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A

Probabilistic reframing for cost-sensitive regression

José Hernández-Orallo, Universitat Politècnica de València

Common day applications of predictive models usually involve a full use of the available contextual information. When the

operating context changes, one may fine-tune the by-default (incontextual) prediction or may even abstain from predicting

a value (a reject). Global reframing solutions, where the same function is applied to adapt the estimated outputs to a new

cost context, is a possible solution here. An alternative approach, which has not been studied in a comprehensive way for

regression in the knowledge discovery and data mining literature, is the use of a local (e.g., probabilistic) reframing approach,

where decisions are made according to the estimated output and a reliability, confidence or probability estimation. In this

paper, we advocate for a simple two-parameter (mean and variance) approach, working with a normal conditional probability

density. Given the conditional mean produced by any regression technique, we develop lightweight ‘enrichment’ methods

that produce good estimates of the conditional variance, which are used by the probabilistic (local) reframing methods. We

apply these methods to some very common families of cost-sensitive problems, such as optimal predictions in (auction) bids,

asymmetric loss scenarios and rejection rules.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications - Data mining; G.3 [Mathemat-

ics of Computing]: Probability and statistics - Correlation and regression analysis; I.2.6 [Artificial Intelligence]: Learning;

I.5.1 [Pattern Recognition]: Models

General Terms: Performance, Experimentation, Reliability, Measurement

Additional Key Words and Phrases: Cost-sensitive regression, Conditional density estimation, Reframing, Reliability esti-

mation in regression, Asymmetric loss, Calibration

1. INTRODUCTION

Consider a common case where a regression model has been built from some training data, and the
model has to be deployed to new instances. If the context is the same for the new instances as it
was for the training data, then the quality of the predictions will mostly depend on the observed
quality of the model for the same context. However, if the context changes, the prediction given by
the model may be suboptimal. For instance, if the model has been trained with a symmetric loss
function but the deployment operating context involves an asymmetric loss function (where, e.g.,
underestimations have higher loss than overestimations), then predictions will need to be adjusted.
In order to do this there are two options: (1) re-train or revise the model by using a possibly modified
(e.g., oversampled) training data and the new loss function, or (2) use what we call a reframing func-
tion which takes the model and the operating context and outputs a new reframed prediction. The
first option is not always possible since many regression methods are not cost-sensitive or cannot be
(easily) adapted to work with different (possibly complex) loss functions. Also, in the cases where
the first option is possible (the training data must be preserved indefinitely), the recurrent re-training
(especially if the context changes for each instance) may have an important computational cost for
large datasets or may be impaired by a context overfitting. The second option, reframing, uses a
decision rule or mechanism that adapts the predictions of a model to another context. In regression,
reframing has been used with global adaptation functions that modify all predictions using the same
function (such as [Bansal et al. 2008; Zhao et al. 2011], who use the term ‘tuning’ instead).
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A:2 J. Hernández-Orallo

The kind of problem mentioned above has been profusely studied for classification, where the
notion of operating context (or condition) is common and well understood. Some of the techniques
and notions for addressing these cases are cost matrices, cost-sensitive classification [Elkan 2001],
ROC analysis [Swets et al. 2000; Fawcett 2006a], threshold-choice methods [Hernández-Orallo
et al. 2012; Hernández-Orallo et al. 2013], calibration [Cohen and Goldszmidt 2004; Bella et al.
2009] and, of course, the notions of soft classifiers (outputting a score or probability) versus the no-
tion of crisp classifiers (just outputting a label). Certainly, there have also been a few efforts to find
the parallel of these techniques for regression. However, most of them rely on a crisp view of the
regression model, i.e., they work with regression models which just output a value. Examples of this
are the Regression Error Curves [Bi and Bennett 2003], utility-based regression [Torgo 2005; Torgo
and Ribeiro 2009], the definition of ranking measures [Rosset et al. 2007] and the use of transfor-
mation functions for regression which derive a global reframing (‘tuning’) that must be constantly
(or polynomially) applied to the output of a crisp regression model [Bansal et al. 2008; Zhao et al.
2011]. None of these approaches reflects a clear parallelism of the usual approach for cost-sensitive
classification. In fact, in classification, reframing is not commonly performed by using crisp clas-
sifiers (where some labels could be swapped in a stochastic way in order to achieve a desired class
distribution or loss). Rather, reframing in classification is usually performed with soft classifiers,
where the decision rule combines a rank or class probability estimation with the operating context
in order to give a contextualised prediction. As a working hypothesis, we could think of a parallel
of soft classification models in regression, known as soft regression models. Namely, whenever we
consider a scoring classifier (or a ranker) in classification, which can sort their predictions by their
reliability (at least in the binary case), we should consider a regression model which can sort their
predictions by their reliability. Whenever we consider a probabilistic classifier, which in fact out-
puts a discrete distribution on the labels (a categorical distribution), we should consider a regression
model which outputs a continuous distribution (e.g., a normal distribution), and not a single value.
This correspondence is shown in Table I.

Table I. Correspondence between several types of classification and regression. Evaluation also depends on
the kind of prediction. For instance, crisp prediction implies the comparison of the estimated output with the
actual output, while probabilistic prediction implies the comparison of discrete distributions in classification
(p(y|x) with p̂(y|x)) and the comparison of continuous distributions in regression ( f (y|x) with f̂ (y|x)).

Classification Regression
Crisp a class label ĉ(x) a numerical value m̂(x)

Soft (Scoring) a score for each class ŝc(x) a numerical value m̂(x) and a reliability mea-
sure r̂(x) (e.g., confidence interval)

Soft (Probabilistic) a categorical distribution (characterised by a
conditional probability function p̂(y|x)).

a continuous distribution (characterised by a
conditional density function f̂ (y|x))

This correspondence suggests that the natural way of addressing context-sensitive problems in
regression may be the use of soft regression models (as soft classification models are the natural
way of addressing context-sensitive problems). We would like to explore regression techniques that
not only output the estimated expected value for each instance x, i.e. E(y|x) (also referred to as
the conditional mean), but also accompany these predictions with an estimated error, reliability or
density function. There are many approaches for this. One approach is to obtain the standard error
for each prediction as calculated by each specific technique (e.g., linear regression) if the algorithm
provides a way to obtain this value for each prediction (which is not always the case). A second
approach is to estimate the “reliability of individual regression predictions” [Bosnić and Kononenko
2008], through sensitivity analysis, local averaging or other techniques, which can be applied to
any regression method, as shown in [Bosnić and Kononenko 2009]. A third approach is conformal
prediction [Shafer and Vovk 2008; Papadopoulos et al. 2002; Papadopoulos 2008; Papadopoulos
et al. 2011], or any other method which derives a confidence interval. Finally, we can, of course, use
conditional density (or distribution) estimation methods [Rosenblatt 1969; Hyndman et al. 1996;
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Probabilistic reframing for cost-sensitive regression A:3

Hall et al. 1999], which can derive the conditional probability density function of the dependent

variable y, i.e. f̂ (y|x), by using kernel or distribution mixtures.
However, given these approaches for soft regression, none of them has been generally applied

for context-sensitive problems, because either these proposals are inappropriate, or are much too
complex. For instance, standard errors, reliability metrics and confidence intervals are useful to
rank the predictions according to their reliability, or to address some tolerance issues, but they
cannot be used to get a precise quantifiable magnitude of what the expected loss will be for an
instance and a specific operating context. On the other hand, conditional density estimation looks
like the appropriate setting for this, since we can (theoretically) calculate the expected loss (i.e., the
risk) as an integral over all the possible values for the dependent variable, weighted by its density
estimation. The problem is that it is not easy (especially for the data mining practitioner) to calculate
this minimisation since the estimated density function may be non-monotonic, non-convex or not
even continuous.

In this paper we propose a simple approach for soft regression. In most cases, it may be just
sufficient to have a good estimation of a conditional normal (i.e., Gaussian) density function —
which does not mean that the true conditional density function must be normal. Using a normal
density function has several advantages. First, a normal distribution only needs two parameters, the
mean (expected value) and the variance. This makes it possible to estimate these two parameters
easily. It can be done from the regression methods themselves, from any estimation of the standard
error, from a confidence interval and, of course, from a (more complex) density function or mixture
thereof. Second, the variance can be used to rank predictions in a very straightforward way, as is
done with reliabilities, but with a clear interpretation of the magnitudes. Third, and most importantly,
we can work analytically with the normal distribution and smoothly derive the exact expression
leading to the output that minimises the expected loss for many common loss functions.

In fact, we will see that there are extremely simple methods to estimate this variance which can be
applied to any crisp regression technique. Some of these methods are just based on comparing the
prediction for the training dataset with the actual value, disregarding the input domain. In this sense,
these methods are closely related to calibration methods in classification, which aim at improving
the estimated conditional probability such that it better matches the true conditional probability.
However, we call them ‘enrichment’ methods since they preserve the original prediction mean,
while only adding a second parameter, the variance, to form a more powerful and flexible soft
regression model for context-sensitive applications.

Many common applications of regression where deployment contexts can change are then solved
by this setting: cost-sensitive applications where we have asymmetric losses, screening applications
where we need rejection rules to determine the examples for which no prediction will be issued,
auction and retailing bids where prices (or other continuous variables) are chosen to obtain the
maximum expected profit, situations where we want to derive the probability that two or more
predictions are in the right order, etc.

In what follows, we analyse and derive the solutions for many of these problem families, using
two-parameter regression models and deriving the optimal prediction for the corresponding loss
function. For each of these families, we perform a complete set of experiments which show that
our general approach is not worse than some specific solutions in the literature for some of these
families, and is clearly better for others. As a result, the setting and methodology we introduce in
this paper can be effectively (and easily) applied to a wide range of context-sensitive problems.

In brief, the goal of the paper is to show that two-parameter regression (as an estimation of con-
ditional mean and variance or, more easily, as an enrichment of a crisp model by simple conditional
variance estimations), followed by a probabilistic local reframing using a normal distribution, is a
simple, general and powerful method which can successfully address many kinds of problems. Al-
though relevant on their own, the enrichment techniques can be seen as instrumental for the refram-
ing techniques, as the ultimate goal is to see that there are different ways of performing reframing in
regression (we will introduce some new terminology for these different ways, mostly the distinction
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A:4 J. Hernández-Orallo

between local reframing using soft regression models and global reframing using crisp regression
models). Under this general view we will compare these different approaches experimentally on the
three problem families and discuss the advantages and disadvantages of each approach.

The paper is organised as follows. Section 2 introduces some notation about regression models
and loss functions, as well as relevant previous work. Section 3 defines different types of reframing
and the optimal prediction expressions for probabilistic reframing. From here, section 4 re-states the
objective of the paper in a more precise way, analyses the nature of the true conditional density and
the estimated conditional density and introduces metrics to evaluate their divergence. The experi-
mental methodology is defined and settled for the rest of the paper. Section 5 analyses, compares
and makes a selection of several conditional density estimation methods and other methods that
obtain soft regression models or that can be used as enrichment methods. Sections 6, 7 and 8 for-
mally derive the optimal decision rules using an estimated conditional normal distribution for three
families of loss functions: bids (such as those common in auctions, sales or other trading scenar-
ios), asymmetric losses (absolute or squared) and rejection rules in regression. For the three cases,
we perform a complete set of experiments using probabilistic reframing with different enrichment
methods and compare them against global reframing methods. Section 9 makes a comprehensive
analysis of results and applications, a summary of the contributions and the work ahead. Several
appendices (which can be skipped on a first reading) complete the paper with some additional in-
formation for the datasets used in the experiments, more detailed results for some techniques and
some proofs.

2. BACKGROUND

We start with some basic definitions and notation, followed by some related work. Then we intro-
duce the key notion of reframing (and the distinction between global and local reframing).

2.1. Regression and conditional densities

Let us consider a multivariate input (or predictor) domain X ⊂ R
d and a univariate output (or re-

sponse) domain Y⊂R. The domain space D is then X×Y. Labelled examples or instances are just
pairs 〈x,y〉 ∈ D, and datasets are subsets of D. Unlabelled examples are elements x ∈ X , sometimes
represented as 〈x,?〉. We denote by DX and DY the projection of a dataset D for the input domain
and output domain respectively. The true or target ‘model’ (the function we want to learn or ap-
proximate) will be represented as a function m : X→ Y. We usually consider that a labelled dataset
is generated from m using some prior distribution on X (possibly with some degree of noise). Oc-
casionally, we will use f (y|x) to denote the true model as a conditional density function, even if
we consider m to be deterministic. In fact, when considering a dataset, with no repeated (or close)
values of x for two different examples, we may just consider that f is actually a Dirac delta func-
tion (all the density mass falls over the true single value). This is clearly different from a normal
distribution. In any case, we will work as if f could be any distribution.

A regression model is an estimation of the true model. A crisp (or hard) regression model m̂ is
a function m̂ : X→ Y. Predictions (or estimations) are usually denoted by ŷ. The term residual is
used for the difference between the estimated value and the true value, i.e., ŷ− y. A soft regression
model accompanies each prediction with a reliability, confidence or, more generally, a conditional

probability density function f̂ (y|x) with y∈Y and x∈X. The corresponding cumulative distribution

function is F̂(y|x) =
∫ y
−∞ f̂ (t|x)dt = p̂(Y ≤ y|x), i.e. the probability of the output being lower or

equal than y for an input x. The estimated expected value (conditional mean) is denoted by µ̂ f̂ (x),

E f̂ (y|x) =
∫ ∞
−∞ y f̂ (y|x)dy. We denote its (conditional) standard deviation by σ̂ f̂ (x). We will drop

the subindices when clear from the context. Note that the mean and the standard deviation are
conditional, i.e., defined for one single example; these are not the mean and standard deviation of a
distribution of examples (or a whole dataset).

The normal distribution will be represented as usual N (µ ,σ2), with probability density function
φµ,σ2(·) and cumulative distribution function Φµ ,σ2(·). For the standard probability density function
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Probabilistic reframing for cost-sensitive regression A:5

and the standard cumulative distribution function we will drop the subindices, and we will write φ(·)
and Φ(·) respectively.

2.2. Cost-sensitive problems and loss functions

In context-sensitive learning, there are several features which describe a context, such as the data
distribution, the costs of using some input variables and the loss of the errors over the output vari-
ables. In this paper, we focus on loss functions over the output. As we will see, by properly defining
the loss function and its parameters we can analyse and address many problem families. Let us start
with the definition of loss function:

Definition 2.1. A loss function is any function ℓ : Y×Y→ R which compares elements in
the output domain. For convenience, the first argument will be the estimated value, and the second
argument the actual value, so its application is usually denoted by ℓ(ŷ,y).

Typical examples of loss functions are the absolute error (ℓA) and the squared error (ℓS), with
ℓA(ŷ,y) = |ŷ−y| and ℓS(ŷ,y) = (ŷ−y)2. These two loss functions are symmetric, i.e. for every y and
r we have that ℓ(y+ r,y)=ℓ(y− r,y). They are also commutative, i.e., for every y1 and y2 we have
that ℓ(y1,y2)=ℓ(y2,y1).

While many methods use these generic loss functions (such as ℓS), most applications have dif-
ferent loss functions. For instance, the bounded absolute error (ℓBA,β ) is defined as ℓBA,β (ŷ,y) =
min(|ŷ− y|,β ), which is also symmetric and commutative. Another example is the bid loss func-
tion ℓB

β (ŷ,y) = −ŷ+β if ŷ ≤ y and 0 otherwise, which is clearly asymmetric. Note that some loss

functions can be defined in terms of the residuals ŷ− y, but others cannot. In practice, there can be
specialised loss functions for virtually any application domain.

While some previous works in the literature of regression techniques have focussed on re-
designing some learning techniques to account for specific loss functions during training ([Crone
2002; Jino et al. 2010]), only a few have considered the problem as a post-hoc process, once the
model has been learnt. A post-hoc process can be performed in cases where re-training with the
new loss functions is not possible (because the regression technique is not cost-sensitive or because
the training data is no longer available). It also has several advantages, such as model reuse and the
possibility of applying the same methods to virtually any regression technique. This post-hoc pro-
cess can be traced back to the seminal work by Granger [Granger 1969], showing that the optimal
predictor for some asymmetric losses can be expressed as the conditional mean plus a constant bias
term [Granger 1999]. However, it is recognised that solving this term is not always easy (or even
possible in closed form) for many loss functions and density functions. Specific results have been
studied for some particular loss functions, such as Lin-Exp (approximately linear on one side and ex-
ponential on the other side) and Quad-Exp (approximately quadratic on one side and exponential on
the other side), which have general solutions with mild conditions [Zellner 1986]. Conversely, gen-
eral closed-form solutions for Lin-Lin (asymmetric linear) and Quad-Quad (asymmetric quadratic)
do not exist in general [Christoffersen and Diebold 1996] [Christoffersen and Diebold 1997]. In
fact, even general non-closed-form expressions are not always possible unless some constraints are
imposed, such as continuous loss functions, finite expected loss and particular properties on the
moments of the density function [Elliott and Timmermann 2004]. In general, much of this work
is restricted to continuous loss functions in time series or system reliability applications [Basu and
Ebrahimi 1992] [Thompson and Basu 1996], but provide sufficient evidence that working with com-
plex density functions is very problematic for general (and possibly discontinuous or non-convex)
loss functions. This has motivated the appearance of other approaches which do not use any density
estimation, such as the calculation of a global function which is applied to the outputs [Bansal et al.
2008; Zhao et al. 2011]. In this case, the restrictions come on the side of the loss function, which
must be convex, and the requirement that the training set (technically, only the true values y) must
be preserved from the training to the deployment stage.
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A:6 J. Hernández-Orallo

However, some other problems are not usually considered, not even as generalised loss functions
[Granger 1999]. Examples of these context-sensitive problems are rejection rules, where we want
that the model abstains from outputting a prediction for the most unreliable cases. None of the
previous approaches has addressed this problem. In fact, rejection rules are common in classification
[Ferri and Hernández-Orallo 2004; Pietraszek 2007], but rarely seen as cost-sensitive problems in
regression. However, as we will see, these problems can be modelled with a loss function which sets
a cost of rejection. Also, many regression problems used for product prescription, sale predictions
and auction bids look towards finding the bid price, i.e., the appropriate quantity (or other negotiable
feature) which has the maximum expected benefit [Bella et al. 2011]. Many of these problems can
also be modelled by a loss function and, yet again, the predictions of the model can be fine-tuned
for them.

As a result of this variety and diversity of problem families which can be modelled with loss
functions or other kind of context information, we can integrate and generalise some of the existing
(and new) model adaptation procedures into a more general term that we call reframing.

3. REFRAMING AND OPTIMAL PREDICTIONS

Given a loss function representing a particular context, the objective is to get predictions with low
loss rather than predictions with low error. In order to do this, we do not train a model using this loss
function (as risk minimisation approaches could do), because the loss function may not be known
at the training stage or the regression technique may not be able to process loss information. Even if
possible, re-training a model whenever the context changes is not a very efficient approach in terms
of resources —for large datasets or when the loss function changes for each example (as happens
in areas such as sales prediction where the loss function usually has some very volatile parameters
about the current stocks, delays, etc.). In fact, if we recurrently re-train we may find problems in
terms of validation, comprehensibility and reliability if the application requires stable, validated
models, and not models which change (are re-trained) for each new instance.

3.1. Reframing

As an alternative, we propose the use of reframing functions, which adapt the predictions of the
original model to the context, represented by a loss function.

Definition 3.1. A reframing transformation is any method which produces a predicted output

value given the input value x, the loss ℓ and the estimated model f̂ .

r(x, ℓ, f̂ )→ ẏ (1)

where ẏ represents the reframed output.

Figure 1 shows the process of reframing graphically. Note that we do not impose any restriction
on how the training data is obtained from the training context. Also, we do not assume that this
data generation process has to be similar to the process generating the unlabelled data from the de-
ployment context. In fact, the distributions of predictor x and response y will usually differ between
contexts, as we will reflect in the experimental setting.

For those crisp regression techniques that do not produce a density, we can assume a delta Dirac

function f̂m, whose mean is clearly the prediction point given by the model, i.e., m̂(x) = µ̂ f̂ (x). We

can still define reframing methods by expressing them as a global function which only depends on
the loss function and the expected mean for each example, as follows.

r(x, ℓ, f̂ ) = R(ℓ, µ̂ f̂ (x))

Example 3.2. For instance, given the bid loss function ℓB
β with β = 0, we might consider the

following global reframing transformation:

R1(ℓ
B
β , ŷ) = 0.8× ŷ
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Fig. 1. Reframing process adapting predictions from one context to a different context.

which just systematically reduces predictions by a 20%. The rationale here (e.g., from the point
of view of an auctioner) is given by the fact that overestimations imply a 0 loss (no deal) and
underestimations always imply a benefit (there is a deal, and we assume that y always represent
positive prices, so giving a negative loss). So, a 20% reduction creates some margin which may
produce higher overall benefit.

Alternatively, a local (probabilistic) reframing could be done using f̂ , if available. For instance,
using the same bid loss function ℓB

β with β = 0, a probabilistic reframing might be:

r2(x, ℓ
B
β , f̂ ) = F̂−1(0.25)

where F̂−1 is the quantile function for f̂ , i.e., inverse of the cumulative function F̂ . This means that
we predict the value such that 25% of the expectancy for y is below that value.

Figure 2 shows the use of R1 and r2 above for two different instances.
In general, we can distinguish four kinds of reframing:

— Constant global reframing: all predictions are modified in the same way independently of ŷ, e.g.
adding a constant s (i.e., ẏ← ŷ+ s). This constant s is called the shift.

