
Universitat Polit\`ecnica de Val\`encia
Departamento de Sistemas Inform\'aticos y Computaci\'on

Departamento de Comunicaciones

Contributions to Deep Learning Models

by

Jordi Mansanet Sand\'{\i}n

Thesis presented at Universitat Polit\`ecnica de
Val\`encia in partial fulfillment of the requirements
for the degree of Doctor.

Supervisors:
Dr. Alberto Albiol
Dr. Roberto Paredes

Valencia, November 26\mathrm{t}\mathrm{h} 2015

A Aisha,

Abstract / Resumen / Resum

Deep Learning is a new area of Machine Learning research which aims to create
computational models that learn several representations of the data using deep archi-
tectures. These methods have become very popular over the last few years due to the
remarkable results obtained in speech recognition, visual object recognition, object
detection, natural language processing, etc.

The goal of this thesis is to present some contributions to the Deep Learning frame-
work, particularly focused on computer vision problems dealing with images. These
contributions can be summarized in two novel methods proposed: a new regulariza-
tion technique for Restricted Boltzmann Machines called Mask Selective Regulariza-
tion (MSR), and a powerful discriminative network called Local Deep Neural Network
(Local-DNN). On the one hand, the MSR method is based on taking advantage of
the benefits of the L2 and the L1 regularizations techniques. Both regularizations
are applied dynamically on the parameters of the RBM according to the state of the
model during training and the topology of the input space. On the other hand, the
Local-DNN model is based on two key concepts: local features and deep architec-
tures. Similar to the convolutional networks, the Local-DNN model learns from local
regions in the input image using a deep neural network. The network aims to classify
each local feature according to the label of the sample to which it belongs, and all of
these local contributions are taken into account during testing using a simple voting
scheme.

The methods proposed throughout the thesis have been evaluated in several exper-
iments using various image datasets. The results obtained show the great performance
of these approaches, particularly on gender recognition using face images, where the
Local-DNN improves other state-of-the-art results.

El Aprendizaje Profundo (Deep Learning en ingl\'es) es una nueva \'area dentro del
campo del Aprendizaje Autom\'atico que pretende crear modelos computacionales que
aprendan varias representaciones de los datos utilizando arquitecturas profundas. Es-
te tipo de m\'etodos ha ganado mucha popularidad durante los \'ultimos a\~nos debido a
los impresionantes resultados obtenidos en diferentes tareas como el reconocimien-
to autom\'atico del habla, el reconocimiento y la detecci\'on autom\'atica de objetos, el
procesamiento de lenguajes naturales, etc.

El principal objetivo de esta tesis es aportar una serie de contribuciones realizadas
dentro del marco del Aprendizaje Profundo, particularmente enfocadas a problemas
relacionados con la visi\'on por computador. Estas contribuciones se resumen en dos

iv ABSTRACT / RESUMEN / RESUM

novedosos m\'etodos: una nueva t\'ecnica de regularizaci\'on para Restricted Boltzmann
Machines llamada Mask Selective Regularization (MSR), y una potente red neuro-
nal discriminativa llamada Local Deep Neural Network (Local-DNN). Por una lado,
el m\'etodo MSR se basa en aprovechar las ventajas de las t\'ecnicas de regularizaci\'on
cl\'asicas basadas en las normas L2 y L1. Ambas regularizaciones se aplican sobre los
par\'ametros de la RBM teniendo en cuenta el estado del modelo durante el entrena-
miento y la topolog\'{\i}a de los datos de entrada. Por otro lado, El modelo Local-DNN se
basa en dos conceptos fundamentales: caracter\'{\i}sticas locales y arquitecturas profundas.
De forma similar a las redes convolucionales, Local-DNN restringe el aprendizaje a
regiones locales de la imagen de entrada. La red neuronal pretende clasificar cada ca-
racter\'{\i}stica local con la etiqueta de la imagen a la que pertenece, y, finalmente, todas
estas contribuciones se tienen en cuenta utilizando un sencillo sistema de votaci\'on
durante la predicci\'on.

Los m\'etodos propuestos a lo largo de la tesis han sido ampliamente evaluados en
varios experimentos utilizando distintas bases de datos, principalmente en problemas
de visi\'on por computador. Los resultados obtenidos muestran el buen funcionamiento
de dichos m\'etodos, y sirven para validar las estrategias planteadas. Entre ellos, desta-
can los resultados obtenidos aplicando el modelo Local-DNN al problema del reconoci-
miento de g\'enero utilizando im\'agenes faciales, donde se han mejorado los resultados
publicados del estado del arte.

L'Aprenentatge Profund (Deep Learning en angl\`es) \'es una nova \`area dins el camp
de l'Aprenentatge Autom\`atic que pret\'en crear models computacionals que aprenguen
diverses representacions de les dades utilitzant arquitectures profundes. Aquest tipus
de m\`etodes ha guanyat molta popularitat durant els \'ultims anys a causa dels im-
pressionants resultats obtinguts en diverses tasques com el reconeixement autom\`atic
de la parla, el reconeixement i la detecci\'o autom\`atica d'objectes, el processament de
llenguatges naturals, etc.

El principal objectiu d'aquesta tesi \'es aportar una s\`erie de contribucions realitza-
des dins del marc de l'Aprenentatge Profund, particularment enfocades a problemes
relacionats amb la visi\'o per computador. Aquestes contribucions es resumeixen en dos
nous m\`etodes: una nova t\`ecnica de regularitzaci\'o per Restricted Boltzmann Machi-
nes anomenada Mask Selective Regularization (MSR), i una potent xarxa neuronal
discriminativa anomenada Local Deep Neural Network (Local-DNN). D'una banda,
el m\`etode MSR es basa en aprofitar els avantatges de les t\`ecniques de regularitza-
ci\'o cl\`assiques basades en les normes L2 i L1. Les dues regularitzacions s'apliquen sobre
els par\`ametres de la RBM tenint en compte l'estat del model durant l'entrenament i
la topologia de les dades d'entrada. D'altra banda, el model Local-DNN es basa en
dos conceptes fonamentals: caracter\'{\i}stiques locals i arquitectures profundes. De for-
ma similar a les xarxes convolucionals, Local-DNN restringeix l'aprenentatge a regions
locals de la imatge d'entrada. La xarxa neuronal pret\'en classificar cada caracter\'{\i}sti-
ca local amb l'etiqueta de la imatge a la qual pertany, i, finalment, totes aquestes
contribucions es fusionen durant la predicci\'o utilitzant un senzill sistema de votaci\'o.

Els m\`etodes proposats al llarg de la tesi han estat \`ampliament avaluats en diver-
sos experiments utilitzant diferents bases de dades, principalment en problemes de
visi\'o per computador. Els resultats obtinguts mostren el bon funcionament d'aquests

v

m\`etodes, i serveixen per validar les estrat\`egies plantejades. Entre d'ells, destaquen els
resultats obtinguts aplicant el model Local- DNN al problema del reconeixement de
g\`enere utilitzant imatges facials, on s'han millorat els resultats publicats de l'estat de
l'art.

Acknowledgments

I would like to thank many people who helped me along the path to writing this
thesis. This work is not only the result of all my efforts but a consequence of the
many supports that I have received.

To Alberto Albiol and Roberto Paredes for being the supervisors for this thesis.
They have given me all the support I needed throughout these years.

To my parents and sister. They are the pillar of my education and the most
important reason why I have been able to get here and for the person I have become.

To Aisha. Without her I'm nothing.

To my friends, specially David and Javi. Thanks for the support and the great
times at the lab.

To Antonio Albiol and Mauricio Villegas. This work is also part of them.

To my cousin Carmina. For helping me with several tips for improving my writing.

To the Generalitat Valenciana - Conseller\'{\i}a d'Educaci\`o for granting me an FPI
scholarship, and to the Universitat Polit\`ecnica de Val\`encia for being the host for my
PhD.

Jordi Mansanet Sand\'{\i}n
Valencia, November 26\mathrm{t}\mathrm{h} 2015

Contents

Abstract / Resumen / Resum iii

Acknowledgments vii

Contents ix

List of Figures xiii

List of Tables xv

Notation xvii

Abbreviations and Acronyms xix

1 Introduction 1
1.1 Motivation . 1
1.2 Overview of Contributions . 4
1.3 Thesis structure . 5

2 Overview of Deep Learning Methods 7
2.1 Historical Context . 7
2.2 Supervised Networks . 8

2.2.1 Deep Neural Networks . 9
2.2.2 Different types of units . 10
2.2.3 The Backpropagation Algorithm 11
2.2.4 Deep Convolutional Neural Networks 14

2.3 Unsupervised models . 15
2.3.1 Restricted Boltzmann Machines 16

2.3.1.1 Introduction . 16
2.3.1.2 Contrastive Divergence algorithm 18
2.3.1.3 Different type of units 19

2.3.2 Deep Belief Networks . 21
2.3.3 Other unsupervised models . 23

x CONTENTS

3 Regularization Methods for RBMs 25
3.1 Introduction . 25
3.2 Motivation and Contributions . 26
3.3 State of the Art . 28
3.4 Mask Selective Regularization for RBMs 29

3.4.1 Introduction . 29
3.4.2 A Loss function combining L2 and L1 30
3.4.3 Mutual information and Correlation coefficient 31
3.4.4 The binary regularization mask 32
3.4.5 Topology selection and convergence 35
3.4.6 The MSR Algorithm . 37

3.5 Experiments . 39
3.5.1 General protocol . 39
3.5.2 Experiments with MNIST . 40
3.5.3 Experiments with USPS . 44
3.5.4 Experiments with 20-Newsgroups 46
3.5.5 Experiments with CIFAR-10 47

3.6 Conclusions . 48

4 Local Deep Neural Networks 51
4.1 Introduction . 51
4.2 Motivation and Contributions . 52
4.3 State of the Art . 53
4.4 Local Deep Neural Networks . 55

4.4.1 Introduction . 55
4.4.2 Formal framework for local-based classification 55
4.4.3 A local class-posterior estimator using a DNN 57
4.4.4 Feature selection and extraction 58
4.4.5 Location information and reliability weight 60

4.5 Experiments . 60
4.5.1 General protocol . 61
4.5.2 Experiments with CIFAR-10 62
4.5.3 Experiments with MNIST . 66

4.6 Conclusions . 71

5 Application to Gender Recognition 73
5.1 Introduction . 73
5.2 State of the Art . 75
5.3 Experiments . 76

5.3.1 General protocol . 76
5.3.2 Results with DNN . 77
5.3.3 Results with DCNN . 79
5.3.4 Results with Local-DNN . 81
5.3.5 Comparison of the results . 85

5.4 Conclusions . 86

CONTENTS xi

6 General Conclusions 89
6.1 Conclusions on Regularization Methods for RBMs 90
6.2 Conclusions on the Local-DNN model 90
6.3 Directions for Future Research . 91
6.4 Dissemination . 92

A Public Databases and Evaluation Protocols 95
A.1 MNIST Database . 95
A.2 USPS Database . 95
A.3 20 Newsgroup Database . 97
A.4 CIFAR-10 Database . 97
A.5 Labelled Faces in the Wild Database 98
A.6 Groups/Gallagher Database . 99

Bibliography 101

List of Figures

1.1 Interpreting an image by extracting several intermediate representations. 3

2.1 Graphical representation of DNN model with two hidden layers. . . . 9
2.2 The Backpropagation algorithm for a neural network with two hidden

layers. Note that bias terms have been ommited for simplicity. 13
2.3 Architecture of LeNet-5, a convolutional neural network for handwrit-

ten digits recognition. 15
2.4 Graphical representation of the RBM model. The grey and the white

units correspond to the hidden and the visible layers, respectively. . . 17
2.5 Representation of the Markov chain used by the Gibbs sampling in the

CD algorithm. 19
2.6 The sum of infinite copies of a sigmoid function with different bias can

be approximated with the closed form function log (1 + ex) denoted
by the black line. The blue line represents the transfer function of a
rectified linear unit. 21

2.7 Several RBMs are trained independently and stacked to form a DBN.
This DBN also serves as a pre-training to a discriminative DNN. . . . 22

3.1 Graphical representation of the process to precompute the binary
masks of the \scrM set for the MNIST dataset. 34

3.2 Binary masks for \alpha \in \{ 0.2, 0.4, 0.6, 0.8\} for the MNIST dataset. The
red dots indicate the visible units related to each binary mask. 35

3.3 Some examples of binary regularization masks for the MNIST dataset. 35
3.4 Learned features for the MNIST dataset along with their corresponding

binary masks overlaid in red color. 36
3.5 Graphical representation of the MSR method within the CD algorithm. 38
3.6 Clean and noise images . 41
3.7 Histogram of weights for different regularization schemes in the first

RBM for the MNIST dataset. 45
3.8 Comparison of a random selection of features learned by the RBM in

the first layer. 46

xiv LIST OF FIGURES

4.1 Graphical depiction of the Local-DNN model. Several patches are ex-
tracted from the input image and they are fed into a DNN which learns
a probability distribution over the labels in the output layer. The final
label of the image is assigned using a fusion method that takes into
account all the patches' contributions. 58

4.2 Feature extraction process using a sampling grid. 59
4.3 Feature extraction method that looks for high information content areas. 59
4.4 Probability of accuracy of the DNN at a patch level depending on

the position where the patch was extracted for the CIFAR-10 dataset.
Light and dark colors denote high and low probability, respectively.
Note that the lowest probability is around 0.40 and the highest prob-
ability is around 0.59. 65

4.5 Probability of accuracy of the DNN at a patch level depending on the
position where the patch was extracted for the MNIST dataset. Light
and dark colors denote high and low probability, respectively. 69

5.1 Some feature detectors learned by the RBM model. 78
5.2 Graphical representation of a DCNN model. The parameters above

denote the configuration used in the experiments of the gender recog-
nition. 80

5.3 The 32 filters learned by the DCNN model in the first layer. 80
5.4 Probability of accuracy at patch level according to with the position

where the patch was extracted. Light and dark colors denote high and
low probability, respectively. 83

A.1 Some examples of handwritten digits of the MNIST dataset. 96
A.2 Some examples of handwritten digits of the USPS dataset. 96
A.3 Some examples of the CIFAR-10 dataset images. 98
A.4 Some examples of the LFW dataset images. 99
A.5 Some examples of the Gallagher dataset images. 99

List of Tables

3.1 Error rate (\%) on the MNIST test set for both clean and noisy im-
ages using different regularization schemes and varying the number of
labeled samples used in the fine-tuning. 42

3.2 Effect of applying MSR to different layers of the network. Error rate
(\%) on the MNIST test set for both clean and noisy images. 43

3.3 Error rate (\%) on the USPS test set for both clean and noisy images
using different regularization schemes. 44

3.4 Error rate (\%) on the 20-Newsgroups test set for both clean and noisy
data. 47

3.5 Error rate (\%) on the CIFAR-10 test set. 48

4.1 Number of images and approximate number of patches extracted from
each subset in the CIFAR-10 dataset depending on the patch size. Note
that 1K = one thousand and 1M = one million. 62

4.2 Classification accuracy at image and patch level on the test set for the
CIFAR-10 dataset, for different configurations of the Local-DNN model. 63

4.3 Classification accuracy on the test set of the CIFAR-10 dataset for
different methods. 66

4.4 Number of images and number of patches extracted from each subset
in the MNIST dataset. 67

4.5 Classification error rate at image and patch level on the test set for the
MNIST dataset, for different configurations of the Local-DNN model. 68

4.6 Error rate on the test set of the MNIST dataset for different methods. 70

5.1 Accuracy on the test set for a one layer DNN in the LFW database. . 78
5.2 Accuracy on the test set for the DNN model with two and three layers

in the LFW database. 79
5.3 Accuracy on the test set for the DCNN model. 81
5.4 Accuracy at patch level on the test set for the Local-DNN model vary-

ing the number of hidden layers. 82
5.5 Accuracy on the test set for our Local-DNN model varying the number

of hidden layers. 83
5.6 Cross-database accuracy at image level using the Local-DNN model. . 84

xvi LIST OF TABLES

5.7 Best accuracy on the test set for DNN, DCNN and Local-DNN models,
and other state-of-the-art results. 85

A.1 The 20 classes of the 20 Newsgroup dataset, partitioned according to
the subject matter. 97

Notation

In this thesis, the following notation has been used. Scalars are denoted in roman
italics, generally using lowercase letters if they are variables (x, p, \beta) or in uppercase if
they are constants (N , D, C). Also in roman italics, vectors are denoted in lowercase
boldface (\bfitx , \bfitp , \bfitmu) and matrices in uppercase boldface (\bfitX , \bfitP , \bfitB). Sets are either
uppercase calligraphic (\scrX) or blackboard face for the special number sets (\BbbR).

The following table serves as a reference to the common symbols, mathematical
operations and functions used throughout the thesis.

Symbol Description
\^(hat) Complementary operator of a binary value.

\sigma x Standard deviation of the random variable x.

\mu x Expected value of the random variable x.

\Delta x Increment on the variable x.

\langle x\rangle y Expectation of the random variable x under the
distribution y.

\bfitA \circ \bfitB Hadamard or element-wise product between
the matrices \bfitA and \bfitB .

\bfitA \sansT Transpose of the matrix \bfitA .

\bfitA - 1 Inverse of the square matrix \bfitA .

\^\bfitA Element-wise complementary of the binary ma-
trix \bfitA .

a \in \scrB a is an element of the set \scrB .

cov(x, y) The covariance between the random variables
x and y.

corr(x, y) The correlation coefficient between the random
variables x and y.

| a| Absolute value of the scalar a.

\| \bfita \| p The p-norm of the vector \bfita .

xviii NOTATION

sgn(z) =

\left\{ - 1 if z < 0
0 if z = 0
1 if z > 0

The signum function.

max(z) =

\biggl\{
0 if z \leq 0
z if z > 0

The max rectifier function.

step(z) =

\biggl\{
0 if z < 0
1 if z > 0

The Heaviside or step function.

\sigma (z) = 1
1+\mathrm{e}\mathrm{x}\mathrm{p}(- z) The sigmoid function.

\delta (a, b) The Kronecker delta function.; \delta (a, b) = 1 if
a = b; zero otherwise.

argmax
c

p (c| x) The c argument which maximizes the value of
p (c| x).

Abbreviations and Acronyms

AE Auto-Encoder
ANN Artificial Neural Network
CD Contrastive Divergence
CDBN Convolutional Deep Belief Network
CH Color Histograms
CIFAR Canadian Institute for Advanced Research
DAE Denoising Auto-Encoders
DCNN Deep Convolutional Neural Network
DL Deep Learning
DBN Deep Belief Network
DBM Deep Boltzmann Machine
DNN Deep Neural Network
EN Elastic Net
FIPA Facial Image Processing Group
GPU Graphics Processor Unit
GRBM Gaussian Restricted Boltzmann Machine
HOG Histogram of Oriented Gradients
LBP Local Binary Patterns
LDA Linear Discriminant Analysis
LFW Labeled Faces in the Wild
Local-DNN Local Deep Neural Network
MI Mutual Information
ML Machine Learning
MNIST Mixed National Institute of Standards and Technology
MSR Mask Selective Regularization
NN Neural Network
NReLU Noisy Rectified Linear Unit
PCA Principal Component Analysis
PCD Persistent Contrastive Divergence
RBM Restricted Boltzmann Machine
ReLU Rectified Linear Unit
SGD Stochastic Gradient Decent
SIFT Scale-Invariant Feature Transform
SVM Support Vector Machine

xx ABBREVIATIONS AND ACRONYMS

USPS United States Postal Service
i.e. id est (that is)
Acc. Accuracy

Chapter 1

Introduction

The goal of this thesis is to present various contributions to the Machine Learning and
computer science areas. All of these contributions emphasize on learning from data
with the objective of extracting useful information. Despite the fact that learning
is a very general concept, it can be defined as the task that aims to find a function
that maps an input (e.g., a digital face image or a speech signal) to an output (e.g.,
the gender from the face image or the identity of the person who is talking). More
specifically, this thesis is focused on addressing these kind of tasks by automatically
learning several non-linear transformations of the data which are structured in layers.
Since the number of layers can be high, these techniques are known in the literature
as Deep Learning (DL).

The first part of the chapter strives to present the motivation behind this thesis
and how DL methods can be used to solve challenging problems in diverse areas such
as computer vision, speech recognition and natural language processing. Next, the
second part of the chapter explains the main contributions presented in greater detail.
Finally, the structure of the contents followed along the thesis is presented.

1.1 Motivation

As previously stated, one of the fields within Machine Learning (ML) focuses on the
design of algorithms that aim to learn a function (or a mapping) from input data
to an output value. This learning process involves discovering unknown probability
distributions from data samples, and capturing statistical dependencies between the
random variables that are used to represent the input data. However, this process
might turn out to be difficult in some cases due to a number of factors.

First and foremost, the biggest challenge is the complexity and non-linear charac-
ter that the mapping function may have due to the many variation factors that can
appear in real world problems.

In this kind of problems, an enormous amount of data is usually required to ensure
that there are enough samples to capture all of these factors of variation. Even with

2 CHAPTER 1. INTRODUCTION

large amounts of data, some algorithms do not scale well due to the inherent limitation
of the algorithm itself, or because of computational resources.

Another recurrent problem is that the learning complexity grows exponentially
with the number of the input variables. 50 years ago, Richard E. Bellman called
this phenomenon the curse of dimensionality [Bellman, 1957]. Some problems benefit
from using dimensionality reduction techniques which reduce as much as possible the
dimensionality of the data while keeping the significant information, even though this
goal is sometimes hard to achieve.

The problems described above might be mitigated to some extent by using a differ-
ent representation of the data. As suggested by [Bengio et al., 2013], the performance
of ML methods is heavily dependent on the choice of the data representation on which
they are applied. In order to make the machines to truly understand the world around
us, it is necessary to identify and disentangle the underlying explanatory factors of
variation hidden in the input data. This process aims at creating a more suitable
representation of the data that eases the building of classifiers or other predictors.
Actually, if we were able to know the best representation for each specific problem,
the learning process would become quite a lot easier. For this reason, a considerable
effort has been devoted in the last decades to design human-engineered feature ex-
traction algorithms that aim to capture the useful information of the data in each
specific task. This idea usually simplifies the mapping to be learnt and can lead to
much better performance. However, the process of engineering features for each new
application is arduous and it does not generalize well to other tasks.

Given the importance of using better representations of the data in the ML area,
it would be desirable to be able to discover such representations automatically, hence
new applications could be developed faster using a common general-purpose learning
procedure. This is actually one of the goals behind the Deep Learning (DL) frame-
work. Without going into the subject in depth, DL algorithms use Artificial Neural
Networks (ANNs) to extract multiple levels of representations which disentangle the
factors of variation in the data. These better representations correspond to more
abstract or disambiguated concepts of the data that facilitate the process of learning.
Despite the fact that ANNs have been already used for decades with less impact, they
have seen a renaissance under the term Deep Learning partly thanks to the increase
of the processing power and cheaper means of gathering more data. On the other
hand, several advances and innovations have contributed to make DL very popular
amongst researchers and industry, and very good results have been achieved in many
tasks and domains. In this spirit, the motivation behind this thesis is to contribute
to this process by presenting a work focused on several further tasks.

One of the keys of the DL framework is the use of deep architectures. Most ML
models, such as Decision Trees, Support Vector Machines (SVM) or Naive Bayes,
use shallow architectures that might be a shortcoming when dealing with real world
problems. In contrast, there are several motivations towards using deep structures
instead of shallow ones according to [Bengio and Courville, 2013]:

\bullet Brain inspiration: a certain progress in neuroscience has discovered that the
neocortex (an area of the brain associated with many cognitive abilities) does

1.1. MOTIVATION 3

not pre-process sensory signals by itself, but rather propagates them through a
complex hierarchy of levels [Lee et al., 1998].

\bullet Computational complexity : some functions that can be represented compactly
with a deep architecture would require an exponential number of components if
they were represented with a shallow one [Bengio, 2009]. Obviously, the depth
needed will depend on the task and the type of computation.

\bullet Cognitive arguments and engineering arguments: humans organize ideas and
concepts in a modular way and at multiple levels very often. Concepts at one
level of abstraction are defined in terms of lower-level concepts. Also, most of
the problems solved by engineers are tackled by typically constructing a chain
or a graph of processing modules, where lower levels are the input of the upper
ones.

After this brief motivation about the main features of the DL framework, it is
interesting to resume these concepts with a simple example provided by Yoshua Ben-
gio [Bengio, 2009]. The example regards the task of interpreting an input image such
as one in Fig. 1.1. This image depicts a raw input made of many observed variables or

Figure 1.1. Interpreting an image by extracting several intermediate representations.
Source: Learning Deep Architectures for AI, Yoshua Bengio (2009)

factors of variation such as the shadow, the background, the position of the man, etc.

4 CHAPTER 1. INTRODUCTION

These variations are related by unknown intricate statistical relationships which, un-
fortunately, cannot be taught to machines because we do not have enough formalized
prior knowledge about the world. The categories man or sitting are an abstraction
that may correspond to a very large set of possible images which can be very different
between each other. DL aims to solve this problem by discovering automatically sev-
eral lower-level and intermediate-level concepts or abstractions which would be useful
to construct a man sitting-detector.

1.2 Overview of Contributions

The DL framework involves many types of algorithms and applications, and also the
boundaries between what DL is and is not remain partly unclear. Most of the re-
searchers in the DL community are specialized in specific topics that apply to their
areas of interest. Like them, the major focus of this thesis is to share several contri-
butions about different key factors that can play a role in the performance of several
DL methods.

First of all, the first part of this thesis has been focused on the regularization
process applied to the Restricted Boltzmann Machine (RBM) model. Regularization
is a key concept not only in DL, but also in the Machine Learning area in general that
prevents the models to overfit the training data, among other advantages. As it will be
discussed later, one of the contributions of DL is the use of some prior knowledge that
facilitates the training of deep architectures. This process is called pre-traininig, and it
is usually done with unsupervised models like the RBM. At this point, these models
have a huge number of parameters, so they can benefit from using regularization
techniques. Our main contribution is to come up with a new regularization scheme
called Mask Selective Regularization (MSR). This procedure is based on the idea
of restricting the learning to specific parts of the data, offering several advantages
compared to other traditional regularization methods. These assumptions have been
validated empirically with several experiments in diverse application domains.

Following with the success obtained by using the idea of guiding the learning to
useful regions of the data, the second part of the thesis somehow aims to use a similar
idea in discriminative models. We present a new discriminative model called Local
Deep Neural Network (Local-DNN) based on two key concepts: local features and
deep architectures. In the case of images, one of the common problems is that, some-
times, it is difficult to directly learn from the entire image using neural networks. In
contrast, our Local-DNN proposes to learn from small image regions called patches.
This patch-based learning approach enhances the robustness of the network by using
a probabilistic framework at the output that takes into account all the small contri-
butions of each local feature. To compare the performance of this method, we have
carried out several experiments in two well-known image datasets.

The last contribution of this thesis summarizes all the results obtained by an
extensive experimental study using different DL models in the gender recognition
task using face images. In these experiments we have also evaluated our Local-DNN
model, which improves both the results obtained with other DL methods and obtains
state-of-the-art results in the datasets evaluated.

1.3. THESIS STRUCTURE 5

1.3 Thesis structure

The remaining content of the thesis is organized as follows:

Chapter 2: this chapter reviews the most important models and elements
included in the DL framework, which should be kept in mind throughout this
thesis.

Chapter 3: this chapter introduces a new regularization method for RBMs
called Mask Selective Regularization, and shows the experiments carried out.

Chapter 4: this chapter presents the novel Local Deep Neural Network model
and draws the results obtained in the experiments performed.

Chapter 5: This chapter summarizes all the experiments performed in the
gender recognition problem using DL methods.

Chapter 6: this chapter resumes and draws some conclusions about all the con-
tributions of this thesis, and it also suggests some directions for future research
following these lines.

Chapter 2

Overview of Deep Learning
Methods

In this chapter, we put into perspective several elements of Deep Learning (DL)
algorithms that are related to this thesis. However, to obtain a broader view of the
current trends on this topic, the reader is encouraged to read an excellent review
presented recently by three of the most important researchers in this area [LeCun
et al., 2015].

First of all, the historical context around DL is described briefly for a better
understanding of its development until these days. After that, the following section
is focused on two important supervised models: the Deep Neural Network and the
Deep Convolutional Neural Network. Finally, the last section mainly describes one
of the most important unsupervised models in this thesis (the Restricted Boltzmann
Machine (RBM)), and the Deep Belief Network model which is created by stacking
several RBMs.

2.1 Historical Context

Deep Learning (DL) models are based on Artificial Neural Networks (ANNs). Ac-
tually, some researchers call DL the new generation of neural networks. Historically,
ANNs started in 1943, when the neurophysiologist Warren McCulloch and the math-
ematician Walter Pitts modeled a simple neural network using electrical circuits to
explain how the neurons might work in the brain. The first great results arrived in
the late 50s and early 60s when the scientist Frank Rosenblatt created the perceptron,
a linear model that combines a set of weights (parameters) with an input vector to
perform a binary classifier. Using this model, the first ANN applied to a real world
problem was proposed by Bernard Widrow and Macian Hoff to eliminate echoes on a
phone line. At the same time, one of the most important moments took place when
several researchers suggested the Backpropagation (BP) algorithm to automatically
learn the parameters of these networks [Rumelhart et al., 1988; Werbos, 1974]. After a
big apogee between the mid 80s and 90s, the ML community steered away from ANNs

8 CHAPTER 2. OVERVIEW OF DEEP LEARNING METHODS

and started focusing on other methods like Support Vector Machines (SVMs), Linear
models, Maximum Entropy models, etc. The main problem with ANNs models was
in the training stage. With the computational power available it was very difficult
to take advantage of these networks, and the learning process was too slow. Also,
this learning process was based on optimizing a non-convex error function, which can
be an issue due to the presence of several local minimum values. Furthermore, the
training sets in those days were usually small, and the networks were not able to
generalize well to new samples (the overfiting problem). For these reasons, amongst
many others, only a few groups continued working with ANNs with limited scale and
impact [Bengio and Bengio, 2000; LeCun et al., 1998; Rumelhart et al., 1988].

