sensor Flow 1500 
Obs (902) 

X7 X12 

 
X7 X8 

------------- 
X1X3X4X5X6 

X9X10X11 

X7 
Prefilter:X7  

Recursive:X12X3 
X7 
X12 

X7 X8 X13 X5 X4 X1 X3 
X10 X11 X6 X9 X12 X2 

Prefilter: X7 
Recursive: X3 X13 X9 X6 

X5 X4 X12 

F3  
Sensor T2 

Obs(199) X3 

 
X3 

----- 

X1 X2 X4 X5 

X6 X7 X8 X9 
X10 X11 X12 X13 

X3 
Prefilter:X3  

Recursive:X4 
X3 

X3 X8 X2 X11 X13 X4 X1 
X5 X6 X9 X12 X7 X10 

X3 

F4 
Pump 1    
Obs(1571) 

X7  X12

influence the 
whole 

process. 

X7 X8 X12 

------------- 
X5 X6 X11 X13 

X7 
Prefilter: X7 X12 

Recursive: X6 
X7 
X12 

X7 X8 X12 X5 X13 X6 X11 
X10 

Prefilter:  X7 X12 

Recursive: X9 X10 X6 

F5 
Good product thrown 
away 
Obs(3053) 
======== 
Obs(3054) 

X12 X7 X4  
X6 

 
X7 X8 

------------- 
X12 

============= 
 

X7 X12 

------------- 
X5 X6 X11 X13 

 

X7 
=== 
X7 

 
Prefilter: X7 

====== 
Prefilter: X7 X12  

Recursive: X6 

'X7' 
=== 
X7 
X12 

X7 X8 X12 X11 X4 

============= 
 

X7 X12 X5 X13 X6 X9X2 
X11  

Prefilter:  X7 

Prefilter: X7 X12 
Recursive: X3 X13 
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TABLE 6.5.  Responsible variables for F1 F2 F3 F4 and F5 faults according to the different fault diagnosis methods 

Faults 
DFT (Bonf 
Ksim 0.80) 

DFT(Bonf 
Ksim 0.95) 

DFT 
(Holm 

Ksim 0.8) 

DFT 
(Holm 

Ksim 0.95) 

DFT 
(Hochberg 
Ksim 0.8) 

DFT 
(Hochberg 
Ksim 0.95) 

DFT 
(Hommel 
Ksim 0.8) 

DFT 
(Hommel 

Ksim 
0.95) 

DFT 
TCH 
(Ksim 

0.8) 

DFT 
TCH 
(Ksim 
0.95) 

DFT DAP 
(Ksim 

0.8) 

DFT DAP 
(Ksim 
0.95) 

F1:   

X7: Sensor Flow 0 
X7:182 147 55 
        Obs(506)  Obs(507) 
 
Obs(506) 
======= 
Obs(507) 

Detected but no 
variable found 
=========== 

X7 
X12 

Detected but no 
variable found 
=========== 

X7 
 

Detected but 
no variable 

found 
========= 

 
X7 
X12 

Detected but 
no variable 

found 
========== 

 
X7 

 

Detected but 
no variable 

found 
========= 

 
X7 
X12 

Detected but no 
variable found 
========= 

 
 

X7 
 

Detected but 
no variable 

found 
========= 

 
X7 
X12 

Detected but 
no variable 

found 
========= 

 
X7 

 

Detected but 
no variable 

found 
========= 

 
X7 
X12 

Detected but 
no variable 

found 
========= 

 
X7 
X12 

Detected but 
no variable 

found 
========= 

 
X7 
X12 

Detected but 
no variable 

found 
========= 

 
X7 
X12 

F2 

Sensor Flow 1500 
Obs (902) 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

F3  
Sensor T2 

Obs(199) 
X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 

F4  
Pump 1    
Obs(1571) 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

X7 
X12 

F5 
Good product 
thrown away 
Obs(3053) 
======== 
Obs(3054) 

X7 
=== 
X7 
X12 

X7 
==== 

X7 
X12 

X7 
===== 

X7 
X12 

X7 
===== 

X7 
X12 

X7 
===== 

X7 
X12 

X7 
===== 

X7 
X12 

X7 
===== 

X7 
X12 

X7 
===== 

X7 
X12 

X7 
===== 

X7 
X12 

X7 
===== 

X7 
X12 

X7 
===== 

X7 
X12 

X7 
===== 

X7 
X12 
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TABLE 6.5.  Responsible variables for F1 F2 F3 F4 and F5 faults according to the different fault diagnosis methods 

Faults 
Expected 

Fault 
Signals 

Montgomery 
FRM 

Montgomery MTY MTY1   1.5h 

F1:   

X7: Sensor Flow 0 
X7:182 147 55 
          Obs(506)  Obs(507) 
 
Obs(506) 
======= 
Obs(507) 

X7  X12 

X7 X8 

------------ 
X1 X3 X12 

===== 
X7 X12 

  ------------------------ 
X1 X2 X4 X5 X8 X10 X11 X13 

Recursive: X7 
========= 
Prefilter:X7 

Recursive: X12 

Terms : 
'T3|13' 'T3|4' 'T3|6' 'T3|7' 'T3|8' 'T3|12' 'T4|3'    'T4|7' 'T6|3' 'T6|7' 
'T7|3' 'T7|4' 'T7|6' 'T7|13' 'T7|8' 'T7|9' 'T7|10' 'T7|11' 'T7|12' 'T8|3' 
'T8|7' 'T9|7' 'T10|7' 'T11|7' 'T12|7' 'T13|3' 'T13|7' 
Variables:  
(Conditional terms) 
3     4     6     7     8     9    10    11    12    13 
=================== 
Térms :  'T7' 'T12' 
Variables:  X7, X12 

 

Terms : 
'T3|13' 'T3|4' 'T3|6' 'T3|7' 'T3|8' 'T3|12' 'T4|3'    'T4|7' 
'T6|3' 'T6|7' 'T7|3' 'T7|4' 'T7|6' 'T7|13'    'T7|8' 'T7|9' 
'T7|10' 'T7|11' 'T7|12' 'T8|3' 'T8|7'    'T9|7' 'T10|7' 
'T11|7' 'T12|7' 'T13|3' 'T13|7' 
 
Variables:  
 X7  (dominant variable loop 2) 

========== 
Térms :  'T7' 'T12' 
Variables:  X7, X12 

 

F2 

Sensor Flow 1500 
Obs (902) 

X7 X12 
X7 X8 

 ------------------------ 
X1 X3 X4 X5 X6X9 X10 X11 X12 X13 

Prefilter:X7 
Recursive:X12X3 

Terms =  'T7'    'T12' 
(Unconditional terms) Variables: X7, X12 

Terms =  'T7'    'T12' 
(Unconditional terms) Variables: X7, X12   

F3  
Sensor T2 

Obs(199) 
X3 

X3 X13  

X1 X2 X4 X5 X6 X7 X8 X9X10 X12 
Prefilter:X3 

Recursive:X4 

Terms :  
    'T3' 
(Unconditional terms) 
Variable X 3 

Terms :  
    'T3' 
(Unconditional terms) 
Variable X 3 

F4 
Pump 1    
Obs(1571) 

X7  X12 
influence the 

whole 
process. 

X7 X12 

--------- 
X2 X5 X6X8 X10 X11 X13 

Prefilter:  X7 X12 

Recursive: X6 

Terms: 
'T7' 'T12' 'T4|6´' 'T6|4' 'T6|13' 'T6|10' 'T6|11' 'T8|13' 'T8|10' 'T8|11' 
'T10|6' 'T10|8' 'T11|6'    'T11|8' 'T13|6' 'T13|8 

(Unconditional terms) 
Variables X7, X12   
(Conditional terms) 
Variables X4,X6, X8, X10, X11, X13   

Terms: 
'T7' 'T12' 'T4|6´' 'T6|4' 'T6|13' 'T6|10' 'T6|11' 'T8|13' 
'T8|10' 'T8|11' 'T10|6' 'T10|8' 'T11|6'    'T11|8' 'T13|6' 
'T13|8 

(Unconditional terms) 
Variables X7, X12   
(Conditional terms) 

Variables X4,X6, X8, X10, X11, X13   

F5 
Good product thrown 
away 
Obs(3053) 
======== 
Obs(3054) 

X12 X7 X4  
X6 

X7 X8 X12 

--------- 
X2 X5  

=============== 
X7 X12 

--------- 
X2 X5 X9 X10 X11 X13 

Prefilter:  X7 X12 

Prefilter: X7 X12 
Recursive: X6 

Terms :  
    'T7'      
(Unconditional terms) Variable 7 
============== 
Terms : 
    'T7' 'T12' 'T3|13' 'T4|6' 'T6|4' 
(Unconditional terms) Variable X7 X12   
(Conditional terms) Variables X3  X 4  X6  X13 

Terms : 
'T7' 
(Unconditional terms) Variable X7 
======================== 
Terms : 
'T7' 'T12' 'T3|13' 'T4|6' 'T6|4' 
(Unconditional terms) Variable X7 X12 
(Conditional terms) Variables X3  X 4  X6  
X13 
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6.4 Conclusions 

According to the results of the simulation shown in Chapter 4 some of the existing 

methodologies for fault diagnosis in multivariate statistical quality control tend to present 

a high false positive rate, especially in scenarios with strong correlations among the 

variables. In this chapter some variants of these methodologies which successfully solve 

this problem by reducing their false positive rate have been proposed. The proposed 

variants of the MTY´s algorithm improve the performance of the original MTY´s 

algorithm in the strong correlation scenarios C8, C9 and C10. The recursive Hawkins 

variants give excellent results and improve the original Hawkins´s methodology results. 

The Montgomery´s and Murphy´s variants also improved the performance of the original 

proposed algorithms. In the 7 variables simulation the best performance was obtained 

with the pre-filtered recursive versions of Montgomery´s (FRM) and recursive Hawkins´s 

methodologies (FRHM). Our conclusion is that the use of the modified Mason et al´s 

method (MTY1) in addition to one of the methods T2FRH or FRM would  improve the 

interpretability of the detected signals.



Chapter 6: Diagnosis performance in MSQC (II) 
 

 

181 
 

Chapter 6 Appendices 

Appendix 6.1 

 

 ANOVA for the study of the αterm in the MTY method 
 

Analysis of Variance for PTCo - Type III Sums of Squares 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:SIZE 182,948 2 91,4741 49490,52 0,0000 
 B:NF 0,48971 2 0,244855 132,47 0,0000 
 C:M (Alpha) 1,50764 2 0,75382 407,84 0,0000 
 D:C 1,838 9 0,204222 110,49 0,0000 
INTERACTIONS      
 AB 1,84075 4 0,460187 248,98 0,0000 
 AC 22,238 4 5,5595 3007,87 0,0000 
 AD 0,426198 18 0,0236777 12,81 0,0000 
 BC 0,962376 4 0,240594 130,17 0,0000 
 BD 0,655461 18 0,0364145 19,70 0,0000 
 CD 0,486713 18 0,0270396 14,63 0,0000 
RESIDUAL 5,50428 2978 0,00184832   
TOTAL (CORRECTED) 319,762 3059    

 
Analysis of Variance for PTCv - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:SIZE (Alpha) 118,312 2 59,1561 7716,95 0,0000 
 B:NF 0,626175 2 0,313088 40,84 0,0000 
 C:M 1,0661 2 0,533048 69,54 0,0000 
 D:C 24,0206 9 2,66896 348,17 0,0000 
INTERACTIONS      
 AB 0,792972 4 0,198243 25,86 0,0000 
 AC 1,1585 4 0,289625 37,78 0,0000 
 AD 22,2495 18 1,23608 161,25 0,0000 
 BC 0,122599 4 0,0306496 4,00 0,0031 
 BD 2,89194 18 0,160664 20,96 0,0000 
 CD 0,582053 18 0,0323363 4,22 0,0000 
RESIDUAL 22,8285 2978 0,00766573   
TOTAL (CORRECTED) 258,306 3059    

 
Analysis of Variance for PWCo - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:SIZE (Alpha) 14,2111 2 7,10556 690,56 0,0000 
 B:NF 0,159349 2 0,0796743 7,74 0,0004 
 C:M 7,06616 2 3,53308 343,37 0,0000 
 D:C 19,9883 9 2,22092 215,84 0,0000 
INTERACTIONS      
 AB 1,47229 4 0,368073 35,77 0,0000 
 AC 8,37848 4 2,09462 203,57 0,0000 
 AD 29,0727 18 1,61515 156,97 0,0000 
 BC 0,411731 4 0,102933 10,00 0,0000 
 BD 1,9958 18 0,110878 10,78 0,0000 
 CD 3,79015 18 0,210564 20,46 0,0000 
RESIDUAL 30,6421 2978 0,0102895   
TOTAL (CORRECTED) 139,409 3059    
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Analysis of Variance for PWCv - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 6,85965 2 3,42983 1247,00 0,0000 
 B:NF 0,715151 2 0,357575 130,01 0,0000 
 C:M 0,279057 2 0,139529 50,73 0,0000 
 D:C 13,1048 9 1,45609 529,40 0,0000 
INTERACTIONS      
 AB 0,394851 4 0,0987126 35,89 0,0000 
 AC 1,72505 4 0,431263 156,80 0,0000 
 AD 11,3585 18 0,631026 229,43 0,0000 
 BC 0,0286039 4 0,00715097 2,60 0,0344 
 BD 0,888107 18 0,0493393 17,94 0,0000 
 CD 0,5788 18 0,0321555 11,69 0,0000 
RESIDUAL 8,19089 2978 0,00275047   
TOTAL (CORRECTED) 57,0635 3059    

 
Analysis of Variance for PNF - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 0,307145 2 0,153572 337,79 0,0000 
 B:NF 0,00467091 2 0,00233545 5,14 0,0059 
 C:M 0,588999 2 0,2945 647,76 0,0000 
 D:C 0,0575008 9 0,00638898 14,05 0,0000 
INTERACTIONS      
 AB 0,00509837 4 0,00127459 2,80 0,0244 
 AC 0,91389 4 0,228472 502,53 0,0000 
 AD 0,120738 18 0,00670764 14,75 0,0000 
 BC 0,00935442 4 0,00233861 5,14 0,0004 
 BD 0,0226642 18 0,00125912 2,77 0,0001 
 CD 0,177711 18 0,00987281 21,72 0,0000 
RESIDUAL 1,35392 2978 0,000454642   
TOTAL (CORRECTED) 3,93125 3059    

 
Analysis of Variance for PND - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 53,5205 2 26,7603 2140,15 0,0000 
 B:NF 6,5139 2 3,25695 260,47 0,0000 
 C:M 0 2 0 0,00 1,0000 
 D:C 22,6847 9 2,52052 201,58 0,0000 
INTERACTIONS      
 AB 4,73298 4 1,18324 94,63 0,0000 
 AC 0 4 0 0,00 1,0000 
 AD 31,2056 18 1,73364 138,65 0,0000 
 BC 0 4 0 0,00 1,0000 
 BD 4,91315 18 0,272953 21,83 0,0000 
 CD 0 18 0 0,00 1,0000 
RESIDUAL 37,2367 2978 0,0125039   
TOTAL (CORRECTED) 182,23 3059    

. 
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 ANOVA for  MTY and  MTY1 methods 
 

Analysis of Variance for PTCo - Type III Sums of Squares 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 234,798 2 117,399 85243,17 0,0000 
 B:NF 0,959856 2 0,479928 348,47 0,0000 
 C:M 0,314336 3 0,104779 76,08 0,0000 
 D:C 7,2976 9 0,810845 588,75 0,0000 
INTERACTIONS      
 AB 3,53314 4 0,883286 641,35 0,0000 
 AC 0,308542 6 0,0514237 37,34 0,0000 
 AD 3,26813 18 0,181563 131,83 0,0000 
 BC 0,00967816 6 0,00161303 1,17 0,3186 
 BD 1,70256 18 0,0945867 68,68 0,0000 
 CD 0,665647 27 0,0246536 17,90 0,0000 
RESIDUAL 5,48686 3984 0,00137722   
TOTAL (CORRECTED) 397,768 4079    

 
Analysis of Variance for PTCv - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 158,839 2 79,4194 13289,23 0,0000 
 B:NF 0,664828 2 0,332414 55,62 0,0000 
 C:M 0,0690623 3 0,0230208 3,85 0,0091 
 D:C 28,3388 9 3,14875 526,88 0,0000 
INTERACTIONS      
 AB 1,14228 4 0,28557 47,78 0,0000 
 AC 0,154709 6 0,0257848 4,31 0,0002 
 AD 26,2928 18 1,46071 244,42 0,0000 
 BC 0,0091153 6 0,00151922 0,25 0,9578 
 BD 3,86147 18 0,214526 35,90 0,0000 
 CD 0,0696832 27 0,00258086 0,43 0,9954 
RESIDUAL 23,8093 3984 0,00597622   
TOTAL (CORRECTED) 328,996 4079    

 
Analysis of Variance for PWCo - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 13,5072 2 6,75359 955,26 0,0000 
 B:NF 0,0132694 2 0,00663472 0,94 0,3913 
 C:M 0,74168 3 0,247227 34,97 0,0000 
 D:C 15,2621 9 1,69579 239,86 0,0000 
INTERACTIONS      
 AB 1,54425 4 0,386064 54,61 0,0000 
 AC 0,661113 6 0,110186 15,59 0,0000 
 AD 28,8847 18 1,60471 226,98 0,0000 
 BC 0,020703 6 0,00345049 0,49 0,8177 
 BD 2,33016 18 0,129453 18,31 0,0000 
 CD 1,36635 27 0,0506054 7,16 0,0000 
RESIDUAL 28,1666 3984 0,00706992   
TOTAL (CORRECTED) 109,442 4079    
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Analysis of Variance for PWCv - Type III Sums of Squares 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 5,83109 2 2,91555 1962,24 0,0000 
 B:NF 0,714281 2 0,35714 240,36 0,0000 
 C:M 0,671424 3 0,223808 150,63 0,0000 
 D:C 7,71137 9 0,856819 576,66 0,0000 
INTERACTIONS      
 AB 0,431385 4 0,107846 72,58 0,0000 
 AC 0,515733 6 0,0859554 57,85 0,0000 
 AD 8,5721 18 0,476228 320,51 0,0000 
 BC 0,0178877 6 0,00298129 2,01 0,0614 
 BD 1,03021 18 0,0572337 38,52 0,0000 
 CD 1,51861 27 0,0562447 37,85 0,0000 
RESIDUAL 5,91953 3984 0,00148583   
TOTAL (CORRECTED) 42,0248 4079    

 

 ANOVA for MTY variants;  MTY1 and  MTY2 
 

Analysis of Variance for PTCo - Type III Sums of Squares 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 177,715 2 88,8576 62097,24 0,0000 
 B:NF 0,611249 2 0,305624 213,58 0,0000 
 C:C 3,81496 9 0,423884 296,23 0,0000 
 D:M 0,339078 2 0,169539 118,48 0,0000 
INTERACTIONS      
 AB 2,38556 4 0,596389 416,78 0,0000 
 AC 1,29987 18 0,0722148 50,47 0,0000 
 AD 0,353679 4 0,0884198 61,79 0,0000 
 BC 1,14775 18 0,0637641 44,56 0,0000 
 BD 0,0121034 4 0,00302585 2,11 0,0764 
 CD 0,704553 18 0,0391418 27,35 0,0000 
RESIDUAL 4,26135 2978 0,00143094   
TOTAL (CORRECTED) 295,824 3059    

 
Analysis of Variance for PTCv - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 120,721 2 60,3603 10160,20 0,0000 
 B:NF 0,45432 2 0,22716 38,24 0,0000 
 C:C 20,8008 9 2,3112 389,03 0,0000 
 D:M 0,063393 2 0,0316965 5,34 0,0049 
INTERACTIONS      
 AB 0,843852 4 0,210963 35,51 0,0000 
 AC 19,0943 18 1,0608 178,56 0,0000 
 AD 0,143431 4 0,0358578 6,04 0,0001 
 BC 2,90138 18 0,161188 27,13 0,0000 
 BD 0,0087465 4 0,00218663 0,37 0,8315 
 CD 0,0663146 18 0,00368415 0,62 0,8869 
RESIDUAL 17,6919 2978 0,00594086   
TOTAL (CORRECTED) 248,061 3059    
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Analysis of Variance for PWCo - Type III Sums of Squares 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 11,213 2 5,60649 760,40 0,0000 
 B:NF 0,00465245 2 0,00232622 0,32 0,7294 
 C:C 12,9806 9 1,44229 195,62 0,0000 
 D:M 0,802583 2 0,401292 54,43 0,0000 
INTERACTIONS      
 AB 1,04116 4 0,260291 35,30 0,0000 
 AC 22,9041 18 1,27245 172,58 0,0000 
 AD 0,68122 4 0,170305 23,10 0,0000 
 BC 1,70359 18 0,0946437 12,84 0,0000 
 BD 0,0143239 4 0,00358097 0,49 0,7463 
 CD 1,48538 18 0,0825213 11,19 0,0000 
RESIDUAL 21,957 2978 0,00737307   
TOTAL (CORRECTED) 89,0972 3059    