— Non-constant global reframing: predictions are modified using a (e.g. polynomial) function of ŷ.
While the shift is different for each example, it only depends on the prediction, and it can be
considered a ‘global’ method, since it applies a global function.

— Non-probabilistic local reframing: predictions are modified by a transformation of ŷ using some
reliability or confidence parameters. For instance, we could define a reframing method which only
modifies (or rejects) the instances that are below a given reliability threshold or above a percentage
of the confidence width.

— Probabilistic local reframing: the outputs are adapted according to a transformation over the con-

ditional density function. If f̂ is a parametric distribution, we can just use the parameters as argu-

ments for the transformation. For instance, if f̂ is a normal distribution for each example, then we
can just define the reframing transformation in terms of the conditional mean ŷ = µ̂ f̂ (x) and the

conditional standard deviation σ̂ f̂ (x).

The notion of shift (and reframing in general) for regression is closely related to similar procedures
which are usually performed in classification. For instance, when we have a crisp classifier, we can
(randomly) tweak some of the predictions, in order to favour one class against others according to a
cost matrix. This view would correspond to the global reframing methods above. For soft classifiers,
the choice of an appropriate threshold to convert scores into predictions would correspond to local
reframing. In particular, when we work with calibrated classifiers and we try to find the optimal
thresholds (as in [Lachiche and Flach 2003]) using a probabilistic setting, we have a scenario that is
parallel to probabilistic local reframing.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 J. Hernández-Orallo

0 10 20 30 40

0
1
0
0

2
0
0

3
0
0

4
0
0

y

D
e
n
s
it
y

16.28

13.02

0 10 20 30 40

0
.0

0
0
.0

2
0
.0

4
0
.0

6

y

D
e
n
s
it
y

Stdev= 5.37

16.28

12.66

0 10 20 30 40

0
1
0
0

2
0
0

3
0
0

4
0
0

y

D
e
n
s
it
y

21.83

17.46

0 10 20 30 40

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

y

D
e
n
s
it
y

Stdev= 3.85

21.83

19.23

Fig. 2. Representation of how predictions are shifted according to different reframing methods. The top row corresponds
to an instance whose expected value is 16.28. Without reframing, this would be the output value. The top-left plot shows
how the prediction moves to 13.02 (applying the global reframing R1, which multiplies the prediction by 0.8). The top-right
plot shows a soft regression model with a normal conditional density function f̂ which gives a mean at 16.28 and standard
deviation of 5.37 for this instance. The prediction moves to 12.66 (applying the local reframing r2, using F̂−1(0.25)). The
bottom row shows a similar picture for a different instance where the expected value is 21.83. The soft regression model
gives a standard deviation of 3.85 for this example. The reframing R1 leads to 17.46 (bottom left) while the reframing r2

leads to 19.23. As we see, the shift for the first instance (top) is greater for the local method (right), while the shift for the
second instance (bottom) is greater for the global method (left).

In regression, approaches to global reframing rely on the calculation of a constant (or function)
from the training set [Bansal et al. 2008; Zhao et al. 2011]. For instance, one simple method for
global constant reframing is the calculation of the best constant shift for the training set given a loss
function. One problem of these methods is that we do not always have the training (or a validation)
dataset. Or even if we can keep the dataset, the loss function parameters may be different for each
instance and the shift needs to be recalculated by exploring the whole training dataset all over again.
Finally, this reframing may be problematic when the output distribution differs between the training
dataset and the deployment dataset, because the global function is optimised for the training dataset.

On the contrary, local reframing does not have the above-mentioned problems, but requires, in
the probabilistic case, an accurate conditional density estimation and a method to derive the optimal
reframing in an analytical or numerical way. In what follows, we will focus on the notion of ‘optimal
reframing’ in the probabilistic (local) case, since the notion of optimality for the non-probabilistic
(global) case is more elusive (since reliability or confidence measures cannot be used, in general, to
quantify the expected loss).
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3.2. Optimal probabilistic reframing

It seems reasonable to think that better decisions can be made if we take the conditional density

function f̂ (y|x) into account, rather than just the expected value E f̂ (y|x), provided this density func-

tion is well-estimated.
The maximum density reframing is given by rmax(x, ℓ, f̂ ) = argmaxy f̂ (y|x), which ignores the

loss function, and just gives the point with maximum density. The mean (or void) reframing is given

by rmean(x, ℓ, f̂ ) = E f̂ (y|x) =
∫ ∞
−∞ y f̂ (y|x)dy = µ̂ f̂ (x) which also ignores the loss function. For some

density functions, e.g., a normal distribution, we have rmax = rmean.
In general, we want to take the loss function ℓ into account. For an unlabelled instance 〈x,?〉, the

expected loss (risk function) for prediction t is given by:

L (x, t, f̂ , ℓ) =
∫ ∞

−∞
ℓ(t,y) f̂ (y|x)dy (2)

Then, the prediction with minimum expected loss is calculated by the following reframing transfor-
mation:

r∗(x, ℓ, f̂ ), argmin
t

L (x, t, f̂ , ℓ) = argmin
t

∫ ∞

−∞
ℓ(t,y) f̂ (y|x)dy (3)

This equation says that the optimal prediction (ignoring the uncertainty of the estimation of f̂ )
for each example x depends on its estimated distribution and the loss function. Interestingly, the
previous equation for r∗ is independent of the data (marginal) distribution f (x), which means that it
can be applied to each individual instance without considering the rest. This is important, since the
loss function ℓ may even vary for different instances.

The question, now, is how to solve eq. (3). In some cases, if ℓ and f̂ follow some properties, we
can easily solve the equation. For instance, the following proposition gives the result for the easiest
(well-known) case (the proof is in appendix G):

PROPOSITION 3.3. If f̂ is symmetric1 and ℓ is symmetric and commutative then

r∗(x, ℓ, f̂ ) = µ̂ f̂ (x) =
∫ ∞

−∞
y f̂ (y|x)dy = rmean(x, ℓ, f̂ )

which states that the optimal prediction is given by the mean of the conditional density function.

But in many applications, ℓ is not symmetric. Also, for many density estimation mehtods, f̂ is

not symmetric either. Only if f̂ is chosen to be a simple distribution (e.g., a normal distribution),
the equation can be solved analytically for specific asymmetric loss functions, as we will see in
the following sections. In the general case, however, the best prediction cannot be calculated in an
analytical way and needs to be obtained by a numerical method, such as a Monte Carlo method, or
any other method (e.g., hill-climbing) which can exploit the properties of particular cases for ℓ and

f̂ , such as (partial) monotonicity or convexity.

4. METHODOLOGY AND EXPERIMENTAL DESIGN

Once we have the ingredients, terminology and concepts, we can state our research goal more prop-
erly. Namely, in the rest of this paper, we will answer several questions. First, are there general and
practical conditional density estimation methods which can be used effectively to convert an exist-
ing crisp regression model into a soft model suitable for reframing? In order to answer this question
we need to explore techniques which can produce conditional density estimations for any crisp re-
gression technique. We will focus on normal density estimations, because only two parameters are
needed, mean and variance, and the former is already given by any regression model. This implies

1The notion of symmetry for the loss function has been defined above. The notion of symmetry for a distribution is the
classical notion of symmetry relative to the mean.
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that we will be able to derive the reframing transformation relatively smoothly for most loss func-
tions. Consequently, the following section will be devoted to the experimental analysis of several
old and new approaches to normal conditional density estimations. From this analysis we will be
able to select some methods that will be used in subsequent sections.

The second, ultimate, question of this paper is whether probabilistic reframing methods based on
these simple estimators are able to solve a broad set of cost-sensitive problem families, including
bidding problems, asymmetric loss functions and rejection rules. We will devote a section to each
of these families, we will derive the formal expressions for the reframing transformations and we
will compare these methods with other previous specific methods in the literature addressing each
of these problem families. We will see that probabilistic reframing is more general and effective.

4.1. The true and estimated conditional densities. Reliability and calibration

Before addressing the above issues we need to better understand what kind of conditional density
function we expect to find. If the target function is stochastic and/or the data is noisy then the true
conditional function f (y|x) may follow any continuous distribution. The ideal solution would be to

find f̂ (y|x) = f (y|x). Clearly, if f (y|x) is not normal, there will always be some mismatch if we

restrict f̂ to be normally distributed, as we do here. However, if the target function is deterministic,
the true conditional function is a Dirac delta function. In this case, the idealistic solution would be to
have a perfect model, with no variance. But for real situations this will produce no overlap between

f (y|x) and f̂ (y|x).
In practice, we do not know whether the true function is deterministic or not. Nonetheless, we

usually work with datasets for which it is rarely the case that two examples with the same values for
the independent variables x appear with two different values of y, or, if the dimensionality is high,
the data may be so sparse that the true conditional density becomes more elusive. This means that

f (y|x) is either unknown or a Dirac delta function, so trying to make f (y|x) and f̂ (y|x) match is
not very useful. As a result, when understanding a soft regression model, we need to look for other

interpretations of f and f̂ .
Regression models are usually trained (and evaluated) to minimise their mean squared error

(MSE). This average of the squared residuals (y− ŷ)2 is usually analysed in terms of the classi-
cal (see, e.g., [Hastie et al. 2009; Flach 2012]) bias-variance decomposition of one example for all
possible datasets D:

E{D}[(y− ŷ)2] = (E{D}[ŷ]− y)2 +E{D}[(ŷ−E{D}[ŷ])
2] = (E{D}[ŷ− y])2 +E{D}[(ŷ−E{D}[ŷ])

2]

= (Bias{D}(ŷ,y))
2 +Var{D}(ŷ)

where E{D} denotes the expected value for all possible datasets. The above decomposition is usually
a way to understanding overfitting as high variance: the predictions vary very significantly when we
change the dataset, i.e., when we move from training to test. Both components of the decomposition
contribute to a mismatch between the true conditional density and the estimated density.

Nevertheless, this means that the squared error (i.e., the squared residual), if well estimated for
the example, may serve as an approximation of the variance, especially if there is no systematic
bias. This is the rationale under some of the methods of variance estimation that we will see in the
following section, which interpret the variance of f̂ (y|x) as an estimation of the squared residuals.
In other words, the conditional variance is closely related to the instance-specific reliability of the
regression model.

Conditional density functions are usually more meaningfull when X has very few dimensions

and we find dense areas from which f̂ can be well estimated. When the dimensionality is high, a
possible approach for estimating a conditional variance or density (instead of considering multiple
datasets) is to calculate partial conditional densities with subsets of the independent variables, for

instance, by calculating f̂ (y|x2 = a), where x = 〈x1,x2,x3〉. Even in the deterministic case this will
produce non-delta distributions, as y is not completely determined by subsets of x.
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This leads to the most common approach: to estimate the conditional density (or just the condi-
tional variance) by considering several examples, using a kernel or bin. By grouping several (similar)
examples, we can estimate a variance from them, as done by several calibration methods in classifi-
cation, such as binning. This will also be a usual approach in some of the methods in the following
section.

It is important to note that low bias and high variance may be a sign of overfitting (of the crisp
model) but does not say much about the overfitting of the conditional density estimation. Some
models may have low bias and high variance and we may still be able to find good conditional
density estimations that are able to estimate this high variance well. In other words, there are two
aspects where we can have overfitting, as a crisp regression model (seen in the decomposition above)
or as a soft regression model.

This suggests that the view of f̂ in terms of calibration may be more clarifying. In classification,
we say that a model is calibrated [Cohen and Goldszmidt 2004; Bella et al. 2009] if the following
property holds: given an estimated probability P̂r(c|x) = p for class c then the true class is c in
a proportion of p cases. In order to apply this definition to deterministic functions, bins of equal
or similar estimated probability are used to derive the proportion. Following the same rationale,
the calibration of a soft regression model is the degree of concordance between the (aggregated)
estimated density function of a group of examples with the (aggregated) true conditional density
function of the group. Again, this rationale leads to the approaches based on bins of examples or
kernels.

4.2. Evaluation metrics for conditional density estimators

As discussed above, in practice, we do not have access to the true conditional density function.

This means that we cannot compare f and f̂ directly and need to find other ways of evaluating

the quality of f̂ . As we are considering a normal distribution for f̂ , we can distinguish three kinds
of metrics, depending on what they can evaluate: (1) how good the conditional mean is, (2) how
good the conditional variance is, and (3) how good the conditional density is (which is given by the
qualities of the mean and the variance). We will introduce them in the following order: (1), (3) and
(2).

Since we need to work with any possible base regression model, we present general measures in-
stead of technique-specific measures for particular goodness-of-fit, parameter estimation or intrinsic
variance estimation. In order to make results more commensurate and easier to compare, for all the

measures which are not in the interval [0,1], we will apply the logistic function Λ(t) , 1
1+e−t . We

will use the word ‘standardised’ to refer to this logistic normalisation. In some cases, we will apply
the function 1− t or other transformations to always get a decreasing [0,1] scale (0 for very good
estimations and 1 for very bad estimations).

Let us start with the evaluation of the conditional mean, which is easy as we do have the true
conditional mean y. The evaluation of the conditional mean or expected value is usually measured

by the mean squared error 1
|D| ∑〈x,y〉∈D(y− m̂(x))2 over a dataset D, although other metrics are also

common, such as the mean absolute error, several correlation indices, mean relative squared error,
etc. We will use the mean relative squared error (mrse) to make the measure less dependent on the
dataset and easy to compare with the constant (trivial) regression model (the model which always
outputs the mean of the training dataset, µ(Dy)):

mrse( f̂ ,D), 2Λ

(

∑〈x,y〉∈D(y− m̂(x))2

∑〈x,y〉∈D(y−µ(Dy))2
ln3

)

−1 (4)

The factor ln3 and the linear transformation makes that we get 0.5 if the error is the same as the
constant (trivial) model, 0 for a perfect regression model and close to 1 for very bad estimations.

A more complex issue is to evaluate the quality of the conditional density. As mentioned above,
we cannot compare it to the true conditional density, e.g., using the mean squared error for the
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distributions, i.e.
∫

( f (y|x)− f̂ (y|x))2. This also happens for other distribution divergences, such as
the KL-divergence. Alternatively, one common measure that does not rely on f (y|x) is the mean

negative log-likelihood (nll), which is defined as 1
|D| ∑〈x,y〉∈D− ln( f̂ (y|x)). We will again use the

logistic function, applied to the log-likelihood, i.e.: v,Λ(ln( f̂ (y|x)))= 1

1+e−ln( f̂ (y|x))
= 1

1+ 1
f̂ (y|x)

. From

here, we just switch to 1− v to get 0 for very good estimations and 1 for very bad estimations, and
derive the mean standardised likelihood (msll), as follows.

msll( f̂ ,D),
1

|D| ∑
〈x,y〉∈D

1−
1

1+ 1
f̂ (y|x)

=
1

|D| ∑
〈x,y〉∈D

1

1+ f̂ (y|x)
(5)

The log-likelihood (or its logistic variant) evaluates, at the same time, the quality of the mean and
the quality of the variance. If we want a measure of the latter only, a possibility might be the squared
error between the residual and the standard deviation.

However, this measure also depends on how well the means are estimated, since when mean
estimations are accurate (respectively inaccurate) the residuals are low (respectively high), and vari-
ances would tend to be low (respectively high) as well. So we are interested in a measure of the
quality of the conditional variance as well. Since we do not have access to the true variance, an
alternative is to calculate the variance ratio versus the squared residual, as this is a plausible in-

terpretation of the conditional variance. If we denote the residual as res f̂ (x,y) , (µ̂ f̂ (x)− y), we

can define the variance ratio as vr f̂ (x,y) ,
σ̂

f̂
(x)2

res
f̂
(x,y)2 . The numerator is the estimated variance and

the denominator is the squared residual. This ratio will be close to 1 if both quantities are similar.
If both the numerator and the denominator are 0, vr f̂ (x,y) = 1 by definition. From here, the mean

standardised variance ratio is given by the logistic function of the log ratio:

msvr( f̂ ,D),
1

|D| ∑
〈x,y〉∈D

∣

∣

∣
1−2Λ(ln(vr f̂ (x,y)))

∣

∣

∣
=

1

|D| ∑
〈x,y〉∈D

∣

∣

∣

∣

∣

1−2
1

1+ vr f̂ (x,y)

∣

∣

∣

∣

∣

(6)

This measure is always between 0 and 1, with 0 being a perfect variance estimation (variance is
always equal to the squared residual) and 1 being the worst variance estimation (variance being
much higher or much lower than the squared residual). This last measure is entitled to be used as a
metric of calibration, which tries to be independent of how good the conditional means are (possibly
inherited from a crisp regression model).

4.3. Experimental Design

Now we have some criteria (the metrics above) to assess how good a soft regression model is,
circumventing the true density function. They are independent of any loss function, and are used
when we do not know (or want to ignore) the operating condition. Actually, this is what we will do
in section 5 to choose some appropriate ways of obtaining good soft regression models. Of course,
when we finally have (or want to use) a loss function, it is the overall loss which matters, and this is
what we will use for evaluation in sections 6, 7 and 8, with several loss functions, using reframing.

Given the metrics and they have to be used, the final piece to be able to perform the evaluations
of any of these sections is the definition of an appropriate experimental design for them. We will
briefly describe the general experimental setting now, and we will let some other details for each
specific section.

We will use forty datasets, as shown in tables XI and XII in appendix A. The first battery of
datasets will be used for the experiments in section 5. We will use the other battery for the ex-
periments in sections 6, 7 and 8. The reason for two different batteries is that we select the best
conditional density estimation and enrichment methods in section 5 with the first battery, and we
use these methods with a fresh and independent battery for the particular applications in the other
sections.
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In all the experiments we split the datasets without previously shuffling the datasets (i.e. the
order is preserved before splitting them). We take 50% for dataset Train and 50% for dataset Test.
This is one fold. Next, we randomly take a sample of 2/3 of the examples in Train for training,
without replacement, and 2/3 of the examples in Test for testing, without replacement. We repeat
this process 5 times. Next, we swap Train and Test, to have a second fold, and we repeat this
process 5 times. So, in total, we get 10 train-test samples for each dataset. This configuration tries
to mimic a realistic situation where the training and test distributions may differ. Note that shuffling
the datasets would yield similar distributions for training and test (in terms for the predictors x
and response y), which is a quite uncommon scenario in practice (although relatively usual in data
mining and machine learning research experiments). It is important to highlight that it is not our
goal to obtain an estimation of how well each method will perform for each dataset under exactly
the same distribution (where usual re-sampling methods such as 10-fold cross-validation would
be appropriate), but to compare several methods on a realistic setting where the context between
training and test can change, including the data distribution. In order to illustrate how training and
test distributions differ, two extra columns (TrTeMD, TrTeKS) in the dataset tables XI and XII show

the train-test relative means difference, calculated as
|µTrain−µTest |

σTrain
, and the train-test Kolmogorov-

Smirnov statistic, respectively. Both are averaged for the two folds. The higher these values are the
more dissimilar the training and test distributions are.

In order to assess the significance of the experimental results we will use a custom procedure,
following [Japkowicz and Shah 2011] and [Flach 2012, ch.12], which in turn is mostly based on
[Demšar 2006]. Since we will not have any baseline method, we will use a Friedman test to tell
whether the difference between several methods is significant and then we will apply the Nemenyi
post-hoc test. We agree with [Garcı́a and Herrera 2008] that the Nemenyi test is a “very conservative
procedure and many of the obvious differences may not be detected”, but we prefer to be conser-
vative given our experimental setting and the use of a 0.95 confidence level. In some result tables
we will show the means (even though in many cases they are not commensurate) and in some other
tables we will show the average ranks (from which the Friedman and Nemenyi tests are calculated).
We will also include the critical difference for the Nemenyi test, so we will be able to simply tell
whether the difference between two algorithms is significant if the difference between their average
ranks is greater than the critical difference.

5. NORMAL CONDITIONAL DENSITY ESTIMATION (NCDE): ENRICHMENT METHODS

A theoretically-optimal decision rule for a conditional density function and a loss function will only

work if the conditional density function f̂ (y|x) is accurate. While there are many techniques for
conditional density estimation (CDE, see appendix B), they may be inappropriate for cost-sensitive
scenarios. First, as they focus on the whole conditional distribution, the estimated conditional mean
given by these complex estimated conditional density functions is usually worse than the conditional
mean output by many crisp regression methods. Second, CDE methods are usually slow. Third, the
actual conditional density functions are rarely multi-modal (i.e., having several peaks or modes), and
even if they are, it is not clear that adjusting many parameters to approximate this multi-modality
will finally lead to the choice of a better (or even significantly different) optimal prediction for many
loss functions. In the end, as mentioned in the previous section, some problems are deterministic
and what we really want is an estimation of the residual (i.e., a reliability estimator) rather than
(technically) a conditional density function for the output variable.

Instead of complex (usually non-parametric) CDE methods, one of the simplest, most common,
parametric density functions is given by the normal (Gaussian) distribution. Estimating a normal
distribution only requires the estimation of two parameters, the mean and the variance. It is impor-

tant to clarify that the use of a normal conditional density f̂ (y|x) ∼N does not entail —at all—

that the output variable is distributed normally ( f̂ (y)∼N ). Moreover, the use of an estimated nor-

mal conditional density f̂ (y|x) does not even mean that we assume that the true conditional density
f (y|x) is normal. In fact, when we have an empirical dataset, we do not have information about the
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true conditional distribution; we just have examples for which its actual distribution can be seen
as a Dirac delta function. In other words, the use of a normal conditional density function follows
practical considerations and can be seen (at most) as a representation of the model’s belief about
how its uncertainty is distributed, i.e., a model of the distribution of residuals.