However, nowadays ANNs are back in fashion under the term Deep Learning.
One of the milestones in this story occurred in 2006 when Geoffrey Hinton's lab was
able to train efficiently a deep network able to reconstruct high-dimensional input
vectors from a small central layer [Hinton et al., 2006; Hinton and Salakhutdinov,
2006]. The main goal of this work was to demonstrate empirically that initializing
the weights of this network using unsupervised models, often produces much better
results than the same network initialized with random weights. This discovery was
a huge breakthrough in the research community, and, from that moment on, DL
and neural networks have been receiving more and more attention progressively until
these days. Another important stage in the DL history occurred in the ImageNet
competition of image understanding in 2012. A Deep Convolutional Neural Network
model was applied to a dataset of about a million images, and the results obtained
almost halved the error rates of the best competitors [Krizhevsky et al., 2012]. This
success showed the power of these models dealing with images when they can be
trained efficiently using graphics processing units (GPUs) with tons of labeled data.
Actually, from that moment on, DCNNs have become the dominant approach for
almost all the recognition and detection computer vision tasks [Sermanet et al., 2014;
Taigman et al., 2014; Tompson et al., 2014; Zeiler and Fergus, 2013]. Also, not only in
the academic domain but also some of the most important companies in the world, like
Google, Facebook and Baidu, have led big advances in image and speech recognition
using DL technologies.

2.2 Supervised Networks

In this section we address the supervised learning, which is the most common type
of learning not only in Deep Learning but also in the Machine Learning in general.
In this type of learning, the desired output of the training data is known in advance,
and it is supplied to the model during training. Therefore, each training sample is
represented as a pair consisting of an input vector represented by x, and a desired
output value represented by y. The algorithm should infer a function which can be
used for mapping samples with unknown outputs. Within a probabilistic framework,
this kind of models are also known as discriminative models because they model the
conditional probability distribution P (y| x) which can be used for predicting y from
x.

2.2. SUPERVISED NETWORKS 9

2.2.1 Deep Neural Networks

An Artificial Neural Network (ANN) is a generic term to encompass any structure
of interconnected neurons which sends information between each other. However, in
this thesis we will refer to Deep Neural Networks (DNN) as a discriminative network
with one input layer, one or more hidden layers, and one output layer. Note that a
network with just one hidden layer cannot actually be considered deep. However, in
this thesis we have included this type of network under the term DNN for convenience.
Actually, the essence of the network architecture is the same despite the number of
hidden layers, and it allows us to present the results changing this parameter in a
unified manner. Fig. 2.1 shows a graphical depiction of a DNN with two hidden
layers. As can be seen in the figure, this kind of network is fully-connected and feed-

Figure 2.1. Graphical representation of DNN model with two hidden layers.

forward. The former term means that each neuron in one layer is connected to all the
neurons in the next layer. The later term means that there are not cycles, so that the
connections do not form feedback loops. The input layer, denoted by x, represents
the input data vector, so it has as many neurons as dimensions of the input space. For
instance, in the case that the input sample is an image, all the pixels are vectorized
and each input neuron represents one of those pixels. This raw data is transformed
into new representations using the hidden layers, denoted by h1 and h2. The weights
between the layers and the non-linearities introduced by the neurons work as a feature
extractors. They should produce representations that are relevant to the aspects of
the data that are important for discrimination. Both the number of hidden layers and
the number of units in these layers are not predefined, and they should be estimated
empirically depending on the problem at a hand. Finally, the output layer, denoted
by y, represents the labels of the samples. The number of output units corresponds
with the number of different classes in the discriminative problem. For instance, a
network to classify handwritten digits (0, 1, 2, . . . , 9) must contain an output layer
with 10 neurons.

More formally, if the number of layers of the network is denoted by L (being
L = 0 the input layer), the mapping function of the transformations performed by
the network can be defined as

f (x) = fL (fL - 1 (. . . f1 (x))) . (2.1)

10 CHAPTER 2. OVERVIEW OF DEEP LEARNING METHODS

Each of these transformations depend on the input vector to the layer and the param-
eters of the network represented by \theta = (W,b), where W is a matrix that represents
all the weighted connections between two layers and b is a vector that represents the
bias term. Therefore, the transformation in the layer l is given by

fl (v) = g (Wv + b) , (2.2)

where v is the input vector to the layer and g (\cdot) is called the activation function.
This activation function is defined accordingly to the type of unit employed in the
network. The most popular types of units are explained in the next section.

2.2.2 Different types of units

One of the most interesting properties of neural networks is resumed in the universal
approximation theorem [Cybenko, 1989; Hornik et al., 1989]. This theorem states
that a simple feed-forward network with a single hidden layer can approximate any
continuous function given the appropriate parameters. This powerful characteristic
is partly due to each non-linearity introduced by the activation function related to
the type of unit (neuron) used in the network. The activation function is also known
as the transfer function because it computes the output value of the unit given its
input, which is a weighted sum of the outputs from the previous layer.

The first artificial neuron proposed in the context of neural networks was the
perceptron (see Section 2.1). The activation function of this type of neuron is given
by the Heaviside step function:

g(z) =

\biggl\{
0 if z < 0
1 if z > 0

, (2.3)

where z is the input value of the neuron. However, one of the problems of the
perceptron is that a small change in a weight (or bias) can sometimes cause the
output of the unit to completely flip, say from 0 to 1. That makes it difficult to see
how to gradually modify the weights and biases during learning so that the network
gets closer to the desired behaviour.

It is possible to overcome this problem by using the sigmoid neuron, which is the
most conventional non-linearity employed in neural networks. Its transfer function is
given by

g (z) =
1

1 + e - z
. (2.4)

This type of neuron facilitates the process of learning, hence small changes in the
parameters of the model (weights and bias) cause only a small change in the output
of the neuron [Nielsen, 2015]. Note that this type of function is also called the logictic
function and it is usually represented by the symbol \sigma .

One of the problems of using sigmoid units in neural networks occurs when the
input value of the neuron is too small or too big (saturation) because the gradient
becomes very small. This is known as the vanishing gradient problem, which implies
that the learning process takes too much time [Bengio and Glorot, 2010; Hochreiter
et al., 2001]. However, the use of other type of unit such as the Rectified Linear Unit

2.2. SUPERVISED NETWORKS 11

(ReLU) may alleviate this problem. The transfer function of this neuron is simply
the rectifier given by

g (z) = max(z, 0) . (2.5)

In the last years, several experiments have shown the advantages of this type of
neurons. For instance, the ReLU unit learns much faster than the standard sigmoid in
networks with many layers during the training process [Glorot et al., 2010; Goodfellow
et al., 2013; Zeiler et al., 2013]. Actually, the ReLU unit is currently the most popular
non-linearity employed in neural networks.

The type of units explained above are usually employed in the hidden layers. These
non-linearities allow the network to change the representation space of the data to
facilitate the separation of the samples amongst the different classes. However, the
last layer of the network must encode the labels of the samples. This is done using
the softmax function which assigns a value to the j-th output unit given by

g (zj) =
ezj

K\sum
k=1

ezk
. (2.6)

where zk is the input value of the k-th unit and K is the total number of output
units. According to the function, the output from the softmax layer is a set of positive
numbers which total 1. In other words, this layer maps the output of the previous
layer to a conditional probability distribution of the possible labels. Given that, the
predicted label by the network corresponds to the output neuron with the highest
probability value.

Although the types of units summarized in this section are the most popular in
neural networks, many others can also be used. For more information, an extensive
study of different units in the exponential family can be read in [Welling et al., 2005].

2.2.3 The Backpropagation Algorithm

During the training process of supervised neural networks, the model is fed with a
data sample and produces an output in the form of a vector of probabilities also
known as scores, one for each class. The goal of this process is that the correct class
of the sample should have the highest score among all the classes. However, this is
unlikely to happen without modifying the initial parameters of the network.

Several groups proposed the Backpropagation (BP) algorithm during the 1970s
and 1980s [Rumelhart et al., 1988; Werbos, 1974] to automatically modify the pa-
rameters of the model and make the network to learn the desired category of the
samples. The intuitive idea behind this method is to minimize an objective func-
tion that measures the error between the current output scores and the true vector
of scores (the label of the sample). The algorithm should modify the internal pa-
rameters of the network (weights and bias) to reduce this error. To learn how these
weights must be modified, the learning algorithm computes a gradient vector that
indicates the amount of increased or decreased error obtained when the weight value
is slightly modified. This process can be seen as a search of the minimum value of
the error function in a high-dimensional space defined by the weights values. The

12 CHAPTER 2. OVERVIEW OF DEEP LEARNING METHODS

computed gradient indicates the direction of the steepest descent towards that state
of the weights which gives the minimum error.

When this algorithm is applied to a neural network, this process is performed
through all the layers of the network. The first part of the algorithm is called the
forward pass. This part aims at computing all the units activations by propagating
the input data to the upper layers. The input z of each unit is computed as the
weighted sum of the outputs of the units in the layer below. Then, one of the transfer
functions defined in Section 2.2.2 is applied to this value to obtain the output of the
unit, denoted by y. The equations of these process are depicted in Fig. 2.2a.

Once the output values of the last layer are computed, it is possible to calculate
the error (E) between the predicted value (y) and the desired value (t). A common
way to compute this discrepancy is using the squared error measure, so that E =
0.5(t - y)2. This is the beginning of the second part of the algorithm, called the
backward pass. Basically, this process consists of propagating the error through the
network computing the error derivatives with respect to the weight parameters to
know how the parameters must be updated. To that end, the chain rule is used,
which is a formula for computing the derivative of a composed function. An example
of this process for a two-layer neural network is represented in Fig. 2.2b. Note that
these equations are subject to change if other error function is employed, such as
the cross-entropy cost function [Golik et al., 2013]. A detailed explanation of this
algorithm with all the mathematical derivations can be found in [Nielsen, 2015].

The training of a neural network using the BP algorithm is performed by using
a training set of data samples. A common procedure is to use a Stochastic Gradient
Decent (SGD) method. This procedure computes the average gradient for a small
set of examples, and the weights are adjusted accordingly. This process is repeated
for many small sets of examples from the training set until the average error stops
decreasing. Typically, the term batch is used to define these small sets of samples.
Also, the term epoch is used as a measure of the number of times that all the training
samples are used once to update the weights. In practice, it is common to train the
model for several epochs, so that the network sees the entire training set many times.

As stated in Section 2.1, neural networks were mostly ignored between mid 90s
and 2006 by the Machine Learning community. It was thought that the BP algorithm
would get trapped in poor local minima due to the non-convex nature of the error func-
tion to be minimized. Also, it was difficult to propagate the error through the layers
when the network is deep, which is known as the vanishing gradient problem [Hochre-
iter et al., 2001]. However, nowadays these problems have been minimized for several
reasons. First of all, the use of ReLU units instead of the traditional sigmoids have
allowed to train efficiently deeper networks. Also, the increase of computational re-
sources have boosted the learning process, specially with the use of GPUs, so that
huge training sets can be processed. Finally, the neural networks achieve their full
potential with a huge number of data samples, which was more difficult to obtain in
the past.

2.2. SUPERVISED NETWORKS 13

(a) The forward pass in the Back-
propagation algorithm.

(b) The backguard pass in the Back-
propagation algorithm.

Figure 2.2. The Backpropagation algorithm for a neural network with two hidden layers.
Note that bias terms have been ommited for simplicity.
Source: Deep Learning, YannLeCun, Yoshua Bengio and Geoffrey Hinton (2015)

14 CHAPTER 2. OVERVIEW OF DEEP LEARNING METHODS

2.2.4 Deep Convolutional Neural Networks

Despite the great advances using DNNs, there are still some problems that are diffi-
cult to solve using this kind of networks. The layers in a DNN are fully-connected,
which means that all the units between adjacent layers are connected between each
other. This property could be a problem if the dimensionality of the input space
was large, which usually happens in computer vision problems. As an example, to
model an image of size 200 \times 200 pixels with a hidden layer of 4,000 units, we need
1.6\times 108 parameters. Obviously, this network would be very difficult to train even
with a shallow architecture with just one layer. Not to mention the inherent prob-
lem of overfitting due to the plasticity of the network to be able to approximate any
complex function, as stated in the beginning of Section 2.2.2. Also, trying to model
each pixel of the image with a dedicated connection might not work well in practice,
specially with complex data obtained in unconstrained scenarios [Krizhevsky, 2009].

All of these problems have promoted extensively the use of other type of dis-
criminative model called Deep Convolutional Neural Networks (DCNN) in computer
vision problems. The convolutional neural network was first introduced a long time
ago by [Fukushima, 1980; LeCun et al., 1998]. Despite this, its application has been
mostly limited to problems related to character and handwriting recognition systems
until these days [LeCun et al., 1998].

The architecture of this type of network is similar to other networks because they
contain several hidden layers where each layer applies an affine transformation to the
input data followed by a non-linearity. DCNNs leverage these three key ideas: local
connectivity, parameter sharing and pooling layers. The first one, local connectivity,
attempts to reduce the number of parameters by connecting each hidden unit only to
a subregion of the input image. This process exploits the spatial stationarity assumed
in the topology of the data (in this case, pixels), to greatly reduce the number of pa-
rameters. The second one, parameter sharing, exploits the idea of extracting feature
detectors in several parts of the image that may be useful elsewhere. In other words,
the feature detectors obtained are equivariant because the same feature can detect
patterns in different parts of the image. This also reduces the number of free param-
eters and it rises the computation efficiency. Finally, the use of pooling/subsampling
layers merges the activations of many similar feature detectors into a single response.
For instance, max-pooling is a typical way of combining these responses in which the
non-linear max function outputs the maximum value across several sub-regions from
the given representation. These pooling layers help the network to be robust to small
translations of the input, aside from reducing the number of hidden units. Typi-
cally, the first layers of a DCNN are pairs of convolutional and pooling layers, which
forms a powerful feature extractor block. At the end of the network, one or more
fully-connected layers are commonly added . These fully-connected layers capture
non-linear relations between the higher-level representations of the image. Fig. 2.3
represents the convolutional network LeNet-5 implemented by Yann Lecun in 1998,
which is very well known for its success in the digit recognition task. Note that this
kind of network can also be trained using the Backpropagation algorithm.

Despite the power of this DCNN model, it was forsaken by the computer vision
and machine learning communities for many years. In 2012, this fact changed due to

2.3. UNSUPERVISED MODELS 15

Figure 2.3. Architecture of LeNet-5, a convolutional neural network for handwritten digits
recognition.
Source: Gradient-Based Learning Applied to Document Recognition, Yann Lecun (1998)

the spectacular results obtained in the ImageNet competition using a convolutional
network [Krizhevsky et al., 2012]. The network employed was able to recognize objects
in a dataset of about one million images among 1000 different classes, almost halving
the error rates of the best methods evaluated. In 2013, [Zeiler and Fergus, 2013] later
improved these results using a larger DCNN, and most of the approaches presented in
the competition made use of these convolutional networks. This success is mainly due
to the increase of computational resources, specially the efficient use of GPUs, and the
larger sets of labelled data available. As happened with the standard DNNs, the ReLU
units are also widely used in this type of networks. Also, other improvements such
as the dropout method have become a key factor of this success [Srivastava et al.,
2014]. This method aims to mitigate the typical overfitting problem by randomly
dropping units (along with their connections) during training. This prevents the
units from co-adapting too much, which causes the network to not generalize well
to new samples. These improvements have made the convolutional networks as the
dominant approach for almost all the image recognition and detection tasks in these
days [Krizhevsky et al., 2012; Russakovsky et al., 2015; Zeiler and Fergus, 2013]. It
should be highlighted that in some tasks, the performance obtained is similar to that
reported for humans, for instance in the face recognition problem [Taigman et al.,
2014].

The success of this type of networks inspired us to develop the Local-DNN model
presented in Chapter 4. Our model somehow follows a similar idea of learning from
local regions in the image, but learning local DNN networks.

2.3 Unsupervised models

Unlike the supervised models presented in Section 2.2, this section is focused on other
type of networks called unsupervised models. These models aim to discover the hidden
structure of unlabeled data. From a probabilistic point of view, this kind of learning
is related to the problem of density estimation, which deals with the estimation of the
probability distribution of the input data.

16 CHAPTER 2. OVERVIEW OF DEEP LEARNING METHODS

One of the breakthroughs in the development of Deep Learning (DL) techniques
was the use of pre-training to allow a more efficient training of deep networks [Hinton
and Salakhutdinov, 2006]. The idea is that each block of a deep network can be pre-
trained using an unsupervised model. Each block captures regularities from its input
distribution without requiring labelled data. This process is done layer-wise, and the
parameters learned in each block serve as a good initialization of the weights of that
block in a deep neural network.

This idea can also be seen from a probabilistic point of view. Consider ran-
dom input-output pairs (x, y) in a neural network. Learning a mapping function
between both of them involves modeling an approximation of the probability distri-
bution P (y| x) by maximizing its likelihood. If the true P (x) and P (y| x) are related1,
learning P (x) may facilitate the modeling of the real target distribution P (y| x) [Ben-
gio, 2009].

2.3.1 Restricted Boltzmann Machines

2.3.1.1 Introduction

Despite the fact that there are several unsupervised models based on different ap-
proaches, in this thesis we focus our attention on the Restricted Boltzmann Machine
(RBM) model [Freund and Haussler, 1991; Hinton, 2002; Smolensky, 1986]. For a pre-
cise description of this model we can enumerate its four main characteristics. First,
the RBM is an unsupervised model, so its training procedure does not involve any
class information about the samples2. Second, the RBM is a probabilistic model, so
it attempts to learn a probability distribution over its inputs. Third, the RBM is a
generative model, which means that the model can be used to meaningfully generate
samples once the probability manifold of the data has been learnt. Finally, the RBM
is an energy-based model, which means that the model captures dependencies between
variables by associating a scalar energy to each configuration of those variables.

Going into more detail, the RBM model can be defined as a probabilistic graphi-
cal model because it can be represented using a graph that expresses the conditional
dependence structure between random variables. These random variables are repre-
sented by two layers of units connected by means of several weights. The first layer is
called visible because represents the input data, and the second one is called hidden
because it represents latent variables that increase the expressiveness of the model. A
graphical representation of this model can be seen in Fig. 2.4. Note that there is no
connection from hidden units to other hidden units, nor from visible units to other
visible units, unlike the original Boltzmann Machine model [Hinton and Sejnowski,
1986].

The simplest RBM is one in which all the units are binary. In this case, every pair
of visible (v \in \BbbR D) and hidden (h \in \BbbR N) states have an energy value given by:

E(v,h) = -
\sum

i\in visible

aivi -
\sum

j\in hidden

bjhj -
\sum
i,j

vihjwij (2.7)

1For example, some digit images form well-separated clusters using clustering algorithms. So
that, the decision surfaces can be guessed reasonably well even before seeing any label.

2Note that [Larochelle and Bengio, 2008] illustrates how RBMs can also be used for classification.

2.3. UNSUPERVISED MODELS 17

Figure 2.4. Graphical representation of the RBM model. The grey and the white units
correspond to the hidden and the visible layers, respectively.

where vi and hj are the binary states of the visible unit i and the hidden unit j, wij

is the weight of the connection between them, and ai and bj are the biases of those
units. The relation between this energy value and the probability assigned to that
pair of visible and hidden vectors is given by:

p(v,h) =
1

Z
e - E(\bfv ,\bfh) , (2.8)

where the partition function, denoted by Z, is given by summing over all possible
pairs of visible and hidden vectors:

Z =
\sum
\bfv ,\bfh

e - E(\bfv ,\bfh) . (2.9)

The probability that the network assigns to a visible vector v is given by summing
over all possible hidden vectors:

p(v) =
1

Z

\sum
\bfh

e - E(\bfv ,\bfh) . (2.10)

The objective of learning in the RBM model is to raise the probability that the
network assigns to a training sample (lower its energy), and to lower the probability
assigned to other samples (rise its energy). The log-likelihood of the training data is
given by

\scrL (\theta ,\scrD) =
\sum
\bfx \in \scrD

log p (x) , (2.11)

where \theta are the parameters of the model (weights and biases) and x \in RD is a training
sample of the dataset \scrD . During the training process the parameters of the model
are adjusted so that \scrL (\theta ,\scrD) is maximized. This optimization problem is solved by
estimating the gradient of this log-likelihood function with respect to the parameters.
The derivative of the log-probability of a training sample with respect to a weight
yields a very simple expression (see [Krizhevsky, 2009] for details on how this gradient
expression is derived):

\partial log p(x)

\partial wij
= \langle vihj\rangle data - \langle vihj\rangle model , (2.12)

18 CHAPTER 2. OVERVIEW OF DEEP LEARNING METHODS

where the angle brackets are used to denote expectation under the distribution spec-
ified by the subscript that follows. In other words, \langle vihj\rangle data is the frequency of the
visible unit i and the hidden unit j being active together when the model is driven
by samples of the training set, and \langle vihj\rangle model is the corresponding frequency when
the model is let free to generate likely samples (not driven by any data). This leads
to a very simple learning rule to update the parameters of the model:

\Delta wij = \epsilon
\bigl(
\langle vihj\rangle data - \langle vihj\rangle model

\bigr)
, (2.13)

where \epsilon is a learning rate. Note that this learning rule is applied to perform a stochas-
tic gradient ascent process in the log probability of the training data. A simplified
version of the same learning rule is used for the biases.

Due to the fact that there are no direct connections between the units in the
hidden layer, it is very easy to get an unbiased sample of \langle vihj\rangle data. The process is
composed of two steps. First, clamping a random training vector v in the visible layer.
Then the binary state hj of the hidden unit j is computed by sampling stochastically
from a Bernoulli distribution with a probability given by

p(hj = 1| v) = \sigma (bj +
\sum
i

wijvi) , (2.14)

where \sigma (x) is the transfer function for the sigmoid units employed in the standard
binary RBM. Likewise, it is also very easy to get an unbiased sample of the state of
a visible unit vi, given the hidden vector h previously calculated:

p(vi = 1| h) = \sigma (ai +
\sum
j

wijhj) . (2.15)

By performing these two steps, an unbiased sample of the first term of the expression
is already computed 2.13.

However, it is much more difficult to get an unbiased sample of \langle vihj\rangle model because
that would require to know the true probability distribution of the model. We can
approximate that distribution using a Markov Chain Monte Carlo algorithm based on
the Gibbs sampling method [Geman and Geman, 1984]. This method starts at any
random state of the visible units and updates alternatively the hidden and the visible
states several times using the Eqs. 2.14 and 2.15. However, we must run these updates
for a very long time until the model reaches the equilibrium and the statistics become
unbiased. This problem is addressed by the Contrastive Divergence algorithm, which
is described in the next section.

2.3.1.2 Contrastive Divergence algorithm

A much faster learning procedure called Contrastive Divergence (CD) was proposed
by [Hinton, 2002]. The basic idea of this algorithm is that there is no need to have an
accurate estimate of the gradient, as long as this estimation is in the right direction.

As explained before, the hardest part of training an RBM is approximating the
second term of the gradient (see Eq. 2.12), i.e. \langle vihj\rangle model. To overcome this problem,
the CD algorithm uses two tricks. On the one hand, the process is speeded up by

2.3. UNSUPERVISED MODELS 19

starting the Gibbs sampling at the training data instead of starting at any random
state. The reason is that, starting randomly and after some reasonable time, the
distribution learned by the RBM will be close to the training data, so starting already
at the training data indeed achieves a quick start. On the other hand, it is assumed
that it is usually enough to estimate the direction of the gradient, even though the
magnitude of that gradient might be inaccurate. Therefore, CD does not wait for the
sampling process to converge, so that the gradient is estimated after only k-steps of
the Gibbs sampling. The learning works well for small values of k despite the fact that
that approximation is far from the true likelihood gradient [Hinton, 2002; Sutskever
and Tieleman, 2010]. Actually, k = 1 is enough for most applications, what is known
as the CD1 algorithm. An extensive numerical comparison of training with CDk

versus exact log-likelihood gradient is presented in [Carreira-Perpinan and Hinton,
2005]. Fig. 2.5 shows a graphical representation of the CD algorithm. As we can see,
the statistics in the activities of a visible and a hidden unit are measured after the
first update of the hidden unit and again at the end of the chain.

Figure 2.5. Representation of the Markov chain used by the Gibbs sampling in the CD
algorithm.

A modified version of CD called Persistent Contrastive Divergence (PCD) was
proposed by [Tieleman, 2008a]. This method does not initialize each alternating
Gibbs Markov chain with a different training sample, but rather keeps track of the
states of a number of persistent chains called fantasy particles.

2.3.1.3 Different type of units

RBMs were originally developed using binary visible and hidden units, and everything
stated up to now is based on this assumption. However, other types of units have been
recently proposed. An extensive study of different units in the exponential family is
given in [Welling et al., 2005]. The following describes the two types of units employed
in this thesis, besides the standard binary unit.

Gaussian units
Gaussian units are also known as linear units because their transfer function is given
by the linear function g(z) = z. In this case, the sampling process is performed
by adding a gaussian noise to the unit value during training. This type of unit is

20 CHAPTER 2. OVERVIEW OF DEEP LEARNING METHODS

usually employed in the visible layer of the RBM when the data to be modeled has
continuous values, such as pixels or the Mel-Cepstrum coefficients used to represent
speech. When the RBM model uses gaussian units in the visible layer and binary
units in the hidden layer, the energy function of this Gaussian-RBM (GRBM) model
is given by

EGRBM (v,h) =
\sum
i\in vis

(vi - ai)
2

2\sigma 2
i

 -
\sum
j\in hid

bjhj -
\sum
i,j

vi
\sigma i

hjwij , (2.16)

where vi denotes the real-valued activity of the visible unit i, \sigma i is the corresponding
standard deviation of the Gaussian noise, and hj is the binary state of the hidden
unit j. Like in the standard RBM, the hidden units are mutually independent given
the visible units and vice versa, so that the conditional distribution over the hidden
units remains basically unchanged:

p(hj = 1| v) = \sigma (bj +
\sum
i

wij
vi
\sigma i

) . (2.17)

The only difference from Eq. 2.14 in the standard RBM is that vi is scaled by the \sigma i

factor. However, the inverse conditional probability distribution is quite different and
it is given by sampling from a Gaussian distribution:

p(vi| h) = \scrN (\mu i, \sigma
2
i) , (2.18)

where \mu i = ai+\sigma 2
i

\sum
j wijhj . Therefore, the probability distribution for a single visible

unit i given h, is an independent normal distribution with mean \mu i and variance \sigma 2
i .

The GRBM can be trained with the CD algorithm as well using the equations 2.17
and 2.18 to perform the Gibbs sampling. Also, It is possible to learn the param-
eter of the variance of the noise for each visible unit (\sigma i) using the CD1 algo-
rithm [Krizhevsky, 2009]. However, learning this parameter is generally difficult and
takes long time. This is why some authors argue that, in most applications, it is much
easier to first normalize each component of the data to have zero mean and unit vari-
ance and then use noise free reconstructions, with \sigma i = 1 [Hinton, 2010; Hinton and
Salakhutdinov, 2006; Nair and Hinton, 2010]. In this thesis, we have followed this
approximation in the experiments using the GRBM model.

Noisy Rectified Linear Units

One of the possible disadvantages of the binary units in the visible and the hidden
layers can be given by their poor representation power, since each unit captures just
one bit of information. To allow each unit to encode an integer value, [Teh and Hinton,
2001] introduced the binomial units, which can be viewed as N identical copies of a
binary unit that all share the same bias and weights. During the reconstruction
of the data from the hidden activities, all the replicas have the same probability
(p) of turning on. Therefore, the total number of ``on"" copies is modeled with a
binomial distribution with mean Np and variance Np(1 - p). The problem is that as
p approaches 1 the variance becomes small, which may not be desirable.

2.3. UNSUPERVISED MODELS 21

A small modification to binomial units makes them far more interesting to model
real neurons and also more useful for practical applications. We can make infinite
copies with the same weights and bias (b), but each bias is modified by summing a
fixed offset of 0.5, i.e. b - 0.5, b - 1.5, b - 2.5, The sum of the probabilities of the
copies is close to having a closed form, as depicted in Fig. 2.6. This set of copies has
no more parameters than an ordinary binary unit, but it is able to represent integer
noisy values along the curve log (1 + ex). A drawback of this approach is that the

Figure 2.6. The sum of infinite copies of a sigmoid function with different bias can be
approximated with the closed form function log (1 + ex) denoted by the black line. The blue
line represents the transfer function of a rectified linear unit.

logistic function needs to be used many times to sample an integer value correctly. It
is possible, however, to use a fast approximation based on a rectified linear unit, whose
transfer function is given by max(0, x+\scrN (0, \sigma (x))) where \scrN (0, V) is a Gaussian noise
with zero-mean and a variance V that is added during the sampling process. This
type of unit is called Noisy Rectified Linear Unit (NReLU), and its representation
capacity is not constrained to be an integer value. One nice thing of using NReLU
units is that the mathematics underlying the original RBM remain unchanged. [Nair
and Hinton, 2010] showed that using this type of units in the hidden layer works much
better than using binary units for recognizing objects and comparing face images, and
they can deal with large intensity variations much more naturally than binary units.

2.3.2 Deep Belief Networks

The RBM model can be considered a shallow model because it has only one hidden
layer. As stated in Chapter 1, Deep Learning's main contribution is based on using
deep architectures to face more complex problems in a more efficient way. Unsuper-
vised models also benefit from deep structures, and the Deep Belief Network (DBN)
model is a good example of this fact. A DBN is a deep generative model composed of
a visible layer and multiples hidden layers of latent variables. There are connections
between the layers but not between units within each layer.