 
Analysis of Variance for PWCv - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 3,80792 2 1,90396 1334,32 0,0000 
 B:NF 0,420584 2 0,210292 147,37 0,0000 
 C:C 5,46117 9 0,606796 425,25 0,0000 
 D:M 0,684874 2 0,342437 239,98 0,0000 
INTERACTIONS      
 AB 0,255428 4 0,0638571 44,75 0,0000 
 AC 5,59211 18 0,310673 217,72 0,0000 
 AD 0,522501 4 0,130625 91,54 0,0000 
 BC 0,595897 18 0,0331054 23,20 0,0000 
 BD 0,0132503 4 0,00331258 2,32 0,0546 
 CD 1,50662 18 0,0837011 58,66 0,0000 
RESIDUAL 4,24936 2978 0,00142692   
TOTAL (CORRECTED) 29,3187 3059    

 

Appendix 6.2 

 ANOVA for Hawkins´ method and its variants 
 

Analysis of Variance for PTCo - Type III Sums of Squares 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 107,298 2 53,649 2875,40 0,0000 
 B:NF 45,5102 2 22,7551 1219,59 0,0000 
 C:M 90,2703 3 30,0901 1612,72 0,0000 
 D:C 3,22521 9 0,358357 19,21 0,0000 
INTERACTIONS      
 AB 2,81527 4 0,703817 37,72 0,0000 
 AC 87,4671 6 14,5779 781,32 0,0000 
 AD 16,7904 18 0,9328 49,99 0,0000 
 BC 27,1633 6 4,52722 242,64 0,0000 
 BD 1,58906 18 0,0882809 4,73 0,0000 
 CD 26,8957 27 0,996135 53,39 0,0000 
RESIDUAL 74,3332 3984 0,0186579   
TOTAL (CORRECTED) 614,047 4079    
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Analysis of Variance for PTCv - Type III Sums of Squares 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 134,459 2 67,2294 3574,09 0,0000 
 B:NF 11,1891 2 5,59457 297,42 0,0000 
 C:M 32,9573 3 10,9858 584,03 0,0000 
 D:C 21,5907 9 2,39896 127,54 0,0000 
INTERACTIONS      
 AB 0,75208 4 0,18802 10,00 0,0000 
 AC 26,417 6 4,40283 234,07 0,0000 
 AD 20,524 18 1,14022 60,62 0,0000 
 BC 11,1495 6 1,85826 98,79 0,0000 
 BD 8,55385 18 0,475214 25,26 0,0000 
 CD 6,58231 27 0,243789 12,96 0,0000 
RESIDUAL 74,9399 3984 0,0188102   
TOTAL (CORRECTED) 452,578 4079    

 
Analysis of Variance for PWCo - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 0,159761 2 0,0798803 2,87 0,0571 
 B:NF 2,11714 2 1,05857 37,97 0,0000 
 C:M 133,909 3 44,6364 1601,00 0,0000 
 D:C 36,9593 9 4,10659 147,29 0,0000 
INTERACTIONS      
 AB 0,0884309 4 0,0221077 0,79 0,5296 
 AC 15,7038 6 2,6173 93,88 0,0000 
 AD 5,42728 18 0,301516 10,81 0,0000 
 BC 0,938757 6 0,156459 5,61 0,0000 
 BD 4,55531 18 0,253073 9,08 0,0000 
 CD 44,5652 27 1,65056 59,20 0,0000 
RESIDUAL 111,076 3984 0,0278804   
TOTAL (CORRECTED) 437,149 4079    

 
Analysis of Variance for PWCv - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 0,177053 2 0,0885266 4,31 0,0134 
 B:NF 4,65518 2 2,32759 113,43 0,0000 
 C:M 82,1506 3 27,3835 1334,51 0,0000 
 D:C 35,4626 9 3,94029 192,03 0,0000 
INTERACTIONS      
 AB 0,0520432 4 0,0130108 0,63 0,6382 
 AC 8,39187 6 1,39865 68,16 0,0000 
 AD 1,96549 18 0,109194 5,32 0,0000 
 BC 1,61915 6 0,269858 13,15 0,0000 
 BD 3,72273 18 0,206819 10,08 0,0000 
 CD 74,1977 27 2,74806 133,92 0,0000 
RESIDUAL 81,7501 3984 0,0205196   
TOTAL (CORRECTED) 348,192 4079    
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Appendix 6.3 

 ANOVA for Murphys´ method and its variants 
 

Analysis of Variance for PTCo - Type III Sums of Squares 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 149,686 2 74,8431 3430,54 0,0000 
 B:NF 11,5123 2 5,75613 263,84 0,0000 
 C:C 1,06058 9 0,117842 5,40 0,0000 
 D:M 68,4715 3 22,8238 1046,16 0,0000 
INTERACTIONS      
 AB 1,68154 4 0,420386 19,27 0,0000 
 AC 16,1889 18 0,899383 41,22 0,0000 
 AD 45,7772 6 7,62954 349,71 0,0000 
 BC 1,27448 18 0,0708042 3,25 0,0000 
 BD 5,38618 6 0,897697 41,15 0,0000 
 CD 17,8577 27 0,661395 30,32 0,0000 
RESIDUAL 86,9177 3984 0,0218167   
TOTAL (CORRECTED) 515,872 4079    

 
Analysis of Variance for PTCv - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 175,106 2 87,5532 8597,17 0,0000 
 B:NF 0,251661 2 0,125831 12,36 0,0000 
 C:C 29,6047 9 3,28941 323,00 0,0000 
 D:M 2,1434 3 0,714465 70,16 0,0000 
INTERACTIONS      
 AB 0,795823 4 0,198956 19,54 0,0000 
 AC 25,5504 18 1,41947 139,38 0,0000 
 AD 4,33764 6 0,72294 70,99 0,0000 
 BC 2,75131 18 0,152851 15,01 0,0000 
 BD 0,254925 6 0,0424875 4,17 0,0003 
 CD 3,82727 27 0,141751 13,92 0,0000 
RESIDUAL 40,5729 3984 0,0101839   
TOTAL (CORRECTED) 375,772 4079    

 
Analysis of Variance for PWCo - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 0,0647115 2 0,0323558 1,06 0,3457 
 B:NF 4,54887 2 2,27444 74,68 0,0000 
 C:C 42,0696 9 4,6744 153,49 0,0000 
 D:M 93,9981 3 31,3327 1028,84 0,0000 
INTERACTIONS      
 AB 0,195993 4 0,0489982 1,61 0,1691 
 AC 10,9626 18 0,609034 20,00 0,0000 
 AD 22,3479 6 3,72465 122,30 0,0000 
 BC 4,03636 18 0,224242 7,36 0,0000 
 BD 4,90529 6 0,817548 26,85 0,0000 
 CD 33,2028 27 1,22973 40,38 0,0000 
RESIDUAL 121,33 3984 0,0304543   
TOTAL (CORRECTED) 401,712 4079    
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Analysis of Variance for PWCv - Type III Sums of Squares 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 1,19423 2 0,597115 36,20 0,0000 
 B:NF 3,53007 2 1,76503 107,00 0,0000 
 C:C 31,9297 9 3,54774 215,07 0,0000 
 D:M 86,6656 3 28,8885 1751,24 0,0000 
INTERACTIONS      
 AB 0,105968 4 0,026492 1,61 0,1699 
 AC 2,78752 18 0,154862 9,39 0,0000 
 AD 9,34879 6 1,55813 94,45 0,0000 
 BC 2,95016 18 0,163898 9,94 0,0000 
 BD 1,97736 6 0,329559 19,98 0,0000 
 CD 70,3836 27 2,6068 158,03 0,0000 
RESIDUAL 65,7204 3984 0,0164961   
TOTAL (CORRECTED) 332,634 4079    

 

Appendix 6.4 

 ANOVA for Montgomery and Runger´s method and its variants 
 

Analysis of Variance for PTCo - Type III Sums of Squares 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 223,449 2 111,724 4885,72 0,0000 
 B:NF 35,5619 2 17,781 777,56 0,0000 
 C:C 5,32549 9 0,591722 25,88 0,0000 
 D:M 86,2649 4 21,5662 943,09 0,0000 
INTERACTIONS      
 AB 6,20175 4 1,55044 67,80 0,0000 
 AC 36,1585 18 2,00881 87,85 0,0000 
 AD 67,6837 8 8,46046 369,98 0,0000 
 BC 5,65709 18 0,314283 13,74 0,0000 
 BD 11,9099 8 1,48874 65,10 0,0000 
 CD 36,1127 36 1,00313 43,87 0,0000 
RESIDUAL 114,109 4990 0,0228676   
TOTAL (CORRECTED) 812,874 5099    

 
Analysis of Variance for PTCv - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 256,609 2 128,305 7769,56 0,0000 
 B:NF 1,54451 2 0,772253 46,76 0,0000 
 C:C 32,8048 9 3,64497 220,72 0,0000 
 D:M 2,16588 4 0,54147 32,79 0,0000 
INTERACTIONS      
 AB 0,626814 4 0,156704 9,49 0,0000 
 AC 24,103 18 1,33905 81,09 0,0000 
 AD 9,51185 8 1,18898 72,00 0,0000 
 BC 8,04888 18 0,44716 27,08 0,0000 
 BD 0,752452 8 0,0940564 5,70 0,0000 
 CD 5,15565 36 0,143213 8,67 0,0000 
RESIDUAL 82,4037 4990 0,0165138   
TOTAL (CORRECTED) 566,03 5099    
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Analysis of Variance for PWCo - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 0,680175 2 0,340088 10,36 0,0000 
 B:NF 7,3868 2 3,6934 112,53 0,0000 
 C:C 47,7293 9 5,30326 161,58 0,0000 
 D:M 125,63 4 31,4075 956,91 0,0000 
INTERACTIONS      
 AB 0,782128 4 0,195532 5,96 0,0001 
 AC 3,15169 18 0,175094 5,33 0,0000 
 AD 30,5274 8 3,81593 116,26 0,0000 
 BC 6,10142 18 0,338968 10,33 0,0000 
 BD 8,16538 8 1,02067 31,10 0,0000 
 CD 54,4009 36 1,51114 46,04 0,0000 
RESIDUAL 163,781 4990 0,0328218   
TOTAL (CORRECTED) 550,512 5099    

 
Analysis of Variance for PWCv - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 2,74342 2 1,37171 74,95 0,0000 
 B:NF 3,88795 2 1,94398 106,22 0,0000 
 C:C 33,8282 9 3,75869 205,37 0,0000 
 D:M 90,2125 4 22,5531 1232,27 0,0000 
INTERACTIONS      
 AB 0,435235 4 0,108809 5,95 0,0001 
 AC 2,20043 18 0,122246 6,68 0,0000 
 AD 13,4958 8 1,68698 92,17 0,0000 
 BC 3,21265 18 0,17848 9,75 0,0000 
 BD 4,46277 8 0,557847 30,48 0,0000 
 CD 83,58 36 2,32167 126,85 0,0000 
RESIDUAL 91,3273 4990 0,0183021   
TOTAL (CORRECTED) 397,723 5099    

 

Appendix 6.5 

 ANOVA for best methods 
 

Analysis of Variance for PTCo - Type III Sums of Squares 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 340,539 2 170,269 43360,85 0,0000 
 B:NF 8,20443 2 4,10222 1044,67 0,0000 
 C:C 15,9169 9 1,76854 450,38 0,0000 
 D:M 6,05737 4 1,51434 385,64 0,0000 
INTERACTIONS      
 AB 8,57647 4 2,14412 546,02 0,0000 
 AC 11,7037 18 0,650207 165,58 0,0000 
 AD 5,35867 8 0,669834 170,58 0,0000 
 BC 2,49 18 0,138333 35,23 0,0000 
 BD 2,36598 8 0,295747 75,32 0,0000 
 CD 2,72464 36 0,0756845 19,27 0,0000 
RESIDUAL 19,5947 4990 0,0039268   
TOTAL (CORRECTED) 639,756 5099    
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Analysis of Variance for PTCv - Type III Sums of Squares 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 245,741 2 122,87 20441,25 0,0000 
 B:NF 0,0123855 2 0,00619277 1,03 0,3570 
 C:C 32,2028 9 3,57809 595,27 0,0000 
 D:M 3,71077 4 0,927692 154,33 0,0000 
INTERACTIONS      
 AB 0,914106 4 0,228527 38,02 0,0000 
 AC 23,6654 18 1,31474 218,73 0,0000 
 AD 3,97778 8 0,497223 82,72 0,0000 
 BC 3,99779 18 0,222099 36,95 0,0000 
 BD 0,625118 8 0,0781397 13,00 0,0000 
 CD 0,377585 36 0,0104885 1,74 0,0039 
RESIDUAL 29,9944 4990 0,0060109   
TOTAL (CORRECTED) 482,177 5099    

 
Analysis of Variance for PWCo - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 12,8512 2 6,4256 1068,65 0,0000 
 B:NF 0,146965 2 0,0734824 12,22 0,0000 
 C:C 11,9678 9 1,32976 221,15 0,0000 
 D:M 24,11 4 6,02749 1002,44 0,0000 
INTERACTIONS      
 AB 0,684322 4 0,171081 28,45 0,0000 
 AC 17,763 18 0,986832 164,12 0,0000 
 AD 2,26813 8 0,283517 47,15 0,0000 
 BC 1,89609 18 0,105338 17,52 0,0000 
 BD 0,115674 8 0,0144592 2,40 0,0138 
 CD 2,85528 36 0,0793134 13,19 0,0000 
RESIDUAL 30,0039 4990 0,00601281   
TOTAL (CORRECTED) 129,49 5099    

 
Analysis of Variance for PWCv - Type III Sums of Squares 

Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
 A:Size 3,27724 2 1,63862 921,67 0,0000 
 B:NF 1,20901 2 0,604505 340,01 0,0000 
 C:C 4,05852 9 0,450946 253,64 0,0000 
 D:M 4,98126 4 1,24531 700,44 0,0000 
INTERACTIONS      
 AB 0,424403 4 0,106101 59,68 0,0000 
 AC 4,13551 18 0,229751 129,23 0,0000 
 AD 1,54207 8 0,192758 108,42 0,0000 
 BC 0,708777 18 0,0393765 22,15 0,0000 
 BD 0,633616 8 0,079202 44,55 0,0000 
 CD 3,50275 36 0,0972987 54,73 0,0000 
RESIDUAL 8,87168 4990 0,00177789   
TOTAL (CORRECTED) 40,9285 5099    
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Appendix 6.6 

TABLE 1:  Selection of the number of standard deviations (nd) to use in the construction of the UCL in Recursive Hawkins´ Methodology (RH) in order to get an 

overall Type I risk 05.0overall  in the 10 correlation matrix scenarios. The final selection is in bold font. 

 nd 
Mcorr 

(Ci) 2.36 2.38 2.39 2.50 2.51 2.6 2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 
C1 0.1214 0.1153 0.1128  0.0816 0.0638 0.0617 0.06 0.0584 0.0568 0.0552 0.0535 0.0518 0.0502 0.0487 
C2 0.1196 0.1138 0.1108  0.0804 0.0629 0.0614 0.0597 0.0578 0.056 0.0545 0.0529 0.0513 0.0501 0.0485 
C3 0.0495 0.0472 0.0462  0.034 0.0272 0.0262 0.0255 0.0247 0.024 0.0234 0.0226 0.0221 0.0217 0.0211 
C4 0.1067 0.1017 0.0994  0.0728 0.0572 0.0554 0.0537 0.0523 0.0511 0.0499 0.0487 0.0475 0.0461 0.0446 
C5 0.1126 0.1072 0.1046  0.076 0.0586 0.057 0.0555 0.0541 0.0527 0.0512 0.0495 0.0482 0.0466 0.0453 
C6 0.1046 0.0994 0.0968  0.0692 0.0539 0.0523 0.051 0.0495 0.0481 0.047 0.0457 0.0446 0.0433 0.042 
C7 0.0522 0.05 0.0487  0.0361 0.0283 0.0276 0.0269 0.0263 0.0255 0.0248 0.0242 0.0236 0.0231 0.0226 
C8 0.1105 0.1048 0.1022  0.0744 0.0583 0.0567 0.0553 0.054 0.0526 0.0511 0.0495 0.0482 0.0471 0.0456 
C9 0.0731 0.0699 0.0683 0.05 0.0495 0.0385 0.0375 0.0365 0.0356 0.0346 0.0337 0.0328 0.0319 0.0312 0.0304 

C10 0.0526 0.0501 0.049  0.0357 0.0282 0.0274 0.0266 0.0259 0.0254 0.0248 0.0241 0.0232 0.0223 0.0215 
 

TABLE 2:  Selection of the number of standard deviations (nd) to use in the construction of the UCL in Prefiltered Recursive Hawkins´ Methodology (FRH) in order to 

get an overall Type I risk ( 05.0overall ) in the 10 correlation matrix scenarios. The final selection is in bold font. 

 nd 

Mcorr 2.7 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79 2.8 2.81 2.82 2.83 2.84 2.85 2.89 2.9 

C1 0.0565 0.0551 0.0533 0.052 0.0503 0.049 0.0475 0.0461 0.0448 0.0435 0.042 0.0407 0.0396 0.0388 0.0374 0.0363 0.0322 0.0313 
C2 0.0699 0.0684 0.0665 0.0648 0.0631 0.061 0.0593 0.0576 0.0558 0.0542 0.0527 0.0512 0.0498 0.0486 0.0471 0.0457 0.0409 0.0397 
C3 0.0642 0.0625 0.0607 0.0592 0.0575 0.056 0.0545 0.0532 0.0515 0.0499 0.0485 0.0471 0.0455 0.0441 0.0427 0.0413 0.0369 0.0355 
C4 0.0748 0.0731 0.0713 0.0694 0.0676 0.0657 0.0641 0.0624 0.0604 0.0586 0.0572 0.0553 0.0539 0.0525 0.051 0.0495 0.0445 0.0431 
C5 0.061 0.0592 0.0575 0.0557 0.0543 0.0524 0.0509 0.0491 0.0478 0.0463 0.0452 0.044 0.043 0.0415 0.0404 0.0393 0.0348 0.0339 
C6 0.0683 0.0667 0.0648 0.0628 0.061 0.0595 0.0574 0.0558 0.0546 0.053 0.0517 0.0504 0.0487 0.0473 0.046 0.0445 0.0394 0.0383 
C7 0.062 0.0604 0.0585 0.0568 0.0552 0.0535 0.0521 0.0508 0.0494 0.0482 0.0468 0.0456 0.0439 0.0426 0.0415 0.0402 0.0359 0.0348 
C8 0.0719 0.0705 0.069 0.0672 0.0656 0.0639 0.0621 0.0606 0.0586 0.0571 0.0554 0.0541 0.0527 0.0509 0.0494 0.0481 0.0423 0.041 
C9 0.0583 0.0566 0.0554 0.0536 0.0522 0.0508 0.0495 0.0481 0.0468 0.0457 0.0443 0.043 0.0418 0.0405 0.0394 0.0382 0.0338 0.0329 
C10 0.0606 0.0589 0.0573 0.0555 0.0542 0.0525 0.0511 0.0495 0.0482 0.0469 0.0452 0.0438 0.0427 0.0415 0.0401 0.0389 0.0347 0.0336 
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Part III   

Fault diagnosis in latent-based multivariate 
statistical process control (Lb-MSPC) 

 

 

The second part, including chapters 7 to 9, is concerned with the Multivariate 

Statistical Process Control (MSPC). In this part we are going to consider data rich 

environments (scenario 3 described in section 2.3.2) where the MSPC is the 

preferred option for monitoring the process. The methods discussed in this thesis 

are defined in the latent variables space and perform reasonably well when there 

is a great number of correlated process variables with an ill-conditioned 

covariance matrix.   