Consequently, in this section we will explore and develop normal conditional density estimation
methods, or NCDE methods for short. This boils down to a soft regression model that, for every
input instance x, just outputs two parameters: µ̂(x) and σ̂(x). The estimation of µ̂(x) is the goal
of all (crisp and soft) regression methods. Consequently, we will focus below on the estimation
of σ̂(x), comparing the results of several methods. The goal of this section is not to find the best
estimator for σ̂(x) as an isolated problem, but to find simple and general methods that work well
when the conditional mean µ̂(x) is already given by any crisp regression technique.

5.1. Directly estimating the variance from the regression techniques

The first way of obtaining the mean and variance for each prediction is choosing a base regression
technique which directly or indirectly is able to provide the variance (or a measure of standard
error). In this paper, we will work with three common base regression techniques:

— Linear regression (LR): many implementations of linear regression can estimate the standard error
for each predicted point, se(x). If this is the case, we can just set σ̂(x) = se(x). The particular LR
method we will use is ordinary least squares using the function lm of R [R Team et al. 2012; Torgo
2010] with default parameters.

— Nearest neighbours (kNN): in this case the variance is calculated as the variance of the actual
y values for the k-closest elements. In particular, we use an unweighted k-nearest neighbours
algorithm using the Euclidean distance (with all the attributes scaled by the function scale in R)
with k = 10.

— Regression trees (Tree): in this case, one easy way of calculating the variance is to calculate the
variance for the actual y values (in the training set) for each leaf of the tree. Then, for each new
prediction on a new dataset, the variance will be given by the variance of the leaf where the
example falls. We use the CART algorithm [Breiman et al. 1984] implemented by the function
tree in the package tree in R with its default parameters2.

We will use these three base techniques throughout the rest of the paper. Table II shows the result
for the three methods above using the three evaluation metrics (mrse, msll, and msvr) using their
own variance estimation.

Interestingly, we can see that for some datasets one method is better than the rest for the condi-
tional mean (evaluated by mrse), while it can be the worst for the conditional variance (evaluated by
msvr). In general, we see that LR gives the worst estimations for the conditional mean (mrse) and
variance (msvr), which then implies bad results for the density estimation (msll).

5.2. NCDE from conditional density, variance, reliability or confidence estimators

The procedure seen above is based on using the variance derived from the own regression technique.
These techniques are crisp, and are not really designed to obtain good conditional variances or
densities. Instead, ‘soft’ regression techniques (conditional density estimation, conditional variance
estimation, reliability estimation and confidence estimation using conformal prediction) look more
appropriate for deriving a normal conditional density estimator (NCDE) model. The use of these
methods for NCDE would generally involve that we attempt a related, but different (and sometimes
more complex) problem first, and then use some transformation or derivation from the soft model
to the NCDE model. There is nothing against this, provided the results are good and the procedure
does not become extremely difficult or inefficient. Below we see why these two criteria are not

2As the default parameter for this package keeps the tree unpruned, this method will lead to models that are significantly
different from LR.
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Table II. Three regression techniques using their own condi-
tional variance estimation methods. Results use the datasets in
Table XI, using the experimental methodology and the metrics
in section 4.

LR
mrse

LR
msll

LR
msvr

kNN
mrse

kNN
msll

kNN
msvr

Tree
mrse

Tree
msll

Tree
msvr

1 0.32 0.81 0.63 0.36 0.81 0.48 0.43 0.82 0.57
2 0.58 0.79 0.59 0.46 0.76 0.49 0.25 0.69 0.53
3 0.12 0.54 0.52 0.28 0.68 0.60 0.22 0.70 0.50
4 0.15 0.72 0.55 0.39 0.84 0.56 0.32 0.81 0.55
5 0.10 0.81 0.82 0.11 0.63 0.52 0.12 0.63 0.51
6 0.55 0.74 0.63 0.20 0.65 0.57 0.18 0.65 0.55
7 0.97 0.90 0.54 0.43 0.77 0.57 0.46 0.76 0.52
8 0.14 0.73 0.70 0.14 0.63 0.55 0.15 0.61 0.51
9 0.07 0.98 0.95 0.32 0.98 0.89 0.29 1.00 0.94

10 0.31 0.74 0.55 0.32 0.63 0.52 0.19 0.53 0.50
11 0.19 0.74 0.57 0.18 0.76 0.61 0.14 0.69 0.65
12 0.93 0.89 0.66 0.54 0.78 0.47 0.48 0.71 0.56
13 0.03 0.63 0.60 0.50 0.90 0.61 0.44 0.89 0.64
14 0.46 0.83 0.77 0.36 0.73 0.51 0.23 0.65 0.51
15 0.50 0.73 0.68 0.54 0.73 0.60 0.60 0.73 0.56
16 0.49 0.77 0.58 0.32 0.73 0.55 0.24 0.68 0.58
17 0.96 0.97 0.84 0.43 0.80 0.50 0.37 0.77 0.51
18 0.33 0.75 0.67 0.36 0.76 0.54 0.43 0.77 0.54
19 0.35 0.71 0.60 0.37 0.70 0.52 0.45 0.69 0.56
20 0.60 0.83 0.68 0.20 0.68 0.50 0.27 0.70 0.56

Mean 0.41 0.78 0.66 0.34 0.75 0.56 0.31 0.72 0.57

met. A more detailed exploration is given in the appendices B, C, D and E, which also link to the
literature.

Let us first review the most general approach, the direct estimation of a conditional density func-

tion f̂ (y|x). Most conditional density estimation methods are designed to issue a complete model of
the distribution, which is usually non-parametric. Appendix B describes this approach and shows
how it can be adapted to get a normal conditional density. It also includes some experimental re-
sults which show that there is no improvement over the base techniques using their own conditional
variance estimation methods. Also, general conditional estimation methods are very inefficient and
cannot be used as a post-processing step for a crisp regression technique.

A second approach, conditional variance estimation (CV E), is much closer to our specific goal,
and can be used to complement an existing crisp regression model by deriving a second parameter,
the conditional variance, in order to make up a soft regression model. In fact, these methods can
be understood as a post-processing step, which is applied to the whole training set, constructing a
model of the residuals. Conditional variance estimation methods are explored in appendix C, but,
again, results do not portray a clear advantage.

We have also explored some other methods based on reliability or confidence. Appendix D ex-
plores one of the best reliability estimation methods, CNK, included in a recent survey by Bosnic
& Kononenko’s [Bosnić and Kononenko 2008] about reliability measures in regression. Also, it is
meant to output an estimation of the standard deviation. However, the results are poor. Nonetheless,
in appendix D we introduce a ‘correction’, known as KNC, which is just based on comparing the
estimated mean with the closest k true values in the training (or validation) set. The results for KNC
are better, which has spurred us to introduce a univariate version uKNC that we will see below,
as an enrichment method. Finally, we explored conformal prediction in appendix E, which outputs
confidence intervals, but the results were not better than the rest.

We will evaluate a selection of these methods at the end of this section.
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Fig. 3. Enrichment methods convert a crisp regression model into a soft regression model by just comparing y with ŷ. The
mean of the resulting conditional density function f̂ (y|x) is not altered (the original ŷ is kept). Only the second parameter of
a normal distribution (the conditional variance) is added.

5.3. NCDE through enrichment methods

One of the problems of the previous methods is that they depend on the whole training set for esti-
mating the conditional variance. This looks natural, since in order to get σ̂(x), we are supposed to
need x. However, if we have a regression model, we already have ŷ, which actually carries infor-
mation about the input value x. The basic idea of an ‘enrichment’ method is to derive σ̂(x) from ŷ
instead of deriving it from x. With the original ŷ and the newly derived σ̂(x) we just have a NCDE
model. Figure 3 shows this process of converting a crisp model into an enriched soft model. This
univariate derivation can be performed in several different ways.

A first option is to estimate the residual u = y− ŷ (as a separate regression problem) and derive
σ̂(x) from it. This procedure, which does a univariate regression on the residuals given the outputs,
is called residual-based enrichment, RBE. We detail the RBE procedure below:

Definition 5.1. Given an existing regression model (my), a training or validation set T , and a
(test) instance x, the residual-based enrichment method (RBE) is defined as follows:

(1) Obtain ŷi = my(xi) for each example 〈xi,yi〉 ∈ T .
(2) Calculate the residuals: ui← (yi− ŷi).
(3) Apply a transformation function θ to the residuals: vi← θ(ui).
(4) Train a regression model mv for the dataset V = {〈ŷi,vi〉}i=1...|T |.

(5) Obtain ŷ = my(x) and v̂ = mv(ŷ) for the example x to be predicted (in the test set).

So, for each example x in the test set, the estimated conditional mean for that example is µ̂(x) = ŷ

and the estimated conditional standard deviation is σ̂(x) = θ−1(v̂). Note that steps 1 to 4 can be
omitted if we just train and keep mv.

The procedure is similar to the conditional variance estimation methods shown in appendix C, but
we remove the dependency on x for the residual model. This procedure also resembles some calibra-
tion methods in classification. Platt’s method [Platt 1999] applies a univariate function (a sigmoid)
to the outputs, in order to calibrate them.

In order to apply the RBE method, we only need to choose an appropriate transformation function
θ for step 3 and a regression technique for step 4. The transformation function θ can be used at
convenience to ensure that σ̂(x) is always positive or to make an estimation of absolute or squared

residuals. Several possibilities exist, but a natural choice is θ(t) = t2, if seen as a variance estimation
method [Yu and Jones 2004; Wasserman 2006].

We explore the RBE method for the base techniques (LR, kNN and Tree) and two different re-
gression techniques (kNN and Tree) for implementing step 4 in definition 5.1. Table III shows the
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results. We see that the results show improvement for the base techniques that performed worst,
with some slightly worse results on those that performed best.

Table III. Results (using the datasets in Table XI) for several base techniques (LR,
kNN and Tree) with the residual-based enrichment (RBE) methods using kNN and
Tree as regression techniques for implementing step 4 in definition 5.1. All the meth-
ods use θ(t) = t2. Results for mrse are not shown since they are equal to Table II.

LR
ENR
kNN
msll

LR
ENR
kNN
msvr

LR
ENR
Tree
msll

LR
ENR
Tree
msvr

kNN
ENR
kNN
msll

kNN
ENR
kNN
msvr

kNN
ENR
Tree
msll

kNN
ENR
Tree
msvr

Tree
ENR
kNN
msll

Tree
ENR
kNN
msvr

Tree
ENR
Tree
msll

Tree
ENR
Tree
msvr

1 0.79 0.53 0.79 0.53 0.81 0.52 0.82 0.52 0.84 0.69 0.83 0.63
2 0.76 0.56 0.79 0.54 0.77 0.52 0.78 0.52 0.72 0.61 0.68 0.52
3 0.77 0.82 0.81 0.84 0.68 0.60 0.71 0.61 0.75 0.61 0.70 0.49
4 0.71 0.56 0.73 0.56 0.82 0.47 0.80 0.53 0.86 0.69 0.83 0.60
5 0.63 0.54 0.64 0.55 0.63 0.52 0.63 0.53 0.74 0.67 0.64 0.51
6 0.71 0.61 0.69 0.59 0.67 0.59 0.67 0.59 0.72 0.67 0.64 0.56
7 0.98 0.99 0.96 0.98 0.77 0.55 0.76 0.60 0.78 0.56 0.75 0.53
8 0.64 0.54 0.64 0.54 0.63 0.56 0.63 0.54 0.70 0.67 0.60 0.53
9 0.95 0.91 0.96 0.92 0.99 0.92 0.99 0.93 1.00 0.98 0.99 0.92

10 0.69 0.44 0.71 0.44 0.67 0.53 0.68 0.58 0.69 0.73 0.53 0.56
11 0.71 0.49 0.74 0.57 0.75 0.63 0.76 0.63 0.73 0.74 0.68 0.65
12 0.88 0.64 0.86 0.57 0.77 0.47 0.79 0.50 0.76 0.67 0.73 0.61
13 0.71 0.72 0.66 0.65 0.92 0.66 0.89 0.59 0.89 0.68 0.90 0.62
14 0.74 0.48 0.74 0.47 0.73 0.52 0.73 0.52 0.71 0.63 0.66 0.52
15 0.72 0.59 0.71 0.58 0.74 0.62 0.73 0.60 0.76 0.63 0.73 0.58
16 0.77 0.60 0.79 0.58 0.72 0.54 0.73 0.55 0.73 0.65 0.70 0.57
17 0.96 0.87 0.99 0.93 0.79 0.55 0.79 0.55 0.79 0.64 0.78 0.56
18 0.74 0.55 0.74 0.58 0.75 0.53 0.75 0.56 0.75 0.54 0.76 0.56
19 0.69 0.52 0.70 0.54 0.70 0.51 0.71 0.54 0.74 0.64 0.69 0.55
20 0.79 0.60 0.83 0.61 0.69 0.52 0.69 0.52 0.78 0.68 0.69 0.57

Mean 0.77 0.63 0.77 0.63 0.75 0.57 0.75 0.58 0.77 0.67 0.73 0.58

Given that enrichment only requires a univariate regression technique, we can look for simpler
and equally effective approaches, without the need of using a second regression technique, such as
kNN and Tree. A single approach is binning, which just uses a sliding window over the estimated
value ŷ. This approach resembles binning calibration in classification [Bella et al. 2009] More for-
mally, the BIN method is defined as follows:

Definition 5.2. Given an existing regression model (my), a training or validation set T , and a
(test) instance x, the enrichment method BIN (using bin size k) is defined as follows:

(1) Obtain ŷi = my(xi) for each example 〈xi,yi〉 ∈ T .
(2) Calculate the residuals: ui← (yi− ŷi).
(3) Apply a transformation function θ to the residuals: vi← θ(ui).
(4) Construct a dataset V = {〈ŷi,vi〉}i=1...|T |.
(5) Sort V by ŷi.
(6) Obtain ŷ = my(x) for the example x to be predicted (in the test set).
(7) Construct the set W with the k/2 values vi in V immediately above ŷ and the k/2 values vi in V

immediately below3.
(8) Obtain v̂ as the mean of W .

3If there are not sufficient elements above or below we take as many as we can.
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The estimated conditional mean is µ̂(x) = ŷ and the estimated conditional standard deviation is

σ̂(x) = θ−1(v̂). Note that steps 1 to 4 can be omitted (and the training set is no longer necessary) if
we just keep the dataset V when training the model.

A third enrichment method can be defined by constructing the bins using distances. This method
builds a bin for each prediction by including the nearest estimated values and then averages the
squared differences of the true values of these elements against the same prediction (instead of
averaging the residuals of each pair of prediction and true value). This method is a univariate version
of the method KNC (see appendix D):

Definition 5.3. Given an existing regression model (my), a train or validation set T , and a (test)
instance x, the univariate k-nearest comparison enrichment method uKNC (using parameter k) is
defined as follows:

(1) Obtain ŷi = my(xi) for each example 〈xi,yi〉 ∈ T .
(2) Construct a dataset Q = {〈ŷi,yi〉}i=1...|T |.

(3) Obtain ŷ = my(x) for the example x to be predicted (in the test set).

(4) Let S =
〈

ŷ j,y j

〉

the set of the k nearest neighbours in Q (using the distance |ŷi− ŷ| between each
ŷi in Q and the fixed ŷ).

(5) Obtain ŝ2 = 1
k ∑〈ŷ j ,y j〉∈S

(ŷ− y j)
2.

The estimated conditional mean is µ̂(x) = ŷ and the estimated conditional variance is σ̂(x)2 = ŝ2.

Note that this method is different from RBE using kNN. The method uKNC just looks for the closest
estimations in the training set to the estimation for example x and compares their true values with
the estimation for x. This approach resembles the non-monotonic calibration method (similarity-
binning) introduced in [Bella et al. 2013]. Note that the rationale behind this method is that we link
the variance to the estimations, i.e., given a set of k examples with similar estimations, we calculate
how far (on average) the true values are to the centre estimation. By using the centre estimation
and not the estimation for each of the k examples with most similar estimations, this method can be
more robust (since an outlier estimation for one of the k estimations has no effect on the result).

Again, we apply these two methods (BIN and uKNC) to the base techniques (LR, kNN and Tree).
Table IV shows the results. As we see, the performance is not degraded at all by these extremely
straightforward and efficient methods. Much on the contrary, their results are good, especially for
uKNC.

5.4. Choosing some appropriate NCDE methods for cost-sensitive applications

As we have seen, the number of possible methods which can be used to derive a simple (i.e., normal)
conditional density function is really large, and some of them could be parameterised and refined.
Nonetheless, our goal was to select a small set of simple NCDE methods that could produce a
reasonably good normal conditional density estimation or, more precisely, a good pair of conditional
mean and conditional variance (from which a normal conditional density estimation is built).

In order to make a selection, we have analysed some of the methods seen so far in order to find
a small subset of methods with the following criteria: good performance (for any base regression
technique), low dependence on the training set and efficiency. Performance results and significance
tests are shown in tables XVII, XVIII and XIX in appendix F. These tables also include the results
for some of the methods mentioned in section 5.2 (which are explained in full detail in appendices
B, C, D and E). According to these results and the previous criteria, we decide to use the following
NCDE methods:

— Own: uses the own variance estimation methods from each base regression technique (section
5.1).

— uKNC: uses the univariate k-nearest comparison enrichment method (definition 5.3, section 5.3).
— BIN: uses the residual-based enrichment method using binning (definition 5.2, section 5.3).
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Table IV. Results (using the datasets in Table XI) for several base methods (LR, kNN and Tree)
with the enrichment method uKNC and the enrichment method using binning for the residuals
(BIN) (with k = 10 for both enrichment methods). Method BIN uses θ(t) = t2. Results for mrse are
not shown since they are equal to Table II.

LR
ENR
uKNC
msll

LR
ENR
uKNC
msvr

kNN
ENR
uKNC
msll

kNN
ENR
uKNC
msvr

Tree
ENR
uKNC
msll

Tree
ENR
uKNC
msvr

LR
ENR
BIN
msll

LR
ENR
BIN
msvr

kNN
ENR
BIN
msll

kNN
ENR
BIN
msvr

Tree
ENR
BIN
msll

Tree
ENR
BIN
msvr

1 0.79 0.51 0.81 0.50 0.82 0.62 0.79 0.52 0.80 0.49 0.82 0.60
2 0.79 0.52 0.77 0.54 0.70 0.51 0.79 0.55 0.77 0.52 0.67 0.52
3 0.67 0.81 0.72 0.56 0.72 0.52 0.77 0.83 0.69 0.64 0.70 0.47
4 0.78 0.68 0.84 0.58 0.83 0.59 0.73 0.58 0.84 0.52 0.81 0.58
5 0.63 0.54 0.63 0.53 0.64 0.53 0.63 0.54 0.64 0.51 0.63 0.54
6 0.70 0.60 0.66 0.60 0.66 0.57 0.71 0.60 0.68 0.59 0.65 0.60
7 0.85 0.42 0.79 0.60 0.75 0.50 0.97 0.98 0.78 0.59 0.75 0.50
8 0.65 0.52 0.63 0.54 0.60 0.52 0.64 0.54 0.63 0.54 0.59 0.53
9 0.75 0.68 0.99 0.90 0.92 0.72 0.95 0.92 0.99 0.89 0.99 0.93

10 0.69 0.36 0.64 0.49 0.52 0.48 0.71 0.40 0.66 0.52 0.54 0.56
11 0.73 0.52 0.75 0.60 0.73 0.72 0.71 0.49 0.75 0.62 0.67 0.64
12 0.86 0.44 0.77 0.49 0.73 0.61 0.86 0.55 0.77 0.44 0.76 0.65
13 0.78 0.80 0.90 0.66 0.89 0.54 0.69 0.63 0.89 0.60 0.88 0.66
14 0.75 0.46 0.73 0.50 0.67 0.52 0.75 0.46 0.73 0.51 0.66 0.53
15 0.72 0.60 0.74 0.60 0.73 0.55 0.73 0.59 0.75 0.62 0.73 0.56
16 0.75 0.49 0.74 0.53 0.69 0.58 0.77 0.56 0.72 0.58 0.69 0.60
17 0.90 0.45 0.79 0.53 0.78 0.52 0.97 0.88 0.79 0.54 0.78 0.54
18 0.75 0.55 0.75 0.57 0.76 0.54 0.74 0.55 0.75 0.56 0.75 0.53
19 0.69 0.53 0.70 0.52 0.69 0.55 0.69 0.53 0.70 0.52 0.70 0.56
20 0.80 0.58 0.68 0.51 0.69 0.56 0.81 0.61 0.68 0.52 0.70 0.59

Mean 0.75 0.55 0.75 0.57 0.73 0.56 0.77 0.62 0.75 0.57 0.72 0.58

Note that we make a selection for the clarity of exposition. If other NCDE methods (either directly
or by enrichment) are eventually found to perform better or more efficiently (in general or for a
particular problem), this will give further support for (and improve) the probabilistic reframing
methods that we will explore in the following sections.