Before 2006, deep generative models based on neural networks were called Sigmoid
Belief Networks. These models were usually hard to train because the optimization
process involved the training of the entire network at a time using variational ap-
proximations [Dayan et al., 1995; Hinton et al., 1995]. However, G. Hinton and R.
Salakhutdinov introduced a greedy layer-wise unsupervised learning algorithm that

22 CHAPTER 2. OVERVIEW OF DEEP LEARNING METHODS

helped to optimize these deep networks [Bengio et al., 2007; Hinton and Salakhutdi-
nov, 2006]. As already mentioned in this thesis, this process is called pre-training.
The pre-training can be performed using several RBMs if the deep network aims to
be a generative model3. The number of RBMs needed is related to the number of
hidden layers in the deep network. Therefore, a DBN can be defined as a composition
of simple RBMs, where each RBM's hidden layer is the visible layer for the upper one.
The bottom RBM model can capture simple factors of variation from the raw data,
which can be seen as low-level feature detectors. By learning a second layer using
as an input the new representation of the data extracted with these low-level feature
extractors, it can extract progressively higher level feature detectors. This process can
continue by adding an extra RBM on the top of the model obtaining newer represen-
tations [Hinton et al., 2006]. A representation of this process is depicted in Fig. 2.7.

Figure 2.7. Several RBMs are trained independently and stacked to form a DBN. This
DBN also serves as a pre-training to a discriminative DNN.

Once the entire DBN is pre-trained layer-wise, it is possible to perform a fine-
tuning to adjust all the parameters of the network together according to a criterion.
For instance, [Hinton et al., 2006] proposed to use the wake-sleep algorithm ([Hinton
et al., 1995]) to fine-tune all the DBN with respect to an unsupervised criterion.
Alternatively, it is possible to convert the unsupervised DBN into a discriminative
Deep Neural Network (DNN). This process is depicted in Fig. 2.7, and it is performed
by adding an extra layer on the top of the DBN. This output layer is composed of
units that represent the labels of the discriminative problem, as it has been explained
in Section 2.2.1. Note that the weights used to connect this output layer are not
pre-trained, but initialized randomly.

3Note that [Hinton and Salakhutdinov, 2006] used an unsupervised non-generative model called
Auto-Encoder.

2.3. UNSUPERVISED MODELS 23

Regarding the applications of the DBN model, it has been used as a powerful
generative model with many different forms of data in diverse areas like image classi-
fication, speech recognition and information retrieval [Dahl et al., 2010; Hinton, 2007;
Susskind et al., 2008; Welling et al., 2005]. The recent work present in [Sarikaya
et al., 2014] about using DBNs for natural language understanding is also interesting.
However, they are mainly used to initialize deep discriminative networks as explained
above [Erhan et al., 2010; Hinton et al., 2006; Sermanet et al., 2013]

Even though it is not the topic of this thesis, it is worth to mention the convo-
lutional version of the DBN model (CDBN) [Lee et al., 2009a]. In like manner the
standard DBN, the CDBN is built by stacking several convolutional RBMs, and it
has been used in image and audio recognition tasks [Huang et al., 2012a; Lee et al.,
2009b].

2.3.3 Other unsupervised models

Aside from the models described above, there exist other unsupervised models that
have been and are important when talking about DL, but they fall out of the scope of
this thesis. For instance, Auto-Encoders [Bengio, 2009] are shallow neural networks
that are trained to reconstruct their input using an intermediate representation (code).
Auto-Encoders and RBMs are very similar models because they share the same ar-
chitecture: an input layer that represents the data, a hidden layer that represents the
code to be learnt, and the weighted connections between them. However, The Auto-
Encoder is trained by minimizing the reconstruction error, so an extra layer is added
on the top to represent a reconstruction of the original data. Both sets of weights are
tight, which means that they are actually the same weights. These models also have
the capability of extracting good representations from unlabeled data that work well
to initialize deeper networks [Glorot et al., 2010; Rifai et al., 2012].

One of the main problems of the Auto-Encoder model is that it could potentially
learn a useless identity transformation when the representation size (the hidden layer)
is larger than the input layer (the so-called over-complete case). To overcome this
potential limitation, there is a simple variant of the model called Denoising Auto-
Encoders (DAE) [Vincent et al., 2008] that works well in practice. The basic idea is
to feed the encoder/decoder system with a corrupted version of the original input,
but to force the system to reconstruct the clean version. This small change allows the
DAE to learn useful representations, even in the over-complete case.

Another prominent type of deep unsupervised model is the Deep Boltzmann Ma-
chine (DBM) [Hinton and Salakhutdinov, 2012; Salakhutdinov and Hinton, 2009a;
Srivastava and Salakhutdinov, 2014]. The DBM is a generative model that contains
many layers of hidden variables, and it has no connections between the variables
within the same layer. The architecture of the DBM and the DBN models is very
similar. The only difference is that the connections between the layers in the DBM
are undirected edges, and they are directed in the case of DBNs. This model can also
be pre-trained using RBMs [Salakhutdinov and Hinton, 2009a].

Chapter 3

Regularization Methods for
RBMs

The first two chapters of the thesis introduced the context of the Deep Learning
framework and its most important models and methods. This chapter is focused on
one of these models called the Restricted Boltzmann Machine (RBM). More in detail,
the chapter describes different regularization techniques for the RBM, and it presents
a novel regularization method called Mask Selective Regularization (MSR).

3.1 Introduction

Generally speaking, the regularization concept is based on the idea of an artificial
discouragement of complex or extreme explanations of the world even if they fit
satisfactorily what has been observed. The motivation behind this topic is that such
explanations are unlikely to generalize well to the future, that is, they may happen
to explain well a few examples from the past, but this is probably just because of
anomalies of these samples.

In the Machine Learning context, the main goal is to learn a model from a set of
samples (training data), which is able to generalize well on new and unseen samples
(test data). The generalization capability is a key element for the performance of
the model, and it is directly related to the complexity of the model itself. On the
one hand, if the model is too simple, the solution would be too generic and it will
fail to new data because the relations learned between the input variables are too
simple. This problem is called underfitting. On the other hand, if the model is too
complex, it would do much better on the training data; but also it will probably have
poor prediction and generalization capabilities, failing indeed on the test data. This
usually occurs with complex models with large number of parameters that are able to
stick too much to the data. This is the opposite problem and it is called overfitting.
Obviously, none of these situations is desirable and there are several ways to deal with
them. While the underfitting problem is usually quite easy to solve by increasing the
complexity of the model, the solution for the overfitting problem is not so trivial. The

26 CHAPTER 3. REGULARIZATION METHODS FOR RBMS

regularization methods come handy in this case by penalizing non-generic solutions
and controlling the model complexity.

As described in Section 2.3.1, the Restricted Boltzmann Machine (RBM) model
is an unsupervised generative model that can be represented as a two-layer neural
network with the connections between the layers being the parameters of the model.
Even though its hidden units can usually represent only binary values, the RBM
can learn complex functions thanks to its topology and the large number of these
hidden units. This produces a large number of free parameters, which increases the
overfitting problem. For this reason, using regularization methods during training
often improves the capabilities of this model [Fischer and Igel, 2012; Hinton, 2010].

The rest of the chapter is organized as follows:

\bullet Section 3.2 explains the motivation behind using this idea and the main contri-
butions related.

\bullet Section 3.3 resumes some interesting works concerning the concepts of sparsity
and regularization in the RBM model, specially in computer vision problems.

\bullet Section 3.4 presents and explains in depth a novel regularization scheme called
Mask Selective Regularization (MSR).

\bullet Section 3.5 evaluates the method presented and summarizes the results obtained.

\bullet Section 3.6 draws some conclusions about the chapter and with regard to future
work.

3.2 Motivation and Contributions

There are several reasons for saying that regularization is an important step during
the training process of the RBM. In this process, the weighted connections of the
model are adjusted to learn the manifold distribution represented by the input data.
In order to avoid the model to stick too much to the data, the regularization technique
penalizes these weights to grow too much by adding an extra constrain during training.
For this reason, regularization is also known as a weight-decay in the RBM's context.
As it is stated by Geoffrey E. Hinton in [Hinton, 2010], there are four main reasons
for using weigh-decay. The first one has been already explained and attempts to
improve the generalization to new data by reducing overfitting. The second one is
about the quality of the feature detectors learnt by the RBM. Each set of connections
linked to a given hidden unit can be seen as a feature detector, which is activated
in presence of interesting parts of the data. In the case of images, these features are
usually spatially localized forms around zones called receptive fields, forming useful
Gabor or Haar-like detectors. However, some hidden units do not learn any useful
information. The regularization technique makes the receptive fields of these hidden
units smoother and more interpretable by shrinking useless weights. The third reason
involves speeding up the training process of the RBM. As it is explained with more

3.2. MOTIVATION AND CONTRIBUTIONS 27

details in Section 2.3.1.2, the Contrastive Divergence (CD) algorithm employed to
train the RBM model is based on a sampling process that uses a Markov chain. This
Markov chain mixes more rapidly with small weights, which means that the method
needs less time to be ``close"" to the target distribution. This is especially important in
the CD algorithm because it is based on ignoring the latter steps in the chain [Hinton
et al., 2006]. The fourth reason is to unstick hidden units that have developed very
large weights during training and do not change its state, being always firmly on or
off during testing. If a hidden unit is always in the same state regardless of the values
of the visible units, this unit is useless because it does not detect any pattern from
the data.

All of these reasons enhance the importance of keeping the size of the weights of
the RBM under control. The most common way to achieve this is using the so-called
L2 regularization, which imposes the L2 norm on the weights penalizing large values
during training.

A highly related concept to regularization is the concept of sparsity. There are two
classes of sparsity: sparse activity and sparse connectivity. The former means that
only a small fraction of neurons is active at the same time. The later means that each
neuron in the hidden layer is connected to only a limited number of neurons in the
visible layer. Interestingly, both kind of sparseness have a strong biological inspiration
since similar properties have been observed in mammalian brains [Lee et al., 2008].
In this thesis, we have focused on sparse connectivity, although both of them can
be easily related. To force sparseness between the layers in the RBM it is necessary
that some weights become exactly zero, and this cannot be achieved by using the L2

regularization previously named. However, by using a different regularization term
based on the L1 norm, it is possible to force real zeros in some connections, that is, to
achieve sparse connectivity [Ng, 2004]. The impact of using this kind of regularization
is also notable because allows to remove those connections which model weak relations
between variables. In a non-sparse RBM, this causes poor performance in presence
of noise that directly affects the hidden layer nodes [Tang et al., 2012]. Despite this
advantage, the L1 regularization does not keep the magnitude of the weights under
control, and they can grow quite large.

From these premises, we propose a new regularization scheme for RBMs that aims
to take into account the advantages of the L2 and the L1 regularizations. Therefore,
the hypothesis stated suggests that combining both standard regularizations would
improve the performance of the RBMmodel, and most specially, its robustness against
noise. The idea is that the two kinds of regularizations should be applied separately
using a smart selection method that takes into account the topology of the input space
to decide which connections are penalized by each method. This selection is done using
a binary mask that changes adaptively according to the state of the network during
training. Based on these characteristics, the new regularization proposed is called
Mask Selective Regularization (MSR). The new method has been implemented and
some experiments on different domains have been evaluated to show its performance
and robustness in several classification problems.

28 CHAPTER 3. REGULARIZATION METHODS FOR RBMS

3.3 State of the Art

RBMs have been used thoroughly in several tasks with different types of data [Hin-
ton et al., 2006; Hinton and Salakhutdinov, 2009; rahman Mohamed et al., 2009;
Salakhutdinov et al., 2007]. The use of different type of visible units is also interest-
ing to better modeling different types of data [Hinton and Salakhutdinov, 2006], as
well as the improvement achieved by using rectified linear hidden units to speed up
the training process [Nair and Hinton, 2010]. On the other hand, RBMs can also be
used as a feature extractor model to feed the new representation of the data into a
classifier which is not necessarily a neural network [Cai et al., 2012; Lee et al., 2009c].

Regarding the regularization and sparsity, these two concepts have been analyzed
extensively in RBM models. On the one hand, weight-decay method with the L2 reg-
ularization term is commonly added during the training of standard RBMs [Hinton
and Salakhutdinov, 2006; Salakhutdinov et al., 2007]. This method has been impor-
tant not only to avoid overfitting, but also to rise the mixing rate during sampling,
as it was demonstrated in [Tieleman, 2008b].

On the other hand, sparsity has been also introduced in several ways. Since the
Deep Learning era emerged, some of the works regarding RBM's regularization have
been focused on forcing sparse activity. For instance, [Luo et al., 2011] proposed a
combined L1/L2 regularization upon the activation probabilities of the hidden units
to capture the local dependencies among these units. This regularization not only
encourages units of many groups to be inactive given observed data, but also makes the
hidden units within a group to compete with each other for modeling observed data.
However, those groups are fixed by hand and they remain unchanged during training.
Another recent article, [Ji et al., 2014], also proposes a sparse RBM model that
encourages the hidden units to be sparse through adding a log-sum norm constrain
on the totality of the hidden units' activation probabilities. This allows each neuron
to learn its optimal sparsity based on the task at a hand, contrary to other methods
that constrain the sparsity level of the units to a target value [Lee et al., 2008].

Nevertheless, all of these methods are focused on forcing sparse activity, and the
MSR method presented in this chapter is focused on enforcing regularization and
sparsity at connections level. Sparse connectivity was introduced many years ago
in visual recognition systems that use convolutional networks, where local receptive
fields are connected only to a small subset of image pixels [LeCun et al., 1998]. In that
case, removing those connections aimed at reducing the number of model parameters
and providing a certain amount of translational and scale invariance. However, in the
case of the RBMs, the sparse connectivity proposed is not related to those advantages,
but rather to improve the performance by making the model more robust agains noise.
A similar idea is followed in [Tang and Eliasmith, 2010], where a sparsely connected
RBM is trained by assigning a random fixed receptive field to each hidden unit and
removing the connections outside this receptive field. Although this method achieves
some kind of robustness, the best performance is obtained by applying a probabilistic
denoising algorithm that cleans the noisy data a posteriori. The idea of removing
connections introduced in this work, inspired partly the creation of our novel MSR
method presented in this chapter. However, our assumption is that the removed
connections should follow a smarter criterion instead of being chosen randomly and

3.4. MASK SELECTIVE REGULARIZATION FOR RBMS 29

remain unchanged. Also, using square random fields limits the type of data only to
images, not being able to apply the method in upper layers of a deeper network.

The idea of removing useless connections has been also touched by
[Turcsany and Bargiela, 2014], which share similar ideas with the MSR method. The
authors proposed to learn localized features by using biologically inspired Gaussian
receptive fields. The removed connections are fixed by a binary mask which is learned
dynamically during training. However, the results obtained are only focused on im-
proving the reconstruction error of the RBM.

Another interesting work is presented in [Cho et al., 2012], where a Tikhonov-type
regularization for RBMs is studied. The article demonstrates that this regularization
can be seen as a combination of the weight decay regularization applied to the con-
nections and the sparsity forced in the hidden activations. However, this combination
does not turn out to be significant enough according to the generative and discrimi-
native performance presented in the article.

Aside from the idea of taking advantage of using several types of regularizations,
one key concept introduced by the MSR method is to take advantage of the topol-
ogy of the input space. In this way, [Schulz et al., 2011] proposed an RBM variant
that exploits the local nature of the image statistics. The new model employs local
connectivity to remove those connections that model long-range dependencies, which
are known to be weak in natural images [Huang and Mumford, 1999]. However, it
is unclear how to extend this type of sparse connectivity to non-image data where it
can not be assumed these local statistics.

Besides these articles, it is also important to cite an alternative regularization
and variable selection method called Elastic Net (EN). The EN regularization was
originally devoted for linear regression, a lasso convex problem proposed by Zou and
Hastie [Zou and Hastie, 2005]. The authors transform the na\"{\i}ve elastic net problem
into an equivalent lasso problem on augmented data. Moreover, the na\"{\i}ve elastic net
can perform an automatic variable selection in a fashion similar to the lasso. Although
it is possible to use the EN approach in RBMs, all the advantages introduced by the
authors for the lasso convex problem can not be extended to the RBM due to its
non-convexity nature of the optimization problem.

3.4 Mask Selective Regularization for RBMs

This section focuses on the new regularization method proposed for RBMs, called
Mask Selective Regularization (MSR). The most important characteristics of this
method are explained here, and it is compared to other regularization methods em-
ployed in RBMs.

3.4.1 Introduction

Regularization is an important step in any optimization process to prevent overfitting
by penalizing complex solutions. In the context of RBMs, the regularization is intro-
duced as a restriction over the parameters during the learning process, as stated be-

30 CHAPTER 3. REGULARIZATION METHODS FOR RBMS

fore. In such process, the Contrastive Divergence (CD) algorithm (see Section 2.3.1.2)
employes a stochastic gradient descent method to minimize a loss function defined by

\ell (\theta ,\scrD) = - \scrL (\theta ,\scrD) , (3.1)

where \scrL (\theta ,\scrD) is the log-likelihood of the training set \scrD (see Eq. 2.11), and \theta are the
parameters of the model (weights and biases). This loss function can be supplemented
by adding an extra term to force some kind of constraint. This term depends on the
type of the regularization, as explained down below. For instance, to penalize the
magnitude of the weighs it is possible to modify the loss function according to:

\ell (\theta ,\scrD) = - \scrL (\theta ,\scrD) + \lambda 2\| W\| 2 , (3.2)

where W \in \BbbR D\times N is the matrix of the weights that connects the visible and the
hidden layers (being D and N the dimensionality (number of units) of these layers,
respectively) and \lambda 2 is a regularization coefficient. According to this expression, the
weight-decay method penalizes large weights in W using the L2 norm. However, this
norm does not force real zeros in weak connections, and this may adversely affect the
hidden activation units if there is any kind of perturbation in the visible layer.

A different regularization method is based on using the L1 norm over the param-
eters of the model. In the same way, the loss function is modified by adding an extra
term:

\ell (\theta ,\scrD) = - \scrL (\theta ,\scrD) + \lambda 1\| W\| 1 , (3.3)

where \lambda 1 is a regularization coefficient. This loss function often causes many of the
weights to become exactly zero whilst allowing a few of them to grow quite large.
The advantage of the L1 regularization over the L2 is that the former performs a
real feature selection forcing sparsity in the connections [Ng, 2004]. The feature
detectors obtained using the L1 regularization are strongly localized which eases the
interpretation. However, the L1 norm is not very common in the RBMs' context
because perhaps it may remove too many connections and the remaining may contain
large weights, which is a known problem for generalization.

One approach in order to combine both regularization terms is the Elastic-Net
(EN) [Zou and Hastie, 2005]. This approach applied to the RBM optimization func-
tion leads to the expression of the loss function given by

\ell (\theta ,\scrD) = - \scrL (\theta ,\scrD) + \lambda 1\| W\| 1 + \lambda 2\| W\| 2, . (3.4)

According to the expression, both regularizations are applied together to all the
weights, using the \lambda 1 and \lambda 2 parameters to control the contribution of each term.

3.4.2 A Loss function combining L2 and L1

Each of the L1 and the L2 regularizations has its own advantages and disadvantages,
so we propose to define a new regularization scheme that could combine smartly the
advantages of each norm into a single framework. The main idea is to adaptively split
the set of weights into two disjoints sets, so that the L1 regularization is applied on

3.4. MASK SELECTIVE REGULARIZATION FOR RBMS 31

one set and the L2 on the other one. A new loss function is defined, and it is given
by

\ell (\theta ,\scrD) = - \scrL (\theta ,\scrD) + \lambda 1

\bigm\| \bigm\| \bigm\| W \circ \^R
\bigm\| \bigm\| \bigm\|
1
+ \lambda 2

\bigm\| \bigm\| \bigm\| W \circ R
\bigm\| \bigm\| \bigm\|
2
, (3.5)

where R is a D\times N binary mask and \^R is its bit-wise complementary mask. Since W
and R are multiplied element-wise, the ones in R represent the elements in W where
the L2 regularization is applied. Similarly, the ones in \^R correspond to the elements
in W where the L1 regularization is used. This loss function enforces many elements
of W to be exactly zero (L1 norm) and, at the same time, avoids the remaining ones
to grow too large (L2 norm). In order for this to be meaningful, the matrix R must be
responsible for taking into account the topology of the input space to decide smartly
which connections are penalized by each method. This type of regularization is called
Mask Selective Regularization (MSR).

It is important to note that, although both the EN regularization and the MSR
employ the L1 and the L2 regularizations, there is a significant difference between
them. In MSR either the L1 or the L2 is applied to each parameter, whereas in
EN both regularizations are applied together to all the parameters. Typically, EN is
unfruitful to combine L1 and L2 in cases where \lambda 1 and \lambda 2 have different magnitude
orders. For instance, a large \lambda 1 dominates the minimization of the loss function
towards a sparse solution, while a large \lambda 2 focuses towards a shrinkage solution.
However, this undesirable effect is avoided with the selective regularization MSR
because \lambda 1 and \lambda 2 values are applied separately over different weights.

3.4.3 Mutual information and Correlation coefficient

Before going into detail about the MSR method, it is necessary to define a measure
capable of taking into account the relations between the input variables to build the R
matrix. This measure should be able to detect the strong and the weak dependencies
from the input topology.

Assuming that the input representation space is formed by random variables (for
instance, pixels in the case of images), the Mutual Information (MI) of these variables
is a measure of the their mutual dependence. Formally, the MI of two discrete random
variables X and Y can be defined as

I (X,Y) =
\sum
y\epsilon Y

\sum
x\epsilon X

p (x, y) log

\biggl(
p (x, y)

p (x) p (y)

\biggr)
, (3.6)

where p (x, y) is the joint probability distribution of X and Y , and p (x) and p (y)
are the marginal probability distribution functions of X and Y respectively. The MI
measure can also be interpreted as the predictability of the second variable by knowing
the first one, or the stored information in one variable about the other variable.

However, the input units of the RBM model represent probabilities before the
sampling process. It is non-trivial to estimate the MI for continuous data because the
sums in Eq. 3.6 become a double integral. For this reason it is common to approximate
the MI measure by the Pearson's correlation coefficient, which is used to measure the

32 CHAPTER 3. REGULARIZATION METHODS FOR RBMS

linear dependence between random variables [Li, 1990; Song et al., 2012]. Formally,
the correlation coefficient between two random variables X and Y is defined as

corr (X,Y) =
cov (X,Y)

\sigma X\sigma Y
=

E [(X - \mu X) (Y - \mu Y)]

\sigma X\sigma Y
, (3.7)

where \mu X and \mu Y are the expected values of the random variables, and \sigma X and \sigma Y

are their standard deviations, respectively.
Although MI is a more general measure to evaluate the relation between variables,

in this thesis we use the Pearson's correlation coefficient as a surrogate measure of the
MI. The correlation coefficient has the advantage of being straightforward to compute
for continuos data, unlike the MI. Also, it is assumed that capturing the linear relation
between the input variables is enough to mark out and define the connections where
each regularization should be applied. The next section explains how the binary
regularization mask R is built by computing these correlations.

3.4.4 The binary regularization mask

The first step to be solved by the MSR approach is how to build the binary matrix R.
This matrix should fulfill two characteristics. On the one hand, R should take into
account the topology of the input data: the weak dependencies between the visible
units should be regularized using the L1 norm, and stronger dependencies should
be regularized using the L2. On the other hand, it also might be appropriate that
this mask could change adaptively to accommodate the current state of the weights
during the training process. For now, just assume that R is built dynamically as a
part of the training process by selecting many times a subset of binary vectors from
a precomputed set \scrM .

Let us focus on the\scrM set. This set is formed byD different binary vectors (masks)
m\bfi \in RD, where each m\bfi mask is related to a different visible unit. Therefore, there
are as many unique binary masks as number of visible units. The goal of these masks
is to sweep the most influence areas of each dimension in the training set. The areas
defined by the masks are calculated using the Pearson's correlation coefficient between
all the input dimensions across the entire training set. Therefore, each binary element
mij of the vector m\bfi would be 1 if the correlation between the visible units i and j
is high, and 0 otherwise. More formally, to build the binary vector related to the
unit i, i.e. m\bfi , its c components with the highest correlation values are set to 1, and
the remaining ones are set to 0. In order to decide the c parameter it is proposed to
keep the correlation ratio above a certain threshold \alpha , which can range from 0 to 1.
Mathematically, this criterion fulfills the equation\sum

j\in \scrS
| corr (i, j) |

D\sum
j=1

| corr (i, j) |
> \alpha , (3.8)

where \scrS is the set of indexes of the highest c correlation values, and \alpha is a tuneable
parameter of the model.

3.4. MASK SELECTIVE REGULARIZATION FOR RBMS 33

Fig. 3.1 displays the main steps to precompute the \scrM set according to what
has been stated above. This figure represents the process followed for the MNIST
handwritten digits dataset1, which is specially suitable to visually understand the
process. According to the figure bellow, the first step is to compute the correlation
coefficient using Eq. 3.7 between all possible combinations of pairs of pixels from the
input space across the entire training set. All these values can be represented as
a grayscale symmetric matrix where white color denotes high correlation and black
color denotes low correlation. Note that this representation is given by the absolute
value of the correlation coefficient. From this matrix, each binary mask m\bfi of the \scrM
set is represented as a column vector, where the indexes that satisfy Eq. 3.8 are set
to 1. In other words, each of these vectors activates their components if the current
input unit is correlated with respect to the others. Note that the \scrM set is represented
as a binary matrix in the figure by appending all the vectors.

The binary masks precomputed following the process explained depend greatly
on the \alpha parameter. In order to visually assess the effect of this parameter, Fig. 3.2
represents the resulting binary mask related to a given visible unit varying the \alpha
parameter. These images are obtained by rearranging the elements of the binary
vectors to form a square matrix. Note that all the masks are associated to the same
visible unit, which is spatially localized by a red dot. In the case of images, small
values of \alpha generates masks that are localized around the visible unit. Larger values
of \alpha capture more long-term dependencies and can relate areas that are not spatially
connected.

Once how the \alpha parameter affects the size of the binary mask is clear, it is also
interesting to visually assess the regularization masks related to different input units
fixing \alpha . Fig. 3.3 shows a few examples of these regularization masks obtained from
the MNIST dataset using \alpha = 0.7. Each mask intends to capture the strongest (in
white color) and weakest (in black color) dependencies for each visible unit. In the
specific case of the MNIST database, it would be 784 precomputed masks similar to
those represented in the figure because there are 28 \times 28 visible units, which is the
size of the images.

At this point, it is important to recall that these masks are created without as-
suming any knowledge about the geometry of the data, unlike other methods that
force sparse connections by hand assuming the image layout of the samples [M\"uller
et al., 2010; Tang and Eliasmith, 2010]. For this reason, this method extends its use
to non-image data as well without any modification. Actually, this hypothesis has
been demonstrated in some experiments performed with text data (see Section 3.5.4).
In this regard, these binary masks can be obtained not only in the first RBM of a deep
network, but also in upper layers where it cannot be assumed that the data follows
any particular layout.

After explaining how to precompute the binary vectors for the \scrM set, the next
step explains how the regularization mask R, which is applied to the weights, is built
dynamically by means of selecting a subset of these vectors. Next section explains
this process.

1See Appendix A.1

34 CHAPTER 3. REGULARIZATION METHODS FOR RBMS

Figure 3.1. Graphical representation of the process to precompute the binary masks of the
\scrM set for the MNIST dataset.

3.4. MASK SELECTIVE REGULARIZATION FOR RBMS 35

Figure 3.2. Binary masks for \alpha \in \{ 0.2, 0.4, 0.6, 0.8\} for the MNIST dataset. The red dots
indicate the visible units related to each binary mask.

Figure 3.3. Some examples of binary regularization masks for the MNIST dataset.

3.4.5 Topology selection and convergence

Let us remember that the matrix R is used to selectively apply a different regulariza-
tion term over the weight matrix W, and it is built by means of selecting a subset of
masks from \scrM . Let wj and rj be the j

th column of the matrix W and R respectively.
Each element of wj can be regularized using either the L2 or the L1 norm according
to the binary values of rj . Each rj is selected among the precomputed masks \scrM
using an energy criterion given by:

rj = max
\bfm k\in \scrM

Ek
in - Ek

out (3.9)

Ek
in =

m\intercal
kw

2
j

| | mk| | 1
(3.10)

Ek
out =

\^m\intercal
kw

2
j

| | \^mk| | 1
(3.11)

where mk is a binary mask from the precomputed \scrM set, and \^mk is its bit-wise
complementary mask. The Ek

in value is the positive energy of the mask mk with the
feature wj averaged by the mask's area. The intuitive idea behind this equation is
that, given a feature vector wj , E

k
in will be high if the large weights of wj mostly

overlap with the mask mk. Similarly, Ek
out value is the negative energy. This term

penalizes the case where large values of wj are outside the mask mk. Therefore,

36 CHAPTER 3. REGULARIZATION METHODS FOR RBMS

according to this criterion, rj is selected as the binary mask mk \in \scrM that best
``matches"" with wj .

One thing to keep in mind is the fact that the selection process is done indepen-
dently for each feature detector wj , so the same binary mask from \scrM can be selected
many times. In other words, there could be repeated masks in R because the selection
process is not exclusive. Obviously, this fact will happen when n > d. However, this
effect may be desirable because some local areas would require several hidden units
with the same mask in order to explain all the variability that appears in that portion
of the representation space.

For a better understanding of how this energy criterion works, Fig. 3.4 displays
some of the features learned at the end of the training process for the MNIST dataset,
and their binary masks associated overlaid in red color. Note that each wj vector
links all the visible units to the jth hidden unit, so it is possible to display each feature
detector as an image by resampling the vector to a square matrix. Note also that
the black color in the image denotes positive values, the white color denotes negative
values, and the gray color denotes values near zero. According to the figure, the goal

Figure 3.4. Learned features for the MNIST dataset along with their corresponding binary
masks overlaid in red color.

of this criterion is clear: to spatially localize the features learned inside the binary
masks, so that the L2 norm is applied to the feature itself and the L1 norm is applied
outside its influence area to force real zeros.