 

Our research in this part has produced the following results: 
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 “A comparative study of different methodologies for supervised fault 

diagnosis in multivariate statistical process control“.Proceedings of the 
12th Annual Conference of the European Network for Business and 
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 “Fingerprints contribution plot: A new approach for fault diagnosis in 
multivariate statistic process control”  11th International Conference 
on Chemometrics in Analytical Chemistry (CAC 2008) Montpellier, 
France. 

 

 “Diagnóstico de fallos basado en una estrategia combinada: PLS 
Discriminante SIMCA” XXX Congreso Nacional de Estadística e 
Investigación Operativa” 2007 (SEIO) Valladolid, Spain 

 
 “Fault diagnosis in the on-line monitoring of a pasteurisation process: 

a comparative study of different strategies”. Proceedings of the 5th 
Annual Conference of the European Network for Business and 
Industrial Statistics 2005 (ENBIS), Newcastle, UK. 
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Chapter 7:  Fault diagnosis methods in MSPC 

This chapter gives a description of the most common methods used for fault diagnosis 

in supervised MSPC. The chapter describes the rationale of the different methods and 

shows the requirements for their implementation, their strong points and their drawbacks. 
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7.1 Introduction  

At the end of the last century initiated a great technological revolution enabled by the 

explosive innovations in electronics and communication determining that computers, 

sensors and measure devices have become increasingly cheaper. This has been traduced 

into a growing automatization of the industrial processes. It has also permitted to record 

on line a large quantity of process variables stored at a frequency of milliseconds. This 

improved process information can be added to the information provided by productivity 

and quality variables, which are measured at a much lower frequency (usually off-line) 

and frequently requiring costly laboratory testing. The real challenge nowadays is how to 

manage such a big quantity of correlated information. To use only the quality variables 

to monitor the processes would lose a lot of information about the process and would 

certainly make more difficult to identify the root causes of the different faults affecting 

the processes. Thus the inclusion of process variables in the monitoring scheme is a key 

step in the adaptation of the statistical process control to modern highly automated 

environments. The on-line measurements of process variables characterised by high 

sample rate, reduced cost (compared to diagnostic laboratory testing) and greater 

sensitivity than process anomalies, contribute to reduce the reaction speed and helps the 

diagnosis of the root causes.  

In this data rich environments specific and adapted statistical tools are required. The 

classical statistical tools present some difficulties when they are applied in this context. 

The first problem is the data dimensionality. The matrices of data in continuous processes 

have a large dimensionality. In continuous processes it is frequent to measure hundreds 

or even thousands of variables every few seconds and dozens of quality variables every 

few hours. Moreover, the advances in measuring technology are allowing to measure 

quality variables on-line (every few minutes). A second problem is the collinearity. The 
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real dimensionality of what is happening in our processes is much lower than the apparent 

high dimensionality of the collected data. The common causes of variability are controlled 

by a much lower number of independent latent variables (not explicitly measurable) 

which express themselves through the hundreds or thousands of measured variables and, 

consequently, causes a strong correlation among them. A third problem is the noise. All 

the variables (process or quality variables) are measured with error (sampling error, 

measuring error, …). As they are measured under normal operating conditions is logical 

to have a small signal-to-noise ratio in each variable given that the objective of the 

operators is to keep the process on the target trajectory. A fourth problem is the missing 

data. The high automatization is the cause of the abundance of missing data in the 

collected data bases (sometimes even to a 20%). These missing data are due to sensors 

malfunctions, sensor maintenance and delays in the analysis of laboratory. In addition to 

all these problem there is another important problem, the ill-conditioning of the 

covariance matrix. The classical methods need to invert the covariance matrix and this 

becomes a big problem when this matrix is so ill-conditioned.  

To overcome all of these problems is necessary a new set of statistical tools able to manage this 

type of data. The use of latent variable models (PCA, PLS) for monitoring and fault 

diagnosis in this context has been proved superior. Thus a great number of successful 

applications has been proposed in the last decade (MacGregor et al. 1991 and 1994, 

MacGregor and Kourti 1995 and Kourti and MacGregor 1996). In particular, the 

contribution plot (MacGregor et al.1994 and Miller et al. 1993) (described in Section 

1.3.2) on scores and the square prediction error (SPE) are excellent options, particularly 

when there is no information about the different types of fault. The contribution plots is 

the most widespread unsupervised diagnosis method in Lb_MSPC. It must be noted that 

the unsupervised methods only decide which variables are involved in the fault and then 
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the process engineers have to search for the root causes of the fault. The existence of 

available information about the different types of faults make possible the use of a new 

set of tools or methods for fault diagnosis that incorporate the available information in 

their diagnosis procedures. These methods, are known as supervised fault diagnosis 

methodologies and it must be noted that these methods can address directly the root 

causes in the diagnosis stage. These methods are the focus of our research in the second 

part of this thesis. As it was commented in the state of the art (Chapter 1), the USPC and 

classical MSPC do not work in the context of rich environments. It is in rich 

environments context where a multivariate statistical process control (Lb_MSPC), 

based on statistical techniques that use the projection to latent structures such as 

Principal Component Analysis (PCA) (Jackson 1991) and the Partial Least Squares, 

(PLS) (Geladi and Kowalski 1986), (Wold et al. 1987) become interesting options i.e. 

Moreover, these methods work well in data rich environments, do not require first 

principle models and are widely implanted in the industry.      

Although we have limited our study to methods based on Lb_MSPC, it is important 

to point out that the list of methods used remains quite extensive (Section 1.1.2.2). In 

my thesis I have prioritized methods widely referenced and successfully applied in 

different contexts (Qin 2012, Russell et al. 2012 and MacGregor and Cinar 2012) 

In Chapter I review the following methods for supervised fault diagnosis in 

Lb_MSPC: a) classification techniques based on the use of PLSDA (partial least squares 

discriminant analysis) (Sjöström et al. 1985), b) fault signatures (Yoon and MacGregor 

2001), c) fault reconstruction methodology (Dunia and Qin 1998), and d) fault 

reconstruction using a single combined index that integrates the SPE and T2
A (Yue and 

Qin 2001).   
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7.2 Fault detection on a latent based model 

 

Based on the PCA model an observation vector x  (K  1) can be decomposed into a 

modeled (xො) and (x෤) unmodeled part so that xxx ~ˆ   where xො is the projection of x  in the 

principal component subspace (Smodel) of dimension A ≤ K and x~ is the projection of x  in 

the residual subspace (Sresidual) of dimension K-A:  

  xො ൌ Pt = PPTx= Cx  Smodel       (7.1)

where AKxP  is the loading matrix with A  1,  At  is the score vector and A is the 

number of principal components (PCs) retained in the PCA model. The matrix TPPC   

is called the projection matrix.  

The residual portion x෤ can be obtained according to the following expression: 

  x෤ ൌ (I-PPT)x = (I-C)x = C෩x K
residual S        (7.2)

where C
~

 is the projection matrix on the residual subspace. Consequently, xො and x෤ are 

orthogonal with xොT	x෤ ൌ 0 

Abnormal values of x̂ are associated to changes affecting the variable correlations 

which violate the energy balances, mass balances or operational restrictions of the process 

which have been captured or modeled by the PCA model. A typical statistic to detect that 

situation is the square prediction error (
2~xSPE ). The process is considered normal if 

2SPE  where 2  is a confidence limit or threshold for the SPE according to Jackson 

and Mudholkar (1979) or Box (1954) proposals (Section 1.3.1.3).   

 Additionally, abnormal values of x̂  can also be due to faults which projections are 

mainly in the Smodel or normal changes in the process with a displacement of the operating 

point that keep the correlation structure. The mostly used statistic to detect that situations 
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is the Hotelling T2
A  (Section 1.3.1.3). The Hotelling´s T2 statistic expressed in terms of 

the principal components is :  

 
TA

2 =෍
ta,new
2

sa
2

A

a=1

 (7.3)

 

It can be expressed alternatively as T2
A tΛt 1 T  where  A21 ......diag Λ  is the 

diagonal matrix with the A largest eigenvalues of the covariance matrix of x , or the 

correlation matrix if the data are mean centered and scaled to unit variance. These 

eigenvalues are equal to the variance sa
2 of the different latent components.  

 

7.3 Fault diagnosis methodologies  

It is assumed that there exist a database of reference patterns, each corresponding to 

a known fault.  In this situation, the fault detection is performed by testing whether the 

behavior of current measurement data is consistent with past in-control behavior captures 

by a PCA or PLS model. The fault isolation is implemented by referencing signatures of 

the current fault against a database of the reference fault signatures. Existing fault 

diagnosis methods differ in the type of signatures used to characterize the faults and in 

the manner of comparing them against the reference signature bank. 

 

7.3.1 PLS-DA 
 

The PLS-DA consists in a classical regression where the PLS algorithm has been 

modified for classification. Classification techniques can be viewed as aiming to find a 

relationship between a multivariate independent vector x and a qualitative vector of 

responses. Accordingly, if a suitably designed dummy response vector is introduced, 

traditional regression methods can be used also to tackle with classification problems 
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The model is used to predict the class to which belong the new faulty observations. 

The new faulty observation is assigned to the class with a prediction much closer to one 

as it is shown in Figure 7.1. In our study we used a single PLS-DA model for all the 

classes. In the literature there are other proposals with multiple models but we considered 

that a single model was a good choice.   

FIGURE 7.1: PLS-DA Model for 2 types of faults 

 

7.3.2 Fault Signatures 
 

Yoon and Macgregor (2001) propose the fault signature methodology. This method 

uses the PCA already built for fault detection based on common-cause variation i.e. from 

normal operating condition (NOC) data. Fault isolation is then based on the projection of 

the fault history on this model (scores) and its movement in the orthogonal residual space. 

As long as the projected scores of a fault form a data cluster in the principal component 

space one can apply pattern recognition methods.  A complex fault has: initial fault 

signature, a time varying trajectory and steady state fault signature. The initial fault 

signature may provide a good and prompt source for the fault diagnosis since it is not 

affected by the fault propagation. However the initial fault signature can be easily missed 
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by any fault detection scheme and then the transient behavior and final steady state vector 

of measurements are generally used as an alternative to the initial fault signature to 

characterize the complex fault signature. The PCA model built from NOC data can be 

used to develop signatures of past faults from the final steady state or the transient 

trajectories arising from the faults. An isolation delay is inevitable and a false isolation 

may arise if the transient fault directionality is very different from the steady state one. 

The authors focus on the use of the steady state fault signatures. The resulting method 

appear to work well in many applications even during the transient periods. In our 

research we will apply this method to observations just immediately after the fault. 

By using these relationships, faults and disturbances can be decomposed into two 

vectors, which explain the fault effects in both the principal component model space and 

the residual space. Fault signatures are then developed for these faults based on the 

PCA/PLS model built from normal common-cause data. A fault signature consists of the 

directions of the movements of the process in both the model space and in the orthogonal 

residual space during the period immediately following the fault detection.  

Let the sample vector of measurements for normal operation condition just prior to a 

fault be denoted by x∗. In the presence of a fault i the sample vector x can be represented 

using an additive fault vector, fi according to the following expression x ൌ	x∗ ൅ fi , then 

the vector for the fault i fi can be decomposed using the PCA model in two components, 

one (fi
෡) lying in the model space and the other (fi

෩) lying in the residual space as follows:  

  fi ൌ 	fi
෡ ൅ fi

෩ ൌ Cfi ൅ (I-C) fi ൌ Cfi ൅ C෩ fi          (7.4)

where TPPC  is the projection matrix of the PCA model built from NOC data and C
~

 is 

the projection matrix on the residual subspace.  
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These vector components are normalized to be insensitive to their magnitudes. That 

is,  

  fi
෡ 0 ൌ

fi෡

ฮfi෡ฮ
fi
෩0 ൌ

fi෩

ฮfi෩ฮ
         (7.5)

Where it is assumed that ฮ	fi
෡ฮ 	് 0	and	ฮfi

෩ฮ 	് 0.   

A fault signature library consists of all known fault signature vectors (j = 1,2 ……. J) as 

follows: 

F෡ ൌ ൣfመ10	  fመ20 …	fመJ0൧								F෩ ൌ ൣfሚ10	    fሚ20…  fሚJ0  ൧ 
 
 These two fault signature matrices include all known fault information in both the 

modeled and the unmodeled spaces about the J faults. The fault signature bank or catalog 

would simply contain the collection of these fault signatures that are available to date. 

There will be many unknown fault signatures which can be added after detecting a new 

type of fault. 

 Once a new fault occurs its signature is compared with those in the fault bank in order 

to identify the most likely cause. The new faulty observation is decomposed in two 

components and the two components are normalized as follows: 

  xොnew=Cxොnew and x෤new=ሺI-Cሻx෤new     

xො0 ൌ
	xොnew

‖xොnew‖
x෤0 ൌ

	x෤new

‖x෤new‖
      

(7.6)

The method continue by obtaining the angles measures and using a joint plot for 

isolation. The angle measures between the known fault signatures (libraries F෡	and	F෩) and 

the new observation vector signature 	xො଴  and x෤଴ are used for the fault isolation. The cosine 

value between the new observation vector and one of the known fault signatures gives the 

relative measure of the collinearity between them. The angle measure in the model space 

and in the residual space between the fault signature of the new observation and the 

known fault signature of fault j can be calculated through the scalar product:  cos ෠௝ ൌ
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xො0
୘∙ 	fመj଴  and 	cos ෨௝ ൌ x෤0

୘ ∙ fሚj0 . When the cosine value is close to one, it means that the 

new observation vector is near collinear to the fault direction. Then, the fault can be 

tentatively isolated as the one whose cosine value is closest to one or is the maximum 

among the row vector cosines components as follows   

  max	
௝
ሾxො0
T ∙ F෠ሿ ൌ max

௝
ሾ xො0

T ∙ fመ10       xො0
T ∙ fመ20 ⋯ xො0

T ∙ fመJ0 ሿ      

max	
௝
ሾx෤0
୘ ∙ F෨ሿ ൌ max

௝
ሾ x෤0

୘ ∙ fሚ10      x෤0
୘ ∙ fሚ20 ⋯ x෤0

୘ ∙ fሚJ0 ሿ  
(7.7)

However the starting point of the model component of the fault signature must not be 

taken as the origin point of the score space but rather as the normal operating point (x*) 

just before the fault is detected. As shown in Figure 7.2, when the model components of 

their fault directions are considered with respect to the origin O of the model (average in-

control operating point) vectors OAF and OBF in Figure 7.2 look different even though 

both faults are the same. This is due to the starting point of the fault vectors. Thus the 

starting point must be the point where the fault is initiated. So the components model 

directions AA* and BB* and the residual component directions A*AF and B*BF becomes 

quite similar.   

 Note that the isolation could be misleading if the initial direction of the fault is very 

different form its final direction due to nonlinearity  

Authors propose the joint cosine plot to perform the fault diagnosis (Figure 7.3).  In this 

type of plot one single observation is represented by J dots where J is the number of faults 

in the fault signature library. Each dot represents the pair of cosines (cos ෠j, cos ෨ j) for a 

particular observation with a particular type of fault. When the number of different types 

of faults in the library increases and particularly when the signal is monitored during a 

whole period of time, these plots become very difficult to interpret. It must be noted that  
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FIGURE 7.2: Fault signatures for the same type of fault in two points (A and B) of the operating space 

 

if we consider only a particular instant of time, then this plot can be replaced for a bar 

plot displaying the distance to the vertex [+1 +1], with one bar assigned to each fault 

signature in the library.  

 

 
FIGURE 7.3: example of cosine join plot for fault f1 data set  

 
 

Figure 7.3 shows the dots corresponding to the pair of cosines of all the observations 

of fault f1 in the training data set of the pasteurization process (Table 9.1). The red dots 

located close to the vertex [+1,+1] are the pair of cosines corresponding to the comparison 
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of each observation in f1 test data set to the f1 signature. As the actual fault is f1, cosines 

in the model space and the residual space are close to +1 and consequently the dot is 

located close to vertex [+1,+1]. The other dots in different colors are the pair of cosines 

of the comparison of each observation in f1 test data set to the other types of fault 

signatures. As there are no other dots close to the vertex [+1,+1] of a different color it is 

concluded that the fault f1 can be successfully isolated from the others. 

Figure 7.4 represents the cosine join plot corresponding to all the observations of fault 

f7 in pasteurization process training data set.  The f7 fault is the fault of a sensor that 

records a temperature (T5) which is lower than the real temperature. The fault f8 is the 

opposite recording temperatures (T5) higher than real temperature values. The Figure 7.4 

shows that if the minimum distance to vertex [+1 +1] and vertex [-1 -1] is used to diagnose 

the faults then a sensor or process faults of different sign to the fault signature would not 

be properly isolated i.e. f7 that is the actual fault would not be successfully isolated of 

fault f8. On the contrary, if we consider only the minimum distance to vertex [+1 +1] in 

order to diagnose the faults, then faults of different sign (f7 and f8) can be successfully 

isolated.  

 

FIGURE 7.4 Example of cosine join plot for f7 data set  
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In addition, unknown fault signatures can be added to the library after detecting a new 

type of fault.       

 

7.3.3 Fault reconstruction methodologies  

 

In these methods the diagnosis of the faults is performed through the reconstruction 

of different statistics (SPE, T2
A, combined indices) in the faulty observations. 

7.3.3.1 Sensor faults reconstruction method 

 

Wise and Ricker (1991) proposed a fault isolation method based on reconstructing 

each variable using PCA/PLS models that used the remaining variables. Any variable 

whose reconstruction error was large was considered to be a faulty sensor. However a 

fundamental assumption behind this approach is that the fault only affects the variable 

being reconstructed, and does not affect any of the other variables being used to 

reconstruct it. It effectively limits this approach to the detection of simple faults. Complex 

faults cannot in general be isolated based on projection models built from in-control data. 

Such models are non-causal and have no ability to account for the propagated causal 

effect of the fault into other variables.  

Dunia and Qin  (1998) (a) proposed the Sensor Validity Index (SVI) to isolate faults 

sensors . Due to the assumption that the fault effect is not propagated into the other 

variables the use of the SVI is again limited to the simple sensor fault situation. The 

approach also examines only the behavior of the fault in the residual space and does not 

consider the movement that is also included in the PCA model space. 
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7.3.3.2 Dunia and Qin´s method  (SPE Reconstruction Index) 

 

Dunia and Qin (1998 b) presented a unified approach to process and fault sensor 

detection identification, and reconstruction via principal components analysis. The 

algorithm used to obtain the PCA model does not only consider the best model for fault 

reconstruction but also provides the dimension of the fault subspace. In this method the 

fault reconstruction methodology is adapted to the multidimensional fault case. 

In addition, this method allows to study some interesting aspect about the faults 

diagnosis capability given a particular model and specific fault data set: 

o Detectability: Represents the capability of the model to detect the presence of a 

fault. 

o Reconstructability: is the property that assures the estimation of the in-control 

sample vector using the corrupted sample vector and the model. 

o Identifiability: Refers to the ability to find the true fault from a set of possible 

candidates. 

o Isolability: Makes faults capable of being distinguished from one another by 

means of the model and fault direction. 

 
Fault Detectability  
 

The proposed methodology allows to study the fault detectability. Let Si be the 

subspace of fault type i and fault if   Jjj ........1; F  be the set of all possible faults. 

The dimension of Si  is li   K and K
iS  . A set of orthonormal bases for Si can be 

represented as columns of the matrix iΞ  of dimension K li.  
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The vector for normal operating conditions x  when a fault occurred is unknown. In 

the presence of a fault if  the sample vector can be represented by the following 

expression: fΞxx i   where f  represents the magnitude of the fault. 

The fault subspace matrix iΞ can be projected onto the subspaces Smodel  and Sresidual 

 
iii

~ˆ ΞΞΞ     (7.8)

where ii
ˆ CΞΞ  and ii ΞCΞ

~~    

The matrix iΞ is full rank but the projected matrices are not necessarily full rank. 