6. BID APPLICATIONS

As explained in the introduction, most regression problems require the minimisation of a loss func-
tion representing the cost context, rather than an uncontextualised (quadratic) error. Frequently, this
loss function is only known at deployment time, so training is usually performed without this infor-
mation, as shown in Figure 1. Given the selection of NCDE methods at the end of previous section,
we are ready to apply reframing to several kinds of cost-sensitive decision problems, where par-
ticular families of loss functions are used. For instance, in this section we will explore a family of
problems which are very common in econometrics, commerce and retailing applications, where we
need to estimate the price (or other quantifiable features) for an offer or bid in the context of a sale,
deal or auction [Schapire et al. 2002; Dumas et al. 2005; Kitts and Leblanc 2004; Wellman et al.
2004; Ghani 2005]. One of the most relevant features of the loss functions in these applications is
that they are highly discontinuous, since an offer which is much too expensive changes loss dramat-
ically: from the maximum attainable benefit to no benefit at all (the offer is not accepted). This is
formalised by the following bid loss function:

Definition 6.1. The bid loss ℓB
β is a loss function defined as follows:

ℓB
β (ŷ,y) = −ŷ+β if ŷ≤ y

= 0 otherwise

where β represents some kind of base cost. If ŷ > β then we have negative loss and hence positive
profits.
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Fig. 4. Two loss functions shown as a scatter plot with actual output values on the x-axis and estimated output values on the
y-axis. Costs are shown with contour lines and colours (from benefits to high costs represented with the scale green-yellow-
reddish-white). Left: Bid loss function with β = 3. Right: Non-losing bid loss function with β = 3.

For positive values of y we see this as a sale, for which we want to increase margin. For negative
values of y, it is a purchase, and we want to reduce margin. Figure 4 (left) shows a representation of
this loss function with β = 3.

Given the bid loss and a NCDE model f̂ (y|x), we need to determine the optimal local reframing,
which gets the lowest expected loss (minimum risk). This can be done as follows:

PROPOSITION 6.2. Given ℓB
β ,

r∗(x, ℓB
β , f̂ ) = argmin

t

{

(β − t)(1− F̂(t|x))
}

PROOF. From eq. (3), we have that r∗(x, ℓB
β , f̂ ) can be written as follows:

r∗(x, ℓB
β , f̂ ) = argmin

t

∫ ∞

−∞
ℓB

β (t,y) f̂ (y|x)dy

= argmin
t

{

∫ t

−∞
0+

∫ ∞

t
(−t +β ) f̂ (y|x)dy

}

= argmin
t

{

(β − t)(1− F̂(t|x))
}

The previous equation has no closed form in general (and it does not reduce either for the normal
distribution). For most distributions (exceptions are fat-tailed distributions, such as the Cauchy dis-
tribution), the value of the estimated cumulative distribution function F̂(t|x)) goes to 1 faster than
t grows to infinity. So this expression is 0 for t → ∞. Hence, in general, it only has a minimum.
We can find the minimum of the previous function numerically or we can calculate the derivative

(t−β ) f̂ (t|x)+ F̂(t|x)− 1 and try to find (also numerically) the values which make the expression
0 and see which of them are minima. The first option seems the easiest one, especially for a normal
distribution. While the loss function is discontinuous, the expression in proposition 6.2 is not, and
some efficient numerical methods can be used.

Apart from the local reframing using NCDE methods and proposition 6.2 seen above, we will
compare with a global reframing which just uses the expected value (a crisp regression model) and
adds a shift which has been optimised for the training set. The methods are then:
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Fig. 5. Left: comparing the bid loss using different methods for dataset rock with base technique kNN. Right: comparing
the non-losing bid loss using different methods for dataset menarche with base technique LR.

— None: No reframing. The prediction (conditional estimated mean) is used as it is.
— Own, uKNC, BIN: Probabilistic (local) reframing using a numerical approximation for the expres-

sion r∗(x, ℓB
β , f̂ ) with a normal distribution, as given by proposition 6.2. The conditional normal

density is obtained by three different methods: as derived by the base technique (Own) and the
enrichment methods uKNC and BIN.

— CoSh: Global reframing using a constant shift s0 for all the predictions: R+(x, ℓB
β , f̂ ) = E f̂ (y|x)+

s0. We use this approach as a reference method, even though we do not know of any previous use
of global reframing for a bid loss in the literature. In order to calculate a good shift, we look for
the best shift for the whole training set4. This calculation of s0 is done numerically on the training
set. Since ℓB

β is discontinuous, we cannot use any common optimisation method, so we use a grid

search algorithm (a Monte Carlo method could also be used), assuming that the solution is inside
a (wide) interval. The accuracy of the solution depends on the number of points for which the
loss on the training set is calculated.

Now we see how the previous methods perform. We will use several values of β using the equation
β = (maxy −miny) · a

2, where a ranges regularly between 0 and 1, and maxy and miny are the
maximum and minimum values of the output y for the whole dataset. The equation tries to capture
a range of reasonable cases for this family of problems. The rationale is that high values of β imply
that benefits can only be obtained with values of ŷ which get close to maxy, while low values of β
imply that we will almost always get benefits. This is the reason why we have squared a, in order to
make cases with low β more frequent, if we just choose a regularly. With this, we explore different
reasonable possibilities for β .

Figure 5 (left) shows the evolution of this loss for different methods and different values of β
(which is a function of a) for one dataset as an illustration (the figures may vary significantly for
other datasets).

The overall results (Table V) show that an appropriate cost-sensitive probabilistic (local) refram-
ing outperforms a constant shift method (global reframing). The results are consistent for the three
different base techniques (LR, kNN and Tree).

4Note that this method does not require the estimation of a conditional normal distribution (only the expected value is
needed), so any crisp regression method can be used directly. However, it requires the complete training set (or at least the
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Table V. Results for the bid loss ℓB
β for the datasets in Table XII, using the experimental methodology in

section 4. Each row aggregates the ten samples and ten different values for β per fold using the formula
β = (maxy−miny) · a

2 with a ∈ {0,0.111,0.222, . . . ,1}. For visibility all the losses are multiplied by 10. Each
section of five columns shows results for different base techniques (LR, kNN and Tree). The average ranks
(AR) are calculated for these three groups separately. The Friedman statistics for the three sections are
(65.97, 66.75 and 66.63 respectively), which are greater than the Critical Value (10.92). This means that
the null hypothesis is rejected (significance level: 0.05) and the methods do not perform equally. Differences
in average ranks higher than the critical difference for the Nemenyi post-hoc test (0.3626) imply that the
difference is significant (in bold).

LR
None

LR
Own

LR
uKNC

LR
BIN

LR
CoSh

kNN
None

kNN
Own

kNN
uKNC

kNN
BIN

kNN
CoSh

Tree
None

Tree
Own

Tree
uKNC

Tree
BIN

Tree
CoSh

1 3.13 -0.45 -0.77 -0.75 0.25 3.44 -0.35 -0.36 -0.36 0.93 3.89 -0.11 -0.18 -0.36 1.04
2 11.00 0.21 -0.27 -0.18 1.79 5.72 -0.26 -0.29 -0.25 0.11 11.36 -0.02 -0.17 -0.01 1.36
3 6.49 -0.50 -0.53 -0.58 -0.02 4.27 -0.65 -0.63 -0.64 -0.30 8.13 -0.51 -0.59 -0.47 0.22
4 22.10 0.90 0.18 4.07 16.19 9.07 3.78 3.93 3.81 6.86 8.06 3.81 3.87 4.12 6.53
5 17.32 -0.02 -0.90 1.35 13.19 10.72 0.35 0.57 0.32 8.45 9.96 3.89 0.31 1.86 8.03
6 10.03 -0.29 -0.29 0.37 3.83 6.79 -0.36 -0.36 -0.37 0.12 7.97 -0.41 -0.39 -0.34 0.66
7 3.52 1.21 -0.22 -0.20 2.07 5.63 -0.26 -0.29 -0.30 2.15 3.41 -0.14 -0.17 -0.12 1.83
8 7.15 -0.02 -0.33 0.27 5.67 10.93 0.37 0.37 0.35 9.95 11.01 1.52 1.76 1.94 10.35
9 27.33 0.65 0.00 0.71 24.87 5.82 -0.19 -0.20 -0.20 0.36 6.23 -0.16 -0.14 -0.07 0.93

10 3.79 0.11 -0.56 0.17 2.05 5.60 -0.37 -0.33 -0.40 0.77 4.35 -0.51 -0.48 -0.34 0.28
11 9.11 5.58 3.67 5.58 8.63 9.97 5.58 5.58 5.58 9.40 9.95 5.58 5.58 5.58 9.55
12 10.00 -0.51 -0.80 -0.80 0.02 8.23 -0.68 -0.68 -0.69 -0.20 11.30 -0.64 -0.64 -0.64 1.00
13 17.65 0.10 -0.40 -0.41 0.08 17.01 -0.37 -0.39 -0.39 -0.05 17.10 -0.36 -0.35 -0.36 0.79
14 7.67 0.52 -0.27 -0.27 0.94 8.01 -0.26 -0.31 -0.29 0.51 8.76 0.34 0.29 0.09 2.86
15 13.02 -0.19 -0.23 -0.12 3.98 8.62 -0.24 -0.28 -0.29 0.43 11.61 -0.22 -0.19 -0.23 1.19
16 15.91 3.20 -0.40 -0.40 -0.17 18.15 -0.39 -0.38 -0.39 -0.21 17.27 -0.33 -0.27 -0.23 -0.22
17 1.29 0.02 -0.34 0.23 0.99 3.32 0.41 0.50 0.46 1.68 3.10 0.78 0.28 1.05 2.39
18 2.21 1.35 -0.30 -0.40 1.04 2.46 -0.31 -0.27 -0.31 1.14 1.58 0.21 -0.41 0.17 1.27
19 6.86 -0.45 -0.27 -0.51 0.79 9.15 -0.54 -0.57 -0.55 0.30 6.79 -0.52 -0.59 -0.51 1.24
20 13.31 -0.53 -0.47 0.16 8.59 6.71 -0.62 -0.65 -0.60 0.35 6.85 -0.48 -0.50 -0.52 0.87

AR 5.00 2.58 1.35 2.23 3.85 5.00 2.30 2.10 1.60 4.00 5.00 1.85 1.75 2.40 4.00

After this first loss function and its results for different methods, we can of course figure out other
related loss functions. For instance, a common variant of the bid loss is when the decision rule does
not make a bid if we expect no benefit. This is not a rejection rule, which we will see in section 8,
but means that there is no offer, no sale and, hence, no profit or loss. In many applications, this is a
more realistic loss function, and can be defined as follows.

Definition 6.3. The non-losing bid loss ℓB̄
β is a loss function defined as follows:

ℓB̄
β (ŷ,y) = −ŷ+β if (ŷ≤ y)∧ (β ≤ ŷ)

= 0 otherwise

Figure 4 (right) shows a representation of this loss function with β = 3. We can get its optimal
reframing as we did for ℓB

β :

PROPOSITION 6.4. Given ℓB̄
β ,

r∗(x, ℓB̄
β , f̂ ) = argmin

t

{

(β − t)(1− F̂(max(β , t)|x))
}

actual output values y) for every new context (loss function). This might not be possible in many applications. It also assumes
the same parameters for the loss function for the whole dataset.
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PROOF. From eq. (3), we have that r∗(x, ℓB̄
β , f̂ ) can be written as follows:

r∗(x, ℓB̄
β , f̂ ) = argmin

t

∫ ∞

−∞
ℓB̄

β (t,y) f̂ (y|x)dy

= argmin
t

{

∫ max(β ,t)

−∞
0+

∫ ∞

max(β ,t)
(−t +β ) f̂ (y|x)dy

}

= argmin
t

{

(β − t)(1− F̂(max(β , t)|x))
}

(7)

Figure 5 (right) shows the evolution of this loss for different values of β (which is a function of a)
for one dataset. The overall results for this variant are shown in Table VI for several base techniques,
with the same configuration as Table V. The results are similar to those in Table V, although the

Table VI. Results for the non-losing bid loss ℓB̄
β for the datasets in Table XII, using the experimental method-

ology in section 4. Each row aggregates the ten samples and ten different values for β per fold using the
formula β = (maxy−miny) ·a

2 with a ∈ {0,0.111,0.222, . . . ,1}. For visibility all the losses are multiplied by 10.
Each section of five columns shows results for different base techniques (LR, kNN and Tree). The average
ranks (AR) are calculated for these three groups separately. The Friedman statistics for the three sections
are (32.43, 36.93 and 38.97 respectively), which are greater than the Critical Value (10.92). This means that
the null hypothesis is rejected (significance level: 0.05) and the methods do not perform equally. Differences
in average ranks higher than the critical difference for the Nemenyi post-hoc test (0.3626) imply that the
difference is significant (in bold).

LR
None

LR
Own

LR
uKNC

LR
BIN

LR
CoSh

kNN
None

kNN
Own

kNN
uKNC

kNN
BIN

kNN
CoSh

Tree
None

Tree
Own

Tree
uKNC

Tree
BIN

Tree
CoSh

1 -0.59 -0.65 -0.66 -0.69 -0.64 -0.25 -0.38 -0.38 -0.36 -0.47 -0.30 -0.37 -0.40 -0.39 -0.48
2 -0.08 -0.23 -0.32 -0.26 -0.21 -0.08 -0.23 -0.28 -0.28 -0.22 -0.12 -0.22 -0.25 -0.24 -0.15
3 -0.25 -0.46 -0.59 -0.59 -0.52 -0.18 -0.46 -0.45 -0.46 -0.39 -0.37 -0.63 -0.67 -0.62 -0.34
4 -0.00 -0.12 -0.34 -0.02 0.00 0.00 -0.02 -0.01 -0.02 0.00 0.00 -0.01 -0.02 -0.01 0.00
5 -0.33 -0.38 -0.85 -0.30 -0.02 0.00 -0.11 -0.10 -0.12 0.00 0.00 -0.02 -0.14 -0.06 0.00
6 -0.27 -0.23 -0.39 -0.35 -0.17 -0.03 -0.30 -0.30 -0.27 -0.11 -0.08 -0.39 -0.39 -0.35 -0.38
7 -0.11 -0.14 -0.27 -0.26 -0.30 -0.15 -0.27 -0.30 -0.30 -0.35 -0.10 -0.20 -0.19 -0.18 -0.17
8 -0.22 -0.20 -0.58 -0.21 -0.15 0.00 -0.01 -0.01 -0.01 0.00 0.00 -0.00 -0.00 -0.00 0.00
9 -0.10 -0.10 -0.18 -0.09 -0.14 -0.05 -0.17 -0.20 -0.18 -0.20 -0.02 -0.18 -0.18 -0.11 -0.27

10 -0.21 -0.21 -0.58 -0.20 -0.35 -0.03 -0.48 -0.47 -0.49 -0.53 -0.03 -0.32 -0.30 -0.32 -0.22
11 0.00 0.00 -0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 -0.57 -0.77 -0.78 -0.79 -0.77 -0.58 -0.66 -0.67 -0.68 -0.61 -0.56 -0.64 -0.64 -0.64 -0.56
13 -0.13 -0.23 -0.39 -0.40 -0.33 -0.08 -0.39 -0.39 -0.39 -0.31 -0.13 -0.36 -0.36 -0.37 -0.18
14 -0.03 -0.15 -0.34 -0.32 -0.46 -0.03 -0.34 -0.35 -0.34 -0.42 -0.04 -0.27 -0.27 -0.24 -0.17
15 -0.35 -0.35 -0.39 -0.33 -0.29 -0.19 -0.33 -0.32 -0.40 -0.27 -0.24 -0.31 -0.35 -0.30 -0.24
16 -0.28 -0.26 -0.38 -0.38 -0.37 -0.31 -0.42 -0.40 -0.39 -0.36 -0.31 -0.37 -0.38 -0.39 -0.32
17 -0.17 -0.18 -0.26 -0.18 -0.16 -0.03 -0.06 -0.05 -0.05 -0.08 -0.05 -0.06 -0.07 -0.05 -0.06
18 -0.20 -0.18 -0.26 -0.34 -0.46 -0.21 -0.31 -0.28 -0.29 -0.42 -0.43 -0.37 -0.42 -0.37 -0.37
19 -0.24 -0.51 -0.32 -0.55 -0.20 -0.12 -0.58 -0.62 -0.62 -0.64 -0.33 -0.52 -0.56 -0.51 -0.50
20 -0.40 -0.60 -0.62 -0.45 -0.42 -0.17 -0.54 -0.57 -0.57 -0.53 -0.36 -0.54 -0.49 -0.54 -0.42

AR 4.08 3.38 1.50 2.58 3.48 4.83 2.60 2.35 2.35 2.88 4.47 2.35 1.75 2.80 3.62

differences between the methods are now smaller since there are many more cases where the loss is
0. Again this shows that the use of an appropriate cost-sensitive probabilistic reframing gets better
results than a constant shift method (global reframing). The results are again consistent for different
base techniques.

While we only show the results for some typical bid functions as for definitions 6.1 and 6.3, the
same idea can be used in applications where there can be more bids (see, e.g., [Bella et al. 2011]), or
when auctions work in a different way. In that case, a similar result to propositions 6.2 and 6.4 could
be obtained by applying the maximisation recursively. In the cases where the expressions cannot be
simplified into a closed form, as in this case, we can use a numerical method.
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Fig. 6. Two loss functions shown as a scatter plot with actual output values on the x-axis and estimated output values on
the y-axis. Costs are shown with contour lines and colours (from benefits to high costs represented with the scale green-
yellow-reddish-white). Left: Asymmetric absolute (Lin-Lin) loss function (ABS) with α = 0.8. Right: Asymmetric squared
(Quad-Quad) loss function (SQU) with α = 0.8.

As mentioned above, the global reframing method cannot be applied when the loss function
parameters may be different for each example. For instance, the β parameter of the bid function
may depend on the instance, such as cases where this represents the production cost and is different
for each product. The probabilistic reframing can still be applied in these cases.

7. ASYMMETRIC LOSS APPLICATIONS

Many regression problems do not have a symmetric loss. Depending on the application, overesti-
mations might be worse than underestimations (or vice versa). The way in which this asymmetry
is modelled has led to the definition of many asymmetric loss functions, such as Lin-Exp (approx-
imately linear on one side and exponential on the other side), Quad-Exp (approximately quadratic
on one side and exponential on the other side), Lin-Lin (asymmetric linear) and Quad-Quad (asym-
metric quadratic). We will focus on the latter two since these are more common and can be seen as
generalisations of absolute error and quadratic error respectively.

First, we give a definition for the asymmetric absolute error ℓA
α :

Definition 7.1. The asymmetric absolute error ℓA
α is a loss function defined as follows:

ℓA
α(ŷ,y) = α(y− ŷ) if ŷ < y

= (1−α)(ŷ− y) otherwise

with α being the cost proportion (or asymmetry) between 0 and 1, with increasing values mean-
ing higher cost for low predictions (underestimation). In other words, when α = 0 we mean that
predictions below the actual value have no cost. When α = 1 we mean that predictions above the
actual value have no cost. When α = 0.5 we mean that costs above and below are symmetric.

Similarly, we give the definition for the asymmetric squared error:

Definition 7.2. The asymmetric squared error ℓS
α is a loss function defined as follows:

ℓS
α(ŷ,y) = α(y− ŷ)2 if ŷ < y

= (1−α)(ŷ− y)2 otherwise

Figure 6 (left and right) shows a representation of these two loss functions for α = 0.8.
Now, we look for the optimal choice in both cases. The case for ℓA

α is relatively straightforward:
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PROPOSITION 7.3. If ℓ is the asymmetric absolute error function ℓA
α(ŷ,y) given by definition

7.1 and f̂ (y|x) is any conditional distribution (whose mean is denoted by µ̂(x)), then the expected
loss for a predicted value t is given by:

L (x, t, f̂ , ℓA
α) = αµ̂(x)+ tF̂(t|x)−αt−

∫ t

−∞
y f̂ (y|x)dy

where F̂ is the cumulative distribution for f̂ .

From now on, we omit all the proofs, which can be found in appendix G.
The previous expression can be used to obtain the optimal prediction easily:

PROPOSITION 7.4. If ℓ is the asymmetric absolute error function ℓA
α(ŷ,y) given by definition

7.1 and f̂ (y|x) is any conditional distribution, then the optimal prediction is given by the value t
such that the following equality holds:

F̂(t|x) = α (8)

where F̂ is the cumulative distribution for f̂ .

Clearly, the previous result can be instantiated for any distribution, whose cumulative distribution
is invertible, and get:

F̂−1(α|x) (9)

where F̂−1 is the inverse of the cumulative distribution for f̂ . If f̂ is a normal distribution then we
can just use the quantile function (or probit function).

The expression in eq. 9 is easy and intuitive. For a normal distribution, if we have α = 0 predic-
tions below the actual value have no cost, so the best thing to do is to predict −∞, since the quantile
function returns this for p = 0. When α = 1 predictions above the actual value have no cost, so
the best thing to do is to predict ∞. If α = 0.5 the best result is given by the result of the quantile
function for 0.5, i.e., the median, which for a normal distribution is also the mean.

As in the previous section, we compare the method without reframing (None), with probabilistic
(local) reframing and two methods with global reframing.

— None: No reframing. The prediction (conditional estimated mean) is used as it is.

— Own, uKNC, BIN: Probabilistic (local) reframing using r∗(x, ℓA
α , f̂ ), as given by eq. 9. The condi-

tional normal density is obtained by three different methods: as derived from the base technique
(Own) and enrichment methods (uKNC and BIN).

— CoSh: Global reframing using a constant shift s0 for all the predictions R+(x, ℓA
α , f̂ ) = E f̂ (y|x)+

s0. In order to calculate a good shift, we look for the best shift for the whole training set. Inter-
estingly, in this case, the calculation of the optimal constant shift for the training data follows
a convex function (from a convex loss function) and can be calculated using efficient numerical
methods. For instance, [Bansal et al. 2008] use hill climbing to calculate this optimal s0.