Regarding the training process of the RBM (see Section 2.3.1.2) using MSR, the
regularization mask \scrR is changed according to the state of the network during the
iterative process. Therefore, the selection criterion given by Eq. 3.9 is applied several
times and the mask selected by each unit is probably going to change during the
training Actually, the binding between the regularization masks and the weights is
quite changing at the beginning of the process. At early epochs, since the values of
the weights are initialized randomly, the feature detectors are not well defined yet and
the binary masks that best fit the weights vary significantly. As the process evolves,

3.4. MASK SELECTIVE REGULARIZATION FOR RBMS 37

the correspondence freezes and each feature detector gets associated with a fixed
regularization mask. To ensure the convergence of the method, a probability assigned
to the capacity of changing the current mask at each step is defined. This probability
decreases linearly with the training time, so the chance for changing the mask in very
initial iterations is high, but tends to zero for the last iterations. Therefore, if the
energy criterion selects a different binary mask, this change will be made depending
on a probability given by the ratio between the elapsed steps at that moment an the
total training steps. Otherwise, the mask remains unchanged. This decision is made
by sampling from a Bernoulli distribution with the probability previously defined.

3.4.6 The MSR Algorithm

The steps of the MSR method described in the previous section can be integrated
into the CD algorithm to train the RBM model. The loss function to be minimized is
defined in Eq. 3.5. The derivative of that loss function with respect to the parameters
of the model yields a very simple learning rule given by

\Delta wij = \epsilon
\bigl(
\langle vihj\rangle data - \langle vihj\rangle model - \lambda 1sgn (wij \cdot \^rij) - 2\lambda 2 (wij \cdot rij)

\bigr)
, (3.12)

where the last two terms are the derivatives of the L1 and the L2 regularization terms
respectively, and sgn(x) is the signum function of x. Note that the update rule for the
bias remains unchanged because the regularization does not apply to this parameter.
This expression is usually evaluated every time after estimating the gradient on a set
of samples called batch, which is a common practice in gradient-based methods to get
a smoother convergence. However, the update of the R matrix in the MSR method is
performed only once at every epoch, which comprises an entire pass over the training
set. Therefore, there are several weighs' updates between each MSR iteration. This
is important because it allows the weights to settle to stable configurations between
each epoch and reduces the computational cost.

The most important steps of the MSR method within the CD algorithm are sum-
marized in Fig. 3.5. This process starts by precomputing the \scrM set, obtaining several
binary masks that sweep the most influence areas from the training set. After that,
the binary matrix R is built dynamically in each epoch by selecting the masks from
\scrM that best matches the current weights' states according to the energy criterion
defined in Eq. 3.9. The figure depicts how the values of wj gradually evolve towards
a useful feature detector. In the same way, rj also changes by adapting itself to the
state of the weights. At the end of the training process, the RBM will learn useful
feature detectors regularized with the L2 norm on its influence area and with the L1

norm applied outside.
To sum up the characteristics of the MSR algorithm, it is important to underline

two key points of this method. First, this algorithm does not make any assumption a
priori about which regularization masks should be used. This selection is guided only
in accordance with the topology of the data and the current values of the parameters of
the model. In fact, we have observed that there exist masks in \scrM that are never used
while others are reused several times in different feature detectors. Another interesting
point is that MSR serves as a guide to indicate where coefficients should be enforced

38 CHAPTER 3. REGULARIZATION METHODS FOR RBMS

Figure 3.5. Graphical representation of the MSR method within the CD algorithm.

3.5. EXPERIMENTS 39

to be zero. However, this guide is flexible because there may exist situations where
higher order relationships between visible units are not captured by the binary masks.
In this case, the feature related to those visible units may have non-zero values in the
L1 regularized weights, i.e. outside the mask. The algorithm allows these cases. This
fact is illustrated in the bottom-right feature shown in Fig. 3.4, where large weights
represented by a black dot lay outside the mask. Obviously, this phenomenon depends
on the intensity of each regularization term in the minimization process.

3.5 Experiments

3.5.1 General protocol

This section describes the general protocol for the evaluation carried out regarding
the different regularization schemes described before and comparing the results with
the MSR model presented. We propose an evaluation over different datasets with
image and non-image data. First, two popular handwritten digits datasets are con-
sidered: the MNIST and the US Postal Service (USPS). Second, in order to show
the capabilities of the MSR to model the topology of the input space from non-image
data, we carried out also some experiments using the 20-Newsgroups text classifica-
tion dataset. Finally, we have used the CIFAR-10 to evaluate our algorithm in a
more complex scenario that contains natural color images. These datasets and their
evaluation method are described in Appendix A.

All of these experiments have a common protocol described below. First of all, an
RBM model is trained including one of the regularizations proposed using the CD1

algorithm. In some experiments, the model employed becomes deeper by stacking
several RBMs on the top, obtaining a DBN model as explained in Section 2.3.2. The
training of each RBM is done independently in a complete unsupervised way using the
entire training set of the database. After that, the RBM/DBN network is converted
into a discriminative model by adding an extra layer that represents the labels of
the samples. The entire network is fine-tuned using the Backpropagation algorithm
minimizing the cross entropy error on the output layer. The fine-tuning process stops
when the average cross-entropy error on the training data fall bellow a pre-specified
threshold. To fix this threshold value, we fine-tune the network using only a subset
of the training samples and using the remaining ones as a validation set (around the
20\% of the training set). The cross-entropy threshold value is fixed with the fewest
classification error on the validation set.

The goal of the protocol described is to evaluate how the regularization method
applied to the RBMs during the pre-training affects the discriminative performance
of the resulting network after the fine-tuning. In other words, we use the RBM
model as a feature extractor and we want to evaluate the quality of these features as
initialization of a discriminative networks. To this end, five regularization schemes
have been compared:

\bullet No REG: this model corresponds to an RBM trained without any regulariza-
tion penalty.

40 CHAPTER 3. REGULARIZATION METHODS FOR RBMS

\bullet L\bftwo : this model corresponds to an RBM trained with just the L2 regularization.

\bullet L\bfone : this model corresponds to an RBM trained with just the L1 regularization.

\bullet EN: this model corresponds to an RBM trained with the Elastic Net configu-
ration, that is, using the L2 and the L1 together over all the weights.

\bullet MSR: this model corresponds to an RBM trained with the new MSR method
proposed.

In all cases, a model selection is needed in order to obtain the best parameter config-
uration in each case. For the L1 and the L2 methods, this model selection performs
a search over \lambda 1 and \lambda 2 among the values 0.0001, 0.001 and 0.01, fixing each value
according to the best discriminative performance on the validation set in each case.
For the EN method the grid search is performed jointly over \lambda 1 and \lambda 2. Finally, for
the MSR method the grid search includes also the \alpha parameter in the range 0.3 - 0.8
with a step of 0.1. It is important to make it clear that the regularization process
is only applied during the pre-training step. Once the models have been pre-trained,
the discriminative fine-tuning procedure is the same in all cases and does not force
any restriction. Also, in the case of the DBN model it is important to highlight that
the regularization is applied in all the stacked RBMs, including the MSR approach
which is able to work in these upper layers. Actually, some extra experiments on the
MNIST dataset have been performed to show the advantage of using MSR not only
in the first layer, but also in upper layers of the DBN model.

Noisy data
In order to assess the robustness of the MSR approach, some extra experiments

over the handwritten digit databases have been performed to evaluate the performance
not only on the clean test data, but also on a noisy version. To this end, and inspired
by [Tang and Eliasmith, 2010], the original test partition has been corrupted with
three kinds of noise to reflect some possible sources of error. The first source of error
is a random noise where 10\% of the pixels are randomly activated. The second one
introduces a border of two pixels wide to the images. Finally, the third one simulates
a block occlusion by adding a square to the images in a random location. The area
of that square is set to be one sixteenth of the total area of the image. We can see an
example of each kind of noise in Fig. 3.6. It is important to mention that, in these
experiments, the models are trained and validated in absence of noise in all cases.
Similar experiments over a noisy test set are performed on the 20-Newsgroups text
classification dataset where the noise is obtained by modifying the word counts.

3.5.2 Experiments with MNIST

The MNIST is a database2 of handwritten digits with 10 different classes. The pixel
values are normalized to the range [0, 1] and these values are considered probabilities
for the binary input units. In these experiments we have employed the same 784 -
500 - 500 - 2000 - 10 deep network used by Hinton [Hinton and Salakhutdinov,

2For further information about MNIST, see Appendix A.1

3.5. EXPERIMENTS 41

(a) Clean (b) Random (c) Border (d) Block

Figure 3.6. Clean and noise images

2006], which achieves 1.14\% error on the test set. This notation means that the deep
unsupervised network used as a pre-training is formed by three stacked RBMs with
500, 500 and 2000 hidden units respectively. The input layer has 784 visible units,
each one representing one dimension of the input data. To build a discriminative
network, 10 softmax units are added at the end of the network, each one representing
one possible label. During the pre-training each RBM has been trained for 50 epochs.
Weights were initialized with small random values sampled from a normal distribution
with zero mean and standard deviation of 0.1. The learning rate value was set to 0.1
for both weights and biases. The regularization terms \lambda 1 and \lambda 2 were fixed by model
selection to 0.0001 in all cases, whereas \alpha is fixed to 0.7 in the case of the MSR.

Quantitative results
To quantitatively evaluate the methods proposed, some results are given in Ta-

ble 3.1. Note that in this table we have included not only the results about performing
the fine-tuning with all the training samples, but also with a small fraction of them.
This evaluation aims to simulate the situation where we have tons of unlabeled data
but scarce labeled examples. Actually, this is a common situation in most real prob-
lems. If we make the assumption that the unlabeled data can be labeled with the same
labels as the classification task, we can address the problem within a semi-supervised
framework where all the training data is used for the unsupervised pre-training and
a small labelled fraction is employed for the fine-tuning. According to the results,
we observe that our model MSR achieves the lowest error rate in almost all cases
with noisy data. With this kind of corrupted data, it is clear the need of using some
method that involves the L1 penalty to force real zeros in the connections. In con-
trast, the RBMs trained without regularization or with the L2 are severely affected
by the noise in all its forms. On the other hand, these methods together with the
MSR approach perform reasonably well on clean data. In fact, MSR obtains a 1.05\%
error rate in the clean test set, which is comparable to other results published for the
permutation-invariant version of the MNIST task using similar networks. [Hinton and
Salakhutdinov, 2006; Salakhutdinov and Hinton, 2009a; Tang and Eliasmith, 2010].

We have also conducted an extra experiment on this dataset to show the advantage
of using MSR in the upper layers of the deep network. These results are summarized
in Table 3.2, where the classification error rate is shown for the same network of the
previous experiment depending whether or not the MSR algorithm has been applied to
each RBM. Note that the first and the last rows of this table correspond to the results

42 CHAPTER 3. REGULARIZATION METHODS FOR RBMS

Table 3.1. Error rate (\%) on the MNIST test set for both clean and noisy images using
different regularization schemes and varying the number of labeled samples used in the fine-
tuning.

Num.
Model

Error rate (\%)
samples Clean Random Border Block

100

No reg 16.30 39.85 86.72 24.56
L2 16.81 20.72 76.12 24.64
L1 18.58 20.95 21.46 24.49
EN 17.63 19.38 21.76 23.83
MSR 16.37 18.30 19.80 22.64

500

No reg 6.52 34.16 84.24 18.13
L2 6.61 11.90 70.12 17.74
L1 7.59 11.54 9.50 16.15
EN 7.83 11.16 10.10 16.00
MSR 6.59 9.74 8.66 15.20

1000

No reg 4.91 34.52 83.74 17.24
L2 5.03 10.77 71.68 16.89
L1 5.62 10.34 7.83 13.82
EN 5.75 10.38 8.60 14.81
MSR 4.99 8.77 7.60 13.72

All

No reg 1.11 1.39 87.61 16.46
L2 1.07 1.20 79.86 16.24
L1 1.11 1.21 2.82 12.83
EN 1.16 1.24 3.37 13.17
MSR 1.05 1.13 2.89 12.44

3.5. EXPERIMENTS 43

already presented in Table 3.1. According to these results the best performance is

Table 3.2. Effect of applying MSR to different layers of the network. Error rate (\%) on
the MNIST test set for both clean and noisy images.

Layers Error rate (\%)
1st 2nd 3rd Clean Random Border Block

No Reg No Reg No Reg 1.11 1.39 87.61 16.46
MSR No Reg No Reg 1.14 1.25 4.37 13.08
MSR MSR No Reg 1.09 1.19 5.34 12.73
MSR MSR MSR 1.05 1.13 2.89 12.44

achieved when MSR is used in all layers. Also it can be seen a gradual improvement
achieved when more layers are regularized with the MSR method. Furthermore, these
results demonstrate that MSR also works when the topology of the data is unknown
as in the case of the upper layers of the network.

44 CHAPTER 3. REGULARIZATION METHODS FOR RBMS

Qualitative results
Besides the numeric results presented that show the capabilities of the MSR ap-

proach, it is also interesting to report other qualitative measures to check the effect
of using MSR instead of other regularizations. On the one hand, Fig. 3.7 shows the
histogram of the weighs in the first RBM using the regularization schemes presented.
The histogram without any regularization is also included in the figure for complete-
ness. It can be seen that MSR inherits properties from both L2 and L1 regularizations:
it forces many coefficients to be exactly zero like in L1 and prevents the coefficients to
grow too large like in L2. The histogram of the EN regularization is also interesting
since it is quite similar to that of the MSR. Obviously EN uses both regularizations,
but it is clear according to the numeric results previously reported that applying both
to the same weight is more difficult to take advantage of their potential.

On the other hand, another qualitative visual assessment can be obtained com-
paring the features learned by the first RBM model. Fig. 3.8 compares some features
learned on the MNIST dataset without any regularization and with the MSR algo-
rithm. According to the images it is clear that MSR obtains cleaner features due to
the effect of the L1 which forces zeros outside the influence area of each feature. We
have not include the other methods because the differences are not so significant.

3.5.3 Experiments with USPS

The USPS3 dataset is composed of images of handwritten digits with 10 classes,
similar to the MNIST. The pixel values are normalized to the range [0, 1] and these
values are considered probabilities for the binary input units. For these experiments
we have used a 784 - 300 - 300 - 1200 - 10 deep network, which is the same architecture
as in the MNIST but using only three-fifths as many units in each hidden layer, as
suggested by [Hinton et al., 2006]. The training and testing procedure and the value of
the other parameters are the same as in the MNIST, except that the model selection
method fixed the parameters \lambda 1 = 0.001 and \alpha = 0.6 for the MSR method. The
results are displayed in Table 3.3. According to these results, the MSR outperforms

Table 3.3. Error rate (\%) on the USPS test set for both clean and noisy images using
different regularization schemes.

Model
Error rate (\%)

Clean Random Border Block
No reg 5.17 33.45 71.08 28.36
L2 5.10 28.26 62.78 28.55
L1 5.24 27.18 62.63 26.75
EN 5.75 20.82 59.00 24.55
MSR 5.03 23.16 55.64 24.25

the other regularizations on the clean version of the test data, obtaining a 5.03\% error
rate. This result is similar to others obtained also with neural networks [LeCun et al.,

3For further information about USPS, see Appendix A.2

3.5. EXPERIMENTS 45

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

0

10
2

10
4

10
6

Histogram of W without regularization

Weights values

F
re

q
u

en
cy

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

0

10
2

10
4

10
6

Histogram of W with L2 regularization

Weights values

F
re

q
u

en
cy

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

0

10
2

10
4

10
6

Histogram of W with L1 regularization

Weights values

F
re

q
u

en
cy

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

0

10
2

10
4

10
6

Histogram of W with EN regularization

Weights values

F
re

q
u

en
cy

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

0

10
2

10
4

10
6

Histogram of W with MSR regularization

Weights values

F
re

q
u

en
cy

Figure 3.7. Histogram of weights for different regularization schemes in the first RBM for
the MNIST dataset.

46 CHAPTER 3. REGULARIZATION METHODS FOR RBMS

a) Some features learned by the RBM without any
regularization

b) Some features learned by the RBM with the
MSR regularization.

Figure 3.8. Comparison of a random selection of features learned by the RBM in the first
layer.

1990], but a bit higher than the state-of-the-art in the same database [Jiang et al.,
2014b; Yang et al., 2011]. On the other hand, there is also a clear advantage of the
MSR method when dealing with noise in most cases. It should be mentioned that,
since USPS images are smaller than the MNIST images and their digits are scaled to
fit the available area, the Border and Block noises affect the error rate more severely
in the USPS case compared to the MNIST dataset.

3.5.4 Experiments with 20-Newsgroups

The 20-Newsgroups corpus4 is a text dataset with 20 different classes. The word
count values of the data are scaled to the range [0, 1] to simulate probabilities. As
it was done in the experiments with the handwritten digits, we would like also to
evaluate the regularization methods with noisy data. To simulate the noise we have
added randomly word counts to each data vector, varying the percentage of the total
words corrupted between 10\% and 30\%. The network employed is formed by just
one RBM with 1000 hidden units, so, following the nomenclature, the architecture
of the discriminative network is 5000 - 1000 - 20. Both \lambda 1 and \lambda 2 were fixed to
0.0001 in all cases, and \alpha was set to 0.6 in the MSR case. The training and testing
procedure and the value of the other parameters are the same as in the handwritten
digits experiments. Table 3.4 shows the results. According to the results the RBM
trained without any regularization and the MSR model perform best on the clean
data. The 22.13\% error rate obtained with MSR is comparable, even a bit lower, to

4For further information about 20-Newsgroup, see Appendix A.3

3.5. EXPERIMENTS 47

Table 3.4. Error rate (\%) on the 20-Newsgroups test set for both clean and noisy data.

Model
Error rate (\%)

Clean 10\% 20\% 30\%
No reg 22.11 24.14 25.56 28.09
L2 22.23 23.85 25.17 27.45
L1 22.35 24.32 26.38 28.94
EN 22.73 24.38 26.57 28.74
MSR 22.13 23.73 25.14 27.48

other results obtained using similar models [Larochelle and Bengio, 2008]. In presence
of noise, MSR also obtains the best results in almost all cases, despite the differences
are not as significant as in the other tasks. Probably this is due to the very nature
of the data representation, which is already very sparse and it is hard to tell the
effect of the L1 regularization. An additional research about studying more suitable
representations for this kind of data would be interesting. It also should be evaluated
the use of other type of visible units which better deals with the sparseness of the
data. Besides this, it is worth to mention that we have found the inability of the EN
to deal with values of \lambda 1 and \lambda 2 of different magnitude orders, which worsens the
results extremely in this task. This effect does not happen using MSR, which gives
reasonable results even in this extreme case.

3.5.5 Experiments with CIFAR-10

The CIFAR-10 dataset5 represents 10 classes of natural scene images. The RBM
employed for the unsupervised pre-training has one hidden layer with 4000 units.
The pixel intensities of the natural images of this dataset are real-valued data, so
the standard binary visible units of the RBM are not the best way to model them.
To deal with this kind of data we replace the visible binary units with linear units
with Gaussian noise, as described in Section 2.3.1.3. Each component of the data
is normalized to have zero mean and unit variance. We train the GRBM model in
the same way using the CD1 algorithm. Weights were initialized with small random
values sampled from a normal distribution with zero mean and standard deviation
of 0.05. The learning rate value was set to 0.001 for both weights and biases. The
regularization terms \lambda 1 and \lambda 2 were set to 0.001 for all the models, whereas \alpha is fixed
to 0.3 for the MSR model.

In contrast to the experiments carried out until now, the discriminative process to
evaluate this dataset has been done using a linear Support Vector Machine (SVM).
Therefore, once the GRBM is trained, we obtain a new representation of each sample
given by its hidden output activations, that is the output of the sigmoid function
without binarization. This new feature vector (and its label) us used as a input to
feed the SVM. This methodology has been previously used in the literature [Coates
et al., 2011; Tang et al., 2012] in order to compare the discriminative capabilities of

5For further information about CIFAR-10, see Appendix A.4

48 CHAPTER 3. REGULARIZATION METHODS FOR RBMS

the feature detectors learned by the unsupervised model employed. Table 3.5 shows
the results for the different regularizations and the proposed MSR method. Note
that we have compared the results only on clean images, since this kind of images
are already quite challenging. According to the table, MSR also outperforms the

Table 3.5. Error rate (\%) on the CIFAR-10 test set.

Model Error rate (\%)
L2 48.86
L1 47.02
EN 47.56
MSR 41.36

other regularization techniques evaluated in the CIFAR-10 database. Despite this,
the result obtained is far from the state-of-the-art in this task [Goodfellow et al.,
2013; Wan et al., 2013]. All of these methods use a convolutional approach that
exploits the strong spatially local correlation present in natural images, assuming a
specific geometry of the data. However, it is important to mention that our method
does not make this assumption. The authors of [Krizhevsky, 2009] demonstrate the
difficulty of learning interesting-looking feature detectors on natural images using
RBMs. Actually, the best result in that work is 64.84\% of accuracy on the test set,
but they used an RBM with 10000 hidden units and the pre-training was done with
many more images from the Tiny Images dataset. To compare our result to other
methods that use the standard training set and a non-convolutional approach, the
authors of [Glorot et al., 2010] used a three layer stacked auto-encoder obtaining
53.2\% accuracy on the test set, slightly worse than our result with MSR.

3.6 Conclusions

This chapter has been focused on regularizations techniques for the RBM model.
After a brief introduction about the theory of RBMs, the advantages of using some
kind of regularization during training has been justified. The well-known L1 and L2

regularizations have their own advantages and limitations. The EN regularization is
a way to mix both regularizations in the same framework. However, this last method
applies the L1 and the L2 together to the same weights, which might not be the most
suitable way to exploit their pros. We have presented a new regularization scheme for
RBMs that applies both regularizations in a selective way on disjoint sets of weights.
This new regularization method is called Mask Selective Regularization (MSR).

The MSR algorithm involves the use of some binary masks to delineate the target
area of each regularization. These areas are defined using a criterion that takes into
account the linear relations between the input variables. In this way, the method
constrains the L1 regularization to be applied on weak connections where we want
to force real zeros. On the contrary, the L2 regularization is applied to avoid that
some weights, where the feature detectors are being created, to grow too large. This

3.6. CONCLUSIONS 49

combination ensures both sparse connections to be robust against noise and general-
ization capabilities. Merging MSR with the CD algorithm enables to train the RBM
with this regularization, which is able to dynamically adapt according to the current
state of the weights. One of the most interesting topics of this method is that, the
criterion to choose which connections are regularized by each method is valid for any
kind of data, not only images. This is one of the main drawbacks from other related
works on the same topic, which is solved by the MSR.

A set of experiments have been conducted to validate the method proposed in
several discriminative tasks. We have used some datasets with different types of data
like images of handwritten digits, text data with newsgroups and natural images.
Besides the standard evaluation with the test clean data, we have also evaluated the
performance on a noisy version of the test set to demonstrate the robustness of the
feature detectors learned by MSR. The results show a clear advantage of using MSR
compared with the results obtained with other regularization techniques. MSR is not
only robust in presence of noise but also performs well on clean data comparing with
other state-of-the-art techniques that use similar methods.

Several directions for future research remain. Even though the results of the exper-
iments performed showed the advantages of the MSR regularization, these advantages
may be diluted when applying the fine-tuning. According to the results, it is clear that
the pre-trained features obtained with MSR are more robust than those obtained with
other regularizations. However, it would be quite interesting to extend this kind of
regularization also to the supervised optimization in the Backpropagation algorithm.
This can be seen as a selective dropout, where the connections to remove follow a
smarter criterion given by the binary masks. Another possible direction of future
work is to extend the applicability of MSR to other type of unsupervised models such
as Deep Boltzmann Machines or Deep Auto-Encoders, and check if the improvements
discover for RBMs also apply to these models. Finally, to complete the evaluation
of the method it would be worthwhile to evaluate the regularizations studied from a
generative point of view, also varying other parameters related like the steps in the
CD algorithm or using its persistent version (PCD).

Chapter 4

Local Deep Neural Networks

In the previous chapter, the benefits of restricting the learning of the RBM model
to local regions have been demonstrated, specially dealing with images. This chapter
describes a model that somehow follows a similar idea but applying it to discriminative
networks.

4.1 Introduction

When constructing a classifier in the context of the Machine Learning, it is very
important to have a powerful feature extraction method that learns the best repre-
sentation of the data for the problem at a hand. In the case of images, this process can
be performed by focusing on the entire image to extract a single global representation.
Therefore, each image is represented by a single feature vector, and a discriminative
rule is applied to classify an unseen object given a new feature vector. This kind of
methods, such as the Principal Component Analysis (PCA) and the Linear Discrimi-
nant Analysis (LDA), have been used widely in the face recognition problem to obtain
a new global representation of each face [Li et al., 2009; Ruprah, 2012].

However, in some tasks it is difficult to learn useful information directly from
the entire image due to the high variability of the data. In this spirit, a local-based
approach focuses on extracting useful information from specific parts of the image.
Therefore, in this case each sample is represented by several local representations,
so that there are indeed several feature vectors related to the same image. The
discriminative rule is learnt from the local representation manifold, and it is applied
to every feature vector separately. Actually, the feature vectors related to the same
image can be classified into different classes, so a framework that takes into account
the ensemble of local contributions to predict a final label for the new object is
required. This kind of methods have been shown effective in the image database
retrieval task [Mohr et al., 1997; Schmid and Mohr, 1997], and in the face recognition
problem [Paredes et al., 2001; Villegas et al., 2008].

Focusing on neural networks and Deep Learning methods, it turns out that learn-
ing from the entire image using Deep Neural Networks (DNNs) has proven to be

52 CHAPTER 4. LOCAL DEEP NEURAL NETWORKS

quite difficult in challenging tasks [Krizhevsky, 2009]. To deal with this problem,
this chapter presents a novel discriminative model called Local Deep Neural Network
(Local-DNN) which is based on two key concepts: local representations and deep net-
works. The assumption of this method is that it is possible to create a more reliable
classifier by taking into account several local contributions learned with neural net-
works. Therefore, the Local-DNN model is a local-based approach where the learning
is performed using a DNN on this local representation manifold. More specifically,
this model is designed to deal with computer vision problems, where the input objects
are images and the concept of local representations has a straightforward application.

The rest of the chapter is organized as follows:

\bullet Section 4.2 explains the motivation behind this idea and the main contributions
related.

\bullet Section 4.3 resumes some interesting works concerning the idea of learning from
local contributions, more specifically in computer vision problems.

\bullet Section 4.4 presents and explains in depth the novel Local-DNN model.

\bullet Section 4.5 evaluates the method presented using several image datasets and
compares de results with other state-of-the-art methods.

\bullet Section 4.6 draws some conclusions about the chapter and with regard to future
work.

4.2 Motivation and Contributions

Focusing on images, the results obtained in the previous chapter showed that the
RBM model obtains spatially localized features that detect patterns in different parts
of the image. This method works well in simple tasks, such as the MNIST hand-
written digits dataset, where the samples are quite small and the numbers displayed
are well detected, cropped and aligned. However, using standard neural networks
with bigger and/or challenging images is usually more difficult. Actually, the results
already presented in Table 3.5 showed a poor performance with the CIFAR-10 task
in comparison with other ML methods [han Lin and Kung, 2014; Snoek et al., 2012;
Sohn and Lee, 2012], even using a pre-trained network. Related to this, [Krizhevsky,
2009] already proposed to learn independently from small windows extracted from
the images (patches), due to the RBM's inability to extract meaningful features when
all the pixels in the image are connected to all the visible neurons. According to the
results obtained, the combination of these local learners behaved very well because it
allowed the network to learn useful weights. In the neural networks context, this fact
is mainly due to the difficulty of capturing the huge variability of the data modeling
each pixel of the image with a dedicated connection. In contrast, learning from local
regions might allow to be more robust to typical variations presented in images like
translations, rotations, etc.

4.3. STATE OF THE ART 53

Besides the troubles explained before, there is another issue in terms of the number
of connections. The layers in a Deep Neural Network (DNN) are fully-connected,
which means that all the units in one layer are connected to all the units in the
next layer. In case of high-dimensional inputs, such us an image of 200\times 200 pixels,
1.6\times 108 connections are necessary to connect the input layer to a hidden layer with
4,000 units. This situation makes the model hard to train, and the network would
easily overfit the data due to the huge number of free parameters. One naive solution
to this problem might be to work with low-resolution images by subsampling the
original ones, at the expense of losing information [Nair and Hinton, 2010]. However,
for some specific tasks it is necessary to use images with enough resolution, so that
important discriminative information is not lost. An alternative choice is to use
locally-connected layers, where each hidden unit is connected only to a subregion
(receptive field) of the input image, so that some connections of the network specialize
in local regions. This restriction greatly reduces the number of parameters and the
overfitting of the model, and it has worked well in some image object recognitions
tasks [Uetz and Behnke, 2009].

Convolutional Deep Neural Networks (DCNNs) aim to meet these requirements
by learning feature detectors that are only focused on local regions of the image.
This restriction reduces the number of connections between layers because the same
feature detector (a set of weights) is replicated across the entire image, similar to a
convolutional operation. This model has been already introduced in this thesis in
Section 2.2.4. The ideas introduced by DCNNs have shown an excellent performance
in computer vision tasks, obtaining the best results in several recent challenging com-
petitions [Srivastava et al., 2014; Wan et al., 2013].