The projection of the sample vector on the residual subspace becomes: 

  fΞxx i

~~~      (7.9)

Using singular valued decomposition (SVD) it is possible to obtain an orthonormal matrix 

o
iΞ

~
 from iΞ

~
 

      T
ii

o
i

T
iiiii

i
iii VDΞVDUVV

D
UUΞ

~~~~~~~~

0

~
~~~ 








    (7.10)

where iD
~

 has li  li dimensions and contains non zero singular values of iΞ
~

 and, therefore, 

o~
iΞ  represents nonvanishing directions and 

i
~U  the vanishing directions when iΞ is 

projected onto Sresidual. 

According to this, equation 7.10 can be rewritten as: 

  fΞxfVDΞxx ~~~~~~~~ o
i

T
ii

o
i      (7.11)

where: fVDf T
ii

~~~   and fΞfΞf i
o
i

~~~~   represents the fault displacement proyected on 

Sresidual. o
iΞ

~
 and iΞ

~
 span the same subspace iS

~
 but the use of o

iΞ
~

 eliminates the possibility 

of linear dependence of the fault basis projected onto Sresidual 

Therefore the SPE can be represented according to the following expression: 
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  2o
i

2

i
~~~~~ fΞxfΞx  SPE    (7.12)

 
And, consequently, the necessary condition for detectability is that the direction of a 

particular type of fault has a projection in the residual space. Therefore if iΞ
~

= 0 which 

implies that elmodi SS  the fault is not detectable no matter what magnitude f is. If iΞ
~

 0 

but  iΞ
~

 is rank deficient, the fault is not detectable if 0~ f . In this case the displacement 

caused by eli SmodfΞ . It must be noted that even if 0~ f , it should be large enough to 

make SPE exceeds the confidence limit. Authors demonstrate that the sufficient condition 

for detectability is 2~ f . Otherwise the fault may be detected, but not guaranteed 

detectable. According to this, increasing the number of components of the model reduce 

the value of  and it can serve to improve the chances of detection of small faults but it 

also reduces the value of  f~  so there is a trade off to determine the optimum number of 

components in the model. 

 
Fault subspace extraction 

 

In sensor faults the fault direction matrix is easily obtained. In the case of process 

faults Yue and Qin (2001) and Valle et al (2001) propose to extract the fault direction 

using singular value decomposition (SVD) on historical fault data.   

A new observation with a fault j  is jjfΞxx  *
newnew . The matrix of fault data Xj 

collected under jf  fault is Xj
T = jΞ  [(f(1) ….. f(J)]. According to this, the columns of Xj

T 

and jΞ span the same subspace. Then it is possible to perform singular value 

decomposition on Xj
T   T

jjj
T
j VDUX   to obtain the matrices Uj, Dj and Vj, where Dj 
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contains the nonzero singular values in descending order. Finally the fault matrix 

direction jj UΞ   is obtained. 

In practice, it is often difficult to differentiate between zero and nonzero singular 

values. Authors propose a method of determining the dimension of the fault subspace. 

Starting from the singular vector of the largest singular value Uj(:, 1) as the fault direction 

and performing reconstruction. If the reconstructed sample xj is within the normal region, 

then Uj(:, 1) can adequately represent and reconstruct the fault. Otherwise, the next 

singular vector is added until the reconstructed sample (x௝) is within the normal region. 

 
Fault reconstruction  

 

The reconstruction of process faults consists of estimating the reconstructed sample 

vector ix by eliminating the effect of the fault i that we assume as the actual fault. The 

reconstruction using the PCA model of the normal portion x  of the observation x  which 

now is a corrupted observation vector is conducted bringing ix  back to the Smodel along 

the direction iΞ  following the expression iii fΞxx   as it is shown in Figure 7.5. 

where fi is an estimate of the fault magnitude f and iΞ  an orthonormal base that span the 

subspace of the fault Si.  The projection of ix  in the residual subspace Sresidual  follows:  

 
iii fΞxx

~~~     i
o
ii fΞxx
~~~~     (7.13)

 

where  i
T
iii fVDf

~~~
       
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FIGURE 7.5: Fault reconstruction according to the fault fi 

 
The best estimate of x is found by minimizing the distance from ix  to the Sresidual  

 

    i
T
ii

T
iiii xΞΞΞfΞxf ~~~~~~minarg

12 
  (7.14)

 
  Complete reconstructability 
 

     iii lSdimS
~

dim   

  eli modSS  

 iΞ
~

 is full column rank 

 The smallest singular value of iΞ
~

 

is major than 0 
 
Reconstructed vector:  
 

  xΞΞΞΞIx )
~~~

(
1 T

ii
T
iii


  

 
Projection of the reconstructed vector: 
 

  xΞΞΞΞIx ~)
~~~~

(~ 1 T
ii

T
iii


  

 

Partial reconstructability 
 

   0S
~

dim i  

 elmodi SS   

 0
~ iΞ  

 The largest singular value of iΞ
~

 is 

major than 0 
 
Reconstructed vector:  
 

xΞΞIx )
~

(  iii  

 
Projection of the reconstructed vector: 
 

xΞΞIx ~)
~~

(~ To
i

o
ii   

 

where 
To

i
1

iii
~~~~ ΞDVΞ   is the Moore-

Penrose pseudoinverse  
 
 

Xi 
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Reliability of the reconstruction procedure 
 

The reliability of the fault reconstruction is the criterion proposed by the authors to 

determine the best number of components to use in the PCA model. For a fault Fi the 

reconstruction of the whole set of measurements x  using the fault space basis iΞ  has an 

unreconstructed portion ixx   and the part of this unreconstructed portion in the 

subspace Si is )( i
T
i xxΞ  . According to this, the unreconstructed mean is 

 )( i
T
ii xxΞ  E  and the unreconstructed variance is  2

)( ii
T
iiu   xxΞE  

As the corrupted observation is fΞxx i   and the reconstructed observation is 

iii fΞxx    by substitution    fΞxfΞx iiii     )( ffΞxx 
iii      

then   
 
       ffffΞΞxxΞ  

iii
T
ii

T
ii EEE )()(       

     222
)()(u iiiii

T
iii

T
ii    ffffΞΞxxΞ EEE  

(7.15)

 
 

For partial reconstruction authors demonstrate that fIΞΞ )
~

(  
iii  and so that if iΞ

is rank deficient then ix is a biased estimation of x . In the case of complete 

reconstruction 0i  the reconstruction is unbiased. Authors also demonstrate that 

 T

iii Trace  ΞRΞ
~~

u  and therefore the unreconstructed variance does not depend on the 

magnitude of the fault. 

 
Number of principal components for best reconstruction 
 

The criterion proposed for the authors is to choose the number of principal 

components which minimize the variance reconstruction. The variance reconstruction can 

be divided in two parts ii ûu~u i   where iu~  is the variance of fi projected on Sresidual  and 

iû is the variance of fi projected on Smodel. 
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     22

i
~~(

~
u~ iii xxfΞ  EE    

 22

i ˆˆ(ˆû iii xxfΞ 




 EE     

(7.16)

 

Authors demonstrate that  o
i

To
itrace ΞRΞ

~~
u~i  ,  T

i

T

iiitrace ΞΞRΞΞ ˆ~~ˆû i
  and that iu  

has a minimum respect to the number of components of the model A.  The calculation of 

a minimum iu by choosing A improves reconstruction and identification of if . They 

propose to minimize a linear combination of all possible unreconstructed variances with 

respect to the number of principal components of the model:  

 uququq ˆ~minmin TT

A

T

A
     (8.20) 

where u represent the vector of unreconstructed variances for all  jFif  and q is a 

weighting vector with positive entries. Such a vector allows one to adjust the model 

depending on how critical each fault is to process operation. 

 
Inclusion of faults and variables 
 

Despite the authors recommend to study how reliable the reconstructed sample vector 

are for different sets of sensors and number of principal components we have considered 

only the number of principal components in our study. If there is a lack of correlation 

among all variables, however it is possible that the best reconstruction is not better than 

the sample mean ix . Authors propose to calculate the unreconstructed variance based on 

the sample mean and compare it with iu  

        i
T
i

T
i

T
ii trace RΞΞxΞxxΞ   var

2
E  (7.17)

In case iiu  the authors propose to reduce the variance of iu  by dropping out 

insignificant singular values of iΞ
~

 that tend to introduce large reconstruction variance. In 
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this case we have imposed the restriction to maintain at least one singular value for each 

considered fault. If after previous step iiu  authors state the fault if  cannot be reliably 

reconstructed using the PCA model and the best reconstruction is the sample mean. They 

also consider that if the fault if  is a sensor fault that cannot be reliably reconstructed, that 

sensor has little correlation with others and should be removed from the PCA model. In 

our study in order to compare the diagnosis performance of this method with the others 

we decided to maintain all the sensors and faults in the model. We detected that in 

processes where correlations were not strong the method tends to exclude most of the 

sensors and process faults. Indeed it achieved reasonably good results in diagnosis when 

sensors and faults were not excluded from the model.   

 
Fault identification  
 

The objective is to identify a fault from a set of possible faults  Jjj ......1; F . The 

identification is carried out by assuming each fault jf  in turn and performing 

reconstruction. When the actual fault if  is assumed, the reconstructed sample vector ix  

is closest to the Smodel and the SPE of ix  is brought into the normal confidence region. 

22

 ii|
~SPE ii  x . Due to the fact that reconstruction is involved in  i|iSPE  22  i  

where no reconstruction is involved. Authors define 
2~

j i|jSPE x for a reconstruction 

in the direction o
jΞ  when the actual fault is if  and demonstrate that i

22 u~  i . An 

alternative way is defining a threshold for 2
i  using fault free data. Or if it is assumed that 

iu~  is small compared to 2 , one can use 2  as an approximation to 2
i . 
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Situations:  

i) Reconstructing jf  while the actual fault is if  then 
2~

j i|j SPESPE f the 

larger fault the magnitude the larger is the SPE and thus  i|jSPE . So small 
2~

jf  

and large SPE are desirable for the identification. That is, to make 2
j i|jSPE   

and that if  can be identified from Jjj ....2,1; F .  

ii) Reconstructing if  which is the actual fault, then 2
i i|iSPE  nevertheless, it 

is possible that that 2
j i|jSPE  ; in this case if  and jf  are not isolatable. 

Authors define an identification index for jf : 

 

SPESPE

SPE jj
j

2

2

~

-1
f

     (7.18)

where  102
j      if jf  is the actual fault 2

j  0 

 
Fault isolability 
 

Fault isolability measures the possibility of identifying the actual fault if  from the set

 Jjj ......1; F . If only one index 2
j  is close to zero, the 2

i , then the fault is uniquely 

identifiable. If some candidates are close to zero then the unique identification is 

impossible. Another fault jf  is rejected as the possible cause of the actual fault if  if 

2
| j ijSPE    

According to the relation between both faults subspaces if  and jf : 

a) if  ji S
~

S
~

  the projections of both subspaces in the Sresidual  subspace do not 

overlap and the two faults are completely isolatable. 
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b)  if  jSSi

~~
 or ij SS

~~
 the projections of both subspaces in the Sresidual 

subspace partially overlap and the isolatability depends on the magnitude and 

direction of f 

c) if  ji
~~ SS   the two faults are not isolatable. 

 
Authors also derive the conditions for complete isolatability: 

 