— PoSh: Global reframing using a polynomial shift s(x) for all the predictions Rp(x, ℓA
α , f̂ ) =

s(E f̂ (y|x)) where s is a polynomial function. Considering that the problem is convex, [Zhao

et al. 2011] present a numerical method (also based on hill climbing) to derive this polynomial in
a relatively efficient way. We will just show the results for a first-order polynomial because this
degree produced the best results.

Using these methods, the evolution of this loss for different values of α for one dataset is shown in
Figure 7 (left). The overall results are shown in Table VII for several base techniques. Here we see
that some local and global reframing methods perform relatively well.

Now we will derive the minimisation expression for the asymmetric squared error (definition
7.2):
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Fig. 7. Left: comparing the asymmetric absolute loss using different methods for dataset iris3 with base technique LR.
Right: comparing the asymmetric square loss using different methods for dataset road with base technique Tree.

Table VII. Results for the absolute loss ℓA
α for the datasets in Table XII, using the experimental methodol-

ogy in section 4. Each row aggregates the ten samples and ten different values for α per fold with α ∈
{0,0.111,0.222, . . . ,1}. For visibility all the losses are multiplied by 10. Each section of six columns shows re-
sults for different base techniques (LR, kNN and Tree). The average ranks (AR) are calculated for these three
groups separately. The Friedman statistic for the three sections are (47.46, 44.31 and 49.06 respectively), which
are greater than the Critical Value (12.57). This means that the null hypothesis is rejected (significance level:
0.05) and the methods do not perform equally. Differences in average ranks higher than the critical difference
for the Nemenyi post-hoc test (0.5217) imply that the difference is significant (in bold).

LR
None

LR
Own

LR
uKNC

LR
BIN

LR
CoSh

LR
PoSh

kNN
None

kNN
Own

kNN
uKNC

kNN
BIN

kNN
CoSh

kNN
PoSh

Tree
None

Tree
Own

Tree
uKNC

Tree
BIN

Tree
CoSh

Tree
PoSh

1 1.44 0.98 0.99 0.98 0.93 0.91 4.38 3.12 3.10 3.10 3.06 2.90 3.59 2.64 2.57 2.66 2.65 2.51
2 4.66 3.21 2.94 3.18 3.13 3.04 3.54 2.35 2.30 2.36 2.19 2.60 3.68 2.45 2.41 2.43 2.46 2.45
3 2.95 2.00 1.96 1.94 1.97 1.99 3.44 2.18 2.23 2.22 2.24 2.38 3.37 2.15 2.17 2.17 2.17 2.18
4 7.19 4.82 4.88 5.30 5.28 5.11 7.80 5.69 5.56 5.57 5.54 5.53 7.49 5.49 5.44 5.46 5.48 5.38
5 2.92 2.10 2.20 2.19 2.19 2.06 7.12 4.78 4.83 4.73 4.61 4.26 5.03 3.62 3.27 3.59 3.65 3.46
6 6.29 4.27 3.83 4.56 4.57 3.69 3.65 2.41 2.40 2.41 2.39 2.56 3.85 2.58 2.58 2.55 2.50 2.65
7 5.99 4.52 4.23 4.26 4.20 4.00 5.15 3.55 3.51 3.50 3.40 3.30 6.18 4.44 4.45 4.43 4.42 4.20
8 1.86 1.40 1.50 1.46 1.45 1.44 4.34 2.81 2.79 2.89 2.30 2.03 3.99 2.63 2.62 2.70 2.33 2.05
9 9.11 6.35 5.43 7.21 7.19 7.28 3.02 2.21 2.18 2.26 2.27 2.69 3.49 2.37 2.37 2.40 2.39 2.40

10 4.94 3.56 2.85 3.74 3.68 3.55 3.83 2.49 2.48 2.50 2.53 3.02 3.71 2.57 2.56 2.62 2.56 2.72
11 6.57 5.11 4.87 5.08 4.97 4.84 8.29 6.47 6.30 6.28 6.30 6.14 8.16 6.41 6.41 6.41 6.41 6.35
12 1.27 0.94 0.80 0.81 0.80 0.86 1.49 0.98 0.97 0.96 0.97 1.03 2.13 1.39 1.39 1.41 1.39 1.35
13 3.94 2.82 2.54 2.54 2.50 2.50 4.07 2.64 2.61 2.62 2.53 2.47 4.26 2.80 2.82 2.81 2.81 2.71
14 6.19 4.42 4.04 4.16 4.16 4.00 4.77 3.05 3.07 3.07 3.07 3.18 6.23 4.19 4.22 4.24 4.31 4.04
15 2.60 1.76 1.77 1.79 1.81 1.83 2.51 1.71 1.78 1.71 1.61 1.70 2.70 1.72 1.71 1.72 1.69 1.72
16 2.53 1.89 1.60 1.61 1.60 1.68 2.29 1.48 1.49 1.49 1.49 1.56 2.47 1.58 1.58 1.59 1.60 1.61
17 21.14 16.30 11.91 16.67 16.68 15.10 5.09 3.42 3.38 3.42 3.20 2.83 6.53 3.94 3.94 4.20 4.49 3.46
18 7.44 5.64 5.39 5.35 5.41 4.71 5.68 4.10 4.02 3.96 4.14 3.85 6.34 4.84 4.69 4.80 4.88 4.62
19 2.82 1.81 1.86 1.84 1.82 1.89 4.36 2.81 2.79 2.79 2.84 2.75 3.74 2.45 2.44 2.48 2.50 2.45
20 4.36 2.90 2.76 3.12 3.17 3.17 3.62 2.26 2.27 2.29 2.28 2.47 3.33 2.20 2.21 2.21 2.20 2.23

AR 6.00 3.40 2.45 3.40 3.15 2.60 6.00 3.30 2.80 3.25 2.80 2.85 6.00 3.05 2.40 3.60 3.40 2.55

PROPOSITION 7.5. If ℓ is the asymmetric squared error function ℓS
α(ŷ,y) given by definition 7.2

and f̂ is any distribution with mean µ̂(x) and standard deviation σ̂(x), then the expected loss for a
predicted value t is given by:

L (x, t, f̂ , ℓS
α)= (1−2α)

[

t2F̂(t|x)−2t

∫ t

−∞
y f̂ (y|x)dy+

∫ t

−∞
y2 f̂ (y|x)dy

]

+α
[

t2−2t µ̂(x)+ µ̂2(x)
]

(10)
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where µ̂2(x) is the second raw moment of f̂ (y|x).

PROPOSITION 7.6. If ℓ is the asymmetric squared error function ℓS
α(ŷ,y) given by definition 7.2

and f̂ is any distribution with mean µ̂(x) and standard deviation σ̂(x), then the optimal prediction
is given by the value t such that the following equation holds:

(1−2α)

[

2tF̂(t|x)−2

∫ t

−∞
y f̂ (y|x)dy

]

+2αt−2αµ̂(x) = 0 (11)

The previous result can be simplified for a normal distribution

PROPOSITION 7.7. If ℓ is the asymmetric squared error function ℓS
α(ŷ,y) given by definition

7.2 and f̂ is a normal distribution with mean µ̂(x) and standard deviation σ̂(x), then the optimal
prediction t is given by first calculating t ′ from the following equation:

t ′Φ(t ′)+φ(t ′)+ t ′
α

1−2α
= 0 (12)

and then getting t = σ̂(x)t ′+ µ̂(x). Note the use of the standardised cumulative normal distribution
Φ and the standardised normal density function φ .

Even though the value of t ′ cannot be expressed in a closed form, we only need to calculate this
value for each α once, since it is calculated for the standard normal distribution. Then, we just use
the expression t = σ̂(x)t ′+ µ̂(x) for each example.

Figure 7 (right) shows the evolution of this loss for different values of α for one dataset, using
several reframing methods (again, figures may vary significantly for other datasets). The overall
results are shown in Table VIII for several base techniques and the same enrichment methods as
in Table VII. The results are good for the probabilistic (local) reframing methods, and especially
good for uKNC. About the global methods, the results are better for PoSh than CoSh for two base
methods. This indicates that the (more common) asymmetric squared loss, which highly penalises
wrong big shifts, may require a more flexible reframing, a polynomial (global) or a probabilistic
(local) one.

Apart from ℓA
α and ℓS

α , there are many other kinds of asymmetric loss. In fact, for instance, we
could use a discrete function where loss would be 0 if the error is inside a tolerance band (which can
be asymmetric) and, e.g., 1 otherwise. We will discuss this notion of ‘tolerance’ after the following
section.

8. REJECTION RULE APPLICATIONS

A common situation when working with predictive models appears when there is the possibility of
abstention, i.e., to reject the prediction and do nothing (or delegate to an expert or other kind of
model). The rationale is to avoid a decision that is likely to have more cost than the abstention itself.
In order to do this, we need to know what the cost of an abstention is, which may be constant or may
depend on the instance. According to this information, a decision rule which tries to minimise the
cost (as an aggregation of the overall prediction loss and the rejection cost) is known as a rejection
rule. Several works in the literature have been devoted to rejection rules, although most of the work
in the area of data mining and machine learning is conceived for classification [Ferri and Hernández-
Orallo 2004; Pietraszek 2007].

We can apply a rejection rule on top of any loss function, such as those seen in the previous
sections. For instance, for the asymmetric absolute error ℓA

α we can derive the corresponding loss

with rejection option ℓAR
α,ρ as follows:
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Table VIII. Results for the squared loss ℓS
α for the datasets in Table XII, using the experimental methodol-

ogy in section 4. Each row aggregates the ten samples and ten different values for α per fold with α ∈
{0,0.111,0.222, . . . ,1}. For visibility all the losses are multiplied by 10. Each section of six columns shows re-
sults for different base techniques (LR, kNN and Tree). The average ranks (AR) are calculated for these three
groups separately. The Friedman statistic for the three sections are (52.2, 44.77 and 51.66 respectively), which
are greater than the Critical Value (12.57). This means that the null hypothesis is rejected (significance level:
0.05) and the methods do not perform equally. Differences in average ranks higher than the critical difference
for the Nemenyi post-hoc test (0.5217) imply that the difference is significant (in bold).

LR
None

LR
Own

LR
uKNC

LR
BIN

LR
CoSh

LR
PoSh

kNN
None

kNN
Own

kNN
uKNC

kNN
BIN

kNN
CoSh

kNN
PoSh

Tree
None

Tree
Own

Tree
uKNC

Tree
BIN

Tree
CoSh

Tree
PoSh

1 0.60 0.42 0.50 0.42 0.41 0.40 5.79 4.13 4.12 4.12 3.95 3.59 3.45 2.56 2.50 2.56 2.49 2.37
2 9.22 6.55 6.20 6.51 6.54 6.65 6.07 4.37 4.32 4.38 4.28 5.10 6.13 4.39 4.37 4.41 4.37 4.66
3 3.11 2.12 2.09 2.07 2.11 2.20 3.94 2.56 2.61 2.59 2.51 2.67 3.13 2.06 2.05 2.09 2.09 2.14
4 7.33 5.62 5.59 5.63 5.60 5.58 13.46 9.83 9.73 9.73 9.61 9.42 15.08 11.18 11.03 11.01 11.08 10.94
5 2.20 1.60 1.96 1.66 1.65 1.53 12.40 8.69 8.74 8.65 8.87 8.53 7.63 5.80 5.50 5.69 5.72 5.60
6 15.89 10.72 10.01 11.68 11.81 10.55 4.89 3.32 3.32 3.33 3.30 3.63 3.91 2.74 2.72 2.73 2.77 3.13
7 8.83 6.63 6.29 6.29 6.25 6.01 6.57 4.59 4.55 4.54 4.40 4.48 8.66 6.21 6.17 6.27 6.15 5.88
8 5.20 3.81 3.84 4.14 4.14 4.09 10.43 7.99 7.96 8.12 8.46 8.25 9.31 7.02 6.99 7.10 7.54 7.79
9 382.7 322.9 228.1 305.8 305.8 310.2 6.87 5.15 5.14 5.19 5.17 5.35 5.96 4.45 4.43 4.44 4.49 4.71

10 6.48 4.51 4.16 4.84 4.84 4.63 5.82 4.11 4.12 4.10 4.04 4.15 5.28 3.62 3.62 3.68 3.60 3.89
11 10.07 7.87 7.55 7.82 7.73 7.62 14.31 11.13 10.82 10.89 11.17 11.09 14.30 11.23 11.20 11.25 11.21 11.11
12 0.51 0.38 0.34 0.34 0.34 0.37 0.85 0.57 0.57 0.57 0.57 0.59 1.27 0.86 0.84 0.86 0.85 0.84
13 5.41 3.96 3.63 3.63 3.64 3.70 5.76 3.87 3.90 3.89 3.82 3.82 5.95 4.03 4.06 4.05 4.05 3.97
14 12.39 8.95 8.21 8.56 8.57 8.10 6.58 4.51 4.50 4.51 4.46 4.55 10.22 7.03 7.07 7.07 7.11 6.83
15 5.12 3.56 3.49 3.75 3.73 3.70 3.07 2.15 2.18 2.18 2.11 2.03 3.75 2.60 2.52 2.60 2.59 2.61
16 2.43 1.86 1.66 1.68 1.67 1.79 2.76 1.92 1.93 1.94 1.94 2.04 2.92 1.99 2.00 2.02 2.05 1.99
17 148.3 114.2 89.22 117.0 117.2 113.6 10.15 7.16 7.11 7.17 7.49 8.66 16.68 11.05 10.98 11.36 11.94 11.29
18 13.20 9.94 9.49 9.53 9.68 9.14 7.09 5.13 5.05 5.00 5.16 4.64 11.02 8.36 8.16 8.34 8.30 7.85
19 2.45 1.62 1.67 1.61 1.60 1.62 5.74 3.77 3.79 3.77 3.83 3.71 5.51 3.76 3.79 3.80 3.87 3.76
20 14.03 9.66 8.74 10.72 10.71 10.62 4.52 2.96 2.96 2.99 2.96 3.00 3.97 2.71 2.71 2.74 2.76 2.84

AR 6.00 3.70 2.05 3.30 3.25 2.70 6.00 3.05 2.70 3.25 2.70 3.30 6.00 3.15 2.05 3.55 3.50 2.75

Definition 8.1. The asymmetric absolute error ℓAR
α,ρ with rejection option is a loss function de-

fined as follows:

ℓAR
α,ρ(ŷ,y) = ρ if REJECT

= ℓA
α(ŷ,y) otherwise

A straightforward way of handling this type of loss functions with rejection option is to estimate
the expected loss and check whether it is greater than ρ . If this is the case we should reject. Other-
wise, we should use the decision rule as if there were no rejection. For instance, for ℓAR

α,ρ , we would

just calculate the expected loss using proposition 7.3, and compare this to ρ . Only if it is lower than
ρ would we apply the minimisation given by proposition 7.4.

However, we need to derive a more operative expression for the expected loss from proposition
7.3:

PROPOSITION 8.2. Consider the asymmetric absolute error function ℓA
α(ŷ,y) given by defini-

tion 7.1 and a normal conditional distribution f̂ with mean µ̂(x) and standard deviation σ̂(x). The
expected loss for a prediction value t can be further simplified to:

L (x, t, f̂ , ℓA
α) = [t ′Φ(t ′)+φ(t ′)−αt ′]σ̂(x) (13)

with t ′ = t−µ̂(x)
σ̂(x) . Note the use of the standardised cumulative normal distribution Φ and the stan-

dardised normal density function φ .

The expected loss given by proposition 8.2 is then easy to calculate and can be used to compare
it with the cost of rejection. This leads to the decision rule for REJECT:

L (x, t, f̂ , ℓA
α)> ρ (14)
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Fig. 8. Left: comparing the absolute loss with reject using different methods for dataset savings with base technique Tree.
Right: comparing the squared loss with reject using different methods for dataset salinity with base technique kNN.

Now we are ready to compare the methods based on probabilistic (local) reframing using the above
rule with methods which do a global reframing, as we did in the previous section. The methods are:

— None: No reframing. The prediction (conditional estimated mean) is used as it is.
— Own, uKNC, BIN: We use the rejection rule given by eq. (14) and proposition 8.2. In case of no

reject we apply proposition 7.4, eq. (9), as used in the previous section.
— CoSh: We decide whether we reject or not using the optimal reject rate calculated on the training

dataset. This rate is calculated assuming that a percentage (rate) of examples is just rejected (the
examples are necessarily chosen randomly, since there is no information about reliability). Given
the optimal rate and the optimal shift, we reject examples using the rate and, if the example is
finally not rejected, we use the CoSh method as in the previous section (using the method from
[Bansal et al. 2008]).

— PoSh: Similar to CoSh but the polynomial approach in [Zhao et al. 2011] is used instead.

For the experiments, we vary both α and ρ . For ρ we apply the following function:

ρ =
1

2
σ(DY )

r

1− r

where σ(DY ) is the standard deviation of the output variable for the dataset D. We let r range
between 0 and 1. The rationale for the previous function can be explained with the extreme cases. If

r = 0 we get ρ = 0 and reject has no cost (so we will always reject). If r = 0.5 we get ρ = 1
2 σ(DY ),

which means that with a trivial constant model, residuals will equal the standard deviation (and the

expected error), so the expected loss will be 1
2 σ(DY ) = (ασ(DY )+(1−α)σ(DY ))/2. This means

that approximately we will reject half of the times (for a trivial model). And finally, for r = 1 we get
ρ = ∞ and reject has infinite cost (so we will never reject).

Figure 8 (left) shows the evolution of this loss for different values of ρ , as derived from ρ (with
α fixed to 0.5) for one dataset. The overall results are shown in Table IX. We see that probabilistic
reframing takes advantage of a local decision. In the end, the conditional variance is used to make a
ranking, which is crucial for rejection rules.

For the squared loss with reject (ℓSR
α ,ρ ), we work similarly:

PROPOSITION 8.3. Consider the asymmetric squared error function ℓS
α(ŷ,y) given by definition

7.2 and a normal conditional distribution f̂ with mean µ̂(x) and standard deviation σ̂(x). The
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Table IX. Results for the absolute reject loss ℓAR
α,ρ for the datasets in Table XII, using the experimental methodology

in section 4. Each row aggregates the ten samples and five different values for α with α ∈ {0,0.25,0.5,0.75,1} and

ten different values for ρ with r ∈ {0,0.111,0.222, . . . ,1} and ρ = 1
2 σ(DY )

r
1−r

(totalling 50 variations per sample).

For visibility all the losses are multiplied by 10. Each section of six columns shows results for different base
techniques (LR, kNN and Tree). The average ranks (AR) are calculated for these three groups separately. The
Friedman statistic for the three sections are (51.8, 47.74 and 53.29 respectively), which are greater than the
Critical Value (12.57). This means that the null hypothesis is rejected (significance level: 0.05) and the methods
do not perform equally. Differences in average ranks higher than the critical difference for the Nemenyi post-hoc
test (0.5217) imply that the difference is significant (in bold).

LR
None

LR
Own

LR
uKNC

LR
BIN

LR
CoSh

LR
PoSh

kNN
None

kNN
Own

kNN
uKNC

kNN
BIN

kNN
CoSh

kNN
PoSh

Tree
None

Tree
Own

Tree
uKNC

Tree
BIN

Tree
CoSh

Tree
PoSh

1 1.24 0.60 0.70 0.59 1.08 1.08 4.27 1.96 1.96 1.93 1.84 1.75 3.68 1.88 1.84 1.89 1.73 1.69
2 4.77 1.93 1.76 1.87 2.07 1.99 3.90 1.57 1.54 1.59 1.58 1.80 3.98 1.63 1.62 1.65 1.82 1.88
3 2.71 1.19 1.14 1.13 1.39 1.42 3.45 1.36 1.39 1.38 1.52 1.50 3.13 1.29 1.27 1.31 1.49 1.50
4 6.05 2.56 2.59 2.84 2.88 2.78 7.55 3.51 3.44 3.39 3.77 3.62 8.04 3.80 3.66 3.72 3.84 3.72
5 2.36 1.12 1.25 1.21 1.44 1.42 7.95 3.20 3.24 3.18 3.39 3.26 4.69 2.33 1.99 2.22 2.29 2.22
6 6.40 1.91 1.70 2.52 2.51 2.08 3.90 1.59 1.59 1.61 1.76 1.81 3.35 1.38 1.38 1.41 1.52 1.55
7 6.14 3.07 2.69 2.74 2.50 2.45 5.06 2.18 2.16 2.15 2.19 2.14 6.18 2.75 2.76 2.79 2.52 2.50
8 1.92 0.91 1.06 1.02 1.09 1.09 4.27 1.97 1.95 2.03 1.83 1.67 4.36 1.89 1.87 1.92 1.82 1.55
9 16.06 2.19 2.07 8.64 7.17 7.15 3.28 1.44 1.42 1.45 1.55 1.69 3.26 1.39 1.38 1.42 1.59 1.58

10 4.85 2.06 1.58 2.37 2.35 2.23 3.70 1.57 1.57 1.58 1.77 1.92 3.96 1.62 1.64 1.67 1.90 2.04
11 6.67 3.54 3.21 3.46 2.98 2.95 8.41 4.35 4.14 4.11 3.97 3.93 8.22 4.40 4.40 4.40 4.04 4.02
12 1.30 0.67 0.58 0.58 0.91 0.93 1.51 0.71 0.69 0.69 0.92 0.92 2.12 0.94 0.92 0.95 1.12 1.11
13 4.00 1.85 1.58 1.57 1.55 1.55 4.03 1.60 1.59 1.58 1.55 1.53 4.55 1.80 1.81 1.80 1.76 1.71
14 6.33 2.72 2.29 2.47 2.38 2.28 4.85 1.89 1.91 1.90 1.95 1.99 5.68 2.30 2.28 2.31 2.23 2.15
15 3.64 1.50 1.31 1.71 1.74 1.72 3.04 1.30 1.31 1.32 1.40 1.41 3.25 1.38 1.30 1.40 1.57 1.52
16 2.43 1.24 0.99 1.01 1.11 1.14 2.33 0.97 0.98 0.98 1.10 1.12 2.37 0.99 0.99 1.00 1.13 1.13
17 21.12 8.81 4.06 10.61 5.56 5.53 5.55 2.23 2.21 2.22 2.20 1.89 7.27 2.55 2.54 2.72 2.80 2.47
18 7.22 3.52 3.13 3.14 2.67 2.46 5.37 2.42 2.36 2.34 2.20 2.13 6.31 3.21 3.09 3.20 2.46 2.43
19 2.73 1.14 1.18 1.16 1.40 1.41 4.06 1.58 1.61 1.59 1.70 1.67 3.92 1.61 1.58 1.63 1.69 1.65
20 5.46 2.00 1.79 2.54 2.44 2.42 3.41 1.36 1.36 1.36 1.54 1.67 3.56 1.45 1.43 1.46 1.63 1.63

AR 6.00 2.95 2.00 3.25 3.70 3.10 6.00 2.65 2.70 2.65 3.60 3.40 6.00 2.85 2.00 3.55 3.70 2.90

expected loss can be expressed as:

L (x, t, f̂ , ℓS
α) = Φ(t ′)(1−2α)

[

(t ′σ)2 +3t ′σ2q(t ′)−2µ2 +4µσq(t ′)−σ2
]

+ασ2(t ′+1) (15)

with t ′ = t−µ̂(x)
σ̂(x) , q(t ′) = φ(t ′)

Φ(t ′) and notation µ for µ̂(x) and σ for σ̂(x).