The contribution presented in this chapter is focused on a novel model called Local
Deep Neural Network (Local-DNN). Given the obvious need of restricting the learning
to local parts of the image, this model is inspired by the ideas of local features and
deep networks. More specifically, a Deep Neural Network (DNN) is used to learn
from local regions extracted from the input image called local features. The network
learns to classify each feature according to the label of the sample (image) to which it
belongs. Each of these local features is classified independently, and the final decision
for the input sample is taken based on a simple voting scheme that takes into account
all these local contributions. This models uses a probabilistic framework that justifies
this approach. Additionally, two optional modifications of the baseline model are
presented. All of these assumptions are confirmed by a set of experiments on two
well-known image datasets. Besides the experiments performed in this chapter, the
Local-DNN model is also validated on the gender recognition problem of face images
(see Chapter 5).

4.3 State of the Art

There are several works in the DL literature that refer to the advantages of restricting
the learning to small zones of the image (patches). The work in [Coates et al., 2011]
gathers the most important parameters that might be important to learn useful feature
detectors using unsupervised learning algorithms. If these parameters are selected

54 CHAPTER 4. LOCAL DEEP NEURAL NETWORKS

correctly, it is possible to learn a powerful feature extractor model that maps small
squared regions extracted from the input images to better representations of the
data. Besides the carefully choice of the parameters, the only difference with the
results obtained using the method followed by [Krizhevsky, 2009] (which show the
difficulties of learning from natural images using RBMs) is the use of patches instead
of the entire image directly. Actually, many other articles use these patches as a
baseline representation to evaluate different feature learning methods [Chandra et al.,
2013; Coates et al., 2012].

Using this explicit patch-based representation is less common in supervised net-
works [G\"ul\c cehre and Bengio, 2013; Rowley et al., 1996]. In this case, the spatial
structure of the images is usually exploited by using local shared connections, as it is
done in DCNNs. The first few layers of these networks are composed of convolutional
filters (feature detectors), which are learned from localized regions in the input data.
Furthermore, the weights learned are tight, which means that the same filter is reused
in several regions of the image. The local learning introduced by this kind of layers
have shown the ability of extracting useful representations that are usually fed to
some fully-connected layers at the end of the network. DCNNs are widely used these
days because their great performance dealing with images in complex task [Srivastava
et al., 2014; Wan et al., 2013].

Within the framework of DCNNs, it is worth highlighting the Network In Network
(NIN) model [Lin et al., 2013]. The NIN model proposes to replace the linear model
given by the convolutional filter with a more powerful nonlinear function approximator
based on micro neural network. This basic idea is similar to our Local-DNN in the
way that it models different portions of the image using neural networks that share
the weights across different positions. However, the entire NIN model is quite more
complex and hard to train because integrates several neural networks into a generic
DCNN structure.

A different approach used in the literature that employs a local-based learning
method is the locally connected networks [Gregor and LeCun, 2010; Ngiam et al.,
2010]. Unlike the DCNN model, the weights of this network are not tight, so that the
filters learned in different receptive fields are not constrained to be identical. This
approach raises the learning capability of the model at the expense of increasing the
number of parameters. This type of local connectivity has shown to be useful in
the upper layers of some DCNN models [Taigman et al., 2014], before some fully
connected layers at the end.

Most of the references quoted so far refer to different ways to take advantage
of local-based representations in the context of neural networks. Beyond this topic,
these representations have also been used in other ML models. The work presented
in [Paredes et al., 2001; Villegas et al., 2008], introduces a new approach that combines
a simple local representation method with a k Nearest Neighbor classifier applied to
the face recognition problem. After extracting a set of local features from the images,
the final classification is performed using a probabilistic framework that combines
the contribution of each local representation. The results of the experiments showed
a robust performance in a face verification problem even on challenging situations
such as partially occluded images. The Local-DNN presented in this chapter follows
a very similar point of view. However, in this case Local-DNN takes advantage of the

4.4. LOCAL DEEP NEURAL NETWORKS 55

capability of the neural networks to learn complex distributions and to scale well to
large amounts of data.

4.4 Local Deep Neural Networks

4.4.1 Introduction

This section describes the details of all the parts that build the Local-DNN model
presented. First of all, a formal framework that justifies the local-based approach
from a probabilistic point of view is introduced. This framework is general, but here
it is particularized for the model presented. After that, it is explained how can we use
a discriminative DNN to learn a local posterior probability for each local contribution.
Furthermore, the possible methods to select and extract the local features from the
input images are summarized. Finally, two optional modifications of the base model
that employ the location information are explained.

4.4.2 Formal framework for local-based classification

This section addresses a formal framework to model the local feature-based classifi-
cation from a probabilistic point of view [Villegas et al., 2008]. This framework is
general, but we have particularized it for our Local-DNN model to deal with image
data. In this case, the local features become simple windows extracted from the image
at different locations (patches). Therefore, the terms patch and local feature will be
used interchangeably from here onwards in this framework.

In a classification task, we denote the class variable by c = 1, . . . , C and the input
pattern (image) by x. The local features are extracted from the input pattern using
some selection criterion which will be defined later. Let F denote the number of local
features drawn from the input pattern x. It is assumed that each local feature i,
i = 1, . . . , F , contains incomplete yet relevant information about the true class label
of x, and thus it makes sense to define a local class variable for it, ci \in \{ 1, . . . , C\} .

In accordance with the above idea, the posterior probability for x to belong to the
class c is computed from a complete model including all the local feature labels,

p(c | x) =
C\sum

c1=1

\cdot \cdot \cdot
C\sum

cF=1

p(c, c1, . . . , cF | x) , (4.1)

which is broken into two sub-models, the first one to predict local class posteriors
(from x only) and then another to compute the global class posterior from them (and
x),

p(c, c1, . . . , cF | x) = p(c1, . . . , cF | x) p(c | x, c1, . . . , cF) . (4.2)

In order to develop a practical model for p(c | x), the first sub-model is simplified by
assuming independence of local labels conditional to x; that is, by application of a
naive Bayes decomposition to it,

p(c1, . . . , cF | x) :=
F\prod
i=1

p(ci | x[i]) , (4.3)

56 CHAPTER 4. LOCAL DEEP NEURAL NETWORKS

where x[i] denotes the part of x relevant to predict ci, i.e. the i-th image patch.
The above approximation leads to a very simplified model. However, this simpli-

fication is based on a strong assumption of local features independence. A variation
of the model that takes into account the global relationships between local class vari-
ables, for instance using Conditional Random Fields [Farabet et al., 2013], would be
worth exploring. Similarly, the second sub-model is simplified by assuming that the
global label only depends on local labels,

p(c | x, c1, . . . , cF) := p(c | c1, . . . , cF) . (4.4)

The above simplifications are clearly unrealistic, though they may be reasonable
if each local feature can be reliably classified independently of each other. In such
a case, we may further simplify the second sub-model by letting each local feature i
contributes for ci in accordance with a predefined reliability weight, i.e. \alpha i,

p(c | c1, . . . , cF) :=
F\sum
i=1

\alpha i \delta (ci, c) , (4.5)

where \delta (\cdot , \cdot) is the Kronecker delta function; \delta (ci, c) = 1 if ci = c; zero otherwise. In
addition, 0 \leq \alpha i \leq 1, i = 1, . . . , F , and

\sum
i \alpha i = 1. In the simplest case, we may

consider all the local features equally reliable,

\alpha 1 := \alpha 2 := \cdot \cdot \cdot \alpha F :=
1

F
, (4.6)

but in general, \alpha i should be related to the discriminative power of each local contri-
bution, or at least some subrogate measure. The model leaves open the possibility of
using this parameter, so several strategies might be evaluated.

Substituting Eqs. (4.3) and (4.5) into Eq. (4.2), and then going back to our starting
model (see Eq. (4.1)), we may rewrite it as,

p(c | x) :=
C\sum

c1=1

\cdot \cdot \cdot
C\sum

cF=1

\left(F\prod
j=1

p(cj | x[j])

\right) F\sum
i=1

\alpha i \delta (ci, c) (4.7)

=

F\sum
i=1

\alpha i

C\sum
c1=1

C\sum
c2=1

\cdot \cdot \cdot
C\sum

cF=1

\left(F\prod
j=1

p(cj | x[j])

\right) \delta (ci, c) (4.8)

=

F\sum
i=1

\alpha i

C\sum
ci=1

p(ci| x[i]) \delta (ci, c)

C\sum
c1=1

\cdot \cdot \cdot
C\sum

ci - 1=1

C\sum
ci+1=1

\cdot \cdot \cdot
C\sum

cF=1

F\prod
j=1
j \not =i

p(cj | x[j])

\underbrace{} \underbrace{}
=1

(4.9)

=

F\sum
i=1

\alpha i

C\sum
ci=1

p(ci | x[i]) \delta (ci, c) (4.10)

=

F\sum
i=1

\alpha i p(c | x[i]) , (4.11)

4.4. LOCAL DEEP NEURAL NETWORKS 57

which is simply a weighted average over all local class c posteriors.
Finally, the global decision that classifies the input sample is defined by a Bayes

decision rule given by choosing a class with maximum weighted sum of local posteriors,

x \rightarrow c (x) = argmax
c

p (c| x) = argmax
c

F\sum
i=1

\alpha i p
[i]
c , (4.12)

where p
[i]
c = p(c | x[i]). This decision is made during testing, and aims to take into

account all the local contributions to make a robust decision on the final label assigned
to the input image.

An alternative to perform the final classification is that each local feature choses
a class according to its maximum local posterior, so each contribution casts a vote
according to its most probable class. After that, the most voted class among all the
local features belonging to the test image is selected as the final decision according
to the expression given by

x \rightarrow c (x) = argmax
c

F\sum
i=1

\delta (c, argmax
c\prime

p
[i]
c\prime) , (4.13)

where \delta is the is the Kronecker delta . In this voting method, \alpha i is not considered,
so all the votes are equally reliable.

4.4.3 A local class-posterior estimator using a DNN

The probabilistic framework explained before is based on the estimation of the local

class posterior probability assigned to each local feature, i.e. p
[i]
c . This probability

might be estimated using a simple non-parametric algorithm such as the k Nearest
Neighbor classifier, which needs to perform a search over all the local features obtained
from the training images [Villegas et al., 2008]. However, this approach does not
scale well when the data grows and it is necessary to use dimensionality reduction
techniques (PCA) and a fast search algorithm (kd-tree) to reduce the computational
cost.

In contrast, the Local-DNN model employs a Deep Neural Network (DNN) to
approximate the class posterior probability of each local feature, which leads to the
Local-DNN name for our proposed approach. DNNs might take advantages of the
problem at a hand because they work well with large amounts of data (the total num-
ber of patches might be huge). They are also able to learn a probability distribution
over the classes directly from complex raw data using several layers of representations.
This probability distribution is encoded in the output layer of the network by using
a softmax function according to Eq. (2.6). If the network is trained with patches,

these output values are indeed the p
[i]
c probability that must be estimated in order

to perform the final classification according to Eqs. 4.12 and 4.13. All of these ideas
related to our Local-DNN model are depicted in Fig. 4.1.

58 CHAPTER 4. LOCAL DEEP NEURAL NETWORKS

Figure 4.1. Graphical depiction of the Local-DNN model. Several patches are extracted
from the input image and they are fed into a DNN which learns a probability distribution
over the labels in the output layer. The final label of the image is assigned using a fusion
method that takes into account all the patches' contributions.

As can be seen in the figure above, several patches are extracted from different
locations in the image. These patches are fed into a DNN which has an input layer,
at least one hidden layer, and an output layer to encode the classes. Once the model

is trained, the DNN is able to estimate the p
[i]
c for each patch. During testing, all the

contributions learned from the patches extracted from one image are merged using
a fusion technique to classify the image with a final label. This fusion method can
be performed using Eqs. (4.13) or (4.12), depending on wether the voting approach
or the summing posteriors method is used, respectively. Despite each patch may
contribute poorly to the final label, the ensemble of all contributions makes a robust
decision. This idea is similar to the general concept introduced by the Boosting
algorithm [Schapire, 1990], where a set of weak learners can create a single strong
learner. Our weak learner is the contribution to the final decision of each patch,
which can be only slightly correlated to the true classification. However, the strong
learner is created by merging all of these local contributions, and it is able to predict
a reliable class for the input image.

4.4.4 Feature selection and extraction

The definition of a local feature in images includes a huge variability of options. For
instance, there are several highly specialized handcrafted features that are known to
work well with images, like Gabor, LBP, SIFT, HOG, etc. However, a much more
simple feature is used in this work, which consists on extracting squared windows of
size w\times w at different locations in the image. As we have already stated before, these
local features are called patches.

Regarding the locations where to extract these patches, it have been explored two
common ways despite many others might also work well. The simplest and most
generic case is to use a fixed sampling grid for all the images. This method uses the

4.4. LOCAL DEEP NEURAL NETWORKS 59

same locations for all the images, making the process quite simple and with only one
parameter to adjust. This parameter is the step size s, so all the possible patches
that fall inside the image are extracted every s pixels in both directions. A graphical
representation of this method is depicted in Fig. 4.2.

Figure 4.2. Feature extraction process using a sampling grid.

Aside from this simple method, a more smarter alternative to select these loca-
tions has been also explored. This method aims to select those patches with high
information content, so that the accuracy obtained with these patches is likely to
be high. Although there exist several methods to that end ([Deriche and Giraudon,
1993]), most of them are specifically designed for textured areas. Therefore, a simple
and fast method that obtains a binary mask with the locations with high variability
in the image is proposed. First of all, another image that emphasizes edges and trans-
lations is created using a Sobel filter. After that, a low-pass filter is applied over this
image to blur these edges. Finally, the values obtained are binarized using a threshold
to obtain the binary mask. A graphical representation of this method is depicted in
Fig. 4.3.

Figure 4.3. Feature extraction method that looks for high information content areas.

It is important to note that this method is less generic than using a sampling grid,
and it make sense only for specific tasks where some prior knowledge can be applied to
select the most informative parts of the image (a kind of saliency map). Actually, it
has been only used in the experiments performed on the gender recognition problem
using faces images, summarized in Chapter 5. In this specific task, it does makes
sense to discard those patches which associated probability of accuracy is likely to
be very low. For instance, uniform patches without any texture might be useless to
classify the gender of the person, and it will contribute poorly to the final decision.

60 CHAPTER 4. LOCAL DEEP NEURAL NETWORKS

A similar method using face images has been used in [Paredes et al., 2001] with good
results.

4.4.5 Location information and reliability weight

Section 4.4.2 presented the theoretical framework on which the Local-DNN model is
based. This section proposes two modifications that increase the performance of the
model in some cases. These improvements are described bellow, and both of them
have been evaluated in the experiments section.

The simplifications performed in the probabilistic framework to obtain the expres-
sion (4.11) are based on the strong assumption that the placement of each patch is
not relevant for the final decision. This topological information might be useful to
enhance the contribution of each local feature, as it happens in convolutional neu-
ral networks. To evaluate this phenomenon we propose a slight modification of the
model. This modification makes the local feature x[i] to encode not only the image
patch itself, but also the location where it was extracted. In the context of DNNs,
this information is introduced in the input layer of the network by adding some extra
neurons. Therefore, this layer is modified to be composed with as many units as pixels
are in the patch image, plus two extra units that encode the horizontal and vertical
image coordinates of the center of the patch. Our assumption is that this modification
allows the network to use the location information together with the content of the
patch to learn a more accurate discriminative function over the patches. It is im-
portant to stress that this improvement must be added during both the training and
testing steps, so that the patches extracted in both cases must include the location
information.

The second modification is related to the use of different reliable weights \alpha i during
testing. Using Eq. 4.12 to obtain the final decision allows to assign different weights
to each local contribution. In the simplest case, all the features selected by the binary
mask are equally reliable when the final label is defined, with \alpha i = 1/F , being F the
number of local features considered in each image. The slight modification proposed
is to relate the weight \alpha i to the accuracy of the local classifier at each position. This
means that higher \alpha i values correspond to local features with high probability of
accuracy, and vice-versa. This accuracy is obtained as an empirical estimation by
considering only the placement of the patch but discarding its content. Therefore
the weight associated to a specific location only depends on the mean classification
accuracy of all the patches belonging to that location. These weights are estimated
using the training dataset once the model has been trained. It is important to make
it clear that this modification is independent from the previous one explained, despite
both of them use the location of the patch.

4.5 Experiments

Once all the details about our Local-DNN model have been described, this section
focuses on the experiments carried out and the results obtained regarding this model.
First of all, a common protocol followed in all the experiments is described, which

4.5. EXPERIMENTS 61

defines the training and testing steps, the parameters of the network, etc. After
that, we focus on the results obtained on the CIFAR-10 dataset, which represents
a challenging task composed of natural images. Finally, the results obtained with
the popular MNIST handwritten digits dataset are also presented. It is important to
note that, besides these databases, the Local-DNN model has been also evaluated in
the gender recognition problem using face images. These last results are available in
Chapter 5.3.

4.5.1 General protocol

First of all, this section describes the training step of the Local-DNN model. This
step involves the training of the Deep Neural Network (DNN) model using the train-
ing set of the current dataset evaluated. In this way, most of the training samples
are used to learn the parameters of the network, whereas the remaining ones are em-
ployed for the validation process. Once these subsets are defined, the local features
(patches) are extracted from all the images, so the subsets of training and validation
are comprised of all the patches belonging to the subsets of training and validation
images, respectively. After that, the DNN is fed with these patches and their labels,
and the network is trained using the standard Backpropagation algorithm. Basically,
this algorithm modifies the weighted connections between the layers according to the
gradient of the error calculated between the real labels and the predicted ones (see
Section 2.2.3). The training process is performed for a limited number of epochs, and
the network with the lowest classification error on the validation subset is selected.

Once the training process of the DNN is done, the model can be evaluated using
the testing data of the current dataset. According to the definition of the Local-DNN
model, the DNN is able to obtain a probability distribution on the classes for each
patch. However, to evaluate an input image it is necessary to classify it among all
the possible labels. Therefore, the local results obtained by the DNN must be merged
to predict a single class for the input image. In this way, for each test image all the
patches are extracted using the same method employed during training. Each of these
patches is forwarded through the network to obtained a probability distribution for
each of them. Finally, a final label for the test image is predicted taking into account
the contributions of all the local features of the image using a fusion method. Let
us remember that this step can be done summing the probability distributions (see
Eq. (4.12)), or using a direct voting scheme (see Eq. (4.13)). The results obtained for
all the test images in the current dataset are averaged.

Regarding the configuration of the network, the number of hidden layers in the ex-
periments is changed in order to evaluate the improvement obtained by using deeper
architectures. All of these layers are composed with 512 Rectified Linear Units
(ReLU). This type of units (see Section 2.2.2) have shown to learn much faster in
networks with many layers, instead of the traditional sigmoid ones [Glorot et al.,
2010]. On the other hand, it is obvious that the size of the input and the output
layers depend on the problem at hand.

62 CHAPTER 4. LOCAL DEEP NEURAL NETWORKS

4.5.2 Experiments with CIFAR-10

The first experiments to evaluate the Local-DNN model are performed using the
CIFAR-10 dataset (see Appendix A.4). The images of this dataset are RGB images
of size 32\times 32 pixels with values in the range [0, 255]. First of all, the data is rescaled
so that all the pixel values lie in the range [0, 1]. After that, the local features are
extracted from the images using the simplest method proposed (see Fig. 4.2). All the
windows of size w \times w are extracted in the positions given by a dense, equispaced
sampling grid with a unit sample spacing (s = 1). Note that the patches with a region
that lie outside the image are discarded. Therefore, each patch can be represented as
a feature vector of pixel intensity values in \BbbR N , with N = w \cdot w \cdot d and d = 3 being the
number of image channels. After that, every patch is normalized to zero-mean and
unit-variance. This is done for all the images in each subset of the database. Note that
the dimensionality of these feature vectors can also be larger (\BbbR N+2) if the location
information of the patch is included according to the first modification explained in
Section 4.4.5. Table 4.1 summarizes the number of images and patches obtained after
this extraction method for the different patch sizes evaluated (w). Note that the train
and valid subsets together form the 50K images of the original CIFAR-10 training
set. According to the table, it is clear that there is a tradeoff between the patch size
parameter and the number of patches extracted, so that the larger the size of the
patch, the fewer patches will be valid because more of them would fall outside the
image.

Table 4.1. Number of images and approximate number of patches extracted from each
subset in the CIFAR-10 dataset depending on the patch size. Note that 1K = one thousand
and 1M = one million.

Subset Num. Images
Approx. Num. Patches

Path Size
5\times 5 10\times 10 15\times 15

train 45K 30.5M 21.8M 11.5M
valid 5K 3.4M 2.4M 1.3M
test 10K 6.8M 4.8M 2.6M

Once the patches are extracted, the Local-DNN model is trained and evaluated
following the procedure explained in Section 4.5.1. All the results obtained for this
dataset are summarized in Table 4.2. As it can be seen in the table, for each
patch size evaluated, the number of hidden layers is also changed. Note that the last
row results of each block refers to the experiments performed including the location
information where the patch was extracted in the local feature. This modification has
been tested only for the best case regarding the number of hidden layers. Regarding
the results obtained, there are two types of results displayed. On the one hand, we
can see the accuracy obtained by the network at a patch level (Patch Acc.). With
these results we can get an idea of how well the network is able to learn a mapping
between the patches manifold to the classes. On the other hand, the test accuracy
obtained at image level is also displayed (Image Acc.) using the two fusion methods

4.5. EXPERIMENTS 63

Table 4.2. Classification accuracy at image and patch level on the test set for the CIFAR-10
dataset, for different configurations of the Local-DNN model.

Patch Size
Num. Hidden

Layers
Patch

Acc. (\%)

Image
Acc (\%)

Voting

\sum
Post.

\alpha \alpha \alpha === 1/F \alpha \alpha \alpha \propto \propto \propto acc

5\times 5

1 30.57 49.88 49.88 50.34
2 35.83 61.57 63.68 64.09
3 37.17 64.92 67.03 67.39
4 36.86 66.40 68.15 68.49

4 + loc 41.14 71.94 74.04 74.16

10\times 10

1 40.01 60.13 60.34 60.51
2 49.06 74.52 75.19 75.13
3 49.31 77.81 78.61 78.60
4 49.15 75.64 76.39 76.21

3 + loc 53.44 80.41 80.73 80.54

15\times 15
1 48.90 64.24 64.79 64.73
2 56.85 76.52 76.84 76.82
3 56.34 76.08 76.59 76.55

3 + loc 59.57 76.96 77.23 77.25

32\times 32
1 51.29
2 52.11
3 51.89

64 CHAPTER 4. LOCAL DEEP NEURAL NETWORKS

evaluated: the voting scheme or summing the posterior probabilities of each local
contribution. In this latter case, it has been made a distinction between the case
where all the features are equally reliable (\bfitalpha = \bfone

\bfF), and the case where each local
feature is weighted proportionally to its location patch accuracy (\bfitalpha \propto acc). Finally,
it is important to mention that the results obtained using the entire image as a patch
are also included (w = 32) at the bottom of the table. In this case there is only one
accuracy result given by the neural network without any fusion step because there is
only one patch per image, i.e. the image itself. This result obtained with a standard
DNN is used as a baseline to evaluate the improvement obtained with the Local-DNN
model.

Once the structure of the table is understood, several conclusions can be drawn
according to the results obtained depending on the parameter evaluated:

\bullet Patch size: there is a clear gap between the patches of size 5 \times 5 and the
others. Probably, a window of 5 \times 5 pixels is not informative enough for the
network despite the largest number of patches extracted according to Table 4.1.
Using patches of 10\times 10 pixels yields the best results, which are slightly worse
than those obtained with the size of 15\times 15. Comparing these values with our
baseline result, it is clear the difficulty of learning directly from the entire image
using the image itself as a patch (32\times 32 pixels).

\bullet \# hidden layers: it can be seen that there is a big gap between the network
with one hidden layer and the networks with two or more hidden layers. This
issue occurs at patch and image level, and denotes the poorer representation
power of a shallow network with just one hidden layer in this case. According
to the results, a 3-layer network is deep enough to learn the complex mapping
between the manifold represented by the patches and their classes. It is also
interesting the lack of improvement obtained using more hidden layers when the
entire image image is employed. In this case, the network is not able to take
advantage of a deeper architecture.

\bullet Location information: there is a clear improvement obtained by including the
location information in the local feature for all the patch sizes evaluated. This
improvement is quite clear at a patch level, which indicates that this information
is relevant for the network in order to learn to classify a patch, which is natural.
For instance, if we know that a uniform blue patch is located at the top of the
image, it makes sense to think that there is a sky in that image. Following with
this conclusion, it can also be appreciated that this improvement is maintained
at a patch level, but decreases at image level when increasing the size of the
patch. This probably happens because big patches contain more representative
information content, and the location information contributes relatively little in
the final decision. Note that there is only one location when using the entire
image as a patch and there is no sense to include this information in this case
because it is always the same.

\bullet Fusion method: focusing on the testing parameters, summing the posterior
probabilities of the local patches (

\sum
Post.) yields slightly better results than if

4.5. EXPERIMENTS 65

each patch votes the class according to its maximum local posterior (Voting).
This result might be explained because, in the former case, the uncertainty of a
patch among the classes is taken into account, while in the latter case it is not
because the model only uses the maximum posterior of each patch to emit a
vote despite this probability might be low. However, there are no big differences
between both methods.

\bullet Reliability weight: this modification enables the use of a non-uniform
weighted sum of contributions (\alpha \alpha \alpha \propto \propto \propto acc) when summing posteriors, as ex-
plained in Section 4.4.5. However, the results obtained are very similar to
those obtained using equally reliable local features (\alpha \alpha \alpha === \bfone

\bfF), and there is not
significant improvement. This is probably because the accuracy of the patches
regarding its location is almost uniform in this specific task. To illustrate this
issue, Fig. 4.4 displays the probability of accuracy of the DNN depending on the
position where the patch was extracted, for the best configuration in the table.
According to the image, the best patches are extracted around the center of
the image, which is natural because the main object of each image is displayed
centered. However, it is important to note that the lowest probability (dark
color) is around 0.40, and the highest probability (white color) is around 0.59.
The difference between these values is quite small, hence the use of different
weights might be pointless in this case because the same result is obtained if all
the patches are equally weighted.

Figure 4.4. Probability of accuracy of the DNN at a patch level depending on the position
where the patch was extracted for the CIFAR-10 dataset. Light and dark colors denote high
and low probability, respectively. Note that the lowest probability is around 0.40 and the
highest probability is around 0.59.

Summing up all these conclusions, the network that obtains the best performance
has 3 layers depth, uses patches of size 10\times 10 including the location information in the
local feature, and computes the final decision using the summing posteriors method
with equally reliable weights. The result obtained is 80.73\% of accuracy on the 10000
CIFAR-10 test images, which improves greatly the accuracy obtained feeding the
entire image to the network, as can be seen at the bottom of Table 4.2. Furthermore,
Table 4.3 compares our best result with other results obtained using different methods
published in the literature with the same dataset. According to this table, it is
clear that our Local-DNN is far from the best state-of-the-art results obtained in

66 CHAPTER 4. LOCAL DEEP NEURAL NETWORKS

Table 4.3. Classification accuracy on the test set of the CIFAR-10 dataset for different
methods.

Method Accuracy (\%)
Stacked Den. Autoencoders [Glorot et al., 2010] 50.48

RBM + fine-tuning [Krizhevsky, 2009] 64.84
Improved LCC [Yu and Zhang, 2010] 74.50

KDES-A [Bo et al., 2010] 76.00
PCANet-2 [Chan et al., 2014] 78.67

K-means Tri. [Coates et al., 2011] 79.60
ConvNet + Dropout [Hinton et al., 2012] 84.40
Multi Column DNN [Schmidhuber, 2012] 88.79
Maxout Net [Goodfellow et al., 2013] 90.65

DropConnect [Wan et al., 2013] 90.68
Network in Network [Lin et al., 2013] 91.20

Deeply Supervised Net [Lee et al., 2015] 91.78
Local-DNN 80.73

this database. However, most of these methods are more complex because they use
large convolutional neural networks that demand high computational resources and
large datasets. In contrast, our method is quite simple in both testing and training
steps, and it would work well in tasks with very few samples because it implies a very
large increase of the number of available training samples (note that from the original
image we can obtain thousands of smaller patches). For these reasons, the results
obtained are still encouraging compared to other simple methods that obtain worse
results. It is also interesting to analyze the first two values of the table. These results
are obtained using non-convolutional networks and learning directly from the entire
image. Like our baseline result, these poor performance confirms the advantage of
learning from small regions, specially with complex data as it happens in this case.

4.5.3 Experiments with MNIST

The following experiments evaluate our Local-DNN model using the MNIST hand-
written digits dataset (see Appendix A.1). The original images of this dataset are
binary images of size 28 \times 28 pixels, even though they contain some grey levels as a
result of the anti-aliasing technique employed by the normalization algorithm. From
these images, all the windows of size w \times w are extracted in the positions given by
a sampling grid with s = 1. This sampling grid is defined as a 20 \times 20 pixel box
centered on the image because this size should let the patches to sweep the most
important areas of each image. This specific size was selected because all the digits in
the database fit into a box with this scale after the normalization process. In contrast
to the feature extraction process in the CIFAR-10 dataset, in this case we did not
remove the patches with a region that fall outside the image. Instead we expanded
the original black background of the original images to keep all the possible patches.

4.5. EXPERIMENTS 67

For this dataset, each patch can be represented as a feature vector in \BbbR N of pixel
values, with N = w \cdot w\cdot because there is only one channel. Note that these feature
vectors can also be in \BbbR N+2 when the location information is included in the local
feature.

Table 4.4 summarizes the number of images and patches obtained after the ex-
traction process. Note that the same number of patches is obtained regardless the
different sizes evaluated. For instance, for the test subset there is a total of 4M
patches, obtained by multiplying the size of the grid times the number of images, i.e.
20 \times 20 \times 10000. Note also that the train and valid subsets together form the 60K
images of the original MNIST training set.

Table 4.4. Number of images and number of patches extracted from each subset in the
MNIST dataset.