if  is completely isolatable from jf  if there is no 0~ f  which verifies  o
j

o
i

~~~ ΞfΞ   

Which supposes that there is no nonzero common vector between i
~S and j

~S  and 

consequently  ji
~~ SS . It also supposes that o

i

To
j

o
j ΞΞΞI )(   has full column rank as 

none of the directions of o
iΞ  vanish when projecting onto 

jS~ . 

 
7.3.3.3 Yue and Qin´s method  (Combined Reconstruction Index) 

Yue and Qin (2001) extend the reconstruction based in the SPE method of Dunia and 

Qin (1998) to incorporate both indices: the SPE and Hotelling´s T2
A statistic, so that the 

identification is formulated in terms of both indices. A fault is identified if the indices 

after reconstruction are within the normal region. 

Fault detection using a Combined Index  

Authors propose a combined index to simplify the fault detection task: 

 
xΦx

xx T

A

ATSPE


2

2

2

)()(


     (7.19)

where the operator 22

1



T

A

T PPIPPΛ
Φ






 is symmetric and positive definite. The 

distribution of the combined index   can be approximated using a 2
hg  distribution 
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where  
)(

)( 2

SΦ

SΦ

Tr

Tr
g   and 2

2

)(

)]([

SΦ

SΦ

Tr

Tr
h  . A fault is detected by the combined index if 

22 )(   hg , where )(2  h  is the (1-)th percentile of the 2
h  distribution. 

 

Fault reconstruction  

In this method the reconstruction consists on estimating the normal values x* using 

the PCA model of the process by eliminating the effect of the actual fault if  on both the 

SPE and the T2
A assuming a true fault direction if . A reconstruction xj is an adjustment 

of the sample vector x along a given fault direction jΞ where fj is the estimated fault 

magnitude such that xj is closest to the normal region.  Authors propose the following 

criterion: 













2

2

2

)()(
min

A

jAj

f

TSPE

j 
xx

. The use of  2and 2
A  as weighting factors make 

sures that both índices are minimized to the same extent with respect to their control 

limits. Authors derive the following expression for the fault magnitude 

  ΦxΞΦΞΞf T
jj

T
jj

1
 . Then the observation can be reconstructed according to the fault 

jf   jjj fΞxx   and j
T
j

A

jAj
j

TSPE
xΦx

xx


2

2

2

)()(


  

Regarding the reconstruction error  jxx * , if the true fault direction is reconstructed 

iii fΞxx  , the reconstruction can always bring the index back to the normal region. If 

ij ΞΞ  the reconstruction error depend on the fault magnitude and the fault subspace jΞ . 

A large enough fault f will make 2 j which can be useful for fault identification. 
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Fault Identification using a Combined Index  

We identify faults on the basis of whether reconstruction can bring the combined 

index back to the normal region defined by both the SPE and the T2
A. Then jf is 

considered the true fault if 2 j . The reconstructed combined index has the same 

control limits as the detection indices. If there is only one identified fault then the fault is 

uniquely identified and if there is more than one fault that satisfies the identification 

criterion then unique identification is not possible.  
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Chapter 8: Fingerprints Contribution Plots 
(FCP) 

 

This chapter introduces a novel fault diagnosis approach called the Fingerprints 

Contribution Plot (FCP) methodology (Vidal-Puig and Ferrer, 2008) for fault diagnosis 

in MSPC. This novel method tries to extend the use of the contribution plots, which is 

widely used as an unsupervised method for fault diagnosis, to the supervised case in 

which there is information about the different types of fault. This chapter describes the 

rationale of this method and its full detail implementation in the case of the pasteurization 

process example. 

 



Chapter 8: Fingerprints contribution plots (FCP) 
 

222 
 

  



Chapter 8: Fingerprints contribution plots (FCP) 
 

223 
 

8.1 Introduction  

The contribution plots proposed by Miller et al. (1998) points to the original variables 

which account for the large value of the signalling monitoring statistic. From a different 

approach Dunia and Qin (1998) and Qin (2000) introduced a fault diagnosis methodology 

which is based in the reconstruction of the fault (Section 7.3.3.2). When compared to the 

contribution plots, Qin´s methodology and others supervised methodologies becomes 

more difficult to implement since they can only be applied when there is enough 

information available to characterise the different types of faults. One of the advantages 

of the contribution plots is that this methodology does not require additional information 

about the different types of faults in order to be successfully applied on the other hand, 

some authors state that when this information is available, supervised methods such as 

Qin´s methodology outperforms the diagnosis results of the contribution plots.       

In this chapter we introduce a novel fault diagnosis approach called the Fingerprints 

contribution plot methodology (FCP). This is an extension of the contribution plots 

methodology that combines the available information about the different types of faults 

with the traditional contribution plots methodology. The FCP can only be applied in a 

supervised context, it is to say when different sets of faulty observations for all the known 

types of faults are available. The idea is to use the average contribution plot for each type 

of fault as a fingerprint. The FCP assumes that different signals recorded for one type of 

fault will produce a similar shape in the contribution plots. According to this, the 

methodology assumes that when a fault change in size the contribution plot will keep the 

shape and the relationships among the contributions of the measured variables. In other 

words, a fault with a smaller size than the one used to create its fingerprint will produce 

smaller contributions for all the variables, but it will maintain the shape of the fingerprint 

contribution plot. Additionally the FCP methodology makes possible to study the 
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consistency of the fingerprints, the isolability of the different types of faults, and the time 

evolution of the signals for the different types of faults which determine the speed of 

degradation of the fault isolation capability of the method.   

 The measurement of the consistency of the fingerprints is important because it 

determines if this methodology can be successfully applied to the process under study. 

The contribution plots of different signals for the same type of fault must keep a similar 

shape if they are to be used in the construction of a fingerprint. 

The isolation capability of the method for the different types of faults will rely upon 

the similitude degree among the different fingerprints. 

The degradation of the signal becomes an important issue in regulated process 

environments. Despite the signals of the different types of faults may be very different at 

the initial point of the faults, the actuators may change the signals quickly and lead to a 

situation where the contribution plot for every type of fault may differ largely of its own 

fingerprint, and indeed it could become similar to the fingerprints of other types of faults. 

In the FCP the speed of the signal degradation for the different types of faults can be 

easily measured. 

 

8.2 Fingerprints contribution plot: construction 

The fingerprints contribution plot (FCP) measures the similitude degree between the 

contribution plot of a signalling observation and the fingerprints (average contribution 

plots) of the battery of different types of fault considered in the process. This plot will 

consist of a barchart in which the number of bars will match the number of the different 

types of faults and the size of every bar will depend on the similitude degree index (SDI) 

for every type of fault. The SDI measures the similitude degree between the contribution 
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plot of the signalling observation and the fault fingerprint corresponding to one of the 

faults of the battery. 

 

8.2.1 Similitude degree index (SDI) 

In order to compare the similitude degree of different contribution plots four criteria 

have been considered: i) the similitude degree of the bar sizes (Is), ii) the similitude degree 

in the composition of the set of variables with significant contributions (Isc), iii) the 

similitude degree in the sign of the significant contributions (Iss) and, finally, iv) the 

similitude degree in the order of the contributions sorted by size (Io).  

The SDI for the fault  j-th follows the next expression: 

  jjjj
j θIγIβIIαSDI ossscs   (8.1)

The weighting coefficients (α, ,  and ) of the four criteria in the SDI may be 

selected according to an optimization process as illustrated in Section 8.2.2.2 In order to 

calculate the SDI, the contribution of each original variable to the value of the signalling 

statistic is computed as a percentage of the total sum of contributions for all the original 

variables. In case that only the significant contributions would be considered, the 

contributions will be computed as the percentage of the total sum of significant 

contributions. This scale transformation in the value of the contributions was also applied 

to the contributions plots which were used in the construction of the fingerprints database 

containing the information about of the different types of fault which may affect the 

process.   

o Is :  Size of bars similitude index 

 For every type of fault j the difference in the value of each original variable k scaled 

contribution to the signalling statistic ( kc ) and the corresponding scaled contribution of 

variable k to the fault j fingerprint ( j
kc ) are computed. These differences are computed 



Chapter 8: Fingerprints contribution plots (FCP) 
 

226 
 

taking into account the sign of the contributions and then the absolute value j
kd  of these 

differences is used to compute the Is index according to the following expressions: 

  j
kk

j
k ccd   

200
1 21

s

j
K

jj
j .......ddd

I


  

(8.2)

The index value becomes 1 when the scaled contributions in the new observation are 

the same to the scaled contributions in the fault j fingerprint for all the variables. In that 

situation the contribution plot for the new faulty observation and the fingerprint for the 

considered type of fault have the same shape. On the contrary, the index value becomes 

0 when there is not any coincidence between them since the maximum value of the sum 

of differences j
kd  is 200. As indicated in Section 1.3.2 we will use a definition of the 

contributions to the SPE that maintains the information related to the sign of the 

differences. So the length of the bars (scaled to 100% contributions) in the FCP plot 

covers the SPE range from +100% to -100% . Consequently the difference between the 

length of the bars of a fault with a positive contribution of 100% related to a fingerprint 

with a negative contribution of 100% adds up to the 200%. 

Figure 8.1 a) shows an example of the fingerprint for fault j in a case with 13 measured 

variables. In that fingerprint the contributions are represented as the percentage of the 

total sum of the significant contributions. Figure 8.1 b) and Figure 8.1 c) display the 

contribution plots for two new faulty observations: obs 1 and obs 2.  

When the contribution values of obs 1 and 2 are changed into percentages of the total 

sum of significant contributions it can be appreciated that these two new observations 

completely match with the fingerprint for fault j presenting the same FCP shape despite 

the original contribution bars may have different sizes before being scaled. 
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a) 

 

b) c) 

  

FIGURE 8.1: a) j-th fault fingerprint  b) Obs 1 contribution plot  c) Obs 2 contribution plot 
 

o Isc  :  Set of significant contributions similitude index 

This index measures the degree of coincidence between the set of variables with 

significant contributions (according to Section 8.2.2.1) in the j-th fault fingerprint and the 

set of variables with significant contributions in the new faulty observation. In fact this 

information is partially and indirectly measured by the Is index, as the only way to get a 

value of 100% in the Is index is when the list of significant contributions in the two cases 

match perfectly. This index may serve to adjust the final weight of this similarity feature 

in the SDI.  
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For every type of fault j the number of discrepancies j
Dn  between both sets (the set of 

variables with significant contributions in the j-th fault fingerprint and the set of variables 

with significant contributions in the new faulty observation) will be computed. The index 

Isc for the type of fault j can be expressed according to the following expression: 

 

K

n 
I

j
j D

sc 1  (8.3)

 

FIGURE 8.2:   Obs 3 contribution plot 
 

For instance, between the fingerprint of Figure 8.1 a) and the faulty observation in 

Figure 8.1 b) there are no discrepancies as they have the same set of variables with 

significant contributions: variables {1,2,3,4,7,8}. Then 0D jn  and with a number of 

measured variables K=13, the expression would lead to a 1sc jI . On the contrary, 

between the fingerprint of figure 8.1 a) and the faulty observation (obs 3) in figure 8.2 

there is near full discrepancy. The set of variables with significant contributions in the 

fingerprint for fault j: {1,2,3,4,7,8} is completely different to the set of variables with 

significant contributions in the faulty observation 3 {5,6,10,11,12,13}. So, there is 

discrepancy in 12 variables, 12D jn , the expression would lead to a  08.0sc 
jI . The 

index is not exactly zero because in both sets variable 9 is classified as non significant.  
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o Iss  :  Sign of contributions similitude index 

This index measures the degree of coincidence in the sign of the significant 

contributions between the j-th fault fingerprint and the new faulty observation. This 

information is also partially measured by the Is index, because a value of 1 in the Is will 

require a complete coincidence in the sign of the significant contributions. But this index 

may also serve to adjust the final weight of this similarity feature in the SDI.   

For every type of fault j, the number of discrepancies in the sign of the contribution 

jnDS  between the two sets (the set of variables with significant contributions in the j-th 

fault fingerprint and the set of variables with significant contributions in the new faulty 

observation) will be computed. 

 The index Iss for the fault j will be computed according to the following expression: 

 

K

n 
I

j
j DS

ss 1  (8.4)

When a contribution is significant in only one of the sets it will count as a discrepancy 

in the sign. Despite these situations are fully captured by the index Isc, this situation is 

considered as a discrepancy to avoid some problems. For example, when comparing the 

scaled contributions for the faulty observation 3 in Figure 8.2 with the  fingerprint for the 

fault j (Fig 8.1 a), the indices Is = 0 and Isc= 0.08 show successfully that there is a great 

discrepancy between them. In the case that the aforementioned situation would not be 

considered as a discrepancy, then the indice Iss would become equal to 1 and would lead 

to a misinterpretation.  

 

 

 

 



Chapter 8: Fingerprints contribution plots (FCP) 
 

230 
 

o Io  :  Contribution size order  similitude  index 

This index measures the degree of similarity in the order of the sorted by size scaled 

contributions of the original variables between the fault j-th fingerprint and the new faulty 

observation. 

In order to compute this index we introduce a new type of matrix, the contribution 

size order matrix (OM). There will be a different matrix for every type of fault. These 

matrices are computed according to the corresponding fault fingerprint and its size 

becomes K K. The columns of this matrix are assigned to the different original variables 

and the rows of this matrix are used to record the order number of the sorted contributions 

in the fingerprint for a particular fault. Each column of these matrices show the size order 

position of the contribution for the variable assigned to that column. For instance if 

variable 1 is the 5th highest contribution then the value for the 1st column and 5th row of 

the OM will be 1 and the rest of the column will be zero. A modified OM where the 

contributions size order is adjusted by a window range can be a good solution when the 

size of the contributions for different variables are similar or situations in which several 

contributions may be 0 (if only significant contributions are taken into account). In this 

new matrix OMw the size order position of the contribution may not be unique and, 

therefore, the columns of these matrices may include several 1 values.  

Figure 8.3 shows the sorted scaled contributions for fault j fingerprint. With a 5% 

window range variable 4 has the highest contribution and there is no other variable 

contribution inside its 5% range window. Thus in the 4th column of the j
wOM  there will 

be a 1 in the first row and a 0 is assigned to the rest of the 4th column. Variable 1 is the 

2nd contribution in size and there are two others variable contributions, variable 2 (3rd 

position) and variable 7 (4th position), inside its 5% range window. 
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FIGURE 8.3:  Sorted fingerprint for fault j 
 

According to this, in the 1st column of the j
wOM  there will be a 1 in rows 2, 3 and 4. 

The j
wOM  matrix for the fault j obtained by proceeding this way for all of the variable 

contributions follows:  

 

 

 

 

 

 

 

 

Following this procedure to all the types of faults, a database of j
wOM  matrices for 

each type of fault is constructed. In a new faulty observation, the positions of the sorted 

scaled contributions will be checked against the OMw
j for every type of fault j. The index 

Io for the fault j will be computed according to the following expression: 
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sc 1  (8.5)

where j
DOn  is the number of discrepancies in the contribution size order. 

 

8.2.2 FCP implementation  

8.2.2.1 Data generation and PCA model of the process 

In order to explain the FCP method we have applied it to the pasteurization process 

described in chapter 2. In this case a slightly changed normal operation condition data set 

with only one value for the set point of the flow (in our case 160) was considered.        

Table 8.1 shows the 12 measured variables. In addition to this data set we also produced 

data sets in which we initialized the different types of faults (Table 8.2). We kept track of 

the moment in which every type fault was initialized, so we could check the performance 

of the fault diagnosis methodology.  

TABLE 8.1 Variables measured in the pasteurization model 

Nr Variable Description 

X1 Tank Level 
Level of the water in the tank at the beginning of the process. If it drops below 
a certain limit, the tank is refilled. 

X2 Tª1 
Temperature of the product after flowing through the curved pipe. This 
temperature defines whether or not we have a good product. 

X3 Tª2 
Temperature of the heating water. 
This is the water which has to heat our product. 

X4 Tª3 
Temperature of the final product. 
This is the temperature of the product when it leaves the system. 

X5 Tª4 
Temperature of the product immediately after heating, 
so before entering the curved pipe.. 

X6 Tª5 
Temperature of the product after preheating the new product. 
This temperature defines whether or not the product needs further cooling down. 

X7 Flow Speed with which the product flows through the system. 
X8 

X9 
X10 

Power 1 
Power 2 
Power 3 

These variables all measure some aspect of the power used to heat the heating 
water. 

X11 Pump 1 
Opening percentage of pump 1. 
Pump 1 controls the flow speed of the product. 

X12 Pump 2 
Opening percentage of pump 2. 
Pump 2 controls the flow speed of the heating water. 
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In order to apply the fingerprint contribution plot methodology (FCP), the NOC and 

the different types of fault data sets were generated. According to the results of a PCA 

study on the NOC file, a two component model was selected for monitoring the process.  

TABLE 8.2 Types of fault  

Number Type Fault 
 f1 Process Fault Set Point T1 (Uncontrolled change)  
 f2 Process fault Failure in Pump 1  (Feeding) 
 f3  Process fault Decay of 30% in Pump 1 (Feeding) 
 f4 Sensor fault Sensor  Flow (Down) 
 f5 Sensor fault Sensor T1  (Down) 
 f6 Sensor fault Sensor T1  (Up) 
 f7 Sensor fault Sensor T2  (Down) 
 f8 Sensor fault Sensor T3  (Up) 
  f9 Sensor fault Sensor T4  (Down) 
  f10 Sensor fault Sensor T4  (Up) 
  f11 Sensor fault Sensor T5  (Down) 
  f12 Sensor fault Sensor T5  (Up) 
  f13 Process fault Failure of the valve which divert the wrong product 
  f14 Process Fault Set Point Flow  (Down to 110) 
  f15 Process Fault Set Point Flow  (Up to 200) 

 

Training and test data sets were generated for every fault defined in Table 8.2. As the 

pasteurization process is regulated (i.e. it has some control loops), whenever a fault is 

generated it normally takes some time to drive the process back to the NOC conditions. 

Due to this problem the data bases on the different faults were not very extense. Every 

type of fault was generated 5 times. The training set was composed of the first 6 

observations after the fault in the first two runs while the test set was composed of the 

first 3 observations after the fault in the last three runs.  

The FCP selects a number of components of the PCA model that gives the  best fault 

diagnosis performance calculated over all the different types of faults. It must be noted 

that the number of components considered to ensure best diagnosis is not necessarily the 

same number required for process monitoring (i.e. some components of the model not 

considered when monitoring the process because of its small weight may be critical for 

the purpose of diagnosis of some specific type of faults). 
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Only the significant contributions are considered in our study. The threshold limits 

determining significant contributions when considering individual variable contributions 

to the Hotelling´s 2
AT  or SPE can empirically be obtained from extensive NOC data sets 

and/or alternatively using the theoretical distributions described in Section 1.3.1.3. 

In the case of the SPE we preferred to use the square root values of these contributions 

in order to maintain the sign of the contributions.  

 

8.2.2.2 SDI and Minor Difference Between Faults (MDBF) index 

For every type of fault the contribution plots corresponding to a sequence of faulty 

observations and its corresponding fingerprint based on the information contained in all 

of them were obtained. Finally, the SDI and a new index, the MDBF (Minor Difference 

Between Faults) for the different faulty observations, were calculated in order to assess 

the diagnosis performance of the methodology. 

As commented previously, the SDI measures the similitude degree between the scaled 

contributions in every fault signal and a fault fingerprint. In addition, obtaining the SDI 

for the sequence of different fault signals generated for every type of fault serve to 

measure the variability of the signals in relation to its corresponding fingerprint. The 

sequence of SDI values determines the homogeneity of the observations for each type of 

fault. 

The MDBF (Minor Difference Between Faults) for a faulty observations is the 

difference between the SDI calculated for the real type of fault and the maximun SDI 

obtained when considering all the other types of faults. This is defined for a faulty 

observation nf  and a real type of fault i as:  

  ijff SDI(maxffSDIMDBF jninn  )ˆ,ˆ)ˆ,ˆ( (8.6)
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Where jf̂  is the fingerprint for the type of fault j, if̂  the fingerprint for the real type of 