Although the previous expression is long, it can be computed easily with the standard normal
distribution. Figure 8 (right) shows the evolution of this loss for a fixed α = 0.5 and different values
of r (from which ρ is derived) for one dataset. The overall results with the same configuration as
the absolute loss with reject are shown in Table X. The results are even more clear-cut in this case.

9. DISCUSSION

After this jaunt through several families of loss functions using different kinds of reframing methods
(local or global) we are ready to make a comprehensive analysis of the results, see other (many)
applications and close the paper with the overall contributions and some future work.

9.1. Overview of results and contributions

As a short recapitulation of results, we can just summarise tables V, VI, VII, VIII, IX and X by
counting the number of cases where each reframing is in the group of the (statistically significant)
best results. This is 18 (out of 18) for probabilistic local reframing in front of 6 (out of 18) for global
reframing. If we focus on particular methods, the probabilistic local reframing based on the enrich-
ment method uKNC is in the group of best results 17 times (out of 18) in front of only 6 (out of 18)
for the best global reframing (PoSh, and CoSh for the first two tables). In fact, if we compare uKNC
against PoSh (CoSh for the first two tables) using the Nemenyi post-hoc test difference in each case,
we have 15 wins, 3 ties and 0 losses. As a possible explanation of why and when one approach is
better than the other, we can see that global reframing seems to be competitive in assymmetric loss
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Table X. Results for the squared reject loss ℓSR
α,ρ for the datasets in Table XII, using the experimental methodology

in section 4. Each row aggregates the ten samples and five different values for α with α ∈ {0,0.25,0.5,0.75,1} and

ten different values for ρ with r ∈ {0,0.111,0.222, . . . ,1} and ρ = 1
2 σ(DY )

r
1−r

(totalling 50 variations per sample).

For visibility all the losses are multiplied by 10. Each section of six columns shows results for different base
techniques (LR, kNN and Tree). The average ranks (AR) are calculated for these three groups separately. The
Friedman statistic for the three sections are (48.49, 56.11 and 47.94 respectively), which are greater than the
Critical Value (12.57). This means that the null hypothesis is rejected (significance level: 0.05) and the methods
do not perform equally. Differences in average ranks higher than the critical difference for the Nemenyi post-hoc
test (0.5217) imply that the difference is significant (in bold).

LR
None

LR
Own

LR
uKNC

LR
BIN

LR
CoSh

LR
PoSh

kNN
None

kNN
Own

kNN
uKNC

kNN
BIN

kNN
CoSh

kNN
PoSh

Tree
None

Tree
Own

Tree
uKNC

Tree
BIN

Tree
CoSh

Tree
PoSh

1 0.50 0.25 0.51 0.25 1.54 1.54 5.39 2.65 2.59 2.65 2.39 2.27 3.85 2.00 1.98 2.00 1.90 1.86
2 8.29 3.50 3.00 3.45 3.51 3.47 5.71 2.51 2.42 2.48 2.57 2.77 5.98 2.68 2.53 2.69 2.73 2.79
3 3.89 1.78 1.63 1.59 2.01 2.04 3.55 1.38 1.46 1.44 1.78 1.88 3.37 1.45 1.42 1.48 1.71 1.72
4 9.65 4.01 4.59 4.69 4.87 4.75 13.17 6.16 5.88 5.93 6.12 6.00 15.23 7.52 7.24 7.21 7.21 7.23
5 2.25 1.13 1.75 1.17 1.95 1.90 12.54 5.50 5.53 5.42 6.02 5.85 8.81 4.61 4.37 4.59 4.66 4.61
6 4.77 1.97 1.96 2.21 2.46 2.62 6.13 2.58 2.56 2.56 2.94 2.99 4.75 2.21 2.19 2.11 2.37 2.42
7 8.63 4.49 4.15 4.21 3.94 3.85 6.43 3.05 2.98 2.95 3.08 3.06 8.96 4.26 4.46 4.50 3.92 3.87
8 3.47 1.83 1.16 1.87 1.96 1.94 5.62 2.86 2.83 2.98 3.14 3.15 8.01 4.22 4.17 4.28 4.43 4.50
9 204.6413.78 11.53 110.3894.69 95.73 7.00 3.68 3.66 3.63 3.77 4.04 6.00 3.14 3.15 3.12 3.19 3.30

10 14.34 6.27 2.64 7.59 5.83 5.78 5.60 2.42 2.51 2.47 2.79 2.97 5.70 2.56 2.57 2.62 2.96 3.19
11 10.18 5.42 5.31 5.40 5.01 4.98 14.51 7.62 7.47 7.46 7.28 7.25 14.30 7.64 7.63 7.64 7.26 7.22
12 0.55 0.29 0.27 0.27 1.05 1.05 0.82 0.41 0.40 0.40 1.12 1.13 1.48 0.70 0.69 0.71 1.37 1.37
13 5.20 2.64 2.03 2.03 2.05 2.07 5.88 2.29 2.30 2.31 2.25 2.24 6.06 2.42 2.43 2.43 2.28 2.27
14 13.53 5.98 4.26 5.17 4.59 4.53 7.20 3.05 3.03 3.07 3.21 3.27 11.98 4.78 4.80 5.05 4.24 4.15
15 5.69 1.95 1.71 2.63 2.64 2.62 2.71 1.27 1.24 1.31 1.42 1.43 3.21 1.50 1.37 1.50 1.68 1.68
16 2.60 1.36 1.05 1.11 1.45 1.47 2.40 0.93 1.01 1.05 1.36 1.37 2.53 1.01 1.03 1.08 1.44 1.44
17 161.5363.71 11.99 84.64 23.92 23.57 7.34 3.70 3.54 3.66 3.70 3.90 15.95 4.33 4.33 4.74 5.07 5.09
18 13.61 6.85 6.17 6.34 4.55 4.44 7.23 3.64 3.58 3.42 3.18 3.03 9.01 4.74 4.66 4.73 3.63 3.57
19 2.82 1.20 1.31 1.30 1.98 1.96 5.38 2.11 2.10 2.11 2.26 2.24 4.92 2.12 2.17 2.28 2.31 2.27
20 12.62 3.21 2.86 6.45 5.17 5.16 4.12 1.66 1.63 1.65 1.88 1.82 3.32 1.45 1.49 1.43 1.75 1.75

AR 5.75 3.05 1.80 3.10 3.90 3.40 5.90 2.85 2.05 2.40 3.85 3.95 6.00 2.65 2.40 3.05 3.45 3.45

applications, as the notion of shift seems to work better here because of the continuous and convex-
ity conditions. In fact, the only three ties take place for the asymmetric absolute loss. This suggests
that as the reframing problem becomes more complex because of the non-linearity or non-convexity
of the loss function, local reframing seems to be more flexible and powerful. Nonetheless, better
specific global (and local) reframing methods could be developed in the future that may yield differ-
ent results for these or other cost functions. Overall, the experimental results just support the claim
that an appropriate probabilistic reframing with the use of a lightweight normal conditional distri-
bution using appropriate estimations (directly or through enrichment methods) is a good approach
for a wide variety of cost-sensitive problems.

This claim is accompanied by a series of major contributions:

— We push forward an appropriate mapping between classification and regression, and develop the
right parallelism between crisp and soft models in classification and regression.

— We vindicate reframing as a flexible and powerful approach for context-sensitive applications
(as an alternative to re-training), and characterise the distinction between global reframing (typ-
ically based on crisp regression models) and local reframing (typically based on soft regression
models).

— We uphold a lightweight view of soft regression models as normal conditional density estimators,
only requiring two parameters. This entails several benefits: easier, more robust estimation and
simpler optimisation formulae resulting from expected loss.

— We introduce new metrics for the evaluation of soft regression models.
— We present enrichment as a way to convert any traditional one-parameter crisp regression model

into a two-parameter soft regression model, by just working with the actual and predicted values.
This has several advantages: enrichment methods are easily applicable to any regression method
by any data mining practicioner, they only require the actual output values of a training (or vali-
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dation) dataset, and the two-parameter normal density estimator does not need to be recalculated
whenever the loss function changes.

— We develop new straightforward enrichment methods which show good performance as condi-
tional density estimators.

— We show that local reframing has a broad range of applicability over many different problems.
We illustrate its effectiveness on three families of problems (bid applications, asymmetric loss ap-
plications and rejection rule applications) by the theoretical derivation of the expression that leads
to optimal reframing in each case and a thorough empirical validation against other approaches,
such as global reframing.

These contributions are important for data mining and machine learning because regression, un-
like classification, has lacked a comprehensive and effective approach to deal with cost-sensitive
problems by the reuse (and not a re-training) of general regression models.

Naturally, there are also some limitations of the approach presented here. For instance, equation
3 is not easily solvable for some loss functions, so we need to rely on the results and expressions
previously derived for each loss function (as done here in sections 6, 7 and 8) or use some gen-
eral numerical (e.g., Monte Carlo) methods. Similarly, decision rules used by reframing may be
less understandable than those embedded in a loss-specific model. This is yet another factor to be
considered in the re-training/reframing dilemma. Also, even if we choose reframing instead of re-
training, we have several options. Global reframing is a more traditional option, which requires a
re-evaluation of the shift whenever the loss function changes. Also, global reframing needs to keep
the training data in order to perform the process. The advantages of local reframing are that more
information is available for each example, so a specific reframing can be done for each example,
especially if the cost function changes between examples. The disadvantages come from the need
of having a soft regression model and the risk of overfitting, a problem that is minimised by some
results of this work, as we have seen very simple methods to enrich a crisp model and convert it into
a soft one. Also, note that the conditional mean is not modified, only the variance, so this overfitting
can only affect the latter. In fact, overfitting is not specific to local reframing. Some global reframing
methods can overfit, especially if a high-degree polynomial is used [Zhao et al. 2011]. Finally, local
reframing (using a soft model or a model that has been enriched, once and for all) does not need to
keep the training data, while global reframing does.

Finally, there is a case where global reframing may be more flexible than local reframing. On
occasions we may have a regression model that was trained using some knowledge about the op-
erating condition or the loss function. This means that the model is specialised for that context. If
the deployment context is the same, reframing should not be applied. In fact, it is relatively easy to
see that reframing with an asymmetric (or neutral) loss funciont may give a different (undesirable)
result. The question is what to do if the loss function changes. In this case, some global reframing
methods may be able to recalculate a new shift (on top of the old shift, for instance) without prob-
lems. However, local reframing may be more problematic, as the estimated conditional density is
expected to be unbiased and not including any information about the loss. Trying to ‘discount’ or
compensante two different loss functions may be possible to do analytically for some loss functions,
but it may be tricky in general.

A good way to look at this is in terms of calibration of the soft regression model, as discussed
in section 4.1. If we are given a model (or we perform an enrichment) with very bad conditional
density estimation (especially in terms of its conditional variance), then it may be better to use a
global reframing than a local reframing. In this paper we have focussed on showing that if we are
able to get reasonably good conditional density estimations, local reframing is a very good option
in general. An experimental analysis of what to do when the conditional density estimations are not
good, or to determine when to use one kind of reframing or the other would be a contribution on its
own. In the end, we do not claim that the enrichment and reframing approaches are the best solution
for any possible cost-sensitive situation, but we claim that it is a feasible alternative that deserves to
be considered.
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9.2. Alternative approaches and other applications

The experimental results shown in previous sections could even be better for probabilistic refram-
ing were we able to get better enrichment methods (or other normal conditional density estimation
methods) or other soft regression methods (or adaptations of the ones seen in appendices B, D, B
and E), which directly or indirectly can produce good normal conditional density esimtations. In
fact, we envisage an intensive work in this line, similar to what was done in the last decade for
probability estimation in classification, where many classification methods were rethought and re-
designed to get good probabilities or good rankings (e.g., probability estimation trees [Provost and
Domingos 2003; Ferri et al. 2003; Ferri et al. 2002]). Similarly, an important progress was made in
calibration methods [Zadrozny and Elkan 2002; Bella et al. 2009]. This parallel between enrichment
and calibration could be exploited to find theoretical foundations and connections with some of the
methods inspired or closely related to calibration methods in classification, such as BIN or uKNC,
or to refine them. Other possibilities for soft regression models could be conceived, leading to pos-
sibly simpler minimisation solutions (e.g., triangular or uniform distributions). Also, distributions
with more parameters (e.g., asymmetric normal, truncated normal or Lévy distributions) could be
explored.

The applicability of the enrichment and reframing methods for a diversity of base regression tech-
niques (from non-parametric regression trees and kNN to parametric LR) with very different math-
ematical and statistical properties has led us to validate the approaches experimentally. However,
the definition of specific combinations of a base technique with a particular enrichment method
(e.g., kNN with uKNC, or LR with ENR-LR) could be analysed theoretically to derive statistical
properties that may characterise their general behaviour better.

One important element in the development and improvement of soft and probabilistic regression
models is the use of appropriate evaluation metrics and graphical representations, prior to any spe-
cific context-sensitive application, as has been done here in section 5 (before sections 6, 7, 8). We
have used msll and msvr here, but other (new) metrics could be used, inspired by classification plots
such as ROC curves, cost curves, calibration plots, etc. The recently introduced ROC curves for
regression [Hernández-Orallo 2013], is a possible pathway, also because its area is equivalent to the
error variance.

This paper has only included some representative applications, by choosing some common loss
functions. There are, of course, many other domains and possible loss functions. For instance, toler-
ance is a concept that has been frequently used to bring ideas from classification to regression, since
a tolerance level can be used to classify estimations as ‘correct’ or ‘incorrect’. An example of a
general tolerance loss can be defined as follows, by considering asymmetric losses and asymmetric
tolerance levels for overestimations and underestimations:

Definition 9.1. The tolerance loss ℓT,α,τ−,τ+ is a loss function defined as follows:

ℓT,α,τ−,τ+(ŷ,y) = α if ŷ+ τ− < y

= (1−α) if ŷ− τ+ > y

= 0 otherwise

A related loss could originate from ordinal prediction if we define a loss function in such a
way that it is 0 if the prediction is inside the bin of the discretisation (e.g., low (0..3), mid (3..7),
high(7..10)), and, say, the number of bins it has to cross to go to the right bin otherwise. It would be
interesting to see how probabilistic reframing could work in these two cases.

Apart from the loss functions which relate the true value y and the estimated value ŷ, there are
many other kinds of costs and contexts [Turney 2000]. For instance, loss functions can be instance-
dependent, such as those that are a function of the input values, represented as ℓ(ŷ,y,x). It is impor-
tant to note again that this invalidates global reframing methods (but not local reframing methods).
More generally, we can even have a relevance or prior distribution U(x). This can be addressed
by giving more relevance to some examples than others, in the integration (or sum) of the over-
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all estimated cost (∑U(x)ℓ(ŷ,y)) or in graphical representations, such as ROCIV (instance-varying
ROC curves, [Fawcett 2006b]). In other cases, this relevance function can be more complex, as in
the so-called utility-based regression [Torgo and Ribeiro 2007; Ribeiro 2011]. One way or another,
it is important to realise that the methods in this paper are applicable when there is a change of
the prior distribution (the experiments in this paper used five samples over 2-fold cross-validation
without shuffling to simulate this situation), since the minimisation of the loss is local to each ex-
ample. Changing the output distribution (or relevance) does not change the methods, since each
optimisation is independent from the rest.

Finally, a soft regression model (issuing probabilities, reliabilities or confidence intervals) can
be useful for other data mining tasks, such as quantification [Forman 2008] for regression [Bella
et al. 2013], in the same way it has been shown beneficial for quantification for classification [Bella
et al. 2010]. Also, screening applications can also take advantage of enrichment methods, since
some elements in a rank could be considered a tie if their conditional distributions overlap a certain
degree (possibly determining this with a test over the two normals, such as a KS-statistic). This can
be applied to preference learning, where we can answer not only whether for two given examples
x1 and x2 we have that ŷ1 > ŷ2, but we can also calculate the probability Prob(ŷ1 > ŷ2) (if the
regression model is probabilistic). This, for instance, suggests an evaluation metric related to the
Wilcoxon-Mann-Whitney statistic interpretation of the AUC (area under the ROC curve), simply as
Pr(ŷ1 > ŷ2|y1 > y2).

9.3. Concluding remarks

The goal of the paper was to show that cost-sensitive applications in regression can be success-
fully handled by a probabilistic reframing using enriched regression models in the form of a two-
parameter normal conditional distribution. In order to accomplish this goal we needed to compare
enrichment methods to other approaches for conditional density estimation in terms of estima-
tion quality and efficiency. Another important issue that we needed to consider is the simplicity
of the expressions leading to the optimal reframing with minimum expected loss (minimum risk).
The choice of a normal distribution consummates all this, and consolidates a view of regression
as a two-parameter estimation problem: conditional mean and variance. Also, we have seen that
we can enrich any existing regression technique with reasonable good variance estimations, using
some existing techniques and, most especially, some novel enrichment methods that are extremely
lightweight. Enrichment methods in regression are somewhat similar to calibration methods in clas-
sification (the connections were made explicit in sections 5.2 and 5.3). However, the key difference
is that the original prediction is kept and complemented by a second parameter, the variance.

Other approaches for context-sensitive applications build a model which is specialised for a very
specific context, embedding the context into the model. In reframing, we reuse a general model for a
wide range of contexts and operating contexts. The philosophy is completely different: models can
be reused and validated across different operating contexts, improving robustness and efficiency.

Local reframing uses information about each prediction (reliability, confidence or probability)
to adapt each local prediction. When we have probabilities (from the use of a conditional density
function, e.g., a normal distribution), we can solve the decision rules analytically and, in cases
where a closed form cannot be derived, use simple numerical approximations. In fact, probabilistic
reframing only needs to derive the conditional variance once and for all, either from the method
itself (e.g., regression trees derive this variance as the variance in each leaf of the tree) or by the use
of enrichment methods, which only require the comparison to the output value. Once a regression
model is equipped with a good conditional variance estimation we can apply the model to a variety
of problems. Moreover, we can even use a different loss function (or different loss parameters) for
each individual example.

Global reframing, on the other hand, tries to infer one global function from the training set which
is applied to all the examples. This implies an optimisation procedure over the whole training
set whenever the loss function (or any of its parameters) changes. Also, except for some convex
loss functions where some efficient numerical methods can be used, this procedure may be time-
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consuming. These differences and the fact that the experimental results are, in general, favourable
to probabilistic reframing, suggest that an instance-based (local) approach is a good option for re-
framing. It also links much better to the areas of risk minimisation in decision theory.

Overall, this paper contains a number of contributions and integrates a wide range of techniques
that should trigger further research on conditional variance estimation, enrichment methods, cali-
bration techniques for regression, evaluation metrics for regression, and better reframing techniques
on these and other context-sensitive applications of regression models.

A. DATASETS

Datasets, shown in tables XI and XII, are obtained from eight packages of the CRAN distribu-
tion of R-project [R Team et al. 2012; Torgo 2010], namely: ‘class’, ‘boot’, ‘MASS’, ‘nlme’,
‘lattice’, ‘np’, ‘survival’ and ‘faraway’. Some of them have been processed to eliminate redun-
dant or null attributes. On other occasions, the original dataset was not a regression problem or
the output attribute was not determined, so we (arbitrarily) chose one of the attributes as the de-
pendent variable. All the datasets and the scripts in R (for the methods and tests) are available at
http://www.dsic.upv.es/∼jorallo/reframe-reg/.