Subset Num. Images Num. Patches
train 54K 21.6M
valid 6K 2.4M
test 10K 4M

Once all the patches are extracted we train and evaluate our Local-DNN model
following the procedure explained in Section 4.5.1. The results obtained are sum-
marized in Table 4.5, which is similar to that used with the CIFAR-10 dataset in
Section 4.5.2. Note that, unlike those results, this table shows the error rate instead
of the accuracy just because it is common in the literature to use this measure with
the MNIST dataset.

To evaluate the results displayed in the table, a baseline result is used to evaluate
the improvement obtained. This result is 1.2\% of error rate on the test set, and it was
obtained by G. Hinton with a standard neural network with several pre-trained layers
in his famous paper [Hinton and Salakhutdinov, 2006]. First of all, let us forget the
results in the last row of the table and focus on those where the patch size is smaller
than the image size to draw some conclusions from different points of view:

\bullet Patch size: it is clear that using small patches (10\times 10) does not work well in
this problem. The patch size must be increased to, at least, 15 \times 15 pixels to
greatly improve the baseline result. This phenomenon is probably due to the
difficulty of learning from small parts of the digits that are not representative
enough for the network. Actually, the best results are obtained with patches
that are almost as big as the digits themselves, which leads away somewhat the
basic idea of our model of learning from local regions in the image.

\bullet \# hidden layers: the difference at the error rate level between a network
with one hidden layer and networks with two or more hidden layers is also clear
in these experiments. Again, the discriminative model learnt by the shallow
network is far less robust than the deeper model in all cases.

1This experiment was performed using a larger sampling grid of size 28\times 28 (the entire image),
in order to obtained the largest number of patches available for each image.

68 CHAPTER 4. LOCAL DEEP NEURAL NETWORKS

Table 4.5. Classification error rate at image and patch level on the test set for the MNIST
dataset, for different configurations of the Local-DNN model.

Patch Size
Num. Hidden

Layers
Patch

Error rate (\%)

Image
Error rate (\%)

Voting

\sum
Post.

\alpha \alpha \alpha === 1/F \alpha \alpha \alpha \propto \propto \propto acc

10\times 10

1 47.67 9.32 4.94 4.75
2 40.93 4.24 2.22 2.18
3 40.12 4.40 2.01 1.89

3 + loc 23.33 1.44 1.06 1.04

15\times 15

1 23.90 2.02 1.74 1.71
2 18.57 1.05 0.84 0.86
3 18.30 0.87 0.69 0.68

3 + loc 9.59 0.61 0.58 0.61

20\times 20

1 10.09 1.16 1.12 1.14
2 7.14 0.55 0.51 0.51
3 7.06 0.56 0.55 0.56

3 + loc 3.65 0.55 0.55 0.55

25\times 25

1 4.47 0.94 0.96 0.94
2 2.96 0.53 0.54 0.55
3 2.91 0.54 0.54 0.54

3 + loc 1.81 0.58 0.58 0.58

28\times 281 3 5.22 0.47 0.47 0.48

4.5. EXPERIMENTS 69

\bullet Location information: according to the results, the location information us-
ing small patches improves greatly the performance at both error levels (patch
and image). However, this improvement vanishes at image level as the size of the
patch is increased. Curiously, using this information with big patches helps the
network to better classify the patches (the error at patch level is quite lower),
but this progress does not lead to an improvement once the fusion method is
applied.

\bullet Fusion method: a similar phenomenon occurs regarding this parameter, since
the voting method yields worse results than summing the posteriors when the
patch size is 10 \times 10 or 15 \times 15. However, both methods behave very similar
with larger sizes.

\bullet Reliability weight: this modification introduced during testing does not im-
prove the result obtained by the fusion method. To deeply analyze this result,
Fig. 4.5 displays the probability of accuracy of the DNN depending on the po-
sition where the patch was extracted, as we did with the CIFAR-10 dataset. A
pixel in that image indicates how likely is that the patch extracted in that po-
sition predicts the correct class. The left subfigure is the result for the network
trained with patches of size 10 \times 10, while the right one is the result for the
network trained with patches of size 25 \times 25. In both cases the best patches
are centered. However, there is a great difference between the lowest and the
highest probability in both cases (see the caption for the specific values). Ac-
cording to these results and those displayed in the table, it is quite surprising
that using different weights in the case of 10 \times 10 patches does not improve
the results significantly. Therefore, this means that taking into account with
the same weight the patches which result is probably to be inaccurate does not
worsen the final result obtained.

(a) Network trained with patches of size
10\times 10. Note that the lowest probability
is around 0.25 and the highest probability
is around 0.95.

(b) Network trained with patches of size
25\times 25. Note that the lowest probability
is around 0.92 and the highest probability
is around 0.99.

Figure 4.5. Probability of accuracy of the DNN at a patch level depending on the position
where the patch was extracted for the MNIST dataset. Light and dark colors denote high
and low probability, respectively.

The analysis of the results reveals that our Local-DNN model does not take ad-
vantage of learning from small regions in this specific task. Therefore, the results

70 CHAPTER 4. LOCAL DEEP NEURAL NETWORKS

obtained encouraged us to use bigger patches to obtain the highest performance in
this dataset, despite the fact that the main idea of local features recedes into the back-
ground. The results displayed in the last row of the table are obtained with an extra
experiment that uses patches with size 28 \times 28 pixels (the same size as the original
images), and enlarges the sampling grid to be as big as the entire image. According to
these values, 28\times 28 = 784 different patches centered in all the possible pixels of each
image are extracted. Using a 3-layer neural network with any of the fusion methods
available, 0.47\% error rate is obtained on the MNIST test set, i.e. 47 errors out of
10000 images. This great result is far better than the baseline of 1.2\% obtained with
a standard neural network. However, it is important to say that, in this database,
this improvement is indeed given by using several translated versions of the original
images since the local features are actually the same size of the original images. We
have also evaluated this network trained with several patches, using only the test
images without extracting patches during testing (without any fusion method). The
result obtained is 1.33\% error rate on the test set, which means that it is important
to use several patches during both training and testing. Therefore, the fusion method
performed by the Local-DNN model allows to take advantage of learning from several
contributions.

It is also interesting to analyze the higher error rate at a patch-level obtained
in this experiment (5.22\%) in comparison with the rest of the experiments. This
result is because there are more patches centered near the edges of the images in this
case, due to the bigger sampling grid employed. These patches belong to meaningless
portions of the digit, so it is more difficult to classify them and the error rate increases.
However, the result at image level including these, a priori, poorer contributions is
improved. It is therefore concluded that using as many as possible patches is quite
important as long as these patches contribute slightly better than random to the final
decision.

Finally, it is interesting to compare the performance obtained with other state-
of-the-art results in the same dataset, as we did with the CIFAR-10 database These
results are summarized in Table 4.6 According to the results, our Local-DNN obtains

Table 4.6. Error rate on the test set of the MNIST dataset for different methods.

Method Error rate (\%)
3 layer NN + pretrain [Hinton and Salakhutdinov, 2006] 1.20

Deep Boltzmann Machines [Salakhutdinov and Hinton, 2009b] 0.95
PCANet-2 [Chan et al., 2014] 0.62

Invariant SVM [Decoste and Sch\"olkopf, 2002] 0.56
Network in Network [Lin et al., 2013] 0.47
Maxout Net [Goodfellow et al., 2013] 0.45

Deeply Supervised Net [Lee et al., 2015] 0.39
MLP + elastic dist. [Ciresan et al., 2010] 0.35
Multi Column DNN [Schmidhuber, 2012] 0.23

DropConnect [Wan et al., 2013] 0.21
Local-DNN 0.47

4.6. CONCLUSIONS 71

a very competitive performance compared to other state-of-the-art methods. Our
method outperforms other non-convolutional networks [Hinton and Salakhutdinov,
2006; Salakhutdinov and Hinton, 2009b] and simple methods [Chan et al., 2014; De-
coste and Sch\"olkopf, 2002]. However, analyzing the results in depth, the importance
of using data augmentation techniques with this kind of data (handwritten digits)
draws special attention. Most of the best results are obtained using these techniques
to obtained translated, flipped, rotated and scaled versions of the original images.
Actually, [Ciresan et al., 2010] demonstrated that it is possible to obtained 0.35\%
error rate on the MNIST test set by just using a large standard neural network fed
with well designed elastic distortion versions of the digits. This result along with ours
reveals that standard DNNs work well learning from the entire image in this case, and
therefore restricting the learning to local regions has less impact in the final result in
this database.

4.6 Conclusions

This chapter presents a novel discriminative model called Local Deep Neural Network
(Local-DNN), which is focused on computer vision problems. This model is based on
two key concepts: local features and deep architectures. On the one hand, a neural
network learns to classify small patches extracted from images according to the label
of the image to which it belongs. On the other hand, using these local contributions,
a simple fusion scheme that merges these contributions is applied to classify the
entire image within a single class. Note that this fusion can be performed using a
voting method or summing the posterior probabilities given by the neural network.
The idea of this local-based classification is justified through a generic framework
from a probabilistic point of view. Also, two modifications of the model have been
proposed to increase its performance. The first one is based on including the location
information where the patch was extracted into the local feature. The second one
focuses on assigning different weights to each contribution during testing, depending
on the accuracy of the location where the patch was extracted.

The first set of experiments to evaluate the Local-DNN model has been performed
using the CIFAR-10 dataset. The results show the difficulty of a standard neural net-
work to learn from the entire image regardless the depth of the network. In contrast,
our Local-DNN model performs much better with several layers, obtaining better re-
sults than other simple methods published. However, the 80.73\% of accuracy obtained
is still far from the state-of-the-art results in this tasks, which are usually based on
complex convolutional approaches that usually need large datasets. Regarding the
modifications introduced, it is clear that the location information where the patch
was extracted must be included in the local feature to obtain the best results, spe-
cially when the size of the patch is small. In contrast, using the accuracy of each patch
depending on its locations to weight each local contribution turns out not to be mean-
ingful. The results obtained with this modification are quite similar to those obtained
using equally reliable features. Therefore, all the local contributions are important to
the final decision despite the fact that some of them have a lower accuracy.

72 CHAPTER 4. LOCAL DEEP NEURAL NETWORKS

Some experiments have been also performed using the MNIST handwritten digits
dataset. Despite the fact that the Local-DNN model does not benefit from using small
patches in this specific task, it is possible to obtain state-of-the-art results using bigger
patches (several translated versions of the original images). The best result obtained
is 0.47\% error rate on the test set, which is similar to other results obtained using
more complex models.

For future research, there are several questions that remain open. First of all,
this version of the model might not take into account large variations in the scale
of the images. Therefore, it might be worth considering to use several networks
trained with different patch sizes. In the fusion step, all the contributions learned at
different scales are merged using the same framework, so the final label is predicted
using multi-scale local contributions. Another direction of research which should be
followed is to consider the use of convolutional networks instead of DNNs. A DCNN
has shown to be a much powerful discriminative model dealing with images, so the
local contributions learned by this model might increase the performance resulting a
Local-DCNN model. Finally, it would be also interesting to apply this model to other
computer vision problems where the labeled data available is scarce. In this case,
other neural networks might easily overfit the training data, even using regularization
techniques such as the dropout. Our Local-DNN could take advantage in this type of
tasks because the huge number of patches employed would allow to train the network
successfully without overfitting.

Chapter 5

Application to Gender
Recognition

Besides de contributions presented in the previous chapters, we have also a particular
interest in biometrics applications. For this reason, this chapter aims to evaluate
several Deep Learning (DL) techniques in the gender recognition problem of face
images. These experiments also include the results obtained with our Local-DNN
model presented in Chapter 4. According to these results, it turns out that our model
outperforms other deep networks evaluated and obtains state-of-the-art results in the
two datasets evaluated.

5.1 Introduction

Identifying demographic attributes of humans such as age, gender and ethnicity using
Machine Learning methods has received increasing attention in recent years. Specially,
gender recognition of face images is an important task in computer vision as many
applications depend on the correct gender assessment. According to [Ng et al., 2012b],
examples of these applications include:

\bullet Human-computer interaction systems. This kind of systems can be made
more human-like and they can response appropriately if they know the gender
of the person to interact with.

\bullet Surveillance systems. Some security systems can restrict the access to some
areas depending on the gender of the person.

\bullet Content-based indexing and searching. In these days there is a large
amount of photos and videos being produced. It would be useful to identify the
gender to improve the searching methods.

\bullet Biometrics. Some applications can be trained separately based on the gender
of the person to improve accuracy.

74 CHAPTER 5. APPLICATION TO GENDER RECOGNITION

\bullet Targeted advertising. Targeted advertising is used to display advertisement
relevant to the person looking at the billboard based on attributes such as the
gender.

Once the importance of the correct gender assessment is clear, how to perform this
classification using face images can be discussed. The gender recognition problem
is usually divided into several steps, similarly to other classification tasks: object
detection, preprocessing, feature extraction and classification. In the detection phase,
the face region is detected and cropped from the image. Then, different preprocessing
techniques are used to reduce possible variations in the data such as the scale and the
illumination. After this normalization, the feature extraction phase aims at obtaining
representative and discriminative descriptors of the face region that are useful for the
classifier. Finally, this binary classifier is trained to learn the differences between male
and female, and to be able to generalize well to new samples.

Perhaps, the feature extraction is the most critical step in order to achieve good
performance. The existing methods of this process can be classified into two groups:
geometric-based and appearance-based methods. The former group is based on mea-
suring distances between characteristic points in the face (fiducial points), and the
later one aims to extract a new representation of the face to enhance the discrimina-
tive information and reduce the variance of the images. Traditionally, the appearance-
based methods have been the most successful in the gender recognition problem thanks
to the knowledge and expertise of many feature practitioners that are able to extract
more robust representations than the raw pixels. Some examples of these features
are Local Binary Patterns (LBP), Haar-like features, Gabor wavelets, Scale Invariant
Feature Transform (SIFT) features, etc. Once the new representation of the data is
extracted, a binary classifier, such as the Support Vector Machine (SVM) or the Ad-
aBoost method, is trained to perform the classification. This generic method works
well and most of the state-of-the-art results obtained in this task use this framework
as a baseline [Dago-Casas et al., 2011; Shan, 2012; Tapia and Perez, 2013].

In contrast, the discriminative DL models aim to automatically discover these
representations as well as to perform the classification process. Despite the fact that
neural networks have been applied recently to several face recognition tasks [Huang
et al., 2012a; Schroff et al., 2015; Taigman et al., 2014], there is not a specific study
of DL methods applied to the gender recognition problem to our knowledge. For this
reason, the experiments summarized in this chapter are aimed to obtain state-of-the-
art results in this task by evaluating several models and parameters related to the DL
framework. First of all, the performance of a standard neural network (DNN) has been
evaluated, changing several key parameters and options such as the use of pre-training
and the type of units employed. After that, a convolutional neural network (DCNN)
has been also evaluated to show the strengths of this type of network dealing with
images in challenging tasks. Finally, we have obtained several results with our novel
Local-DNN model presented in Chapter 4 to show the great performance obtained
in this specific task. All the results have been compared to other state-of-the-art
techniques available in the literature.

5.2. STATE OF THE ART 75

5.2 State of the Art

As cited before, extracting a good representation of the data is perhaps the most crit-
ical step in most of the pattern recognition and machine learning problems. Initial
approaches for gender recognition used the geometric relations between facial land-
marks as a feature representation [Ng et al., 2012a]. However, these methods required
a very accurate landmark detection and it was shown that relevant information was
thrown away. For this reason, all recent approaches use appearance-based methods.
These methods can be holistic, when the whole face is used to extract useful features,
or local, when information is extracted from local regions of the face. These regions
can be placed at strategic locations like eyes, nose, mouth, etc. or simply using an
equally spaced grid on the image.

Regarding the type of these handcrafted features found in the literature, they can
be as simple as the raw pixels [Moghaddam and Yang, 2002] or pixel differences [Baluja
and Rowley, 2007] of the image. Sometimes, simple features are pooled together as
in [Kumar et al., 2009], where image intensities in RGB and HSV color spaces, edge
magnitudes, and gradient directions were combined. More elaborated features include
Haar-like wavelets [Shakhnarovich et al., 2002], Local Binary Patterns (LBPs) [Shan,
2012] or Gabor wavelets [Leng and Wang, 2008]. These features work well and they
are robust to small illumination and geometric transformations. However, they are
based on the expertise of the researcher to find the best choice for a given problem.

Note that these alternative representations of the face are usually high-
dimensional, and it is common to apply dimensionality reduction techniques in
order to both decrease the computational requirements and extract the relevant
discriminative information. These methods can be unsupervised or supervised, linear
or non-linear. The two most popular algorithms are Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA), being the former unsupervised and
the latter supervised. In [Villegas and Paredes, 2011], the authors show a good
comparison of different dimensionality reduction methods on a gender recognition
problem among others tasks. All of these techniques have been widely used because
of their simplicity and effectiveness [Buchala et al., 2004; Graf and Wichmann, 2002;
Turk and Pentland, 1991]. However, a possible disadvantage of this approach is that
the information captured may not be relevant to represent a face in this specific
problem.

Finally, regarding the binary classifier employed, different options have worked
well using several representations of the data. For instance, the AdaBoost algorithm
is a fast method that selects the most relevant simple features to combine them into a
single strong classifier. AdaBoost have been used widely in the literature [Baluja and
Rowley, 2007; Kumar et al., 2009; Shan, 2012]. Support Vector Machines (SVMs) have
been used in the gender recognition problem as well [Moghaddam and Yang, 2002;
Shan, 2010], using directly the raw pixel information or more complex descriptors.
For instance, a recent article [Eidinger et al., 2014] use a dropout-SVM approach with
LBP features to estimate both the gender and the age values in unconstrained images.
In this spirit, an excellent comparison of different gender recognition methods can be
found in [Dago-Casas et al., 2011].

76 CHAPTER 5. APPLICATION TO GENDER RECOGNITION

In contrast to these approaches, DL techniques have not been applied extensively
in the gender recognition problem. One of these cases is the work presented in [Bartle
and Zheng, 2015], which presents a new DL model for performing the gender clas-
sification using a Natural Language Processing approach. Regarding the use of face
images, [Levi and Hassner, 2015] uses a DCNN to improve the current state-of-the-art
in a gender and age classification task using vey challenging images. Finally, [Jiang
et al., 2014a] merged low-level and high-level features extracted using a DNN and a
DCNN to improved other results obtained with LBP features and the SVM classifier.

5.3 Experiments

5.3.1 General protocol

The experiments carried out have been performed using two well-known face image
datasets taken in unconstrained scenarios. These datasets are the Labelled Faces
in the Wild (LFW) and the Groups/Gallagher. More details about them can be
found in Appendix A.5 and A.6. The evaluation protocol for both databases splits
all the images in 5 folds to perform a 5-fold cross validation process, so 4 folds are
used for training and the remaining fold for testing. The experiments are performed
using the 5 possible combinations and the results obtained are averaged. For the
problem at a hand, the binomial confidence intervals can be calculated using a normal
approximation which leads to the expression \^p\pm z

\sqrt{}
\^p (1 - \^p)/n, where \^p is the mean

accuracy, n is the number of test samples and the z value must be 1.96 if we want to
compute the standard 95\% confidence intervals. Given the large number of testing
samples in these experiments, these confidence intervals would be quite small. For
this reason, we have not included these intervals in the result tables presented in
this section. Under this protocol, and regardless of the specific network evaluated,
the models have been trained until the average cross-entropy error on the training
data falls below a pre-specified threshold. To fix this threshold, the same network is
trained but using only 3 folds from the training data and using the remaining one as
a validation set. Then, the cross-entropy threshold value is fixed with the smallest
classification error obtained on the validation set.

On the other hand, a simple preprocessing step on the images is necessary due
to their unconstrained nature. This step is the same for both datasets and aims to
reduce the face detection inaccuracies as far as possible. First, all the images have
been aligned to a canonical pose. In the case of the LFW, a common aligned version of
the database has been used [Huang et al., 2012b]. In contrast, the location information
of the eyes has been used in the Gallagher's dataset to transform all the faces to a new
pose with the eyes located in the same position, (22, 27) and (57, 27) pixels, as it was
done in [Dago-Casas et al., 2011]. After that, two different face regions of the image
of 105\times 90 and 105\times 105 pixels are cropped. The former region is resized to 40\times 32
pixels for the experiments performed with the DNNs, and the latter crop was resized
to 152\times 152 pixels for the experiments performed with the DCNN. These sizes were
selected according to previous works using the same databases [Taigman et al., 2014;
Villegas and Paredes, 2011]. Moreover, using the same sizes facilitates comparison to

5.3. EXPERIMENTS 77

the results obtained with the same databases. Finally, all the images are converted
to grayscale, normalized to zero-mean and scaled by the average standard deviation
of all the pixels in all the training images. The preprocessing step used for the Local-
DNN model is slightly different. The crop faces of 105\times 105 pixels has been resized to
60\times 60 pixels due to the unmanageable number of patches obtained otherwise. The
resulting images were converted to grayscale, and all the pixels values were scaled to
the range [0, 1].

5.3.2 Results with DNN

This section assesses the gender classification performance of a DNN with just one
hidden layer, so that the network employed is not actually deep because it is composed
of the input layer, just one hidden layer and the discriminative output layer. These
experiments have been performed only for the LFW dataset, and they aim to evaluate
the performance of a shallow network with respect to several parameters such as the
number of hidden units, the type of these units and the use of pre-training.

In the case of using pre-training, an RBM is trained to initialize the weight con-
nections between the visible and the hidden units of the DNN, similarly to the exper-
iments exposed in Chapter 3. Each RBM is trained using the CD - 1 algorithm for
100 epochs using the training set without the labels information. The weights of the
RBM are initialized with small random values sampled from a normal distribution

with zero mean and standard deviation of 4\sigma
\sqrt{}

6
nhid+nvis

, where nhid is the number

of hidden units, nvis is the number of visible units and \sigma is a parameter [Bengio and
Glorot, 2010]. We fixed \sigma = 1.0 for sigmoid units and \sigma = 0.01 for ReLU units. The
learning rate value was set to 0.001 for both weights and biases. Some of the feature
detectors learned by the RBM are represented in Fig. 5.1.

The training process is similar to that followed in the experiments presented in
Section 3.5. Once the RBM is trained, the learned weights are used to initialize a DNN
by adding an extra layer with two units that represent the labels of the samples (male
or female). Then, the entire network is fine-tuned with the Backpropagation algorithm
using the label's information. The fine-tuning process stops when the average cross-
entropy error on the training data falls bellow a pre-specified threshold, as explained
before. The test accuracy results for each configuration are shown in Table 5.1.
According to the numbers, the ReLU units outperform the Sigmoid units even when
fewer hidden neurons are employed. These ReLU units also learned faster during the
pre-training and the fine-tuning process, in accordance with the results obtained by
other authors [Glorot et al., 2010; Nair and Hinton, 2010]. On the other hand, there
is almost no improvement when using unsupervised pre-training, probably due to the
shallowness of the network. There are also no big differences varying the number of
hidden units.

After evaluating the performance with one hidden layer, a second and a third
layer are added to evaluate the improvement of using a deeper architecture. In these
experiments, the same number of hidden units are chosen for all the hidden layers.
For example, in a three-layer network, a 1280 - 512 - 512 - 512 - 2 architecture is
used, where the last layer is the discriminative layer and the input layer represents the

78 CHAPTER 5. APPLICATION TO GENDER RECOGNITION

Figure 5.1. Some feature detectors learned by the RBM model.

Table 5.1. Accuracy on the test set for a one layer DNN in the LFW database.

Unit
Pre-training

Num.
Acc. (\%)

Type Hidden Units

Sigmoid

no
512 91.28
1024 91.38
2048 90.98

yes
512 90.29
1024 91.25
2048 91.44

ReLU

no
256 91.76
512 92.04
1024 91.84

yes
256 91.92
512 92.10
1024 92.09

5.3. EXPERIMENTS 79

pixels. Also, the use of the dropout technique ([Srivastava et al., 2014]) has been eval-
uated with the deepest network that uses ReLU units. This method randomly omits
half of the outputs in every hidden layer during training, and also 20\% of the units in
the input layer. The results are shown in Table 5.2. As may be observed, ReLU units

Table 5.2. Accuracy on the test set for the DNN model with two and three layers in the
LFW database.

Unit Num.
Pre-training

Num.
Acc. (\%)

Type Hidden Layers Hidden Units

Sigmoid
2 layer

no 1024 90.89
yes 1024 91.50

3 layer
no 1024 90.81
yes 1024 91.12

ReLU
2 layer

no 512 91.22
yes 512 91.83

3 layer
no 512 91.37
yes 512 92.08

ReLU+dropout 3 layer
no 512 92.13
yes 512 92.60

perform better in all cases, as happened with the network with just one hidden layer.
On the other hand, the use of pre-trained blocks usually improves the performance of
the network, although this improvement is not very significant. Actually, this fact is
in accordance with a current trend in the DL community that is forsaking the use of
unsupervised pre-training to some specific tasks where the labelled data is scarce [Le-
Cun et al., 2015]. Besides this issue, it is difficult to directly learn from the entire
image using a fully-connected network in this task. The main reason of this problem
is the large variability of the images due to changes in the lighting conditions, pose,
expression, etc. Even adding more pre-trained layers the result is only marginally
improved. Finally, note that the best result (92.60\%) is obtained using a pre-trained
network with 3 hidden layers trained including the dropout technique. This result
serves as reference to compare the performance obtained with other networks.

5.3.3 Results with DCNN

In the previous section we have realized that using a deeper network with pre-trained
layers only gives a modest improvement. This section evaluates a Deep Convolutional
Neural Network (DCNN), which has shown great performance in other computer
vision tasks [Hinton et al., 2012; Taigman et al., 2014].

The network architecture employed in the experiments is inspired by the excellent
results obtained recently in [Taigman et al., 2014] with the LFW database in the face
recognition problem. As explained in Section 2.2.4, DCNNs are composed alternating
convolutional and pooling layers. More specifically, our network has a first convolu-
tional layer (C1) with 32 filters of size 11 \times 11, and its output is an image of size
143\times 143 (this is denoted by 32\times 11\times 11@143\times 143). The resulting 32 feature maps

80 CHAPTER 5. APPLICATION TO GENDER RECOGNITION

are fed into a max-pooling layer (P2) which takes the max over 3 \times 3 spatial neigh-
borhoods with a stride of 2. The second convolutional layer (C3) has 16 filters of size
9\times 9. After that, there is another max-pooling layer (P4) with the same parameters
as before. After this part of the network, a fully-connected layer (F5) with 512 units
plus a discriminative output layer are added at the end. A graphical representation
of this network is depicted in Fig. 5.2.

Figure 5.2. Graphical representation of a DCNN model. The parameters above denote the
configuration used in the experiments of the gender recognition.

Before comparing the results obtained, it is also interesting to contrast the fea-
ture detectors obtained in the first layer of the network. The 32 learned filters are
represented as images in Fig. 5.3. These filters are much simpler than those learned

Figure 5.3. The 32 filters learned by the DCNN model in the first layer.

by the RBM (see Fig. 5.1), and are similar to other low-level handcrafted features
such as Haar or Gabor wavelets. With regard to the type of units employed in the
network, all the hidden units are ReLU due to the clear advantage compared with
sigmoid units demonstrated before. Also, a 50\% dropout has been applied only over
the last fully-connected layer. This model has been evaluated for both databases, i.e.
the LFW and the Gallagher. The results obtained are shown in Table 5.3. Note that
the best result obtained with the DNN model for both datasets is also included. The
parameters for the training process were selected using cross-validation in the LFW
database, and they were also used with the Gallagher's database. As it can be seen,

5.3. EXPERIMENTS 81

Table 5.3. Accuracy on the test set for the DCNN model.

LFW Database
Model Accuracy (\%)

Best DNN 92.60
DCNN 94.09

Gallagher's Database
Model Accuracy (\%)

Best DNN 84.28
DCNN 86.04

there is a big improvement on the accuracy when using DCNN networks. This result
confirms the good performance of mixing convolutional and pooling layers that are
focused on learning from small regions of the image. This type of networks are able to
take advantage of using deep architectures because the first layers are able to extract
useful low-level features, while the upper ones learn to classify the samples according
to their gender.

5.3.4 Results with Local-DNN

In this section we summarize the results obtained using our Local-DNN model pre-
sented in Chapter 4.

The Local-DNN model extracts several patches from the images to feed a neural
network that learns to classify these patches. The extraction process is performed
following the second method explained in Section 4.4.4. According to this method, a
binary mask that aims to sweep the areas with high information content is created
for each image (see Fig. 4.3). Using these masks, all the patches of size 13 \times 13
pixels are extracted and normalized to have zero-mean and unit-variance. This size
was inspired from other works that also use a local feature framework applied to
face images, extracting patches similar to the size of an eye in the image ([Paredes
et al., 2001]). At this point, it is important to stress the clear imbalance between the
number of male and female images in the LFW database. For this reason we have
randomly discarded some male patches from the training and from the validation
set to have equally distributed folds during training. Obviously, the set of patches
extracted from the test set remains unchanged. Furthermore, the network is composed
of hidden layers with 512 ReLU units, and the number of layers has been changed to
compare the performance.

All the results concerning these experiments are presented in three tables. The
first one (Table 5.4) shows the accuracy at a patch level varying the number of hidden
layers. With these results we can get an idea of how well the network is able to
classify each patch as a male or as a female, i.e. to learn the complex mapping from
the appearance of patches to classes. Note that the results displayed include those
obtained including the location information in each local feature, as a modification of
the base model (see Section 4.4.5).

According to these results, there is a big difference between the network with one
hidden layer and the networks with two or more hidden layers. This issue occurs in
both databases and denotes the poor learning capacity of the network with just one
hidden layer. In this case, using deeper networks it does improve the performance in
contrast to what happened feeding the entire image to the DNN (see Tables 5.1 and

82 CHAPTER 5. APPLICATION TO GENDER RECOGNITION

Table 5.4. Accuracy at patch level on the test set for the Local-DNN model varying the
number of hidden layers.