fault and nf̂  the fingerprint for the new faulty observation. 

Following its own definition, this index is related to the identifiability of the fault. 

Moreover, a higher MDBF of the faulty observation is associated with better diagnosis 

performance results. It must be noted that observations with high SDI can have small 

MDBF. In this case it would be concluded that the fault is similar to at least two 

fingerprints and consequently that the diagnosis performance will be affected. Thus a high 

SDI values are not a guarantee of a correct classification. 

This MDBF is calculated for each individual faulty observation and it is used to assess 

the performance in the fault diagnosis.   

The parameters: , ,  and  of the SDI index, were optimized to achieve the best 

fault diagnosis performance given the selected number of components in the model. The 

parameters to be used for computing the SDI in the Hotelling´s 2
AT  and SPE statistics 

were optimized on an individual basis  

Parameter´s optimization 

Two methods were used for performing the optimization:  

o Optimization using the fingerprint 

The optimization process works with the fingerprints data base that previously were 

obtained from the training set. It looks for the best number of components of the model 

and the best values for the four parameters (, ,  and ) in order to maximize the average 

MDBF (Minor Difference Between Faults) obtained for all the types of faults. 

 
JMDBFMDBF

F
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


1

 (8.7)
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where, J is the number of different types of faults, and for each fault i the MDBFi is 

computed according to the expression : 

  ijff SDI(maxff SDI(maxffSDIMDBF jijiiii  )ˆ,ˆ1)ˆ,ˆ)ˆ,ˆ(  (8.8)

o Optimization using the training set observations 

It looks for the best number of components of the model and the best values for the four 

parameters (, ,  and ) in order to maximize the average percentage of true fault 

classification in the training set of the faults. 

In this method, the situations where the SDI for the real fault in an observation of the 

training set become less than the 50% and situations where the monitoring statistics do 

not signal were penalised with a negative weight. 

In the optimization process it was required that the coefficient α would be greater or 

equal to 0.5. The main reason for this is primarily that the SDI contains the most consistent 

information about the faults. Small values for the coefficient α usually were accompanied 

by a bad fault diagnosis performance in the test set accompanied by inconsistency with 

the results in the training sets.   

 

8.2.2.3 FCP fingerprints, fault isolability, homogeneity and signal degradation: 

FCP fingerprints 

Figure 8.4 shows an example of a fingerprints in the FCP. The fingerprints were 

obtained using the training set.  
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Fingerprint of Fault 1 
 

FIGURE 8.4: Example of fingerprint for fault f1 in the FCP:  

Faults isolability  

Isolability in the SPE   

Table 8.3 shows that in the case of the SPE, the only cases in which the SDI between 

each pair of fingerprints is higher than 50% are between the fingerprints of the faults 

f2 and f4 (90.20%),f3 and f15 (72.25%), f1 and f13 (55.31%).  

 

  

-  

 

 

 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 

f1 1 0,3228 0,354 0,2721 0,2245 0,2354 0,2165 0,2607 0,1737 0,2202 0,196 0,2693 0,5531 0,0641 0,3712

 f2 1 0,3839 0,9020 0,1612 0,4077 0,1863 0,1788 0,1970 0,1743 0,3112 0,1780 0,1584 0,3131 0,1276

  f3 1 0,405 0,1436 0,3208 0,1273 0,1621 0,1528 0,1443 0,347 0,1676 0,4139 0 0,7225

   f4 1 0,1778 0,4163 0,2165 0,1749 0,1926 0,1953 0,3834 0,1697 0,1347 0,2658 0,1276

    f5 1 0 0,2681 0,2632 0,2984 0,1536 0,323 0,264 0,1977 0,2752 0,106

     f6 1 0,182 0,342 0,1543 0,3205 0,2311 0,3369 0,1883 0,1297 0,2075

      f7 1 0,1892 0,2856 0,1375 0,2606 0,1824 0,3555 0,1663 0,0328

       f8 1 0,1638 0,2673 0,267 0,4721 0,2017 0,2859 0,1274

        f9 1 0 0,2576 0,1614 0,3126 0,143 0,0627

         f10 1 0,158 0,2647 0,0582 0,1158 0,1378

          f11 1 0 0,1696 0,1394 0,1607

           f12 1 0,2078 0,2891 0,1417

            f13 1 0,0642 0,4323

             f14 1 0

              f15 1
TABLE 8.3:  Similitude degree index (SDI) among the SPE fingerprints  

Bold numbers correspond to the highest SDI for every fault or cases with a SDI > 50% 
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- Isolability in the T2
A: 

 

 

Table 8.4 shows that in the case of the T2
A, the highest similitude degree index (SDI) 

are between the fingerprints of the faults f9 and f10 (99.33%), f11 and f12 (99.96%) and f5 

and f6 (97.07%). Despite it seems difficult to distinguish between these pairs of faults in 

the T2
A, they can be clearly distinguished in its SPE fingerprints as shown in Table 8.3 

Each pair of these faults corresponds to a fault in the same temperature sensor increasing 

or decreasing its normal measurement. Table 8.4 also shows that the similitude degree 

index (SDI) between the faults f2 (flow sensor fault) and f4 (pump 1 fault) is 96.32%. As 

shown in Tables 8.3, in the SPE the SDI between the faults f2 and f4 is also high: 90.20%. 

Other cases where the SDI for the T2
A is higher than 50% are between the fingerprints of 

the faults f2 and f14 (62.67%), f3 and f14 (57.31%) f3 and f15 (89.08%) f4 and f14 (61.25%) 

and f14 and f15 (67.51%)  . 

The minor difference between faults (MDBF) is an index that can be useful to 

determine the isolability of the different types of faults. This index is obtained by applying 

the SDI  to the fingerprints in expression (8.7) as if they were new observations  

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 

f1 1 0,3113 0,3127 0,2822 0,0308 0,004 0,0022 0,0223 0,0046 0,005 0,0266 0,0266 0,2941 0,3262 0,316

 f2 1 0,3844 0,9632 0,0041 0,0015 0,0002 0,0157 0,0022 0,005 0,018 0,0182 0,3055 0,6267 0,4813

  f3 1 0,3924 0,0294 0,004 0,0003 0,0002 0,0048 0,0045 0,0099 0,0098 0,4376 0,5731 0,898

   f4 1 0,0041 0,0015 0,001 0,0019 0,0016 0,0037 0,0019 0,002 0,3221 0,6125 0,4671

    f5 1 0,9707 0,0001 0,0002 0,0048 0 0,0002 0,0001 0,0161 0,0041 0,0041

     f6 1 0,0001 0,0002 0,0028 0 0,0002 0,0001 0,004 0,0015 0,0015

      f7 1 0 0,0001 0 0,0004 0 0,2269 0,0022 0

       f8 1 0,0002 0,0005 0 0,0001 0,0002 0,103 0,0164

        f9 1 0,9933 0,0002 0,0001 0,0048 0,0003 0,0003

         f10 1 0,0045 0,0045 0 0,005 0,005

          f11 1 0,9996 0,0004 0,113 0,0222

           f12 1 0,0001 0,113 0,0223

       
 
     f13 1 0,4251 0,4229

             f14 1 0,6751

              f15 1TABLE 8.4:  Similitude degree index (SDI) among the T2
A fingerprints  

Bold numbers correspond to the highest SDI for every fault or cases with a SDI > 50% 
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  ijff SDI(maxff SDI(maxffSDIMDBF jijiiii  )ˆ,ˆ1)ˆ,ˆ)ˆ,ˆ(  

TABLE 8.5:  Minor difference between faults (MDBF) calculated over the fingerprints 

 
SPE T2

A 

 
MDBF Fault MDBF Fault 

f1 0.4469 f13 0.6738 f14 
f2 0.0980 f4 0.0368 f4 
f3 0.2775 f15 0.102 f15 
f4 0.0980 f2 0.3249 f15 
f5 0.6770 f11 0.0293 f6 
f6 0.5837 f4 0.0293 f5 
f7 0.6445 f13 0.7731 f13 
f8 0.5279 f12 0.897 f14 
f9 0.6874 f13 0.0067 f10 
f10 0.6795 f6 0.0067 f9 
f11 0.6166 f4 0.0004 f12 
f12 0.5279 f8 0.0004 f11 
f13 0.4469 f1 0.5627 f3 
f14 0.6869 f2 0.3249 f15 
f15 0.2775 f3 0.102 f3 

 

This parameter can be easily obtained from Tables 8.3 and 8.4 and it clearly confirms the 

results obtained from the SDI. 

Following the results in Table 8.5, faults f2 and f4 are the most difficult to isolate since 

they have a MDBF that is smaller than 10% in the two monitoring statistics. In the case 

of the SPE  the MDBF for all the other faults fingerprints is always higher than 25 % . In 

the case of T2
A the MDBF is very small for the three pairs of faults f5- f6,   f9- f10 and f11-f12 

which correspond to faults involving the same sensors T1,T4 and T5 (see Table 8.2), 

respectively, but they can be easily isolated in the SPE. The only faults which had T2
A 

signals not accompanied by SPE signals while monitoring, were the faults f1, and  f13  

which had both a MDBF in T2
A above the 25%      

Table 8.6 and figure 8.5 show that the MDBF results computed from the training set 

match perfectly the isolability results obtained by the analysis of the SDI of the faults 

fingerprints (represented in Tables 8.3 and 8.4). In fact, measuring the SDI between a pair 

of fingerprints is equivalent to measuring the isolability of that pair of faults. Conversely  
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TABLE 8.6:  Minor difference between faults (MDBF) obtained from the training set 

  
SPE T2

A 

 
MDBF MDBF 

f1  0.6599 
f2 0.0560  
f3 0.2012  
f4 0.0354  
f5 0.6527  
f6 0.5806  
f7 0.6332  
f8 0.5255  
f9 0.4389  
f10 0.6773  
f11 0.5920  
f12 0.5215  
f13  0.3270 
f14 0.5963  
f15 0.2316  

 

measuring the MDBF for each type of fault is a comparative measure of the isolability 

between the fault analysed and the most similar fault present in the fault data base. It must 

be noted that the faults fingerprints are obtained from the training set so that this was an 

expected result 

 

FIGURE 8.5 : MDBF for the SPE  and T2
A  
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o Fault homogeneity   

The homogeneity of the fingerprints of the observations in each fault data set around 

its corresponding overall fingerprint is an important issue to consider before concluding 

that the proposed methodology is going to give good results in the isolation of the 

different types of faults. To measure the homogeneity we calculate the variable difference 

of the SDI from Target )ˆ,(1 ii ffSDI  where if̂  is the fingerprint for type fault i and 

if  is the fingerprint for each observation of the corresponding fault data set. Yet, this 

value is computed for all the observations in the training and test sets corresponding to 

each type of fault i and following this, the mean and standard deviation of these values 

are obtained. Tables 8.7 and 8.8 (and Figures 8.6 and 8.7) display the mean and the 

standard deviation of the discrepancy of the SDI among the observations of the different 

sets of faults for the two monitoring statistics SPE and T2
A. These tables show that the 

majority of the faults have a high degree of homogeneity with a small standard deviation.  

These tables and figures show that the sensor faults had better results in the SDI than the 

process faults as it can be concluded from their smaller values in the mean of 

)ˆ,(1 ii ffSDI . These results were also confirmed in the test sets. Sensor faults also had 

more homogeneity in the fingerprint signal with smaller standard deviation in the SDI  

than the process faults.  
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TABLE 8.7 : Signal stability for the SPE 

Fault i 

)ˆ,(1 ii ffSDI  

Training Set Test Set 

mean  mean  
f1     (Process fault)   --- --- --- --- 
f2      (Process fault)   0.0891 0.0533 0.1342 0.0618 
f3      (Process fault)   0.1199 0.0793 0.1342 0.0618 
f4      (Sensor fault) 0.0862 0.0626 0.1323 0.0344 
f5      (Sensor fault) 0.0244 0.0303 0.0359 0.0350 
f6      (Sensor fault) 0.0031 0.0024 0.0037 0.0033 
f7      (Sensor fault) 0.0115 0.0153 0.0235 0.0204 
f8      (Sensor fault) 0.0028 0.0007 0.0027 0.0004 
f9      (Sensor fault) 0.0106 0.0146 0.0065 0.0015 
f10    (Sensor fault) 0.0022 0.0021 0.0050 0.0050 
f11    (Sensor fault) 0.0244 0.0123 0.0402 0.0477 
f12    (Sensor fault) 0.0225 0.0423 0.0055 0.0013 
f13    (Process fault)   --- --- 0.3388 0.1670 
f14    (Process fault)   --- --- --- --- 
f15    (Process fault)   0.0373 0.0525 0.1030 0.1081 

Average )ˆ,SDI(1 ii ff  0.0362 0.0306 0.0743 0.0421 

Sensor faults: Average 

)ˆ,(1 ii ffSDI  
0.0209 0.0203 0.0284 0.0166 

Process faults: Average 

)ˆ,(1 ii ffSDI  
0.0821 0.0617 0.1105 0.0997 

 
 

     
 

 
FIGURE 8.6  : Signal stability for the SPE
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Fault i 

)ˆ,(1 ii ffSDI  

 

Training Set Test Set 

media  media  
f1     (Process fault)   0.0139 0.0071 0.0488 0.0547 
f2      (Process fault)   --- --- --- --- 
f3      (Process fault)   --- --- --- --- 
f4      (Sensor fault) --- --- --- --- 
f5      (Sensor fault) --- --- --- --- 
f6      (Sensor fault) --- --- --- --- 
f7      (Sensor fault) --- --- --- --- 
f8      (Sensor fault) --- --- --- --- 
f9      (Sensor fault) --- --- --- --- 
f10    (Sensor fault) --- --- --- --- 
f11    (Sensor fault) --- --- --- --- 
f12    (Sensor fault) --- --- --- --- 
f13    (Process fault)   0.2310 0.1121 0.3183 0.0121 
f14    (Process fault)   --- --- --- --- 
f15    (Process fault)   --- --- --- --- 

Average 

)ˆ,SDI(1 ii ff  
0.1225 0.0596 0.1836 0.0334 

Sensor faults: Average 

)ˆ,SDI(1 ii ff  
--- --- --- --- 

Process faults: Average 

)ˆ,SDI(1 ii ff  
0.1225 0.0596 0.1836 0.0334 

 
TABLE 8.8 : Signal stability for the  T2

A 
 

 

         
 

FIGURE 8.7 : Signal stability for the T2
A  
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The previous results can be confirmed through an analysis of variance (ANOVA) 

on the FCP data. The analysis of variance (ANOVA) in the FCP for the SDI with factors: 

Set (training, test) and Type of fault, show that the two factors and the interaction were 

statistically significant (p-value < 0.05) for the two statistics: SPE  and T2
A 

 

TABLE 8.9: ANOVA for the SDI on the SPE 

Análisis de Varianza para SDI - Suma de Cuadrados Tipo III 
Fuente Suma de Cuadrados Gl Cuadrado Medio Razón-F Valor-P 
EFECTOS PRINCIPALES      
 A:Fault 4735,49 11 430,499 26,38 0,0000 
 B:Set 99,8458 1 99,8458 6,12 0,0141 
INTERACCIONES      
 AB 225,907 11 20,537 1,26 0,2502 
RESIDUOS 3672,39 225 16,3217   
TOTAL (CORREGIDO) 8683,39 248    

Todas las razones-F se basan en el cuadrado medio del error residual 
 
 

a) b) 

           c) 
 

FIGURE 8.8 ANOVA plots for the SDI on the SPE
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Table 8.9 and 8.10 show that the factor Set is statistically significant, yielding on 

average better results (higher SDI) in the training set than in the test set. Note that the 

training set was employed in the construction of the fingerprints. The residuals in Figures 

8.8 and 8.9 c) provides similar information to the box whisker plot for the SPE in Figure 

8.6 where it can be observed that fault f13 has low homogeneity in the fingerprint and that 

there is an observation which differ notably of the other observations of the test set in 

fault f15.  

TABLE 8.10: ANOVA for the SDI on the T2
A 

 
Analysis of Variance for SDI - Type III Sums of Squares    T2

A 
Source Sum of Squares Df Mean Square F-Ratio P-Value 
MAIN EFFECTS      
A:Fault 3873,6 1 3873,6 76,08 0,0000 
B:SET 244,32 1 244,32 4,80 0,0359 
INTERACTIONS      
AB 44,8721 1 44,8721 0,88 0,3549 
RESIDUAL 1629,2 32 50,9126   
TOTAL (CORRECTED) 6093,54 35    

All F-ratios are based on the residual mean square error. 
 
 
 

  

 
FIGURE 8.9 ANOVA plots for the SDI on the T2
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Table 8.10 and figure 8.9 a) and b) show that for the T2
A the factor Set is also 

significant, yielding on average better results in the training set than in the test set. The 

anova residuals in figure 8.9 c) shows that fault f13 has the lowest homogeneity in the 

fingerprint.   

 
 
Signal degradation in FCP 

 

A question to study in a closed loop process is how the contributions evolve after the 

fault detection. It makes possible to study if the isolation capability of the method is 

degrading or not after the initial detection. This study is important since it could happen 

that the methodology yield only good diagnosis results in early detection. In order to study 

the signal degradation, we proceed to study the evolution of the SDI in the sequence of 

observations following the first signal of fault.  

Table 8.11 shows the number of observations until the SDI decreases under 70%, until 

the MDBF decreases under 10% and until there is a wrong fault diagnosis. 

This table shows that all the sensor faults are detected specially by the SPE and there 

is no problem of isolation with faults f5, f6, f7, f8, f9, f10, f11 and f12. All these faults have a 

SDI up the 70% and keep a MDBF > 0.1 for a long sequence of observations after the 

fault is diagnosed for the first time.  

The only sensor fault that had some isolation problem was the f4 that could not be 

appropriately isolated from the process fault f2. Bearing in mind that the f4 is a fault in the 

flow sensor and the f2 is a fault in the pump 1 which affects in a straight way the flow rate 

explains why these two types of faults can not be successfully isolated.  

In relation to the isolation in the process faults, the fault f1 is detected in the T2
A 

and has a SDI up the 70% and keep a MDBF < 0.1 for a long sequence of observations, 



Chapter 8: Fingerprints contribution plots (FCP) 
 

247 
 

the fault f12 (failure of the valve which divert the wrong product) has no problem of 

misclassification in a long sequence of observations after the fault is diagnosed for the 

first time, and finally the faults f14 and f15 (changes in the set point of the flow) are also 

successfully diagnosed. The only problem with the f14  (Set Point Flow  Down to 110) is 

that the signal takes 6 to 8 observations to be detected for the first time and then the signal 

ends after 5 to 7 observations. So in this case it is more a problem of lack of detection 

that a problem of misdiagnosis.   

In some of the data sets MDBF < 0.1 or SDI up a 70% was not successfully achieved 

for a long sequence of observations but it must be noted that this fact was not necessarily 

accompanied by misclassification.        

 
TABLE 8.11.  Signal degradation for all the types of fault. 

 
 

Fault f1 
Training 1 Training 2 

Fault f2 
Training 1 Training 2 

T2
A T2

A SPE SPE 
SDI  <0.7 23 18 SDI  <0.7 16 15 

MDBF <0.1 28  28 MDBF <0.1 1 (f4) 1 (f4) 

Diagnosed other fault >30 30 
Diagnosed 
other fault 

3 (f4) 24(f14) 

 
Fault f3  

Training 1 Training 2 
Fault f4 

Training 1 Training 2 
SPE SPE SPE SPE 

SDI  <0.7 >20 >20 SDI  <0.7 >20 >20 
MDBF <0.1 7 (f15) 6 (f15) MDBF <0.1 1 (f2) 1(f2) 

Diagnosed other fault 19(f15) 11(f15) 
Diagnosed 
other fault 

11(f2) 1(f2) 

 

Fault f5  
Training 1 Training 2 

Fault f6 
Training 1 Training 2 

SPE SPE SPE SPE 
SDI  <0.7 >20 >20 SDI  <0.7 >15 >15 

MDBF <0.1 >20 >20 MDBF <0.1 >15 >15 

Diagnosed other fault >20 >20 
Diagnosed 
other fault 

>15 >15 

 
 

Fault f7 
Training 1 Training 2 

Fault f8 
Training 1 Training 2 

SPE SPE SPE SPE 
SDI  <0.7 >20 >20 SDI  <0.7 >20 >20 

MDBF <0.1 >20 >20 MDBF <0.1 >20 >20 

Diagnosed other fault >20 >20 
Diagnosed 
other fault 

>20 >20 
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Fault f9 
Training 1 Training 2 

Fault f10 
Training 1 Training 2 

SPE SPE SPE SPE 
SDI  <0.7 >20 >20 SDI  <0.7 >19 >20 

MDBF <0.1 >20 >20 MDBF <0.1 >19 >20 

Diagnosed other fault >20 >20 
Diagnosed 
other fault 

>19 >20 

 
 

Fault f11 
Training 1 Training 2 

Fault f12 
Training 1 

Training 
2 

SPE SPE SPE SPE 
SDI  <0.7 >20 >20 SDI  <0.7 >20 >20 

MDBF <0.1 >20 >20 MDBF <0.1 >20 >20 

Diagnosed other fault >20 >20 
Diagnosed 
other fault 

>20 >20 

 
 

Fault 
f13 

Training 1 Training 2 
Fault f14 

Training 1 Training 2 

T2
A SPE T2

A SPE SPE SPE 
 SDI  
<0.7 

>29 >29 3 >28 SDI  <0.7 5* 6* 

MDBF 
<0.1 

28 
(f3f15) 

>29 >27(f3) >28 MDBF <0.1 5* 6* 

Diagno
sed 

other 
fault 

>29 >29 >27(f3) >28 
Diagnosed 
other fault 

5* 6* 

 
 

Fault f15 
Training 1 Training 2 

SPE SPE 
SDI  <0.7 >34 >33 

MDBF <0.1 10(f3) >33 
Diagnosed 
other fault 

>34 >33 

 
 

8.2.2.4 FCP monitoring results 
 

The objective of this section is to provide an example of the monitoring tools and 

plots in order to detect and diagnose the faults under the FCP methodology. Figures 8.15 

displays the monitoring results in the SPE and T2
A of the test set corresponding to fault 

f7 .  A representative fingerprint contribution plot (FCP) for one single observation of the 

test set in this type of fault is also shown. The FCP plot is a barchart with so many bars 

as different types of faults are included in a fault data base. Each bar of the plot has a size 

which corresponds to the measured SDI (similitude degree index) between the fingerprint 
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of the new faulty observation and the corresponding fault fingerprint in the fault data 

base. 

 

FIGURE 8.15 Fault 7:  a)  T2
A , and SPE chart for the test set; b) Example of a FCP 

 
 
 

8.3 FCP: Final considerations 
 

The fingerprints methodology provides a successful set of complementary plots to be 

added to the traditional contribution plots and the T2
A and SPE monitoring plots. This 

methodology allows the incorporation of information about the different types of faults 

to the diagnosis stage. The fingerprints methodology also provides information about 

fault isolability, fault homogeneity and fault signal degradation. The traditional 

contribution plots used in the non-supervised methods can be easily extended to a 

supervised diagnosis method in the case that we have information of the different types 

of faults by only including the fingerprint contribution plots (FCP plots). Additionally, 

the supervised method allows the addition of new types of fault to the fault data set in a 

sequential way as soon as they will be detected and studied. It would only require the 

computation of the new fingerprints and the corresponding optimization in a regular basis. 

These new types of faults can be easily detected if they can be distinguished from the 
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others as it supposes that all the SDI values will be small and this will be a clear indication 

that a new type of fault has happened. If the new faults can not be distinguished from the 

others then the only solution would be to measure new process variables that allow a 

successful isolation of this new type of fault.  
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Chapter 9:  Diagnosis performance in MSPC  

In this chapter we proceed to compare the diagnosis performance of different fault 

diagnosis methodologies in MSPC discussed in Chapter 8. The methods are tested using 

two processes data sets corresponding to a pasteurization process and a distillation 

process. The evaluation of the performance of these methods tries to highlight the strong 

and weak points of the different methods under study. 
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9.1 Diagnosis performance indices  

It is well established that the sensitivity and specificity indices allows comparison 

of the classification results of different methodologies applied to a test comparing only 

two classes (effective against ineffective product) evaluated using the results of a single 

test. In the case of the fault diagnosis, where the number of classes (different types of 

faults) tend to be more than two, the measurement of the performance of the different 

methods is not so well established. 

 In the first part of this thesis we evaluated the performance of the methods in 

MSQC using an analysis of the variance (ANOVA) and a group of indices: PTC0, PTCv, 

PWC0, PWCv, PND and PNF that were explained in Section 4.1.2. In this second part we 

are going to use the average sensitivity and average specificity indices calculated over all 

the considered types of faults as a way to compare efficiently the performance of different 

diagnosis methods in MSPC studied in this thesis. 

9.1.1 Average sensitivity and average specificity  

The sensitivity for a fault Fi is the proportion of the real faults (Fi ) that are correctly 

identified by the diagnosis method. The specificity for a fault Fi  is the proportion of the 

real “no Fi faults” that are correctly identified by the diagnosis method. Both indices are 

calculated according to the expressions in figure 9.1 .  

Then, the average values for the sensitivity and specificity are computed on the 

complete set of different types of faults: 

Average sensitivity = 
Sensitivityj

J

J

j=1

 ;  Average specificity = 
Specificityj

J

J

j=1

 