Table XI. Dataset battery used in section 5
and related appendices. We show the size,
the number of attributes, the relative difference
in means (of the output value) between train
and test (TrTeMD) and the Kolmogorov-Smirnov
statistic between train and test (TrTeKS).

name size attr TrTeMD TrTeKS
1 seatbelts 192 7 1.22 0.53
2 theoph 132 4 0.10 0.11
3 USjudgeratings 44 12 0.24 0.25
4 cars 50 2 1.72 0.74
5 faithful 272 2 0.02 0.07
6 boston 506 14 0.40 0.24
7 UScrime 48 16 0.32 0.19
8 gilgais 364 9 0.20 0.10
9 wtloss 52 2 3.57 1.00

10 cefamandole 84 3 0.37 0.14
11 dialyzer 140 4 0.42 0.47
12 earthquake 182 5 0.31 0.18
13 gasoline 32 6 2.09 0.75
14 glucose 376 4 0.07 0.10
15 IGF 236 3 0.03 0.11
16 nitrendipene 88 4 0.09 0.14
17 wheat 48 4 0.74 0.42
18 environmental 112 4 0.28 0.20
19 wage1 526 21 0.23 0.12
20 ozone 330 10 0.28 0.20

B. CONDITIONAL DENSITY ESTIMATION METHODS

It can be argued that if we want to obtain a conditional density estimation, we should use conditional
density estimation techniques, instead of crisp regression methods. Conditional density estimation

techniques [Hyndman et al. 1996] are methods which directly5 obtain f̂ (y|x). While this is the most

5Some other methods calculate the joint distribution f̂ (y,x) or the likelihood f̂ (x|y), from which the conditional density is

just derived by dividing by f̂ (x) or applying Bayes theorem respectively. However, this is usually more complex than the
original problem.
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Table XII. Dataset battery used in sections
6, 7 and 8. We show the size, the number
of attributes, the relative difference in means
(of the output value) between train and
test (TrTeMD) and the Kolmogorov-Smirnov
statistic between train and test (TrTeKS).

name size attr TrTeMD TrTeKS
1 iris3 150 4 2.48 0.70
2 savings 50 5 0.22 0.20
3 USArrests 50 4 0.38 0.20
4 rock 48 4 7.73 0.83
5 trees 32 3 3.37 0.94
6 salinity 28 4 0.16 0.43
7 birthwt 188 10 0.67 0.63
8 menarche 24 3 4.97 1.00
9 road 26 6 0.09 0.46

10 stormer 24 3 0.32 0.25
11 bodyweight 176 4 11.09 1.00
12 oxboys 234 3 0.10 0.09
13 oecdpanel 616 7 0.58 0.26
14 lungcancer 168 10 0.67 0.33
15 chicago 48 7 0.34 0.17
16 diabetes 402 3 0.11 0.07
17 divusa 76 7 0.54 0.55
18 exa 256 3 0.40 0.47
19 prostate 96 9 1.33 0.50
20 seatpos 38 9 0.28 0.26

general and informative way for the regression problem (since conditional means, variances, con-
fidence intervals and other measures can be obtained from it), the techniques are usually slower
and suffer from a number of restrictions. A general way to tackle this estimation is through non-
parametric methods (see, e.g., [Hwang et al. 1994]). For instance, many approaches are restricted to
only one (or two input variables, such as R’s hdrcde package [Hyndman et al. 1996]), or just cal-
culate multivariate densities, which have to be normalised for each input value x to get a univariate
density.

It is not the goal of this paper to evaluate several of the approaches for density estimation meth-
ods, but it is important to see whether these methods are better, in general, than ‘augmented’ or
‘enriched’ methods for which just a conditional mean and variance are obtained (from which a
simple Gaussian density function is estimated). In addition, we are interested in the result of ‘re-
ducing’ a local and detailed density function into a Gaussian. In order to do all this, we illustrate
this approach with a kernel-based (non parametric) conditional density method. We use the function
npcdens in the R’s np (non parametric) package. This function computes estimates for the density

function (i.e., f̂ (y|x)), for a bandwidth specification using the method in [Hall et al. 2004]. From
the density we calculate the conditional mean and the conditional variance as a pointwise average
which approximates the integral of the expected value and the moment respectively. We used the
median point and the four points at ±σ and ±2σ , given by a Gaussian.

Table XIII shows the results of this method. Non-parametric conditional density estimation meth-
ods can get good estimations for large datasets with complex densities (e.g., bimodal) but here we
see that the results are, in general, worse than those of simple regression methods such as a kNN or
Tree for the conditional mean, as shown in Table II. In fact, while the conditional variances seem
better (msvr value of 0.55 in front of 0.66, 0.56 and 0.57 in Table II), the conditional densities (as
measured by msll) are not better (except for LR) and the squared error (mrse) is also worse. A possi-
ble idea is then to combine the good conditional means from the base techniques with the conditional
variance from the conditional density estimation method. This is what the six last columns show.
However, as expected, this does not increase the quality of the conditional densities (as measured by
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Table XIII. Results (using the datasets in Table XI) for the kernel-
based (non parametric) conditional density method given by the func-
tion npcdens in the R’s np (non parametric) package. The first three
columns show the results for the parametric density estimation (using
the Gaussian approximation). The column “CDE orig msll” shows the
msll result by using the original non-parametric density function. The
six rightmost columns show the results for the mean given by the base
method with the variance estimation given by the conditional density
method (using the Gaussian approximation). Results for mrse are not
shown for the six most right columns since they are equal to Table II.

CDE
gaus
mrse

CDE
gaus
msll

CDE
gaus
msvr

CDE
orig
msll

LR
CDE
msll

LR
CDE
msvr

kNN
CDE
msll

kNN
CDE
msvr

Tree
CDE
msll

Tree
CDE
msvr

1 0.53 0.84 0.55 0.78 0.83 0.49 0.85 0.55 0.84 0.54
2 0.36 0.73 0.42 0.68 0.74 0.51 0.73 0.51 0.72 0.52
3 0.15 0.61 0.57 0.59 0.61 0.57 0.63 0.63 0.61 0.54
4 0.45 0.86 0.60 0.86 0.85 0.55 0.84 0.57 0.86 0.54
5 0.18 0.68 0.49 0.63 0.68 0.53 0.68 0.51 0.68 0.53
6 0.22 0.68 0.55 0.66 0.67 0.61 0.66 0.59 0.66 0.58
7 0.57 0.77 0.58 0.75 0.79 0.83 0.77 0.57 0.77 0.56
8 0.18 0.64 0.51 0.61 0.63 0.54 0.64 0.55 0.63 0.59
9 0.43 0.98 0.84 0.99 0.97 0.58 0.97 0.81 0.97 0.64

10 0.21 0.58 0.56 0.56 0.58 0.60 0.59 0.64 0.58 0.65
11 0.26 0.69 0.64 0.78 0.70 0.65 0.67 0.67 0.72 0.64
12 0.57 0.75 0.56 0.72 0.75 0.74 0.75 0.59 0.77 0.51
13 0.30 0.82 0.57 0.80 0.83 0.60 0.89 0.74 0.86 0.72
14 0.41 0.74 0.47 0.68 0.74 0.49 0.74 0.51 0.74 0.60
15 0.80 0.80 0.45 0.73 0.81 0.69 0.82 0.67 0.81 0.64
16 0.61 0.80 0.60 0.78 0.81 0.54 0.81 0.55 0.77 0.57
17 0.46 0.80 0.50 0.87 0.81 0.62 0.81 0.59 0.83 0.52
18 0.66 0.82 0.44 0.75 0.82 0.58 0.83 0.56 0.82 0.55
19 0.53 0.74 0.46 0.68 0.76 0.59 0.75 0.56 0.76 0.61
20 0.37 0.73 0.58 0.71 0.77 0.66 0.73 0.54 0.73 0.55

Mean 0.41 0.75 0.55 0.73 0.76 0.60 0.76 0.60 0.76 0.58

msll), because conditional variance estimates must be linked to a mean estimation. Consequently,
neither as a standalone method nor combined with the base classifier can we get better performance.
Also, this method is about two orders of magnitude slower than the direct methods in subsection 5.1
(and many other methods that we see in the rest of section 5).

C. CONDITIONAL VARIANCE ESTIMATION METHODS

Instead of deriving a full conditional density, we can just (re-)use the conditional mean of a classical
(crisp) regression method and derive a conditional variance. A usual, but not generally well-known,
way of estimating the conditional variance is as follows (steps 1 and 2 can be omitted if we already
have a regression model):

Definition C.1. Given a training or validation set T , and a (test) instance x, the two-step condi-
tional variance estimation method 2SCV E is defined as follows:

(1) Train a regression model my using T .
(2) Obtain ŷi← my(xi) for each example {〈xi,yi〉} ∈ T .
(3) Calculate the residuals: ui← (yi− ŷi).
(4) Apply a transformation function θ : vi← θ(ui).
(5) Train a regression model mv for the dataset H = {〈xi,vi〉}i=1..|T |.

(6) Obtain ŷ = my(x) and v̂ = mv(x) for the example x to be predicted (in the test set).

This estimates the conditional mean as µ̂(x) = ŷ and the conditional standard deviation as σ̂(x j) =

θ−1(v̂).
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Usual choices for θ(t) are θ(t) = t2 and θ(t) = ln(t2), i.e., we model the (logarithm of) the squared
residuals [Yu and Jones 2004; Wasserman 2006]. The square is usually included since these methods
are aimed at estimating the variance and also because otherwise we would need to remove the sign.

The estimation will depend on the quality of the regression model my and most especially on the
second regression model mv. In fact, the previous algorithm (from steps 1 to 5) is usually iterated
by retraining the regression model my(x) using the heteroscedasticity information about the recently
estimated conditional variance. This information can only be used by some regression techniques,
e.g., a weighted least squares with inverse variance weights. This is usually called iteratively re-
weighted least squares.

At this point it is important to notice that we really estimate the variance of the residuals of our
model conditional to x, not the variance of y conditional to x.

It is usual to apply a non-parametric model in step 5. For instance, if we use nearest neighbours,
the previous algorithm boils down to estimating σ̂2(xi) as the mean of the squared residuals of the
k-closest examples, which is similar to what we did for kNN in section 5.1.

Here we will explore the kNN and Tree techniques for the residual model mv(x), jointly with
the three base techniques LR, kNN and Tree as usual. Table XIV shows some of these methods for
θ(t) = t2 (we ran the same experiments with other configurations of θ with equal or worse results).
The results only show a slight improvement for LR compared to the results in Table II. For kNN or
Tree, the results are similar to the results in Table II.

Table XIV. Results (using the datasets in Table XI) for several base methods (LR,
kNN and Tree) with conditional variance estimation using kNN and Tree as models
for the residuals. All the methods use θ(t) = t2. The results for mrse are not shown
since they are equal to Table II.

LR
CVE
kNN
msll

LR
CVE
kNN
msvr

LR
CVE
Tree
msll

LR
CVE
Tree
msvr

kNN
CVE
kNN
msll

kNN
CVE
kNN
msvr

kNN
CVE
Tree
msll

kNN
CVE
Tree
msvr

Tree
CVE
kNN
msll

Tree
CVE
kNN
msvr

Tree
CVE
Tree
msll

Tree
CVE
Tree
msvr

1 0.79 0.51 0.79 0.54 0.81 0.51 0.82 0.54 0.81 0.62 0.81 0.58
2 0.76 0.52 0.77 0.50 0.76 0.48 0.76 0.46 0.69 0.49 0.72 0.54
3 0.75 0.82 0.79 0.84 0.66 0.55 0.69 0.63 0.70 0.49 0.71 0.48
4 0.72 0.53 0.70 0.55 0.83 0.51 0.82 0.47 0.82 0.63 0.80 0.53
5 0.64 0.54 0.63 0.53 0.64 0.52 0.63 0.53 0.63 0.52 0.63 0.54
6 0.69 0.58 0.70 0.60 0.66 0.58 0.65 0.56 0.64 0.57 0.65 0.56
7 0.98 0.99 0.96 0.97 0.76 0.57 0.76 0.58 0.75 0.54 0.75 0.54
8 0.64 0.52 0.64 0.53 0.61 0.54 0.62 0.55 0.61 0.54 0.61 0.54
9 0.94 0.91 0.95 0.91 1.00 0.93 0.98 0.87 0.99 0.93 1.00 0.94

10 0.71 0.48 0.72 0.45 0.65 0.54 0.67 0.60 0.57 0.55 0.54 0.56
11 0.70 0.47 0.73 0.51 0.74 0.61 0.76 0.64 0.68 0.65 0.68 0.65
12 0.88 0.67 0.88 0.72 0.78 0.44 0.82 0.56 0.74 0.57 0.76 0.63
13 0.66 0.69 0.71 0.64 0.88 0.64 0.91 0.67 0.91 0.68 0.90 0.68
14 0.74 0.49 0.74 0.45 0.73 0.51 0.72 0.48 0.69 0.57 0.67 0.53
15 0.73 0.60 0.73 0.58 0.73 0.60 0.74 0.61 0.74 0.57 0.73 0.56
16 0.78 0.53 0.78 0.60 0.73 0.56 0.73 0.60 0.70 0.60 0.69 0.58
17 0.97 0.87 0.96 0.86 0.78 0.53 0.79 0.50 0.78 0.56 0.77 0.55
18 0.74 0.52 0.74 0.57 0.75 0.55 0.75 0.56 0.75 0.52 0.76 0.55
19 0.70 0.55 0.70 0.54 0.70 0.53 0.71 0.54 0.71 0.57 0.70 0.58
20 0.81 0.64 0.81 0.65 0.69 0.52 0.70 0.55 0.69 0.58 0.70 0.60

Mean 0.77 0.62 0.77 0.63 0.74 0.56 0.75 0.58 0.73 0.59 0.73 0.59

D. CONDITIONAL VARIANCE ESTIMATION BASED ON RELIABILITY

A reliability measure for regression is any numerical value which is directly related to the degree
of certainty about an accurate prediction being produced or, more precisely, inversely related to the
expected (absolute) residual. However, the magnitude of this value can follow any scale. Bosnic
& Kononenko [Bosnić and Kononenko 2008] compare several reliability estimators for regression.
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Among them, CNK is a simple method which shows good performance (as a reliability estimator).
This method works as follows. For each example 〈x,y〉, this method just calculates de k-closest
elements in the training set to x and calculates the mean of their output values, denoted by C or, in
other words, calculates the kNN prediction for x. Then it calculates the absolute difference between
C and the prediction (of presumably a regression technique which is not kNN). This is the estimated
standard deviation.

The previous approach makes an average of the true values, and then compares this to a sin-
gle estimation. While this is good as a reliability measure, the magnitude of the estimation will
typically be low (for a standard deviation), since it just compares the prediction of two methods.
Consequently, we suggest a correction, which goes as follows:

(1) Given an example 〈x,y〉, we estimate ŷ by any base regression technique.
(2) Let S = 〈xi,yi〉 the set of the k nearest neighbours of x in a training or validation dataset.

(3) Calculate 1
k ∑〈xi,yi〉∈S(ŷ− yi)

2 as the output estimated variance.

Since it can be seen as a symmetric version to method CNK, we call it KNC. The results are shown in
Table XV. As we can see, CNK does not produce good variance estimations. In addition, it cannot
work, by definition, for kNN, since this method uses kNN as the true value, and the estimated
‘residuals’ will be 0. This can be clearly seen on the two columns “kNN CNK”. On the contrary,
KNC works well. In fact, it improves the results for the LR base technique shown in Table II, but
gets equal or slightly worse results for the rest.

Table XV. Results (using the datasets in Table XI) for several base techniques (LR,
kNN and Tree) with Bosnic & Kononenko’s CNK and a refined variation that we dub
KNC.

LR
CNK
msll

LR
CNK
msvr

kNN
CNK
msll

kNN
CNK
msvr

Tree
CNK
msll

Tree
CNK
msvr

LR
KNC
msll

LR
KNC
msvr

kNN
KNC
msll

kNN
KNC
msvr

Tree
KNC
msll

Tree
KNC
msvr

1 0.85 0.70 0.99 0.99 0.84 0.70 0.80 0.52 0.81 0.50 0.82 0.54
2 0.82 0.73 1.00 1.00 0.76 0.63 0.77 0.49 0.76 0.49 0.75 0.61
3 0.61 0.72 1.00 1.00 0.74 0.54 0.68 0.78 0.67 0.60 0.71 0.53
4 0.76 0.65 1.00 1.00 0.88 0.81 0.78 0.72 0.84 0.58 0.81 0.58
5 0.74 0.69 0.99 0.99 0.80 0.78 0.64 0.53 0.63 0.52 0.64 0.53
6 0.72 0.55 1.00 1.00 0.71 0.64 0.69 0.53 0.66 0.59 0.66 0.59
7 0.86 0.35 1.00 1.00 0.77 0.54 0.87 0.37 0.77 0.57 0.79 0.48
8 0.71 0.64 1.00 1.00 0.68 0.63 0.65 0.54 0.63 0.54 0.63 0.60
9 0.74 0.69 1.00 1.00 0.99 0.94 0.75 0.72 0.99 0.90 0.93 0.77

10 0.76 0.61 1.00 1.00 0.63 0.65 0.71 0.40 0.63 0.53 0.64 0.67
11 0.77 0.66 1.00 1.00 0.75 0.75 0.74 0.55 0.74 0.59 0.77 0.76
12 0.86 0.42 1.00 1.00 0.79 0.69 0.87 0.39 0.78 0.46 0.78 0.58
13 0.77 0.84 1.00 1.00 0.91 0.75 0.78 0.87 0.90 0.65 0.87 0.52
14 0.83 0.72 1.00 1.00 0.76 0.69 0.75 0.49 0.73 0.50 0.74 0.64
15 0.77 0.70 1.00 1.00 0.80 0.68 0.74 0.62 0.72 0.60 0.74 0.59
16 0.79 0.65 1.00 1.00 0.76 0.63 0.74 0.47 0.73 0.55 0.72 0.65
17 0.90 0.42 1.00 1.00 0.77 0.62 0.88 0.40 0.79 0.51 0.79 0.55
18 0.81 0.73 1.00 1.00 0.79 0.63 0.75 0.54 0.75 0.54 0.77 0.54
19 0.75 0.68 1.00 1.00 0.74 0.63 0.72 0.58 0.70 0.52 0.72 0.58
20 0.80 0.52 1.00 1.00 0.73 0.62 0.78 0.43 0.69 0.51 0.71 0.54

Mean 0.78 0.63 1.00 1.00 0.78 0.68 0.75 0.55 0.75 0.56 0.75 0.59

E. CONDITIONAL VARIANCE ESTIMATION USING CONFORMAL PREDICTION

Confidence intervals are an alternative (and statistically convenient) way of measuring the reliability
of a prediction. Conformal prediction [Shafer and Vovk 2008; Papadopoulos et al. 2002] is a general
technique for deriving confidence intervals. It can be applied to any predictive task, such as clas-
sification and regression. While originally introduced for a transductive scenario, it has also been
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extended to a more classical inductive setting [Papadopoulos 2008]. Conformal prediction works
as follows. Given an error probability ε and any regression method that makes a prediction ŷ, it
produces a region Γε such that it contains the true value y in at least a proportion 1− ε of the cases
(the confidence level). Logically, by making the region infinitely large, we can get any confidence
level. The key issue is that the tightness and therefore usefulness of the prediction region depends on
the nonconformity measure used. A nonconformity measure is any measure that evaluates how un-
usual an example is (with respect to the others). In regression, for instance, a typical nonconformity
measure is the absolute difference: |y− ŷ|.

The idea of outputting a confidence region is richer and more informative than only a prediction
point (which in regression is just the conditional mean). One advantage of confidence regions is that
there is no assumption about the conditional distribution. However, this is one of its drawbacks for
cost-sensitive learning, because we cannot quantify the probability of error in the prediction6.

One way of deriving a density function from an interval is by assuming a distribution. Since
we advocate for the normal distribution for context-sensitive applications, we can devise a sim-
ple method by assuming this distribution. In particular, for a normal distribution (with cumula-
tive distribution Φµ,σ2 ) we know that a proportion p of the values inside µ ± aσ is given by

p = Φµ ,σ2(µ +aσ)−Φµ,σ2(µ−aσ). For a conformal region Γε we know that a proportion 1−ε of

the values fall inside the region. By taking different values for a we can get different points where we
can derive the correspondence. For instance, for a = 1, we get p = 0.6827. Setting ε = 1−0.6827
we then calculate the conformal region Γ0.3173. The width of this region, denoted by width(Γ0.3173),
has to be 2aσ . Since we chose a = 1, we have that:

σ =
1

2
width(Γ0.3173) (16)

We have implemented the inductive conformal regression presented in [Papadopoulos et al. 2011].
It presents seven nonconformity measures. The first one, that we denote by A, is just |y− ŷ|. The
other six are just modifications which take some metrics of the k-nearest neighbours into account,
such as the mean (or median) (input domain) distance in relation to the average distance of the
training dataset, or the mean (or median) standard deviation (of the output domain), corresponding
to formulas (24), (25), (29), (30), (31), (32) in [Papadopoulos et al. 2011]. Some of them have
parameters (γ and ρ), which we set to 0.5 (as in [Papadopoulos et al. 2011]).

We analysed the results for all the nonconformity measures, but we just show the results for the
nonconformity measure A in Table XVI, since this measure gives the best results (although the
results are relatively similar for all of them). Comparing to the results in Table II, it seems that there
is no improvement in the variance estimation, except for linear regression.