LFW Database

Model Depth
Path Acc. (\%)

w/o loc. with loc.

Local
DNN

1 layer 68.48 71.18
2 layer 74.30 77.17
3 layer 74.50 77.87
4 layer 74.34 77.26

Gallagher's Database

Model Depth
Path Acc. (\%)

w/o loc. with loc.

Local
DNN

1 layer 64.87 67.14
2 layer 70.70 72.83
3 layer 70.51 72.65
4 layer 70.52 72.37

5.2). On the other hand, it is also clear that including the location information of the
patch in the local feature representation strengthens the learning of the network to
better estimate the label of each patch.

Delving into the topic of the patch-based results, it is also interesting to analyze
the distribution of this accuracy depending on the position of the patch in the image.
To this end, Fig. 5.4 shows qualitatively the probability of accuracy depending on the
position where the patch was extracted. In other words, a pixel in that image indicates
how likely it is, that the patch extracted in that position predicts the correct class.
In the image, the light color denotes higher probability and the dark color denotes
lower probability. Note that the lowest probability is around 0.59 and the highest
probability is around 0.78. These values are obtained with the best network in the
LFW dataset. From this figure, it is clear that the best patches are those centered
around the eyes and the mouth. To some extent, this makes sense because those areas
of the face are very representative for the distinction between male and female.

Once the results at patch level have been presented, Table 5.5 resumes the accuracy
obtained by applying the final decision rule to classify the whole face image. It is
important to recall, that the Local-DNN model allows to make this decision using
two methods according to the probabilistic framework explained in Section 4.4.2: the
first one is summing all the posterior probabilities given by each patch of the image
(see Eq. (4.12)), and the second one is based on a voting scheme where each patch
chooses a class according to its maximum local posterior (see Eq. (4.13)). The results
for both methods are presented in the table, varying the depth on the network as
well. Note that the results obtained by summing posteriors use the same weight for
all the contributions, so all the local features are equally reliable, i.e. \alpha i = 1/F .

According to these results it is clear that summing posteriors yields slightly bet-
ter results in all cases. Besides this fact, the results also show a big gap between

5.3. EXPERIMENTS 83

Figure 5.4. Probability of accuracy at patch level according to with the position where the
patch was extracted. Light and dark colors denote high and low probability, respectively.

Table 5.5. Accuracy on the test set for our Local-DNN model varying the number of hidden
layers.

LFW Database

Model Depth
Acc. (\%)\sum

Post. Voting
w/o loc. with loc. w/o loc. with loc.

Local
DNN

1 layer 91.66 92.64 91.63 92.38
2 layer 95.35 95.98 95.19 95.86
3 layer 95.81 96.04 95.62 95.74
4 layer 95.79 96.25 95.71 96.20

Gallagher's Database

Model Depth
Acc. (\%)\sum

Post. Voting
w/o loc. with loc. w/o loc. with loc.

Local
DNN

1 layer 83.25 84.73 82.62 83.76
2 layer 89.48 89.96 89.14 90.02
3 layer 89.74 90.58 89.58 90.49
4 layer 89.85 90.29 89.64 89.94

84 CHAPTER 5. APPLICATION TO GENDER RECOGNITION

using a one hidden layer network or using more hidden layers. On the other hand,
the improvement obtained at a patch level (see Table 5.4) by including the location
information produces also an improvement at image level, obtaining the best results
in both databases. It is also interesting to compare the accuracy obtained by the
network at a patch-level and at image-level. The large difference between these two
values (around 20\%), denotes the strength of the method once all the contributions
have been taken into account according to the probabilistic framework. This is the
key of the method.

Besides these results, the modification of the base model regarding the use of
different weights when summing posteriors during testing has been also evaluated
(see Section 4.4.5). The \alpha i values are estimated using the probability of accuracy of
each patch placement. These values were normalized to sum up 1.0 for all the patches
extracted. This means that the higher \alpha i values correspond to local features with
high probability of accuracy, and vice-versa. This modification was performed only
for the best case in each database. The result obtained is 96.23\% of accuracy in the
LFW database and 90.23\% in the Gallagher's database. Both results are quite similar
to those obtained using equally reliable features in both databases. Probably, this
is because the feature selection made by the binary mask of each image has already
selected the most important zones from the image, and most of the patches selected
by the binary mask are informative enough to be equally weighted.

Finally, Table5.6 presents cross-database results in order to show the validity of
our approach and generalization capabilities. This results are obtained using one
database for training and the other one for testing.

Table 5.6. Cross-database accuracy at image level using the Local-DNN model.

Train using LFW and test using Gallagher's

Model Depth
Acc. (\%)\sum

Post. Voting
w/o loc. with loc. w/o loc. with loc.

Local
DNN

1 layer 73.33 78.47 73.79 78.19
2 layer 80.50 83.03 80.69 82.82
3 layer 82.04 82.91 81.87 82.84
4 layer 82.15 81.21 82.32 81.12

Train using Gallagher's and test using LFW

Model Depth
Acc. (\%)\sum

Post. Voting
w/o loc. with loc. w/o loc. with loc.

Local
DNN

1 layer 89.50 90.67 89.56 90.41
2 layer 93.76 94.06 93.53 93.93
3 layer 94.29 94.26 93.98 94.39
4 layer 93.98 93.98 93.76 94.48

According to the results obtained, the Local-DNN model can generalize well to
a different database at the expense of a small performance penalty. In addition, all

5.3. EXPERIMENTS 85

the conclusions previously stated regarding the number of hidden layers, the use of
the location information and the final decision rule method also apply in this case.
It should be emphasized that our best cross-database results (83.03\% and 94.48\%
of accuracy) are better than the only previously published cross-database results
presented in [Dago-Casas et al., 2011], where a 81.02\% and 89.77\% were obtained
when testing with the Gallagher's and LFW respectively.

5.3.5 Comparison of the results

In the previous section, all the results obtained with different networks have been
summarized, including the Local-DNN model. In this section, these results are com-
pared with other state-of-the-art results obtained with other methods on the same
datasets. All of these results are included in Table 5.7.

Table 5.7. Best accuracy on the test set for DNN, DCNN and Local-DNN models, and
other state-of-the-art results.

LFW Database
Model Acc.(\%)

Best DNN 92.60
Best DCNN 94.09

Best Local-DNN 96.25
Gabor+PCA+SVM [Dago-Casas et al., 2011] 94.01

Boosted LBP+SVM [Shan, 2010] 94.44

Gallagher's Database
Model Acc.(\%)

Best DNN 84.28
Best DCNN 86.04

Best Local-DNN 90.58
Gabor+PCA+SVM [Dago-Casas et al., 2011] 86.61
FPLBP+Drop SVM [Eidinger et al., 2014] 88.60

LBP+CH+SIFT+SVM [Fazl-Ersi et al., 2014] 91.59

86 CHAPTER 5. APPLICATION TO GENDER RECOGNITION

According to these results, the Local-DNN model outperforms other DL methods,
such as the DNN and the DCNN, and also obtains the best published result on the
LFW dataset using all the images available. Note that other results not included in
this table that use this database ([Ren and Li, 2014; Tapia and Perez, 2013]), were
obtained removing many images, and using only 7443 and 6840 samples out of 13233,
respectively. It is important to underline that the results presented in this section are
obtained using the entire dataset, without removing any image. For this reason, both
results cannot be compared on equal terms. On the other hand, [Fazl-Ersi et al., 2014]
recently obtained a slightly better result in the Gallagher's database. However, this
result is obtained using a complex ensemble composed of several handcrafted features
such as LBPs, Color Histograms and SIFT, plus a SVM classifier. In contrast, the
Local-DNN model is quite simple and generic to apply, and it also works well for
other computer vision tasks as it has been shown in the experiments performed in
Section 4.5.

5.4 Conclusions

This chapter presents several experiments performed using different DL networks on
the gender recognition problem of face images. The target of the experiments is to
evaluate the performance of these models using real-world images taken in uncon-
strained scenarios. To that end, two challenging face image datasets have been used:
the Labelled Faces in the Wild (LFW) and the Groups/Gallagher dataset.

First of all, a standard DNN model has been evaluated varying the most important
parameters of the model, such as the number of hidden layers, the type of hidden units
and the use of pre-trained weights. The results with this type of model show that
the use of deeper networks barely improves the performance, even with pre-training.
Due to the large variability of the data, it is difficult to learn useful representations
using fully-connected layer, i.e. when the learning is performed from the entire image.
Regarding the type of units, it is clear that the ReLU units outperform the classical
sigmoid function even with fewer number of neurons, which is a widespread conclusion
among the DL researchers.

The next block of experiments is focused on models that take advantage of learn-
ing from small regions in the image. We have evaluated a DCNN that uses several
layers of convolutional and pooling operations to learn useful feature detectors. The
results obtained with this network substantially improves the result obtained with
DNNs, and the network model actually benefits from using a deep architecture. This
fact confirms the general perception demonstrated in the last years that most of the
challenging computer vision problems can be better addressed using convolutional
networks with ReLU units, and training the network with the dropout technique to
prevent overfitting. Therefore, the use of unsupervised pre-training in discriminative
problems has been relegated to problems where the labelled data is quite scarce [Ben-
gio et al., 2013].

On the other hand, our novel Local-DNN model presented in Chapter 4 has also
been evaluated. The results obtained with this model are even better than those ob-
tained with the DCNN. Actually, the Local-DNN model obtains the best result pub-

5.4. CONCLUSIONS 87

lished in the gender recognition problem with the LFW dataset using all the images,
an it also obtains state-of-the-art results in the Gallagher dataset. The local-based
learning used by this model works especially well in this specific task, where some
kind of registration (scale) is applied to the images and some prior knowledge can be
applied in order to select the most informative parts of the images. The performance
can even be improved by including the location information where the patch was ex-
tracted in the local feature representation. It is also interesting to note the lack of
improvement obtained when the local contributions are merged with different weights
depending on the accuracy of each patch based on its location, as it already happened
with the MNIST and the CIFAR-10 databases (see Section 4.5). This modification
does not bring any improvement, so all the patches selected by the binary mask can
be taken into account with the same weight.

Chapter 6

General Conclusions

This chapter aims to summarize the main conclusions extracted from the work pre-
sented in this thesis. The topic of this thesis is focused on the Deep Learning (DL)
framework, which comprises an ensemble of models and methods to discover several
representations of the data to be able to learn complex functions. More specifically,
this thesis mainly presents two novel contributions related to this framework. On
the one hand, Chapter 3 deals with different regularization techniques applied to
the Restricted Boltzmann Machine model. Also, a new regularization scheme called
Mask Selective Regularization (MSR) is presented and evaluated. On the other hand,
Chapter 4 presents a discriminative model called Local Deep Neural Network (Local-
DNN), which takes advantage of learning from small regions in images by using deep
architectures. The specific conclusions on these methods are detailed in Sections 6.1
and 6.2 of this chapter.

These contributions have been made possible thanks to the previous extensive work
carried out to have the necessary knowledge in this area within the Machine Learning
context. Some of this knowledge is summarized in Chapter 2 as an overview of the
most important models and methods within the DL framework. These methods have
dramatically improved the state-of-the-art in several tasks and domains for the last
years. Inspired by this success and given our special interest in biometric applications,
Chapter 5 summarizes the results obtained using several DL methods in the specific
task of the gender recognition using face images. According to the results obtained,
our Local-DNN model performed remarkably well in two face datasets evaluated,
improving other state-of-the-art techniques in some cases.

Finally, it is important to highlight that part of the work presented in this thesis
has provided a basis for opening a new line of research in our group at the university.
Let us hope that this work will help other researchers to continue working on these
topics.

90 CHAPTER 6. GENERAL CONCLUSIONS

6.1 Conclusions on Regularization Methods for
RBMs

Chapter 3 studies several regularization methods for the RBM model. According to
the literature there are two typical regularization techniques commonly applied to the
parameters (weights) of the RBM during training: one based on the L2 norm, and
the other one based on the L1 norm. Both regularizations have their own advantages
and disadvantages. Therefore, we propose a novel regularization method, called Mask
Selective Regularization (MSR), that aims at applying both norms in an effective way.
Each connection of the RBM is regularized with just one of these norms, so that the
L1 norm is applied to the weak connections to force real zeros, and the L2 is applied
to the meaningful connections to avoid them to grow too much. The selection of the
connections is performed adaptively by using a binary mask that takes into account
the topology of the input data and the current state of the weights during the learning
process.

In the experiments performed with several datasets, the discriminative perfor-
mance of a neural network pre-trained with RBMs is compared changing the regu-
larization method applied during the pre-training. The main conclusions drawn from
these experiments can be summarized in the following:

\bullet The networks trained with the MSR technique obtain better results in most
of the cases evaluated, specially when the input data has been corrupted with
different types of noise to simulate possible sources of error.

\bullet The MSR method can be applied successfully with non-image data, such as
text, and it can be used in upper layers of the deep network as well. This is in
contrast to other methods published in the literature that assume local statistics
of the data (like in images) to decide which connections should be removed, and
they cannot be applied in the upper weights of the network.

\bullet The qualitative results given by the histogram of the weights and the feature
detectors obtained reveals that the MSR gets what it was initially proposed, i.e.
to force real zeros in the weak connections and to avoid the remaining ones to
grow too much.

6.2 Conclusions on the Local-DNN model

Chapter 4 presents a novel discriminative model called Local Deep Neural Network
(Local-DNN). This model is based on two key concepts: local features and deep
architectures. Several local windows (patches) are extracted at different locations of
the image, and a DNN learns to classify these patches according to the label of the
image to which it belongs. In the testing step, all these local contributions are merged
to predict a single label for the image.

Several experiments using different databases have been performed, varying also
the most important parameters of the model. Also, the results are compared with

6.3. DIRECTIONS FOR FUTURE RESEARCH 91

those obtained using a standard DNN to show the advantages of restricting the learn-
ing to local regions in the image. The main conclusions drawn from these experiments
are summarized below:

\bullet The experiments performed using challenging datasets, such as the CIFAR-10
or the datasets employed in the gender recognition task (LFW and Gallagher),
show the lower performance obtained with a standard DNN that learns from
the entire image. Moreover, in these cases there is no significant benefit of using
deeper networks.

\bullet In contrast, the Local-DNN model works remarkably well in the cases cited
above, specially in the gender recognition problem where some registration has
been applied to the images and where some prior knowledge can be applied
in order to select the most informative parts. Note that Local-DNN obtains
the best result published in the LFW dataset and the second best result in the
Gallagher dataset.

\bullet In a simpler task like MNIST, the Local-DNN does not take advantage of learn-
ing from small patches. However, extraordinary results are obtained with this
model by learning from larger patches and merging these contributions during
testing. These patches are no longer local, and actually they can be seen as
several translated versions of the original images.

\bullet The performance of the model can be improved when the location information
where the patch was extracted is included in the local feature representation.

\bullet The fusion method based on summing posteriors works slightly better than the
method based on a direct voting scheme.

\bullet Using a weighted sum of contributions does not improve the results when these
weights are computed according to the accuracy of each patch depending on its
location. Therefore, similar results are obtained if all the patches available are
taken into account with the same weight.

\bullet The main advantages of the model presented are given by its simplicity and
generalization capabilities. It should be also highlighted that the model might
work well in discriminative tasks where there are few samples per class, in
contrast to DCNNs that usually tend to overfit the training data, even with
regularization techniques such as dropout.

6.3 Directions for Future Research

This section briefly offers some pending issues and possible future directions for re-
search regarding the DL methods presented in this thesis. The MSR technique has
shown to work well as a regularization during the pre-training. However, the binary
masks that split both regularizations are not taken into account during the fine-tuning
process. It would make sense to keep also these binary masks when the Backprop-
agation algorithm is used to modify all the weights of the discriminative network

92 CHAPTER 6. GENERAL CONCLUSIONS

together. This idea is somehow similar to that proposed in [Wan et al., 2013], where
several random connections are removed during training according to the different
binary masks obtained. Besides this line of research, some effort should be made to
better evaluate the MSR method in other tasks involving non image data, such as the
text classification.

The Local-DNN model has made possible to assess the importance of learning from
small regions in challenging tasks dealing with images. The results obtained are quite
encouraging given the simplicity of the model. For this reason, it would be interesting
to use a more powerful model like a convolutional network to further exploit the local-
based learning proposed. The performance of this model should be also addressed to
other tasks where the data available is scarce. In this scenario, the Local-DNN model
might perform well because the network would not overfit the training data thanks to
the increase of the data samples given by the patches extracted. Finally, it would be
interesting to combine several patches of different sizes in the fusion step, especially
in other tasks where the objects in the images are displayed at very different scales.
In this case, several networks must be trained using different patch sizes, and each of
them would specialize in one specific scale.

6.4 Dissemination

Dissemination of findings related to the investigation in this thesis has extended to
various publications in scientific journals and international conferences. In this sec-
tion, we enumerate these publications pointing out their relation with the thesis.

In the beginning of the PhD, most of the work was focused on several Machine
Learning areas, especially those related to the face recognition and the point of re-
gard estimation problems. This work served as the main topic for my Master Thesis
([Mansanet, 2012]), and the results obtained were published in the following interna-
tional conference:

\bullet Mansanet, J., Albiol, A., Paredes, R., Mossi, J.M., Albiol, A. (2013). Es-
timating Point of Regard with a consumer camera at a distance. 6th Iberian
Conference, IbPRIA 2013, Funchal, Madeira, Portugal, June 5-7, 2013. Pro-
ceedings, pages 881--888.

Regarding to the RBM model, much work has been done . On the one hand,
several experiments using this model as a feature extractor in the gender recognition
problem were performed to acquire all the knowledge and background exposed in
Section 2.3.1. The results obtained were published in the following international
conference:

\bullet Mansanet, J., Albiol, A., Paredes, R., Villegas, M., Albiol, A. (2014). Re-
stricted Boltzmann Machines for Gender Recognition. 11th International Con-
ference, ICIAR 2014, Vilamoura, Portugal, October 22-24, 2014, Proceedings,
Part I, pages 274--281.

On the other hand, part of the work exposed in Chapter 3 about the novel regular-
ization method MSR has been published in a very prestigious international journal:

6.4. DISSEMINATION 93

\bullet Mansanet, J., Albiol, A., Paredes, R., Albiol, A. (2015). Mask selective regu-
larization for restricted Boltzmann machines. Neurocomputing, Volume 165, 1
October 2015, pages 375--383.

Finally, the description of the Local-DNN model (see Chapter 4) and several ex-
periments summarized in Chapter 5, are included in one article in the prestigious
Pattern Recognition Letters journal. This article is currently accepted and it will be
published in the near future.

\bullet Mansanet, J., Albiol, A., Paredes, R. (2015). Local Deep Neu-
ral Networks for gender recognition. Pattern Recognition Letters, DOI:
10.1016/j.patrec.2015.11.015.

Besides the research articles published, the work carried out during this thesis
has allowed to actively contribute to the organization of the First AERFAI Autumn
School on Deep Learning (AASDL). This event covered both theoretical and practical
issues of Deep Learning methods with several lectures. More details about this school
can be found at [AERFAI, 2015].

Appendix A

Public Databases and
Evaluation Protocols

This appendix describes the databases and their related evaluation protocol used for
the experiments performed in this thesis. These datasets are publicly available for
researchers, and conform a great variety of data types.

A.1 MNIST Database

The MNIST database1 is composed of images of handwritten digits. It is a subset
of a larger set available from NIST. The original black and white images were size-
normalized to fit in a 20 \times 20 pixel box while preserving their aspect ratio. The
resulting images contain grey levels as a result of the anti-aliasing technique used by
the normalization algorithm. The images were centered in a 28 \times 28 pixels image
by computing the center of mass of the pixels. This database is widely evaluated
using Machine Learning and Pattern Recognition methods because provides a real-
world data while spending minimal efforts on preprocessing and formatting. Some
examples of the database are displayed in Fig. A.1.

The evaluation method fixes a training set of 60,000 digits and a test set of 10,000
digits. For validation purposes it is typical to use 50,000, equally distributed random
images for training and the remaining 10,000 for validation.

A.2 USPS Database

The US Postal Service (USPS) database is composed of images of handwritten digits.
It contains normalized gray scale images of size 16\times 16 pixels. Some examples of the
database are displayed in Fig. A.2. In contrast to the MNIST dataset, these digits
are normalized to fit the available area of the entire image.

1MNIST database is available here: http://yann.lecun.com/exdb/mnist/.

96 APPENDIX A. PUBLIC DATABASES AND EVALUATION PROTOCOLS

Figure A.1. Some examples of handwritten digits of the MNIST dataset.

Figure A.2. Some examples of handwritten digits of the USPS dataset.

A.3. 20 NEWSGROUP DATABASE 97

There is not an official evaluation method for this dataset, but a known splitting
of 7291 cases for training and 2007 for testing has been traditionally used2. The
experiments performed in this thesis have followed this partition.

A.3 20 Newsgroup Database

The 20 Newsgroups dataset is a collection of approximately 20,000 newsgroup docu-
ments, partitioned (nearly) evenly across 20 different newsgroups. This dataset has
become very popular for experiments regarding text classification and text clustering
tasks. Table 2 shows a list of the 20 newsgroups partitioned (more or less) according
to subject matter.

Table A.1. The 20 classes of the 20 Newsgroup dataset, partitioned according to the subject
matter.

comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x

rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey

sci.crypt
sci.electronics
sci.med
sci.space

misc.forsale
talk.politics.misc
talk.politics.guns
talk.politics.mideast

talk.religion.misc
alt.atheism
soc.religion.christian

For the experiments performed in this thesis we have used a version of this dataset3

which contains 11269 training samples and 7505 test samples after some preprocessing
steps. The samples of this version were preprocessed as follows. First, the original
data was tokenized using the Rainbow toolkit [McCallum, 1996]. After that, the data
was converted to Matlab format using the word counts from a fixed vocabulary with
the 5,000 most informative words. Therefore, each sample is represented by a feature
vector with 5,000 values.

A.4 CIFAR-10 Database

The CIFAR-10 dataset4 is a subset of the Tiny Images dataset which contains 60,000
images divided among 10 classes. The size of the images is 32 \times 32 pixels, and
all of them were collected from the web representing natural scenes. This dataset
is highly varied because there is not a canonical viewpoint or scale at which the
objects appear. The only criteria for including an image was that it must contain one
dominant instance of the available classes, so that the object in the image must be

2USPS dataset is available here: http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.
320Newsgroup dataset is available here: http://qwone.com/\sim jason/20Newsgroups/20news-

bydate-matlab.tgz.
4CIFAR-10 dataset is available here: http://www.cs.toronto.edu/\sim kriz/cifar.html.

98 APPENDIX A. PUBLIC DATABASES AND EVALUATION PROTOCOLS

easily identifiable as belonging to the class indicated by the image label. The classes
are completely mutually exclusive. Some examples of the database are displayed in
Fig. A.3. Each row represents one of the 10 classes: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, truck.

Figure A.3. Some examples of the CIFAR-10 dataset images.

The evaluation protocol proposed for this dataset splits the data into 50,000 train-
ing images and 10,000 test images. Both sets contain the same number of images in
each class.

A.5 Labelled Faces in the Wild Database

The Labelled Faces in the Wild database (LFW) [Huang et al., 2007] is composed of
face images, and it is meant to study the problem of face recognition in unconstrained
conditions. The face images were collected from the web, and the only constraint on
these faces is that they were detected by the Viola-Jones face detector. The database
contains 13,233 color images (10,256 male and 2,977 female) from 5,749 celebrities.
Some examples of images of the database are displayed in Fig. A.4. The size of these
images is 250\times 250 pixels. Due to the unconstrained nature of the original images, in
this thesis we have worked with an aligned version of the database5, which is composed
of the same images, but the faces are aligned to a canonical pose.

5Aligned LFW dataset with deep funneling is available here: http://vis-
www.cs.umass.edu/lfw/lfw-deepfunneled.tgz.

A.6. GROUPS/GALLAGHER DATABASE 99

Figure A.4. Some examples of the LFW dataset images.

In this thesis we have used this database for performing experiments on the gen-
der recognition problem. To that end we have followed a benchmark proposed by
the Facial Image Processing and Analysis group (FIPA, \tth \ttt \ttt \ttp ://\ttf \tti \ttp \tta .\ttc \tts .\ttk \tti \ttt .\tte \ttd \ttu),
which splits the original data in 5 folds6. The evaluation protocol suggest to use 4
folds for training and 1 for testing. This should be done for all the combinations, and
the results are averaged.

A.6 Groups/Gallagher Database

The Groups Database [Gallagher and Chen, 2009] is composed of 5,080 images con-
taining 28,231 faces labeled with the age and gender information. This database is
best known as the Gallagher's database because of its main contributor Andrew C.
Gallagher. All the images were collected from Flickr in very different acquisition con-
ditions, so the images are really challenging, containing significant pose, illumination,
expression, age and ethnic differences. Some examples of the original images of the
database representing groups of people are displayed in Fig. A.5.

Figure A.5. Some examples of the Gallagher dataset images.

6The 5 folds proposed by FIPA are available here http://fipa.cs.kit. edu/download/LFW- gender-
folds.dat.

http://fipa.cs.kit.edu

100 APPENDIX A. PUBLIC DATABASES AND EVALUATION PROTOCOLS

In this thesis we have used this dataset for performing experiments on the gender
recognition problem. There is not an standard benchmark for gender classification
using this database, so we have followed the protocol proposed by [Dago-Casas et al.,
2011]. According to this, a new version of the dataset is created by removing those
images whose interocular distance was less than 20 pixels (to eliminate low resolution
images). Some of the male faces were also discarded to have an equal number of
male and female faces. This results in a final dataset containing 5 equally sized folds
containing altogether 14760 images7. For the evaluation process proposed, 4 folds are
used for training and the remaining one for testing. At the end, all the combinations
are averaged.

7The 5 folds with the images selected are available here
http://fipa.cs.kit.edu/download/Gallagher gender 5folds.txt.