where J is the number of different types of faults. 
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FIGURE 9.1  Calculation of the Sensitivity and Specificity 

 

9.1.2 Fault diagnosis criteria  

Another important issue is which criterion we use to assign the observed fault to a 

particular class of fault. In our study we are going to use two criteria: 

 C1: In this criterion, fault diagnosis methodologies always signal only one type 

of fault which corresponds to the most suspected fault.  

 C2: In this criterion the method signal all the types of fault that reach a 

significance threshold. This criterion is particularly interesting to detect new types 

of fault. 

a)  Fault signature methodology: in C1 we assign the new observed fault to the class 

with a projection in the cosine plot that is closest to vertex [+1, +1].  In the case of C2 we 

assign it to all the types of fault with a projection inside a semicircle defined by an 

empirical threshold r  (distance from vertex [+1,+1] )  and centred in vertex [+1,+1] as it 

is shown in figure 9.2.   
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FIGURE 9.2  Empirical threshold  r  for the calculation of C2 in the Fault signature methodology 

 

b)  Fault reconstruction methodology on SPE (FR_SPE) and the combined index 

(FR_Index):  in C1  we assign the new observed fault to the class with a best 

reconstruction and in the case of C2 we assign it to all the types of faults that after 

reconstruction get the minimum value of the considered statistic below a significance 

threshold. 

c)  Discriminant partial least squares (PLS-DA): in C1 we assign the new observed 

fault to the class which best fit to the fault observation (Y prediction closest to 1) and in 

the case of C2 we assign it to all the types of faults with prediction higher than a 

significance threshold. 

c)  Fingerprints (FCP): in C1 we assign the new observed fault to the class which best 

fit to the fault observation (SDI closest to 1) and in the case of C2 we assign it to all the 

types of faults with SDI higher than an empirical threshold. 
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9.1.3 Diagnosis and model windows  

Model window: 

In the model building stage it has been considered the use of three different 

window sizes in the training set replicates. The main purpose of this decision is to 

make it possible to study the effect of the size of the model window in the diagnosis 

performance and, consequently, its effect in the early and late diagnosis performance 

in the different methodologies. 

In the pasteurization process we selected windows of 1 observation (W=1), 6 

observations (W=6) and a large windows of 12 observations (W=12), while in the 

case of the distillation process a window of 1 observation (W=1), 30 observations 

(W=30) and a large window (W=120) were chosen. Figure 9.3 shows an example 

about how the training fault data set for modelling with a window size W=6 is built 

up from the complete fault data sets.   

FIGURE 9.3  Fault data set construction for a selected model window size 

The different availability of data and the diverse nature of the processes and the 

type of faults determined the size of the model windows that we finally decided to 

test in each process (i.e. in the pasteurization process a protection system can even 

provoke a shutdown of the plant. Similarly some faults, if maintained for some time, 

could require a long period of time to achieve the steady state conditions).   
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 Diagnosis window: 

In the diagnosis stage it has been considered the use of a range of different 

windows sizes for diagnosis in the test set. The main purpose of this decision is to 

make it possible to study the evolution of the diagnosis performance in the different 

methodologies as we move away from the moment in which the fault is detected. 

In the pasteurization process we selected a range of diagnosis windows from 1 to 12 

observations and in the case of the distillation process a range of diagnosis windows 

from 1 to 120 observations. 

Figure 9.4 shows an example about how the fault data set for fault diagnosis is built 

up according to different fault diagnosis windows.                                                         

 

FIGURE 9.4  Fault data set construction for a selected diagnosis window size 

9.1.4 Pre-calibration of the performance indices    

In order to compare the performance of the methodologies in C2 we use the 

training set to calibrate all the methods with the same average specificity. In order to do 

this, the threshold limits of the different methods are conveniently selected to achieve the 

required fixed average specificity in the diagnosis of the training set. In doing so, the 

average sensitivity in the diagnosis results of the different methodologies are directly 

comparable in C2. 
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On the contrary in C1 as the criterion forces to signal a fault there is no need for such 

calibration given that the average sensitivity becomes similar to the average specificity 

differing only in the scale and, consequently, the average sensitivity in the diagnosis 

results of the different methodologies are directly comparable in C1.   

 
 
 
9.2 Fault diagnosis performance comparison   
 
9.2.1 Data sets 

The fault diagnosis methods were tested in two process data sets which correspond to a 

pasteurization process and a distillation process. These data sets (registered variables and 

types of faults) are fully described in chapter 3. In the performance comparison described 

in this chapter the following subset of types of faults in each data set has been considered: 

 Pasteurization process 

TABLE 9.1 Types of fault  

Number Type Fault description 

f1   Process fault Uncontrolled change of the Set Point T1 

f2 Process fault Decay of 30% in Pump 1 (Feeding) 
f3 Sensor fault Sensor  Flow (Down) 
f4 Sensor fault Sensor T1  (Up) 
f5 Sensor fault Sensor T2  (Down) 
f6 Sensor fault Sensor T4  (Up) 
f7 Sensor fault Sensor T5  (Down) 
f8 Sensor fault Sensor T5  (Up) 
f9 Process fault Failure of the valve which divert the wrong product 
f10 Process fault Set Point Flow  (Down to 110) 
f11 Process fault Set Point Flow  (Up to 200) 
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 Distillation process 

Some of the faults were related to changes in feed parameters (F, ZF and TF) and the 

other types of faults were related to regulatory control (changes in controllers) 

TABLE 9.2 Type of faults  

Number Type Fault 

 f1 Process fault Change in feed parameter F
f2 Process fault Change in feed parameter ZF 
f3 Process fault Change in feed parameter TF 

f4 Process fault Change in controllers  
f5 Process fault Change in controllers   

 
9.2.2 Implementation of the methods 
 

The performance indices were pre-calibrated in all the methods to yield an average 

specificity in C2 equal to 95% in the case of the pasteurization process and 85% in the 

case of the distillation process. 

 
9.2.2.1 Fault signature methodology (FS) 

The empirical threshold r is adjusted to accomplish the pre-calibration objective. 

The results in both data sets and the two selected model windows is shown in Table 9.3: 

TABLE 9.3 Selected empirical threshold r  

 Model window 
W=1 

Model window 
W=6 

model window 
W=12 

Pasteurization 
process 

 
r = 0.25 r = 0.86 r = 0.987 

    

 
Model window 

W=1 
Model window 

W=30 
model window 

W=120 
Distillation 

Process  
 

r =1.18 r =0.766 r = 0.924 
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As indicated in Section 7.3.2 the Fault signature methodology was defined by its authors 

to work with model windows of size W=1.  In this case wider windows models were 

selected in order to be able to compare it with the other methodologies. 

We used 5 different procedures in the construction of the fault signature library: 

 M1: uses the first observation after the fault and then the average is calculated on 

the different repetitions   

 M2: uses the average of the vector direction calculated for the selected window 

and then the average is calculated on the different repetitions   

 M3: uses the vector direction of the average observation for the selected window 

and then the average calculated on the different repetitions   

 M4: uses the single value decomposition (SVD) on the fault data sets to obtain 

the fault signature. It was applied to a pool of observations collected from several 

repetitions of each type of fault. The observations are selected according to the 

size of the selected window and in all of them the value of the observation 

immediately before the fault is subtracted. 

 M5: uses the single value decomposition (SVD) on the fault data sets to obtain 

the fault signature. It is similar to M4 but in this case there is no subtraction of the 

value of the observation immediately before the fault. 

 
The average distance to vertex [+1,+1] in the cosine plot of the training set of the 

whole set of faults was used to decide which one of the five proposed methods give more 

accurate fault signatures. In the case of the pasteurization process, Figure 9.5 shows that 

procedures M2 and M3 performed better than the others in the extraction of the fault 

signatures. It can be noted that the M1, which uses only the information contained in the 

first observation after the fault detection, performs increasingly worse as the size of the 
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window increases. Procedure M5 based on the use of the SVD gives slightly worse results 

than M2 and M3.  

Figure 9.5 a) shows that in the case of a model window equal to 1 methods 1, 2, 3  and 5 

becomes equivalent. These results were consistent in the other data base (distillation 

process. Accordingly, in the study we will use the procedure M3 to obtain the fault 

signatures.  . 

 
 

a) 

 
b)  

 
 

FIGURE 9. 5: Distance to vertex [+1,+1] in the Cosine´s plot in the pasteurization process training set in 
PCA models with a number of components ranging from 2 to 12:  a) w=6  b) w=12  
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In relation to the selection of the number of PCs, our decision was based on the 

C1 and C2 performance results in the training set. In accordance with this, 8 PCs were 

selected for the pasteurization process and 7 PCs for the distillation process.  

 

9.2.2.2 Fault reconstruction methodology (FR_SPE) 

In accordance with the unreconstructed variance criterion we selected a 3 PCs model for 

both processes.   

 

a) b) 

  

FIGURE 9.6  Unreconstructed variance  a) Pasteurization process b) Distillation Process 

 

The SPE threshold was adjusted to accomplish the pre-calibration objective. The results in 

both data sets and the two selected model windows is shown in Table 9.4: 

TABLE 9.4 Selected SPE threshold  

 Model window 
W=1 

Model window 
W=6 

Model window 
W=12 

Pasteurization 
process 

 
SPE = 96% SPE = 93% SPE = 98.5% 

    

 
Model window 

W=1 
Model window 

W=30 
Large model window 

W=120 
Distillation 

Process  
 

SPE = 60% SPE = 92.87% SPE = 95.75% 
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9.2.2.3 Fault reconstruction methodology (FR_Index) 

In relation to the selection of the number of PCs, our decision was based on the 

C1 and C2 performance results in the training set. In accordance with this, it was selected 

2 PCs were selected for both processes. 

The combined index   threshold was adjusted to accomplish the pre-calibration 

objective. The results in both data sets and the two selected model windows is shown in 

Table 9.5: 

TABLE 9.5 Selected    threshold  

 Model window 
W=1 

Small model window
W=6 

Large model window
W=12 

Pasteurization 
process 

 
   = 85%    = 83.1%   = 87.5% 

    

 
Model window 

W=1 
Small model window

W=30 
Large model window

W=120 
Distillation 

Process  
 

   = 31.8%   = 60.5%    = 77.3% 

 

9.2.2.4 Discriminant partial least squares (PLS-DA) 

The number of latent variables of the discrimination models obtained by PLS-DA 

were set according to the outcomes resulting from the analysis of the training set (see 

Table 9.6, which also contains the average specificity percentage calculated by predicting 

the class membership of the test observations after having adjusted the corresponding 

significance threshold in the pre-calibration step). 

TABLE 9.6  Adjust in C2 in the test set 

 Pasteurization process 
  n° LV Adjustment in C2 (test set) 

C1 (W=1) 7 - 
C1 (W=6) 11 - 
C1 (W=12) 11 - 
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C1 (W=1) 4 93.5% 
C2 (W=6) 7 95.2% 
C2 (W=12) 7 93.4% 

 

 
Distillation process 

  n° LV Adjustment in C2 (test set) 
C1 (W=30) 8 - 
C1 (W=30) 7 - 
C1 (W=120) 7 - 
C2 (W=30) 1 82.1% 
C2 (W=30) 4 84.8% 
C2 (W=120) 5 84.4% 

 

9.2.2.5 Fingerprints contribution plots (FCP) 

In this case, the selection of the number of PCs and FCP indices is based on the 

diagnosis performance results in the training set. In accordance with this, the number of 

PC components and the FCP indices for the SPE fingerprints are shown in Table 9.6 

 Model window 
W=1 

Model window 
W=6 

Model window 
W=12 

Pasteurization 
process 

 

Nº Comp =1 
Is=65; Isc=0; Iss=35 Io=0

Nº Comp =1 
Is=50; Isc=0; Iss=0; Io=50 

 Nº Comp =2 
Is=50; Isc=0; Iss=25; Io=25

    

 
Model window 

W=1 
Model window 

W=30 
Model window 

W=120 
Distillation 

Process  
 

Nº Comp =2 
Is=50;Isc=0;Iss=0; Io=50

Nº Comp =3 
Is=50;Isc=40;Iss=0;Io=10 

Nº Comp =3 
Is=55; Isc=5; Iss=40; Io=0 

TABLE 9.6 Selected number of components and SPE-FCP indices  

 

9.2.3 Diagnosis performance results 

Results in average sensitivity and specificity 

In our study we decided to study the impact of the selected size of the “model 

window” (number of observations of the training sets used to build the models) for the 
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performance of the specific diagnosis methodologies. It must be noted that it cannot be 

assumed that by using a wider model window models would necessarily have poor 

performance in diagnosing the first observations immediately after fault detection (early 

diagnosis). To study the diagnosis performance of the models, once obtained with 

different model windows, they were used to diagnose “diagnosis windows” that 

progressively increased their size until they could be considered a large diagnosis window 

(late diagnosis)  i.e. 120 in the case of the distillation process and 12 in the case of the 

pasteurization process. The objective of the plots in Figure 9.7 is to determine how the 

performance of the methodologies evolves as we move farther from the instant of the fault 

detection. In the plots it is measured the average sensitivity and specificity of the methods 

in progressively growing in size “diagnosis windows”. Starting with the case of 

considering a diagnosis window of size equal to 1 (only one observation after the fault in 

all the test sets is considered for diagnosis), then considering a diagnosis window of size 

equal to 2 (two observations after that fault in all the test sets is considered for diagnosis) 

and so on.    

According to the Figure 9.7 the following results follow: 

 Fault signature (FS):  This is the best method when all the methods are forced 

to build the models with only one single observation after the fault. Figure 9.7i 

and 9.7ii shows that FS has the best results in C1 and C2 for model windows 

(W=1) in the case of the distillation process. FS clearly outperforms the other 

methods. It must be noted that this statement does not mean that the best early 

diagnosis is obtained by this method. In figure 9.7i it is showed that other methods 

like Fingerprints or FR-SPE using wider model windows (i.e. W=30) obtain better 

results (higher sensitivities in C1 and C2) in early diagnosis as it can be 

appreciated in the value of sensitivity in the first diagnosis windows. It must be 
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taken into account that, as already commented, FS was defined by its authors to 

work with model windows of size W=1 and in this thesis we have forced this 

methodology to work also with of larger size model windows in order to be able 

to compare it with the others.  

 Fault reconstruction based on the SPE (FR.SPE): This method has best 

performance when the diagnosis window is not too small. In the case of the 

distillation process, good results in C1 particularly during early diagnosis were 

obtained for W=30. This methodology was only outperformed by the Fingerprints 

methodology. FR.SPE also achieved good results in early diagnosis in C2 and 

only was outperformed by the FR-INDEX. When the diagnosis model is 

increased in size the results worsen in comparison with the results obtained with 

other methods. So FR.SPE has a poor performance in late diagnosis.  

 Fault reconstruction based on combined index (FR.C.INDEX): This also 

yields better results when the diagnosis window is not too small. Results in C2 of 

the distillation process clearly outperformed the others in W=30 and W=120 in 

the first diagnosis window. When the diagnosis window is increased in size the 

results worsen but their decay is more gradual than in the case of the FR-SPE. So 

compared to the other methods FR.C.INDEX has poor performance in late 

diagnosis.  

 Fingerprints Contribution Plot (FCP_SPE): The Fingerprints contribution 

plots on the SPE showed different performance in both data sets. In the 

pasteurization setting it yielded good results in C2. In the case of the distillation 

process, the method presented a singular performance in C2 that was similar to 

the performance of the FS method. It must be noted that the FCP_SPE behaves 
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differently to the FS in C1. FCP_SPE presented better results in C1 in the 

distillation process, especially in early diagnosis.  

 Partial Least Squares (PLS-DA): This method achieved better results when the 

model window is not small. In addition it has also some limitations for early 

diagnosis and there are other methods that clearly outperform the PLS-DA. By 

conversely, when large diagnosis windows are considered, the diagnosis result 

improves. Indeed with large model windows and large diagnosis windows, this 

method clearly outperforms the others in late diagnosis. 
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FIGURE 9.7 i)  Average  sensitivity for the distillation process in C1 

a)  W=1;  b) W=30; c)  W=120
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FIGURE 9.7 ii)  Average  sensitivity for the distillation process in C2 

a)  W=1;  b) W=30; c)  W=120
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FIGURE 9.7 iii)  Average  specificity for the distillation process in C1 
a)  W=1;  b) W=30; c)  W=120
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FIGURE 9.7 iv)  Average  specificity for the distillation process in C2 
a)  W=1;  b) W=30; c)  W=120 
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FIGURE 9.7 v)  Average  sensitivity for the pasteurization process in C1 

a)  W=1;  b) W=6; c)  W=12
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FIGURE 9.7 vi)  Average  sensitivity for the pasteurization process in C2 

a)  W=1;  b) W=6; c)  W=12
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FIGURE 9.7 vii)  Average  specificity for the pasteurization process in C1 

a)  W=1;  b) W=6; c)  W=12
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FIGURE 9.7 viii)  Average  specificity for the pasteurization process in C2 

a)  W=1;  b) W=6; c)  W=12
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 9.2.4 Conclusions 

 The methods used exhibited different diagnosis performance. Fault signature 

methodology yielded better results when used to build models with small 

model windows (FS) . The other methods required larger model windows to 

improve their performance. These models also demonstrated different 

performance depending whether early or late fault diagnosis were considered. 

It was proved that the size of the model windows affects the performance of 

the different methodologies and that the use of small model windows does not 

guarantee a better early diagnosis performance. Indeed there are methods that 

require larger model windows to build models that perform reasonably well in 

early diagnosis.   

 The new proposed method (FCP) exhibited comparable diagnosis 

performance to the most widespread fault diagnosis methods. It must be 

highlighted the excellent results of the FCP method in the case of C1 and early 

diagnosis.  

 These results show that a mixed strategy based on the use of methods that are 

good for early diagnosis (fault reconstruction methodologies, the fingerprints 

or the fault signature) combined with methods that are good for late diagnosis 

(PLS-DA) can be an interesting option. In this case the second model would 

act to back the first, helping in the diagnosis particularly when the early 

diagnosis is not succesful.  
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Part V  

Conclusions and future areas of research
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Chapter 10: Conclusions and future areas of 
research 

 

10.1 Conclusions  

This thesis is devoted to the study and comparison of different methodologies 

proposed for fault diagnosis in a multivariate context. In our study we have differentiated 

between methodologies commonly used in Multivariate Statistical Quality Control 

(MSQC) and methodologies used in Latent-based Multivariate Statistical Process Control 

(Lb-MSPC). First, a detailed description of the methods was performed in order to 

understand the differences and relationships among the different methodologies. The 

diagnosis performance of the methods was tested in two process data bases (a 

pasteurization process and a distillation process) and two numerical simulations. Finally, 

new diagnosis methods and different variants of the former methodologies were 

considered in order to improve their diagnosis performance. 

Here the main conclusions of the work are summarized, organized according to the 

objectives presented at the beginning of the document: 

 Clarify the relationships and the requirements for the implementation in 

practice of the most important data driven diagnosis methods in MSQC and 

Lb-MSPC and highlight their key weaknesses and strengths: The methods and 

algorithms were described in full detail and also the most relevant considerations 

about their implementation (i.e. different algorithm schemes) and relationships 

(i.e. relationships among Hawkins´ residuals and the MTY conditional terms in 

Appendix 3.7).
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 Develop new efficient ways of comparing the performance of the different 

diagnosis methods:  In part II of this thesis we evaluated the performance of the 

different methods in MSQC using an analysis of the variance (ANOVA) and a 

group of indices: PTC0, PTCv, PWC0, PWCv, PND and PNF. In part III of the 

thesis we used the average sensitivity and average specificity indices calculated 

over all the considered types of fault in order to compare the performance of the 

diagnosis methods in Lb-MSPC. In the model building stage of the Lb-MSPC 

methods the use of different window sizes in the training set replicates to study 

the effect of the size of the model window in the diagnosis performance was 

considered. The later allows us to study the early and late diagnosis performance 

in the different methodologies.  

Both strategies to measure the diagnosis performance were successfully 

applied to situations were a large number of different types of faults is considered. 

 

 Test and compare the performance of different diagnosis methods in MSQC: 

Our study showed that the MTY method presented the best diagnosis performance 

and provided an easy interpretation of the significant terms. Hawkins´, Murphy´s 

and Montgomery´s methods do not perform well in the case of strong correlations 

and exhibit an excessive number of false positives. The DFT method and its 

variants have problems of “lack of power in fault isolation” (PNF). The ad hoc 

methods D/AP and TCH show better power in fault isolation than the Bonferroni´s 

variant.  Finally, the Step-down method with profile 1-1-1-1 and the Hawkins´ 

method for faults in one single variable yield the best results in the case of one 

single variable faults but it must be noted that they cannot be used to diagnose 

faults in which there are more than one responsible variable.   
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 Propose and test new improved variants of the diagnosis methods in MSQC: 

In the thesis some new variants of Mason, Tracy and Young´s, Hawkins´, 

Murphy´s and Runger and Montgomery´s algorithms were proposed. The 

proposed variants of the MTY´s algorithm improve the performance of the 

original MTY´s algorithm in the strong correlation scenarios. The recursive 

Hawkins variants give excellent results and improve the original Hawkins´s 

methodology results. The Montgomery´s and Murphy´s variants also improve the 

performance of the original proposed algorithms. In the simulations the best 

performance was obtained with the pre-filtered recursive versions of 

Montgomery´s (FRM) and Hawkins´s methodologies (FRHM). Our conclusion is 

that the use of the modified MTY method (MTY1) in addition to these methods 

would serve to improve the interpretability of the detected signals. 

 

 Propose and test new diagnosis methods in Lb-MSPC: In the thesis a new 

diagnosis method called the Fingerprints contribution plot (FCP), is proposed. 

This method tries to extend the use of the contribution plots, which is widely used 

as an unsupervised method for fault diagnosis, to the supervised case in which 

there is information about the different types of fault. The method is described in 

full detail and implemented in the case of the pasteurization process example.  

 

 Test and compare the performance of different diagnosis methods in Lb-

MSPC: The diagnosis methods exhibited different diagnosis performance. Fault 

signature methodology yield better results when used to build a model using small 

model windows. The other methods required larger model windows to improve 

their performance. Fault reconstruction methodologies requires not too small 
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model windows and performed well for early diagnosis in C2. The Fingerprints 

also requires not too small model windows and perform well for early diagnosis 

in C1. The PLS-DA requires large model windows and outperform the others in 

late diagnosis whilst has a poor performance in early diagnosis.  

 

To sum up the results show that a mixed strategy based in the use of a method for 

the early diagnosis combined with other for the late diagnosis can be an interesting 

option. In this case the first model is aimed to the early diagnosis and the second 

is backing the first, helping in the diagnosis when the early diagnosis is not 

successful.  

 

10.2 Future areas of research 

This thesis opens several areas of research for future work amongst which the 

following could be outlined:  

 Related to comparative performance analysis of the fault diagnosis methodology 

efficiency:  

o To extend the comparative analysis by including a broader spectrum of 

techniques including those from the diverse focus described as part of the 

review included Chapter 1. More specifically I consider of particular 

relevance the comparative analysis of methodology involving neuronal 

networks (NN) and methods based on independent component analysis 

(ICA), known to produce interesting results  in specific fields.  

o To extend the comparative analysis and applications of the Lb-SPC 

methodologies that we have applied to continuous processes in this thesis, 

to batch processes.   
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 Related to the Fingerprints methodology: 

o To determine the classification performance of the fingerprints 

methodology to new and diverse conditions. E.g. application to well 

known benchmarks (Tennessee Eastman process) o usage of new 

simulation data characterised by specific latent variable structures selected 

according the algorithm of Arteaga and Ferrer (2010)  

o To improve the algorithm required to obtain SDI index parameters and the 

optimum number of components required for fault diagnosis. A priori the 

modified algorithm should allow for different number of components in 

the modelling of different types of faults.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 



284 
 

  



285 
 

Part V   

Appendices
 

 

 

  



286 
 

References 

Alcala, C. F., Qin, S. J. (2009).  “Reconstruction-based contribution for process monitoring”. 
Automatica, 45(7), 1593–1600. 

Anderson, T.W. (1984). “An Introduction to Multivariate Statistical Analysis”. 2nd  Wiley & Sons 
 
Armitage, P., Parmar, M. (1986 ) “Some Approaches to the Problem of Multiplicity in Clinical 
Trials“.   Proceedings of the XII th International Biometrics Conference Seattle  
 
Arteaga, F., Ferrer, A. (2002). “Dealing with missing data in MSPC: several methods, different 
interpretations, some examples”. Journal of Chemometrics 16, 408-418. 
 
Arteaga, F. , Ferrer, A. (2003). “Monitorización de procesos multivariantes con datos faltantes 
mediante análisis de componentes principales”. 27 Congreso Nacional de Estadística e 
Investigación Operativa. Lleida. 
 
Arteaga, F., Ferrer, A. (2010). “How to simulate normal data sets with the desired correlation 
structure”.  Chemometrics and Intelligent Laboratory Systems, 101 ,1. 38-42 
 
 Barker, M., Rayens, W. (2003).  “Partial Least Squares for discrimination”. Journal of 
Chemometrics 17, 166-173. 

 
Box, G. (1954). “Some theorems on quadratic forms applied in the study of analysis of varian ce 
problems, I. Effect of in equality of variance in the  one-way classification”. The Annals of 
Mathematical Statistics, 25, 290–302. 

 
Box, G., Luceño, A. ( 1997). “Statistical Control by Monitoring and Feedback Adjustment”. 
Wiley & Sons.    
 
Bro, R., Kjeldahl, K., Smilde, K., Kiers, H.A.L (2008). “Cross-validation of component models: 
A critical look at current methods”.  Analytical Bioanalytical Chemistry 390, 1241-1251. 
 
Camacho J., Ferrer, A. (2014) “Crossvalidation in PCA models with the element-wise K-fold(ekf)  
algorith: practical aspects. Chemolab 131, 37-50. 
 
Chester, D., Lamb, D., Dhurjati,  P.  (1984).  “Rule-based  computer alarm analysis in chemical 
process plants”.  In Proceedings of 7th Micro-Delcon  22 -29. 
 
Cheung,  J. T, Stephanopoulos,  G.  (1990).  “Representation  of process trends part I. A formal 
representation framework”. Computers and Chemical Engineering 14 (4 -5), 495-510. 
 
Dayal, B., MacGregor, J.F., Taylor, P.A., Kildaw, R., Marcikic, S. (1994). “Application of 
feedforward neural networks and partial least squares regression for modelling Kappa number in 
a continuous Kamyr digester”. Pulp Paper Canada 95, (1), 7-13. 
 
Doganaksoy, N., Faltin, F. W., Tucker, W. T. (1991).” Identification of out of control quality 
characteristics in a multivariate manufacturing environment”. Communications in Statistics – 
Theory and Methods 20(9):2775–2790. 
 
Dubey, S.D. (1985). “Adjustment of p-values for Multiplicities of Intercorrelating Symptoms”, 
Proceedings of the VIth International Society for Clinical Biostatisticians, Germany  



287 
 

 

Dunia, R., Qin, S.J. (1998) (a). “A unified geometric approach to process and sensor fault 
identification and reconstruction:the unidimensional fault case”. Computers Chem. Eng 44  927-
943 
 
Dunia, R., Qin, S.J. (1998). (b).  “Subspace approach to multidimensional fault identification and 
reconstruction”. AIChE Journal Vol 44 pp. 1813-1831 
 
Ferrer, A. (2007). “Multivariate statistical process control based on principal components analysis 
(MSPC-PCA): some reflections and a case study in an autobody assembly process”. Quality 
Engineering, 19, pp. 311-325. 
 
Ferrer, A. (2014). “Latent structures-based multivariate statistical process control: a paradigm 
shift”. Quality Engineering, 26:1, pp. 72-91. 
 
Frank, P. M. (1987). “Advanced fault detection and isolation schemes using nonlinear and robust 
observers”. 10th IFACWorld Congress, Munich, Germany.  
 
Fuchs, C., Benjamini, Y. (1994). “Multivariate Profile Charts for Statistical Process Control”. 
Technometrics, 36 pp. 182-195. 
 
Geladi, P., Kowalski, B.R. (1986). “Partial Least-Squares Regression: A Tutorial”. Analytica 
Chimica Act, 185, 1-17. 
 
Geladi, P. (1989). “Analysis of Multi-way (Multi-mode) Data”. Chemometrics and Intelligent 
Laboratory Systems, 7, 11-30. 
 
Gertler, J., Singer D. (1990). “A new structural framework for parity equations based failure, 
detection and isolation”. Automatica, 26 (2). 381-388.   

Gertler, J. (1998). “Fault Detection and Diagnosis in Engineering Systems”.  Marcel Dekker, Inc., 
New York. 

Hawkins, D. M., Olwell, D.H (1988).  “Cumulative sum charts and charting for quality 
improvement”. 2th ed. Springer, New York  
 
Hawkins, D. M. (1991). “Multivariate quality control based on regression- adjusted variables”. 
Technometrics 33:61–75. 
 
Hawkins, D. M. (1993). “Regression adjustment for variables in multivariate quality control”. 
Journal of Quality Technology 25(3):170–182. 
 
Hayter, A. J., Tsui, K. L. (1994). “Identification and quantification in multivariate quality control 

Problems”. Journal of Quality Technology 26(3):197–207. 

Henley, E.J. (1984). “Application of expert systems to fault diagnosis”. In AIChE annual meeting  
San Francisco, CA. 
 
Hochberg, Y. (1988).  “A Sharper Bonferroni Procedure for Multiple Test of Significance”.  
Biometrika, 75, pp. 800-802. 
 
Holm, S. (1979). “A Simple Sequentially Rejective Multiple Test Procedure”.  Scandinavian 
Journal of Statistics, 6, pp. 65-70. 
 



288 
 

Hommel, G.  (1988).  “A Comparison of Two Modified Bonferroni Procedures”.  Biometrika, 75, 
pp. 383-386. 
 
Hoskins J. C., Kaliyur, K. M., D. M. Himmelblau (1991). “Fault diagnosis in complex chemical 
plants using artificial neural networks” . AICHE J. 37(1),137-141. 
 
Hunter J. S. (1986). “Exponentially weighted moving average” . Journal of Quality Technology”. 
18, pp. 97-102. 
 
Iri, M., Aoki, K., O’Shima, E., Matsuyama, H. (1979). “ An algorithm for diagnosis of system 
failures in the chemical process”. Computers and Chemical Engineering 3, 489-493.  
 
Jackson J.E. (1991) A User´s  Guide to Principal Components. Wiley & Sons. 

Jackson, J.E., Mudholkar, G.S.  (1979). “control procedures for residuals associated with principal 
component analysis”. Technometrics 21,341-349 
 
Janusz, M., Venkatasubramanian, V. (1991). “Automatic generation of qualitative description of 
process trends for fault detection and diagnosis”.  Engineering Applications of Artificial 
Intelligence 4 (5), 329 -339. 
 
Jionghua, J., Jianjun, S. (2008) “Causation-Based T2 Decomposition for Multivariate Process 
Monitoring and Diagnosis”. Journal of  Quality Technology  40, 1,  pp. 46-58. 
 
Jolliffe, I.T (2002) . ”Principal Component Analysis”, Series: Springer Series in Statistics. 
Springer, NY 

Kourti, T., Lee, J. ; MacGregor, J.F. (19 96). “Experiences with Industrial Applications of 
Projections Methods for Multivariate Statistical Process Control”. Computers in Chemical 
Engineering 20 Suppl., 745-750. 
 
Kourti, T., MacGregor, J.F. (1996). “Multivariate SPC Methods for Process and Product 
Monitoring”. Journal of Quality Technology 28, (4), 409-428. 
 
Lucas, J. M., Saccucci, M. S. (1990). "Exponentially weighted moving average control schemes: 
Properties and enhancements", Technometrics 32, 1-29. 

MacGregor, J. F., Marlin, T. E., Kresta, J., Skagerberg, B. (1991). “Multivariate statistical 
methods in process analysis and control”. In Y. Arkun & W. H. Ray (Eds.), Chemical process 
control*/CPCIV  (pp. 79_/100). CACHE-AIChE. 
 
MacGregor, J.F., Jaeckle, C., Kiparissides, C., Koutoudi, M. (1994): “Process monitoring and 
diagnosis by Multiblock PLS Methods”. AIChE Journal 40, (5), 826-838. 
 
MacGregor, J. F., Kourti, T. (1995). “Statistical process control of multivariate processes”. 
Control Engineering Practice 3 (3), 403-414. 
 
MacGregor, J.F. (1996). “Using On-Line Process Data to Improve Quality. Is there a Role for 
Statisticians?. Are They Up for the Challenge?”. ASQC Statistics Division Newsletter, 16, 2, 6-
13. 
 
MacGregor, J.F., Cinar, A. (2012). “Monitoring, fault diagnosis, fault-tolerant control and 
optimization: Data driven methods”. Computers and Chemical Engineering 
 
 



289 
 

Mason, R. L., Tracy, N. D., Young, J. C. (1995a). “Multivariate control charts for individual 
observations”. Journal of Quality Technology 24(2):88–95. 
 

Mason, R. L., Tracy, N. D., Young, J. C. (1995b). “Decomposition of T2 for multivariate control 
chart interpretation”. Journal of Quality Technology 27(2):99–108. 
 
Mason, R. L., Tracy, N. D., Young, J. C. (1997). A practical approach for interpreting 
multivariate T2 control chart signs. Journal of Quality Technology 29(4):396–406. 
 
Mason, R.L, Young, J.C. (1999). “Improving the Sensitivity of the T2 statistic in Multivariate 
Process Control”.  Journal of  Quality Technology  31 (2), pp. 155-165. 
 
Miller, P., Swamson, R. E., Heckler, C.F. (1993). “Contribution plots: The missing link in 
multivariate quality control” presented at Annual Fall Technical Conference of the American 
Society for Quality Control (Milwakee WI) and the American Statistical  Association (Alexandria 
VA) 
 
Murphy, B. J. (1987).  “Selecting out of control variables with the T2 multivariate quality 
procedure”.The Statistician 36:571–583. 
 
Nelson, P.P.C., Taylor, P.A., MacGregor, J.F. (1996). “Missing data methods in PCA and PLS: 
Score calculations with incomplete observations”. Chemometrics Intell. Lab. Sist. 35, 45-65. 
 
Nelson, P.P.C. (2002). “Treatment of missing measurements in PCA and PLS models”, M. Eng. 
Thesis. Department of Chemical Engineering, McMaster University. Hamilton, Ontario, Canada. 
 
Niida, K. (1985).  “Expert system experiments in processing engineering”. In Institution of 
chemical engineering symposium series pps.529 -583. 
 
Nomikos, P., MacGregor, J.F. (1995). “Multivariate SPC Charts for Monitoring Batch 
processes”.Technometrics 37, (1), 41-59. 
 

O’Reilly, J. (1983)  “Observers for Linear Systems”. Academic Press.  

 
Page, E. S. (1961). “Cumulative sum control charts”. Technometrics 3(1), pps.1- 9. 

 
Patton, R. J. ; Chen J. (1997). “Observer-based fault detection and isolation: Robustness and 

applications”.Contr. Eng. Practice 5(5), 671- 682. 
 
Qin, S.J., Valle, S., Piovoso, M.J. (2001). “On unifying multiblock analysis with application to 
decentralized process monitoring”. Journal of Chemometrics 15, 715-742. 
 
Qin, S.J. (2012).  “Survey on data-driven industrial process monitoring and diagnosis”. Annual 
reviews in control  36, 220-234. 
 
Roy, J. (1958). “Step-down procedures in multivariate analysis”. The Annals of Mathematical 
Statistics 29:1177–1187. 
 
Raich,  A.,  Cinar,  A.  (1996). “Statistical  process  monitoring  and disturbance diagnosis in 
multivariable continuous processes”. American Institute of Chemical Engineers Journal 42 (4), 
995 -1009. 
 



290 
 

Rencher, A. C. (1993). “The contribution of individual variables to Hotelling´s T2, Wilks´  and 
R2. Biometrics, 49 .pp.479-489. 
 
Rengaswamy,  R., Venkatasubramanian,  V.  (1995).  “A  syntactic pattern-recognition approach 
for process monitoring and fault diagnosis”. Engineering Applications of Artificial Intelligence 8 
(1), 35 -51. 
 
Rengaswamy, R., Hagglund, T., Venkatasubramanian, V. (2001). “A qualitative shape analysis 
formalism for monitoring control loop performance”. Engineering Applications of Artificial 
Intelligence 14 (1), 23-33. 
 
Roberts. S. (1959). “Control charts tests based on geometric moving averages”. Technometrics, 
Vol 42(1) pp. 97-102.  
 
Runger, G. C., Montgomery, D. C. (1996). “Contributors to a multivariate statistical process 
control chart signal”. Communications in Statistics – Theory and Methods 25(10):2203–2213. 

Russell, E. L., Chiang, L. H., Braatz, R. D. (2012). “Data-driven methods for fault detection and 
diagnosis in chemical processes”. Springer Science & Business Media. 
 
Sankoh, A.J., Huque, M.F., Dubey, S.D. (1997). “Some Comments on Frequently Used Multiple 
Endpoint Adjustment Methods in Clinical Trials”. Statistics in Medicine , 16,  2529-2542. 
 
Sarle, W.S. (1994). “Neural networks and statistical models”. Proceedings of the 19th Annual 
SAS Group conference, Cary, NC. 1538-1550. 

Shewhart, W. A. (1931). “Economic control of quality of manufactured product”. New York: D. 
Van Nostrand Company. 501  

Smith, M. (1993). “Neural networks for statistical modelling”. Van Nostrand Reinhold. N.Y. 
 
Sjöström, M., Wold, S., Söderström, B. (1985), “PLS discriminant plots“. Proceedings of PARC 
in Practice, Amsterdam, Elsevier Science Publishers B.V.,North-Holland  pp. 19–21. 

 
Skogestad, S. (1996).  "MATLAB Distillation Column Model ("Column A")."  Retrieved from: 
http://www.nt.ntnu.no/users/skoge/book/matlab_m/cola/cola.htm 

Tano, K., Samskog, P.O., Andreasson, B. (1995). “Mathematical modelling in mining industry 
increases both quality and quantity!.- multivariate modelling and on-line data presentation for 
process optimization at LKAB. Presented at the International Federation of Automatic Control 
Symposium on Automation in Mining Mineral and Metal Processing. Sun City. South Africa. 
 
Tracy, N. D., Young, J. C., Mason, R. L. (1992), “Multivariate Control Charts for Individual 
Observations.” Journal of Quality Technology, 24, 88–95. 
 
Tukey, J.W., Ciminera, J.L., Heyse, J.F. (1985). “Testing the Statistical Certainty of a Response 
to Increasing Doses of a Drug”. Biometrics , 45, pp.295-301. 
 
Ungar, L. H., Powell, B. A., Kamens, S. N. (1990). “Adaptive networks for fault diagnosis and 
process control”. Computers and Chem. Eng. 14(4-5), 561-572. 
 
Valle, C. S., Qin, S. J., Piovoso, M. J., Bachmann, M., Mandakoro, N. (2001). “Extracting fault 
subspaces for fault identification of a polyester film process”.  Proc. American Control  
Conference,  Arlington,  VA,  4466-4471. 



291 
 

Venkatasubramanian,  V., Chan,  K. (1989).  “A  neural  network methodology  for  process  
fault  diagnosis”.  American  Institute  of Chemical Engineers Journal 35 (12), 1993 -2002. 

Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S. N. (2003). “A review of process 
fault detection and diagnosis Part I: Quantitative model-based methods”. Computers and 
Chemical Engineering 27, 293-311 
 
Venkatasubramanian V., Rengaswamy R., Yin K.; Kavuri, S. N. (2003). “A review of process 
fault detection and diagnosis Part II: Qualitative models and search strategies”. Computers and 
Chemical Engineering 27, 313-326 
 
Venkatasubramanian, V., Rengaswamy R., Yin K. ; Kavuri S. N. (2003). “A review of process 
fault detection and diagnosis Part III: Process history based methods”. Computers and Chemical 
Engineering 27, 327-346 
 
Vidal-Puig S., Janssen, P.M.A, Sanchis J. and Ferrer A. (2005). “Fault diagnosis in the on-line 
monitoring of a pasteurization process: a comparative study of different strategies”. 
5th Annual Conference of the European Network for Business and Industrial Statistics (ENBIS) 
Newcastle (U.K) 
 
Vidal-Puig S., Ferrer, A. (2008) “Fingerprints contribution plot: A new approach for fault 
diagnosis in multivariate statistic process control”, 11th International Conference on 
Chemometrics in Analytical Chemistry 27-31, Montpellier (France) 
 
Villaba, P.M. (2012).  "Multivariate statistical process monitoring of a distillation column".  
Master Thesis Universidad Politécnica de Valencia.   

Watanabe K., Matsura I., Abe M., Kubota M., Himmelblau D. M. (1989). “Incipient fault 
diagnosis of chemical processes via artificial neural networks”. AICHE J. 35(11), 1803-1812. 
 
Wierda, S.J. (1993) “Papers 557”, Groningen State, Institute of Economic Research 

Westerhuis, J.A., Kourti, T., MacGregor, J.F. (1998a). “Analysis of multiblock and hierarchical 
PCA and PLS models. Journal of Chemometrics 12, 301-321. 
 
Wise, B. M., Ricker, N. L.(1991) “Recent advances in multivariate statistical process control: 
Improving robustness and sensitivity”. In Proceedings of the IFAC, ADCHEM Symposium , 
125-130. 

Wold, H. (1985). ”Partial least squares”. In Kotz, Samuel; Johnson, Norman L. Encyclopedia of 

statistical sciences 6. New York: Wiley. pp. 581–591. 
 
Wold, S. (1978). “Cross-Validatory Estimation of the Number of Components in Factor and 
Principal Component Models. Technometrics 20, 397-405. 
 
Wold S.; Albano C.; Dunn WJ III.; Esbensen K.; Hellberg S.; Johansson E.; Sjöström M.(1983). 
“Pattern recognition: finding and using patterns in multivariate data”.  In: H. Martens and H. 
Russwurm, Jr., Editors, Food Research and Data Analysis,Applied Science Publ., London, pp. 
147–188. 

Wold, S., Geladi, P., Esbensen, K., Öhman, J. (1987). “Multi-Way Principal Components-and 
PLS Analysis”. Journal of Chemometrics 1, 41-56. 
 
Wold, S., Kettaneh. N., Tjessem, K. (1996). “Hierarchical multiblock PLS and PC models for 
easier model interpretation and as an alternative to variable selection”. Journal of Chemometrics 
10, 463-482. 



292 
 

 
Yoon, S., MacGregor, J.F. (2001). “Fault diagnosis with multivariate statistical model parts I: 
using steady state fault signatures”. Journal of Process Control  Vol 11, 387-400 
 
Yue, H., Qin, S.J. (2001). “Reconstruction based fault identification using a combined index”. 
Ind. Eng. Chem. Res. Vol 40 pp. 4403-4414. 
 
Zarzo, M., Ferrer, A., Romero, R. (2002a). “Fault detection by PLS to improve the quality of 
batch PPOX production”. 3rd International Chemometrics Research Meeting ICRM2002. 
Veldhoven (Holanda). 
 
Zarzo, M., Ferrer, A., Romero, R. (2002b). “Multivariate process control to improve the quality 
of batch PPOX production”. 2nd Annual Conference on Business and Industrial Statistics. Rimini 
(Italia). 
 

  



293 
 

Glossary 
 

The sense in which one should understand some of the terms and acronyms used in this 

document is as follows: 

 

- ANOVA: ANalysis of VAriance. 

- ARL: Average Run Length.  

- CUSUM: CUmulative SUM. 

- D/AP: Dubey, Armitage and Parmar procedure (ad hoc variant of DFT) 

- DFT:  Doganaksoy Faltin and Tucker´s method. 

- EWMA: Exponentially Weighted Moving Average. 

- FDI: Fault Diagnosis and Isolation. 

- FMUSE: pre-Filtered Montgomery and Runger´s method Under a Sequential.  
           Extraction 

- FRH: pre-Filtered Recursive Hawkins´method. 

- FRM: pre-Filtered Recursive Montgomery and Runger´s metho.d  

- FT2M: pre-Filtered T2-Murphy´s method.  

- GCI: Global Classification Index. 

- HM: Hawkin´s method. 

- Lb-MSPC: Latent based Multivariate Statistical Process Control. 

- LCL: Lower Control Limit. 

- M: Murphy´s method. 

- MCUSUM: Multivariate CUSUM. 

- MEWMA: Multivariate EWMA. 

- MR: Montgomery and Rungers´method. 

- MSE: Mean Square Error. 

- MSPC: Multivariate Statistical Process Control. 

- MSQC: Multivariate Statistical Quality Control. 

- MTY: Mason Tracy and Young´s method. 

- MTY1: Variant 1 of Mason Tracy and Young´s method. 

- MTY2: Variant 2 of Mason Tracy and Young´s method. 

- MUSE: Montgomery and Rungers´method Under a Sequential Extraction.  
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- NIPALS: Non-Linear Iterative Partial Least Squares. 

- NN: Neural Network. 

- NOC: Normal Operation Conditions. 

- PCA: Principal Components Analysis. 

- PLC: Progammable Logic Controller. 

- PLS: Partial Least Squares. 

- PLS-DA: Partial Least Square Discriminant Analysis. 

- RH: Recursive Hawkins´method.  

- RM: Recursive Montgomery and Runger´s method. 

- SDG: Signed Digraph. 

- SIMCA: Soft Independent Modelling Class Analogy. 

- SPC: Statistical Process Control. 

- SPE: Square Predicction Error. 

- SVD: Singular Valued Decomposition. 

- TCH: Tukey, Ciminera and Heyse procedure (ad hoc variant of DFT). 

- TCI: True Classification Index 

- T2M: T2-Hotelling Murphy´s methodology.  

- T2RH: Recursive Hawkin´s methodology with a Hotelling´s T2 trigger mechanism.  

- T2FRH: pre-Filtered Recursive Hawkins with a Hotelling´s T2 trigger mechanism.  

- UCL: Upper Control Limit. 

- USPC: Univariate Statistical Process Control. 

- WCI: Wrong Classification Index. 

 

 

 

Notation 
The mathematical notation used in this document is the following: bold capital letters for 

matrices, bold lower case letters for vectors and cursive letters for scalars.  
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