Bibliography

AERFAI, PRHLT, U. (2015). \tth \ttt \ttt \ttp \tts ://\ttw \ttw \ttw .\ttu \ttp \ttv .\tte \tts /\ttc \tto \ttn \ttt \tte \ttn \tti \ttd \tto \tts /\ttA \ttA \ttS \ttD \ttL /. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 93)

Baluja, S. and Rowley, H. A. (2007). Boosting sex identification performance. Int. J.
Comput. Vision, 71(1):111--119. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 75)

Bartle, A. and Zheng, J. (2015). Gender classification with deep learning. Technical
report, The Stanford NLP Group. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 76)

Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton,
NJ, USA. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 2)

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2(1):1--127. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 3, 16, \mathrm{a}\mathrm{n}\mathrm{d} 23)

Bengio, Y. and Bengio, S. (2000). Modeling high-dimensional discrete data with multi-
layer neural networks. In Advances in Neural Information Processing Systems 12,
pages 400--406. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 8)

Bengio, Y. and Courville, A. (2013). Deep learning of representations. In Handbook
on Neural Information Processing, pages 1--28. Springer. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 2)

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A re-
view and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8). (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 2 \mathrm{a}\mathrm{n}\mathrm{d} 86)

Bengio, Y. and Glorot, X. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of AISTATS 2010, volume 9, pages
249--256. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 10 \mathrm{a}\mathrm{n}\mathrm{d} 77)

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-wise
training of deep networks. In Sch\"olkopf, B., Platt, J., and Hoffman, T., editors,
Advances in Neural Information Processing Systems 19, pages 153--160. MIT Press.
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 22)

Bo, L., Ren, X., and Fox, D. (2010). Kernel Descriptors for Visual Recognition. In
Advances in Neural Information Processing Systems. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 66)

https://www.upv.es/contenidos/AASDL/

102 BIBLIOGRAPHY

Buchala, S., Davey, N., Frank, R., and Gale, T. (2004). Dimensionality reduction of
face images for gender classification. Intelligent Systems, 2004. Proceedings. 2004
2nd International IEEE Conference, 1:88--93 Vol.1. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 75)

Cai, X., Hu, S., and Lin, X. (2012). Feature extraction using Restricted Boltzmann
Machine for stock price prediction. In Computer Science and Automation Engi-
neering (CSAE), 2012 IEEE International Conference on, pages 80--83. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 28)

Carreira-Perpinan, M. A. and Hinton, G. E. (2005). On contrastive divergence learn-
ing. In Proceedings of the Tenth International Workshop on Artificial Intelligence
and Statistics, pages 33--40. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 19)

Chan, T., Jia, K., Gao, S., Lu, J., Zeng, Z., and Ma, Y. (2014). Pcanet: A simple
deep learning baseline for image classification? CoRR. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 66, 70, \mathrm{a}\mathrm{n}\mathrm{d} 71)

Chandra, S., Kumar, S., and Jawahar, C. V. (2013). Learning multiple non-linear
sub-spaces using k-rbms. In Computer Vision and Pattern Recognition. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 54)

Cho, K., Ilin, A., and Raiko, T. (2012). Tikhonov-type regularization for restricted
boltzmann machines. In Artificial Neural Networks and Machine Learning - ICANN
2012, volume 7552, pages 81--88. Springer. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 29)

Ciresan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2010). Deep,
big, simple neural nets for handwritten digit recognition. Neural Computation,
22(12):3207--3220. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 70 \mathrm{a}\mathrm{n}\mathrm{d} 71)

Coates, A., Karpathy, A., and Ng, A. Y. (2012). Emergence of object-selective fea-
tures in unsupervised feature learning. In Pereira, F., Burges, C., Bottou, L., and
Weinberger, K., editors, Advances in Neural Information Processing Systems 25,
pages 2681--2689. Curran Associates, Inc. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 54)

Coates, A., Lee, H., and Ng, A. Y. (2011). An analysis of single-layer networks in
unsupervised feature learning. In AISTATS. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 47, 53, \mathrm{a}\mathrm{n}\mathrm{d} 66)

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals, and Systems (MCSS), 2(4):303--314. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 10)

Dago-Casas, P., Gonz\'alez-Jim\'enez, D., Yu, L. L., and Alba-Castro, J. L. (2011).
Single- and cross- database benchmarks for gender classification under uncon-
strained settings. In ICCV Workshops, pages 2152--2159. IEEE. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 74,

75, 76, 85, \mathrm{a}\mathrm{n}\mathrm{d} 100)

Dahl, G., aurelio Ranzato, M., rahman Mohamed, A., and Hinton, G. E. (2010).
Phone recognition with the mean-covariance restricted boltzmann machine. In
Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., and Culotta, A., editors,
Advances in Neural Information Processing Systems 23, pages 469--477. Curran
Associates, Inc. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 23)

BIBLIOGRAPHY 103

Dayan, P., Hinton, G. E., Neal, R. N., and Zemel, R. S. (1995). The Helmholtz
machine. Neural Computation, 7:889--904. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 21)

Decoste, D. and Sch\"olkopf, B. (2002). Training invariant support vector machines.
Mach. Learn., 46(1-3):161--190. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 70 \mathrm{a}\mathrm{n}\mathrm{d} 71)

Deriche, R. and Giraudon, G. (1993). A computational approach for corner and vertex
detection. Int. J. Comput. Vision, 10(2):101--124. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 59)

Eidinger, E., Enbar, R., and Hassner, T. (2014). Age and gender estimation of unfil-
tered faces. IEEE Transactions on Information Forensics and Security, 9(12):2170
-- 2179. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 75 \mathrm{a}\mathrm{n}\mathrm{d} 85)

Erhan, D., Courville, A., Bengio, Y., and Vincent, P. (2010). Why does unsupervised
pre-training help deep learning? In Proceedings of AISTATS 2010, volume 9, pages
201--208. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 23)

Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013). Learning hierarchical
features for scene labeling. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1915--1929. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 56)

Fazl-Ersi, E., Mousa-Pasandi, M., Laganiere, R., and Awad, M. (2014). Age and
gender recognition using informative features of various types. In IEEE ICIP 2014.
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 85 \mathrm{a}\mathrm{n}\mathrm{d} 86)

Fischer, A. and Igel, C. (2012). An introduction to restricted boltzmann machines. In
CIARP, volume 7441 of Lecture Notes in Computer Science, pages 14--36. Springer.
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 26)

Freund, Y. and Haussler, D. (1991). Unsupervised learning of distributions of bi-
nary vectors using 2-layer networks. In Advances in Neural Information Processing
Systems 4, pages 912--919. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 16)

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological Cyber-
netics, 36:193--202. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 14)

Gallagher, A. and Chen, T. (2009). Understanding images of groups of people. In
Proc. CVPR. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 99)

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and
the bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6:721--741. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 18)

Glorot, X., Bordes, A., and Bengio, Y. (2010). Deep sparse rectifier networks.
NIPS*2010 Workshop on Deep Learning and Unsupervised Feature Learning
(poster). (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 11, 23, 48, 61, 66, \mathrm{a}\mathrm{n}\mathrm{d} 77)

Golik, P., Doetsch, P., and Ney, H. (2013). Cross-entropy vs. squared error training:
a theoretical and experimental comparison. In Interspeech, pages 1756--1760, Lyon,
France. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 12)

104 BIBLIOGRAPHY

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013).
Maxout networks. In ICML. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 11, 48, 66, \mathrm{a}\mathrm{n}\mathrm{d} 70)

Graf, A. B. A. and Wichmann, F. A. (2002). Gender classification of human faces. In
Proceedings of the 2nd International Workshop on Biologically Motivated Computer
Vision (BMCV), pages 491--500, London, UK. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 75)

Gregor, K. and LeCun, Y. (2010). Emergence of complex-like cells in a temporal
product network with local receptive fields. CoRR, abs/1006.0448. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 54)

G\"ul\c cehre, \~A. and Bengio, Y. (2013). Knowledge matters: Importance of prior infor-
mation for optimization. CoRR. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 54)

han Lin, T. and Kung, H. T. (2014). Stable and efficient representation learning with
nonnegativity constraints. In Jebara, T. and Xing, E. P., editors, Proceedings of the
31st International Conference on Machine Learning (ICML-14), pages 1323--1331.
JMLR Workshop and Conference Proceedings. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 52)

Hinton, G., Dayan, P., Dayan, B. J., and Neal, R. M. (1995). The ""wake-sleep"" algo-
rithm for unsupervised neural networks. Science, 268:1158--1161. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 21

\mathrm{a}\mathrm{n}\mathrm{d} 22)

Hinton, G. E. (2002). Training products of experts by minimizing contrastive diver-
gence. Neural Comput., 14(8):1771--1800. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 16, 18, \mathrm{a}\mathrm{n}\mathrm{d} 19)

Hinton, G. E. (2007). Learning multiple layers of representation. Trends in Cognitive
Sciences, 11(10):428--434. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 23)

Hinton, G. E. (2010). A practical guide to training restricted boltzmann machines.
Technical report, University of Toronto. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 20 \mathrm{a}\mathrm{n}\mathrm{d} 26)

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for
deep belief nets. Neural Comput., 18(7):1527--1554. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 8, 22, 23, 27, 28,

\mathrm{a}\mathrm{n}\mathrm{d} 44)

Hinton, G. E. and Salakhutdinov, R. (2009). Replicated softmax: an undirected topic
model. In Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C., and Culotta, A.,
editors, Advances in Neural Information Processing Systems 22, pages 1607--1614.
Curran Associates, Inc. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 28)

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science, 313:504--507. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 8, 16, 20, 22, 28, 40, 41, 67,

70, \mathrm{a}\mathrm{n}\mathrm{d} 71)

Hinton, G. E. and Salakhutdinov, R. R. (2012). A better way to pretrain deep
boltzmann machines. In Pereira, F., Burges, C., Bottou, L., and Weinberger, K.,
editors, Advances in Neural Information Processing Systems 25, pages 2447--2455.
Curran Associates, Inc. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 23)

BIBLIOGRAPHY 105

Hinton, G. E. and Sejnowski, T. J. (1986). Parallel distributed processing: Explo-
rations in the microstructure of cognition, vol. 1. In Rumelhart, D. E., McClelland,
J. L., and PDP Research Group, C., editors, Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition, Volume 1: Foundations, chapter
Learning and Relearning in Boltzmann Machines, pages 282--317. MIT Press. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d}

\mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 16)

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors.
CoRR, abs/1207.0580. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 66 \mathrm{a}\mathrm{n}\mathrm{d} 79)

Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J. (2001). Gradient flow
in recurrent nets: the difficulty of learning long-term dependencies. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 10

\mathrm{a}\mathrm{n}\mathrm{d} 12)

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural Netw., 2(5):359--366. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 10)

Huang, G. B., Lee, H., and Learned-Miller, E. G. (2012a). Learning hierarchical
representations for face verification with convolutional deep belief networks. In
2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence,
RI, USA, June 16-21, 2012, pages 2518--2525. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 23 \mathrm{a}\mathrm{n}\mathrm{d} 74)

Huang, G. B., Mattar, M., Lee, H., and Learned-Miller, E. (2012b). Learning to align
from scratch. In NIPS. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 76)

Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller, E. (2007). Labeled faces in
the wild: A database for studying face recognition in unconstrained environments.
Technical Report 07-49, University of Massachusetts, Amherst. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 98)

Huang, J. and Mumford, D. (1999). Statistics of natural images and models. In
CVPR, pages 1541--1547. IEEE Computer Society. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 29)

Ji, N., Zhang, J., Zhang, C., and Yin, Q. (2014). Enhancing performance of restricted
boltzmann machines via log-sum regularization. Knowledge-Based Systems, 63:82--
96. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 28)

Jiang, Y., Li, S., Li, P., and Dai, Q. (2014a). Multi-feature deep learning for face gen-
der recognition. In Information Technology and Artificial Intelligence Conference
(ITAIC), pages 507--511. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 76)

Jiang, Z., Guo, P., and Peng, L. (2014b). Locality-constrained low-rank coding for
image classification. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 46)

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Master's
thesis, Department of Computer Science, University of Toronto. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 14,

17, 20, 48, 52, 54, \mathrm{a}\mathrm{n}\mathrm{d} 66)

106 BIBLIOGRAPHY

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Pereira, F., Burges, C., Bottou, L., and
Weinberger, K., editors, Advances in Neural Information Processing Systems 25,
pages 1097--1105. Curran Associates, Inc. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 8 \mathrm{a}\mathrm{n}\mathrm{d} 15)

Kumar, N., Berg, A. C., Belhumeur, P. N., and Nayar, S. K. (2009). Attribute
and Simile Classifiers for Face Verification. In IEEE International Conference on
Computer Vision (ICCV). (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 75)

Larochelle, H. and Bengio, Y. (2008). Classification using discriminative restricted
boltzmann machines. In In ICML '08: Proceedings of the 25th international con-
ference on Machine learning. ACM. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 16 \mathrm{a}\mathrm{n}\mathrm{d} 47)

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436--
444. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 7 \mathrm{a}\mathrm{n}\mathrm{d} 79)

LeCun, Y., Boser, B., Denker, J. S., Howard, R. E., Habbard, W., Jackel, L. D.,
and Henderson, D. (1990). Handwritten digit recognition with a back-propagation
network. In Touretzky, D. S., editor, Advances in neural information processing
systems 2, pages 396--404. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 44)

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278--2324. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d}

\mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 8, 14, \mathrm{a}\mathrm{n}\mathrm{d} 28)

Lee, C., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z. (2015). Deeply-supervised nets.
In Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2015, San Diego, California, USA, May 9-12, 2015. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d}

\mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 66 \mathrm{a}\mathrm{n}\mathrm{d} 70)

Lee, H., Ekanadham, C., and Ng, A. Y. (2008). Sparse deep belief net model for
visual area v2. In Advances in Neural Information Processing Systems 20. MIT
Press. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 27 \mathrm{a}\mathrm{n}\mathrm{d} 28)

Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009a). Convolutional deep
belief networks for scalable unsupervised learning of hierarchical representations.
In Proceedings of the 26th International Conference on Machine Learning, pages
609--616. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 23)

Lee, H., Largman, Y., Pham, P., and Ng, A. Y. (2009b). Unsupervised feature learning
for audio classification using convolutional deep belief networks. In Advances in
Neural Information Processing Systems 22, pages 1096--1104. Curran Associates,
Inc. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 23)

Lee, H., Pham, P., Largman, Y., and Ng, A. Y. (2009c). Unsupervised feature learning
for audio classification using convolutional deep belief networks. In Bengio, Y.,
Schuurmans, D., Lafferty, J., Williams, C., and Culotta, A., editors, Advances in
Neural Information Processing Systems 22, pages 1096--1104. Curran Associates,
Inc. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 28)

BIBLIOGRAPHY 107

Lee, T. S., Mumford, D., Romero, R., and Lamme, V. A. (1998). The role of the
primary visual cortex in higher level vision. Vision Research, 38(15 \setminus 16):2429--
2454. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 3)

Leng, X. and Wang, Y. (2008). Improving generalization for gender classification. In
ICIP, pages 1656--1659. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 75)

Levi, G. and Hassner, T. (2015). Age and gender classification using convolutional
neural networks. In IEEE Conf. on CVPR workshops. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 76)

Li, J., Zhao, B., and Zhang, H. (2009). Face recognition based on pca and lda
combination feature extraction. In Proceedings of the 2009 First IEEE International
Conference on Information Science and Engineering, ICISE '09, pages 1240--1243,
Washington, DC, USA. IEEE Computer Society. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 51)

Li, W. (1990). Mutual information functions versus correlation functions. Journal of
Statistical Physics, 60:823--837. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 32)

Lin, M., Chen, Q., and Yan, S. (2013). Network in network. CoRR, abs/1312.4400.
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 54, 66, \mathrm{a}\mathrm{n}\mathrm{d} 70)

Luo, H., Shen, R., Niu, C., and Ullrich, C. (2011). Sparse group restricted boltzmann
machines. In Burgard, W. and Roth, D., editors, AAAI. AAAI Press. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 28)

Mansanet, J. (2012). T\'ecnicas de regresi\'on para la estimaci\'on de la localizaci\'on de
la mirada. Master's thesis, Universitat Polit\'ectiva de Val\'encia. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 92)

Mansanet, J., Albiol, A., and Paredes, R. (2015a). Local deep neural networks for
gender recognition. Pattern Recognition Letters. (\mathrm{N}\mathrm{o}\mathrm{t} \mathrm{c}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d})

Mansanet, J., Albiol, A., Paredes, R., and Albiol, A. (2015b). Mask selective regu-
larization for restricted boltzmann machines. Neurocomputing, 165:375--383. (\mathrm{N}\mathrm{o}\mathrm{t}

\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d})

Mansanet, J., Albiol, A., Paredes, R., Mossi, J. M., and Albiol, A. (2013). Estimating
point of regard with a consumer camera at a distance. In IbPRIA, pages 881--888.
(\mathrm{N}\mathrm{o}\mathrm{t} \mathrm{c}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d})

Mansanet, J., Albiol, A., Paredes, R., Villegas, M., and Albiol, A. (2014). Restricted
boltzmann machines for gender classification. In Image Analysis and Recognition -
11th International Conference, ICIAR 2014, Vilamoura, Portugal, October 22-24,
2014, Proceedings, Part I, pages 274--281. (\mathrm{N}\mathrm{o}\mathrm{t} \mathrm{c}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d})

McCallum, A. K. (1996). Bow: A toolkit for statistical language modeling, text
retrieval, classification and clustering. http://www.cs.cmu.edu/ mccallum/bow.
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 97)

Moghaddam, B. and Yang, M.-H. (2002). Learning gender with support faces. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 24(5):707--711. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 75)

108 BIBLIOGRAPHY

Mohr, R., Picard, S., and Schmid, C. (1997). Bayesian decision versus voting for image
retrieval. In Sommer, G., Daniilidis, K., and Pauli, J., editors, CAIP, volume 1296
of Lecture Notes in Computer Science, pages 376--383. Springer. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 51)

M\"uller, A., Schulz, H., and Behnke, S. (2010). Topological features in locally con-
nected rbms. In IJCNN, pages 1--6. IEEE. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 33)

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltz-
mann machines. In F\"urnkranz, J. and Joachims, T., editors, Proceedings of the
27th International Conference on Machine Learning (ICML-10), pages 807--814.
Omnipress. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 20, 21, 28, 53, \mathrm{a}\mathrm{n}\mathrm{d} 77)

Ng, A. Y. (2004). Feature selection, l1 vs. l2 regularization, and rotational invariance.
In Proceedings of the Twenty-first International Conference on Machine Learning,
ICML '04. ACM. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 27 \mathrm{a}\mathrm{n}\mathrm{d} 30)

Ng, C., Tay, Y., and Goi, B.-M. (2012a). Recognizing human gender in computer
vision: A survey. In Anthony, P., Ishizuka, M., and Lukose, D., editors, PRICAI
2012: Trends in Artificial Intelligence, volume 7458 of Lecture Notes in Computer
Science, pages 335--346. Springer Berlin Heidelberg. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 75)

Ng, C. B., Tay, Y. H., and Goi, B.-M. (2012b). Vision-based human gender recogni-
tion: A survey. CoRR, abs/1204.1611. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 73)

Ngiam, J., Chen, Z., Chia, D., Koh, P. W., Le, Q. V., and Ng, A. Y. (2010). Tiled
convolutional neural networks. In Lafferty, J., Williams, C., Shawe-taylor, J., Zemel,
R., and Culotta, A., editors, Advances in Neural Information Processing Systems
23, pages 1279--1287. Curran Associates, Inc. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 54)

Nielsen, M. (2015). Neural Networks and Deep Learning. \tth \ttt \ttt \ttp ://

\ttn \tte \ttu \ttr \tta \ttl \ttn \tte \ttt \ttw \tto \ttr \ttk \tts \tta \ttn \ttd \ttd \tte \tte \ttp \ttl \tte \tta \ttr \ttn \tti \ttn \ttg .\ttc \tto \ttm . (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 10 \mathrm{a}\mathrm{n}\mathrm{d} 12)

Paredes, R., P\'erez, J. C., Juan, A., and Vidal, E. (2001). Local representations and a
direct voting scheme for face recognition. In In Workshop on Pattern Recognition
in Information Systems, pages 71--79. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 51, 54, 60, \mathrm{a}\mathrm{n}\mathrm{d} 81)

rahman Mohamed, A., Dahl, G. E., and Hinton, G. E. (2009). Deep belief networks
for phone recognition. In NIPS Workshop on Deep Learning for Speech Recognition
and Related Applications. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 28)

Ren, H. and Li, Z. (2014). Gender recognition using complexity-aware local features.
In 22nd ICPR 2014, pages 2389--2394. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 86)

Rifai, S., Bengio, Y., Courville, A. C., Vincent, P., and Mirza, M. (2012). Disen-
tangling factors of variation for facial expression recognition. In Computer Vision
- ECCV 2012 - 12th European Conference on Computer Vision, Florence, Italy,
October 7-13, 2012, Proceedings, Part VI, pages 808--822. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 23)

Rowley, H., Baluja, S., and Kanade, T. (1996). Neural network-based face detection.
In Computer Vision and Pattern Recognition '96. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 54)

http://neuralnetworksanddeeplearning.com
http://neuralnetworksanddeeplearning.com

BIBLIOGRAPHY 109

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Learning internal
representations by error propagation. In Anderson, J. A. and Rosenfeld, E., editors,
Neurocomputing: Foundations of Research, pages 673--695. MIT Press, Cambridge,
MA, USA. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 7, 8, \mathrm{a}\mathrm{n}\mathrm{d} 11)

Ruprah, T. (2012). Face Recognition Using Pca and Lda Algorithm. Lap Lambert
Academic Publishing GmbH KG. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 51)

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpa-
thy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vi-
sion (IJCV), pages 1--42. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 15)

Salakhutdinov, R. and Hinton, G. (2009a). Deep boltzmann machines. In Proceedings
of the International Conference on Artificial Intelligence and Statistics, volume 5,
pages 448--455. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 23 \mathrm{a}\mathrm{n}\mathrm{d} 41)

Salakhutdinov, R. and Hinton, G. (2009b). Deep Boltzmann machines. In Proceedings
of the International Conference on Artificial Intelligence and Statistics, volume 5,
pages 448--455. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 70 \mathrm{a}\mathrm{n}\mathrm{d} 71)

Salakhutdinov, R., Mnih, A., and Hinton, G. (2007). Restricted boltzmann machines
for collaborative filtering. In Proceedings of the 24th International Conference on
Machine Learning, pages 791--798. ACM. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 28)

Sarikaya, R., Hinton, G., and Deoras, A. (2014). Application of deep belief networks
for natural language understanding. IEEE Transactions on Audio Speech and Lan-
guage Processing. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 23)

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2):197--
227. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 58)

Schmid, C. and Mohr, R. (1997). Local grayvalue invariants for image retrieval. IEEE
Trans. Pattern Anal. Mach. Intell., 19(5):530--535. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 51)

Schmidhuber, J. (2012). Multi-column deep neural networks for image classification.
In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), CVPR '12, pages 3642--3649. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 66 \mathrm{a}\mathrm{n}\mathrm{d} 70)

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding
for face recognition and clustering. CoRR, abs/1503.03832. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 74)

Schulz, H., M\"uller, A., and Behnke, S. (2011). Exploiting local structure in boltzmann
machines. Neurocomputing, 74(9):1411--1417. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 29)

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2014).
Overfeat: Integrated recognition, localization and detection using convolutional
networks. In International Conference on Learning Representations (ICLR 2014).
CBLS. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 8)

110 BIBLIOGRAPHY

Sermanet, P., Kavukcuoglu, K., Chintala, S., and LeCun, Y. (2013). Pedestrian
detection with unsupervised multi-stage feature learning. In Proc. International
Conference on Computer Vision and Pattern Recognition (CVPR'13). IEEE. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d}

\mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 23)

Shakhnarovich, G., Viola, P. A., and Moghaddam, B. (2002). A unified learning
framework for real time face detection and classification. In Proceedings of the
Fifth IEEE International Conference on Automatic Face and Gesture Recognition,
pages 16--. IEEE Computer Society. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 75)

Shan, C. (2010). Gender classification on real-life faces. In ACIVS (2), pages 323--331.
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 75 \mathrm{a}\mathrm{n}\mathrm{d} 85)

Shan, C. (2012). Learning local binary patterns for gender classification on real-world
face images. Pattern Recognition Letters, 33(4):431 -- 437. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 74 \mathrm{a}\mathrm{n}\mathrm{d} 75)

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of
harmony theory. In Rumelhart, D. E., McClelland, J. L., and PDP Research Group,
C., editors, Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Vol. 1, volume 1, pages 194--281. MIT Press. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 16)

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization
of machine learning algorithms. In Pereira, F., Burges, C., Bottou, L., and Wein-
berger, K., editors, Advances in Neural Information Processing Systems 25, pages
2951--2959. Curran Associates, Inc. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 52)

Sohn, K. and Lee, H. (2012). Learning invariant representations with local transforma-
tions. In Langford, J. and Pineau, J., editors, Proceedings of the 29th International
Conference on Machine Learning (ICML-12), pages 1311--1318, New York, NY,
USA. ACM. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 52)

Song, L., Langfelder, P., and Horvath, S. (2012). Comparison of co-expression mea-
sures: mutual information, correlation, and model based indices. BMC Bioinfor-
matics, 13:328. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 32)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15:1929--1958. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 15, 53, 54, \mathrm{a}\mathrm{n}\mathrm{d} 79)

Srivastava, N. and Salakhutdinov, R. (2014). Multimodal learning with deep boltz-
mann machines. Journal of Machine Learning Research, 15:2949--2980. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 23)

Susskind, J., Anderson, A., Hinton, G., and Movellan, J. (2008). Generating Facial
Expressions with Deep Belief Nets. INTECH Open Access Publisher. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 23)

Sutskever, I. and Tieleman, T. (2010). On the convergence properties of contrastive
divergence. In Teh, Y. W. and Titterington, D. M., editors, AISTATS, volume 9
of JMLR Proceedings, pages 789--795. JMLR.org. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 19)

BIBLIOGRAPHY 111

Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). Deepface: Closing the
gap to human-level performance in face verification. In Conference on Computer
Vision and Pattern Recognition (CVPR). (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 8, 15, 54, 74, 76, \mathrm{a}\mathrm{n}\mathrm{d} 79)

Tang, Y. and Eliasmith, C. (2010). Deep networks for robust visual recognition.
In F\"urnkranz, J. and Joachims, T., editors, Proceedings of the 27th International
Conference on Machine Learning, June 21-24, 2010, Haifa, Israel, pages 1055--
1062. Omnipress. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 28, 33, 40, \mathrm{a}\mathrm{n}\mathrm{d} 41)

Tang, Y., Salakhutdinov, R., and Hinton, G. (2012). Robust boltzmann machines for
recognition and denoising. In IEEE Conference on Computer Vision and Pattern
Recognition, 2012, Providence, Rhode Island, USA. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 27 \mathrm{a}\mathrm{n}\mathrm{d} 47)

Tapia, J. E. and Perez, C. A. (2013). Gender classification based on fusion of dif-
ferent spatial scale features selected by mutual information from histogram of lbp,
intensity, and shape. IEEE Transactions on Information Forensics and Security,
8(3):488--499. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 74 \mathrm{a}\mathrm{n}\mathrm{d} 86)

Teh, Y. W. and Hinton, G. E. (2001). Rate-coded restricted boltzmann machines
for face recognition. In Leen, T., Dietterich, T., and Tresp, V., editors, Advances
in Neural Information Processing Systems 13, pages 908--914. MIT Press. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 20)

Tieleman, T. (2008a). Training Restricted Boltzmann Machines using Approximations
to the Likelihood Gradient. In Proceedings of the 25th international conference on
Machine learning, pages 1064--1071. ACM New York, NY, USA. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 19)

Tieleman, T. (2008b). Training Restricted Boltzmann Machines using Approxima-
tions to the Likelihood Gradient. In Proceedings of the 25th international conference
on Machine learning, pages 1064--1071. ACM New York, NY, USA. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 28)

Tompson, J., Goroshin, R., Jain, A., LeCun, Y., and Bregler, C. (2014). Efficient
object localization using convolutional networks. CoRR. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 8)

Turcsany, D. and Bargiela, A. (2014). Learning local receptive fields in deep belief
networks for visual feature detection. In Neural Information Processing - 21st
International Conference, ICONIP 2014, Kuching, Malaysia, November 3-6, 2014.
Proceedings, Part I, pages 462--470. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 29)

Turk, M. and Pentland, A. (1991). Face recognition using eigenfaces. Proceedings
CVPR '91., IEEE Computer Society Conference on, pages 586--591. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 75)

Uetz, R. and Behnke, S. (2009). Locally-connected hierarchical neural networks for
gpu-accelerated object recognition. In Conference on Neural Information Processing
Systems (NIPS 2009). Workshop on Large-Scale Machine Learning: Parallelism and
Massive Dataset. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 53)

Villegas, M. and Paredes, R. (2011). Dimensionality reduction by minimizing nearest-
neighbor classification error. Pattern Recognition Letters, 32(4):633 -- 639. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 75 \mathrm{a}\mathrm{n}\mathrm{d} 76)

112 BIBLIOGRAPHY

Villegas, M., Paredes, R., Juan, A., and Vidal, E. (2008). Face Verification on Color
Images Using Local Features. In Computer Vision and Pattern Recognition Work-
shops, 2008. CVPRW '08. IEEE Computer Society Conference on, pages 1--6. IEEE
Computer Society. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 51, 54, 55, \mathrm{a}\mathrm{n}\mathrm{d} 57)

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and
composing robust features with denoising autoencoders. Technical Report 1316,
D\'epartement d'Informatique et Recherche Op\'erationnelle, Universit\'e de Montr\'eal.
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 23)

Wan, L., Zeiler, M., Zhang, S., Cun, Y. L., and Fergus, R. (2013). Regularization of
neural networks using dropconnect. In Dasgupta, S. and Mcallester, D., editors,
Proceedings of the 30th International Conference on Machine Learning (ICML-13),
volume 28, pages 1058--1066. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 48, 53, 54, 66, 70, \mathrm{a}\mathrm{n}\mathrm{d} 92)

Welling, M., Rosen-zvi, M., and Hinton, G. E. (2005). Exponential family harmoniums
with an application to information retrieval. In Saul, L., Weiss, Y., and Bottou, L.,
editors, Advances in Neural Information Processing Systems 17, pages 1481--1488.
MIT Press. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 11, 19, \mathrm{a}\mathrm{n}\mathrm{d} 23)

Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences. PhD thesis, Harvard University. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 7 \mathrm{a}\mathrm{n}\mathrm{d} 11)

Yang, M., Zhang, L., Feng, X., and Zhang, D. (2011). Fisher discrimination dictionary
learning for sparse representation. In Proceedings of the 2011 International Con-
ference on Computer Vision, ICCV '11, pages 543--550. IEEE Computer Society.
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 46)

Yu, K. and Zhang, T. (2010). Improved local coordinate coding using local tangents.
In Proceedings of the 27th International Conference on Machine Learning (ICML-
10), June 21-24, 2010, Haifa, Israel, pages 1215--1222. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 66)

Zeiler, M. D. and Fergus, R. (2013). Visualizing and understanding convolutional
networks. CoRR, abs/1311.2901. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 8 \mathrm{a}\mathrm{n}\mathrm{d} 15)

Zeiler, M. D., Ranzato, M., Monga, R., Mao, M. Z., Yang, K., Viet Le, Q., Nguyen,
P., Senior, A. W., Vanhoucke, V., Dean, J., and Hinton, G. E. (2013). On rectified
linear units for speech processing. In Proceedings of International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pages 3517--3521. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 11)

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society, Series B, 67:301--320. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 29

\mathrm{a}\mathrm{n}\mathrm{d} 30)

	Abstract / Resumen / Resum
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Notation
	Abbreviations and Acronyms
	Introduction
	Motivation
	Overview of Contributions
	Thesis structure

	Overview of Deep Learning Methods
	Historical Context
	Supervised Networks
	Deep Neural Networks
	Different types of units
	The Backpropagation Algorithm
	Deep Convolutional Neural Networks

	Unsupervised models
	Restricted Boltzmann Machines
	Introduction
	Contrastive Divergence algorithm
	Different type of units

	Deep Belief Networks
	Other unsupervised models

	Regularization Methods for RBMs
	Introduction
	Motivation and Contributions
	State of the Art
	Mask Selective Regularization for RBMs
	Introduction
	A Loss function combining L2 and L1
	Mutual information and Correlation coefficient
	The binary regularization mask
	Topology selection and convergence
	The MSR Algorithm

	Experiments
	General protocol
	Experiments with MNIST
	Experiments with USPS
	Experiments with 20-Newsgroups
	Experiments with CIFAR-10

	Conclusions

	Local Deep Neural Networks
	Introduction
	Motivation and Contributions
	State of the Art
	Local Deep Neural Networks
	Introduction
	Formal framework for local-based classification
	A local class-posterior estimator using a DNN
	Feature selection and extraction
	Location information and reliability weight

	Experiments
	General protocol
	Experiments with CIFAR-10
	Experiments with MNIST

	Conclusions

	Application to Gender Recognition
	Introduction
	State of the Art
	Experiments
	General protocol
	Results with DNN
	Results with DCNN
	Results with Local-DNN
	Comparison of the results

	Conclusions

	General Conclusions
	Conclusions on Regularization Methods for RBMs
	Conclusions on the Local-DNN model
	Directions for Future Research
	Dissemination

	Public Databases and Evaluation Protocols
	MNIST Database
	USPS Database
	20 Newsgroup Database
	CIFAR-10 Database
	Labelled Faces in the Wild Database
	Groups/Gallagher Database

	Bibliography