F. COMPARISON BETWEEN NCDE METHODS

At the end of section 5 we perform a selection of some of the NCDE methods seen in the section. In
this appendix, we include the results for a selection of the most relevant methods: the own estimation
from the base techniques (section 5.1), conformal prediction (appendix E), a conditional density
estimation (CDE) method (appendix B), a conditional variance estimation (CV E) method using
Tree for residual regression (appendix C), and three enrichment methods described in section 5.3:
RBE (using Tree as residual regression), uKNC and BIN. For all these methods, Tables XVII, XVIII
and XIX show the comparison for the base techniques LR, KNN and Tree respectively. We include
the results for the metric msll, which considers both the quality of the conditional mean and the

6For instance, if we have two regions Γε
1 = [3.2,5.4] and Γε

2 = [5.3,15.9] for two different examples, we see that the first
interval is much tighter. However, we cannot directly see whether an actual value of 5.2 has higher probability for the first
example than a value of 14.2 for the second, because we cannot directly derive probabilities. A possible way of answering
this specific question is by adjusting the error probability ε . If we increase our tolerance, we may get tighter intervals and we
may see that some of the values fall out of the interval. However, we cannot derive the probability for each point either. In
order to do this we need a conditional probability density function.
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Table XVI. Results (using the datasets in Table XI) for three regression methods for
which the variance estimation has been replaced by the variance given by conformal
prediction using the nonconformity measure A, denoted by LRc, kNNc and Treec. The
method Con f keeps the mean which is estimated by conformal prediction.

LRc
mrse

LRc
msll

LRc
msvr

kNNc
mrse

kNNc
msll

kNNc
msvr

Treec
mrse

Treec
msll

Treec
msvr

Conf
mrse

Conf
msll

Conf
msvr

1 0.32 0.80 0.54 0.36 0.81 0.50 0.43 0.84 0.68 0.38 0.82 0.56
2 0.58 0.79 0.56 0.46 0.78 0.56 0.25 0.70 0.55 0.45 0.78 0.56
3 0.12 0.83 0.85 0.28 0.75 0.71 0.22 0.71 0.54 0.35 0.94 0.95
4 0.15 0.73 0.59 0.39 0.87 0.65 0.32 0.82 0.60 0.37 0.85 0.64
5 0.10 0.64 0.53 0.11 0.63 0.52 0.12 0.64 0.52 0.10 0.63 0.54
6 0.55 0.70 0.61 0.20 0.65 0.58 0.18 0.65 0.56 0.21 0.67 0.58
7 0.97 0.99 1.00 0.43 0.78 0.63 0.46 0.76 0.58 0.46 1.00 1.00
8 0.14 0.64 0.53 0.14 0.63 0.56 0.15 0.61 0.55 0.14 0.64 0.56
9 0.07 0.93 0.89 0.32 0.93 0.72 0.29 0.98 0.90 0.35 1.00 0.99

10 0.31 0.74 0.54 0.32 0.71 0.67 0.19 0.60 0.68 0.34 0.71 0.67
11 0.19 0.70 0.47 0.18 0.79 0.69 0.14 0.70 0.67 0.20 0.71 0.50
12 0.93 0.88 0.67 0.54 0.77 0.49 0.48 0.75 0.70 0.54 0.79 0.53
13 0.03 0.68 0.68 0.50 0.91 0.65 0.44 0.88 0.63 0.51 0.95 0.91
14 0.46 0.76 0.55 0.36 0.75 0.58 0.23 0.68 0.59 0.37 0.75 0.59
15 0.50 0.72 0.62 0.54 0.71 0.57 0.60 0.73 0.58 0.52 0.71 0.55
16 0.49 0.77 0.56 0.32 0.75 0.59 0.24 0.68 0.61 0.33 0.75 0.56
17 0.96 0.96 0.85 0.43 0.82 0.63 0.37 0.78 0.56 0.40 0.84 0.74
18 0.33 0.76 0.57 0.36 0.77 0.58 0.43 0.77 0.58 0.34 0.75 0.55
19 0.35 0.70 0.55 0.37 0.72 0.56 0.45 0.71 0.61 0.36 0.71 0.54
20 0.60 0.82 0.69 0.20 0.70 0.57 0.27 0.72 0.60 0.20 0.70 0.56

Mean 0.41 0.78 0.64 0.34 0.76 0.60 0.31 0.74 0.61 0.35 0.78 0.66

conditional variance estimation, and the metric msvr, which considers the quality of the conditional
variance estimation. The conditional mean is the same for many of these methods. Note that in those
cases where the differences are significant, uKNC and the own estimation are the best (or among the
best) methods. BIN is also a good method. While performance is a very important reason to make a
selection, some other criteria (such as simplicity) are used to finally select the methods in section 5.

G. PROOFS

Here we include the proofs for several results in the paper.

PROOF. (for proposition 3.3) We have that r∗(x, ℓ, f̂ ) can be written as follows:

r∗(x, ℓ, f̂ ) = argmin
t

∫ ∞

−∞
ℓ(t,y) f̂ (y|x)dy

= argmin
t

∫ ∞

−∞
ℓ(t, µ̂ f̂ (x)+ s) f̂ ((µ̂ f̂ (x)+ s)|x)ds

= argmin
t

{

∫ 0

−∞
ℓ(t, µ̂ f̂ (x)+ s) f̂ ((µ̂ f̂ (x)+ s)|x)ds+

∫ ∞

0
ℓ(t, µ̂(x)+ s) f̂ ((µ̂ f̂ (x)+ s)|x)ds

}

= argmin
t

{

∫ 0

−∞
ℓ(t, µ̂ f̂ (x)+ s) f̂ ((µ̂ f̂ (x)+ s)|x)ds−

∫ 0

−∞
ℓ(t, µ̂(x)− s) f̂ ((µ̂ f̂ (x)− s)|x)ds

}

= argmin
t

∫ 0

−∞

{

ℓ(t, µ̂ f̂ (x)+ s) f̂ ((µ̂ f̂ (x)+ s)|x)− ℓ(t, µ̂ f̂ (x)− s) f̂ ((µ̂ f̂ (x)− s)|x)
}

ds

Since f̂ is symmetric relative to the mean:

r∗(x, ℓ, f̂ ) = argmin
t

∫ 0

−∞

{

ℓ(t, µ̂ f̂ (x)+ s)− ℓ(t, µ̂ f̂ (x)− s)
}

f̂ ((µ̂ f̂ (x)+ s)|x)ds
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Table XVII. Results (using the datasets in Table XI) for base technique LR using a selection of the
methods seen in section 5 as described in appendix F. Each section of seven columns shows results
for a measure (msll or msvr). The average ranks (AR) are calculated for these two groups separately.
The Friedman statistic for the two sections are (12.41 and 19.89 respectively). Comparing to the
Critical Value (14.16), the null hypothesis is not rejected for msll but it is rejected for msvr (significance
level: 0.05). This means that for msvr the methods do not perform equally, but we cannot affirm the
same for msll. Differences in average ranks higher than the critical difference for the Nemenyi post-
hoc test (0.6922) imply that the difference is significant (in bold).

LR
msll

LRc
msll

LR
CDE
msll

LR
CVE
Tree
msll

LR
ENR
Tree
msll

LR
ENR
uKNC
msll

LR
ENR
BIN
msll

LR
msvr

LRc
msvr

LR
CDE
msvr

LR
CVE
Tree
msvr

LR
ENR
Tree
msvr

LR
ENR
uKNC
msvr

LR
ENR
BIN
msvr

1 0.81 0.80 0.83 0.79 0.79 0.79 0.79 0.63 0.54 0.49 0.54 0.53 0.51 0.52
2 0.79 0.79 0.74 0.77 0.79 0.79 0.79 0.59 0.56 0.51 0.50 0.54 0.52 0.55
3 0.54 0.83 0.61 0.79 0.81 0.67 0.77 0.52 0.85 0.57 0.84 0.84 0.81 0.83
4 0.72 0.73 0.85 0.70 0.73 0.78 0.73 0.55 0.59 0.55 0.55 0.56 0.68 0.58
5 0.81 0.64 0.68 0.63 0.64 0.63 0.63 0.82 0.53 0.53 0.53 0.55 0.54 0.54
6 0.74 0.70 0.67 0.70 0.69 0.70 0.71 0.63 0.61 0.61 0.60 0.59 0.60 0.60
7 0.90 0.99 0.79 0.96 0.96 0.85 0.97 0.54 1.00 0.83 0.97 0.98 0.42 0.98
8 0.73 0.64 0.63 0.64 0.64 0.65 0.64 0.70 0.53 0.54 0.53 0.54 0.52 0.54
9 0.98 0.93 0.97 0.95 0.96 0.75 0.95 0.95 0.89 0.58 0.91 0.92 0.68 0.92

10 0.74 0.74 0.58 0.72 0.71 0.69 0.71 0.55 0.54 0.60 0.45 0.44 0.36 0.40
11 0.74 0.70 0.70 0.73 0.74 0.73 0.71 0.57 0.47 0.65 0.51 0.57 0.52 0.49
12 0.89 0.88 0.75 0.88 0.86 0.86 0.86 0.66 0.67 0.74 0.72 0.57 0.44 0.55
13 0.63 0.68 0.83 0.71 0.66 0.78 0.69 0.60 0.68 0.60 0.64 0.65 0.80 0.63
14 0.83 0.76 0.74 0.74 0.74 0.75 0.75 0.77 0.55 0.49 0.45 0.47 0.46 0.46
15 0.73 0.72 0.81 0.73 0.71 0.72 0.73 0.68 0.62 0.69 0.58 0.58 0.60 0.59
16 0.77 0.77 0.81 0.78 0.79 0.75 0.77 0.58 0.56 0.54 0.60 0.58 0.49 0.56
17 0.97 0.96 0.81 0.96 0.99 0.90 0.97 0.84 0.85 0.62 0.86 0.93 0.45 0.88
18 0.75 0.76 0.82 0.74 0.74 0.75 0.74 0.67 0.57 0.58 0.57 0.58 0.55 0.55
19 0.71 0.70 0.76 0.70 0.70 0.69 0.69 0.60 0.55 0.59 0.54 0.54 0.53 0.53
20 0.83 0.82 0.77 0.81 0.83 0.80 0.81 0.68 0.69 0.66 0.65 0.61 0.58 0.61

Mean 0.78 0.78 0.76 0.77 0.77 0.75 0.77 0.66 0.64 0.60 0.63 0.63 0.55 0.62
AR 5.30 4.40 3.70 3.60 4.10 3.15 3.75 5.25 4.75 3.80 3.70 4.35 2.55 3.60

But ℓ is symmetric, so we have that for every y and r we have that ℓ(y+r,y)=ℓ(y−r,y) which, jointly
with its commutativity, implies ℓ(y,y− r)=ℓ(y,y+ r), so a minimum of the above expression can be
found when t = µ̂ f̂ (x), leading to the expression ℓ(µ̂ f̂ (x), µ̂ f̂ (x)+ s)− ℓ(µ̂ f̂ (x), µ̂ f̂ (x)− s) = 0. So,

r∗(x, ℓ, f̂ ) = µ̂ f̂ (x).
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Table XVIII. Results (using the datasets in Table XI) for base technique kNN using a selection of the
methods seen in section 5 as described in appendix F. Each section of seven columns shows results
for a measure (msll or msvr). The average ranks (AR) are calculated for these two groups separately.
The Friedman statistic for the two sections are (9.9 and 24.88 respectively). Comparing to the Critical
Value (14.16), the null hypothesis is not rejected for msll but it is rejected for msvr (significance level:
0.05). This means that for msvr the methods do not perform equally, but we cannot affirm the same
for msll. Differences in average ranks higher than the critical difference for the Nemenyi post-hoc
test (0.6922) imply that the difference is significant (in bold).

kNN
msll

kNNc
msll

kNN
CDE
msll

kNN
CVE
Tree
msll

kNN
ENR
Tree
msll

kNN
ENR
uKNC
msll

kNN
ENR
BIN
msll

kNN
msvr

kNNc
msvr

kNN
CDE
msvr

kNN
CVE
Tree
msvr

kNN
ENR
Tree
msvr

kNN
ENR
uKNC
msvr

kNN
ENR
BIN
msvr

1 0.81 0.81 0.85 0.82 0.82 0.81 0.80 0.48 0.50 0.55 0.54 0.52 0.50 0.49
2 0.76 0.78 0.73 0.76 0.78 0.77 0.77 0.49 0.56 0.51 0.46 0.52 0.54 0.52
3 0.68 0.75 0.63 0.69 0.71 0.72 0.69 0.60 0.71 0.63 0.63 0.61 0.56 0.64
4 0.84 0.87 0.84 0.82 0.80 0.84 0.84 0.56 0.65 0.57 0.47 0.53 0.58 0.52
5 0.63 0.63 0.68 0.63 0.63 0.63 0.64 0.52 0.52 0.51 0.53 0.53 0.53 0.51
6 0.65 0.65 0.66 0.65 0.67 0.66 0.68 0.57 0.58 0.59 0.56 0.59 0.60 0.59
7 0.77 0.78 0.77 0.76 0.76 0.79 0.78 0.57 0.63 0.57 0.58 0.60 0.60 0.59
8 0.63 0.63 0.64 0.62 0.63 0.63 0.63 0.55 0.56 0.55 0.55 0.54 0.54 0.54
9 0.98 0.93 0.97 0.98 0.99 0.99 0.99 0.89 0.72 0.81 0.87 0.93 0.90 0.89

10 0.63 0.71 0.59 0.67 0.68 0.64 0.66 0.52 0.67 0.64 0.60 0.58 0.49 0.52
11 0.76 0.79 0.67 0.76 0.76 0.75 0.75 0.61 0.69 0.67 0.64 0.63 0.60 0.62
12 0.78 0.77 0.75 0.82 0.79 0.77 0.77 0.47 0.49 0.59 0.56 0.50 0.49 0.44
13 0.90 0.91 0.89 0.91 0.89 0.90 0.89 0.61 0.65 0.74 0.67 0.59 0.66 0.60
14 0.73 0.75 0.74 0.72 0.73 0.73 0.73 0.51 0.58 0.51 0.48 0.52 0.50 0.51
15 0.73 0.71 0.82 0.74 0.73 0.74 0.75 0.60 0.57 0.67 0.61 0.60 0.60 0.62
16 0.73 0.75 0.81 0.73 0.73 0.74 0.72 0.55 0.59 0.55 0.60 0.55 0.53 0.58
17 0.80 0.82 0.81 0.79 0.79 0.79 0.79 0.50 0.63 0.59 0.50 0.55 0.53 0.54
18 0.76 0.77 0.83 0.75 0.75 0.75 0.75 0.54 0.58 0.56 0.56 0.56 0.57 0.56
19 0.70 0.72 0.75 0.71 0.71 0.70 0.70 0.52 0.56 0.56 0.54 0.54 0.52 0.52
20 0.68 0.70 0.73 0.70 0.69 0.68 0.68 0.50 0.57 0.54 0.55 0.52 0.51 0.52

Mean 0.75 0.76 0.76 0.75 0.75 0.75 0.75 0.56 0.60 0.60 0.58 0.58 0.57 0.57
AR 3.60 5.15 4.40 3.45 4.15 3.80 3.45 2.50 5.55 4.70 4.20 4.10 3.65 3.30

PROOF. (for proposition 7.3) We use the expression for ℓA
α(ŷ,y) and decompose it depending on

whether t < y or not.

L (x, t, f̂ , ℓA
α) =

∫ ∞

−∞
ℓA

α(t,y) f̂ (y|x)dy

=
∫ t

−∞
(1−α)(t− y) f̂ (y|x)dy+

∫ ∞

t
α(y− t) f̂ (y|x)dy

=
∫ t

−∞
(1−α)t f̂ (y|x)dy−

∫ t

−∞
(1−α)y f̂ (y|x)dy+

∫ ∞

t
α(y) f̂ (y|x)dy−α

∫ ∞

t
t f̂ (y|x)dy

= (1−α)tF̂(t|x)−
∫ t

−∞
(1−α)y f̂ (y|x)dy+

∫ ∞

t
αy f̂ (y|x)dy−αt(1− F̂(t|x))

= (1−α)tF̂(t|x)−
∫ t

−∞
y f̂ (y|x)dy+

∫ ∞

−∞
αy f̂ (y|x)dy−αt(1− F̂(t|x))

= (1−α)tF̂(t|x)−
∫ t

−∞
y f̂ (y|x)dy+αµ̂(x)−αt(1− F̂(t|x))

= αµ̂(x)+ tF̂(t|x)−αt−
∫ t

−∞
y f̂ (y|x)dy
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Table XIX. Results (using the datasets in Table XI) for base technique Tree using a selection of the
methods seen in section 5 as described in appendix F. Each section of seven columns shows results
for a measure (msll or msvr). The average ranks (AR) are calculated for these two groups separately.
The Friedman statistic for the two sections are (34.22 and 28.61 respectively). Comparing to the
Critical Value (14.16), the null hypothesis is rejected for both msll and msvr (significance level: 0.05).
This means that for both mterics the methods do not perform equally. Differences in average ranks
higher than the critical difference for the Nemenyi post-hoc test (0.6922) imply that the difference is
significant (in bold).

Tree
msll

Treec
msll

Tree
CDE
msll

Tree
CVE
Tree
msll

Tree
ENR
Tree
msll

Tree
ENR
uKNC
msll

Tree
ENR
BIN
msll

Tree
msvr

Treec
msvr

Tree
CDE
msvr

Tree
CVE
Tree
msvr

Tree
ENR
Tree
msvr

Tree
ENR
uKNC
msvr

Tree
ENR
BIN
msvr

1 0.82 0.84 0.84 0.81 0.83 0.82 0.82 0.57 0.68 0.54 0.58 0.63 0.62 0.60
2 0.69 0.70 0.72 0.72 0.68 0.70 0.67 0.53 0.55 0.52 0.54 0.52 0.51 0.52
3 0.70 0.71 0.61 0.71 0.70 0.72 0.70 0.50 0.54 0.54 0.48 0.49 0.52 0.47
4 0.81 0.82 0.86 0.80 0.83 0.83 0.81 0.55 0.60 0.54 0.53 0.60 0.59 0.58
5 0.63 0.64 0.68 0.63 0.64 0.64 0.63 0.51 0.52 0.53 0.54 0.51 0.53 0.54
6 0.65 0.65 0.66 0.65 0.64 0.66 0.65 0.55 0.56 0.58 0.56 0.56 0.57 0.60
7 0.76 0.76 0.77 0.75 0.75 0.75 0.75 0.52 0.58 0.56 0.54 0.53 0.50 0.50
8 0.61 0.61 0.63 0.61 0.60 0.60 0.59 0.51 0.55 0.59 0.54 0.53 0.52 0.53
9 1.00 0.98 0.97 1.00 0.99 0.92 0.99 0.94 0.90 0.64 0.94 0.92 0.72 0.93

10 0.53 0.60 0.58 0.54 0.53 0.52 0.54 0.50 0.68 0.65 0.56 0.56 0.48 0.56
11 0.69 0.70 0.72 0.68 0.68 0.73 0.67 0.65 0.67 0.64 0.65 0.65 0.72 0.64
12 0.71 0.75 0.77 0.76 0.73 0.73 0.76 0.56 0.70 0.51 0.63 0.61 0.61 0.65
13 0.89 0.88 0.86 0.90 0.90 0.89 0.88 0.64 0.63 0.72 0.68 0.62 0.54 0.66
14 0.65 0.68 0.74 0.67 0.66 0.67 0.66 0.51 0.59 0.60 0.53 0.52 0.52 0.53
15 0.73 0.73 0.81 0.73 0.73 0.73 0.73 0.56 0.58 0.64 0.56 0.58 0.55 0.56
16 0.68 0.68 0.77 0.69 0.70 0.69 0.69 0.58 0.61 0.57 0.58 0.57 0.58 0.60
17 0.77 0.78 0.83 0.77 0.78 0.78 0.78 0.51 0.56 0.52 0.55 0.56 0.52 0.54
18 0.77 0.77 0.82 0.76 0.76 0.76 0.75 0.54 0.58 0.55 0.55 0.56 0.54 0.53
19 0.69 0.71 0.76 0.70 0.69 0.69 0.70 0.56 0.61 0.61 0.58 0.55 0.55 0.56
20 0.70 0.72 0.73 0.70 0.69 0.69 0.70 0.56 0.60 0.55 0.60 0.57 0.56 0.59

Mean 0.72 0.74 0.76 0.73 0.73 0.73 0.72 0.57 0.61 0.58 0.59 0.58 0.56 0.58
AR 2.80 5.10 6.00 4.00 3.15 3.65 3.30 2.80 5.90 4.15 4.55 3.70 2.90 4.00

PROOF. (for proposition 7.4) From proposition 7.3 we just derive the expression for minimising
the expected loss:

r∗(x, ℓA,α , f̂ ) = argmin
t

{

αµ̂(x)+ tF̂(t|x)−αt−
∫ t

−∞
y f̂ (y|x)dy

}

In order to find the minimum, we calculate the first derivative and equal it to 0:

F̂(t|x)+ t f̂ (t|x)−α− t f̂ (t|x) = 0

F̂(t|x) = α

Since the second derivate is positive this is a minimum.

PROOF. (for proposition 7.5) We follow the same initial steps as in the absolute case. We derive
the expected loss (eq. 2) and decompose the expression for ℓS

α(ŷ,y) depending on whether t < y or
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not.

L (x, t, f̂ , ℓS
α) =

∫ ∞

−∞
ℓS

α(t,y) f̂ (y|x)dy

=
∫ t

−∞
(1−α)(t− y)2 f̂ (y|x)dy+

∫ ∞

t
α(y− t)2 f̂ (y|x)dy

=
∫ t

−∞
(1−α)t2 f̂ (y|x)dy+

∫ t

−∞
(1−α)(−2ty+ y2) f̂ (y|x)dy

+
∫ ∞

t
αt2 f̂ (y|x)dy+

∫ ∞

t
α(−2ty+ y2) f̂ (y|x)dy

= (1−α)t2F̂(t|x)+αt2(1− F̂(t|x))

+
∫ t

−∞
(1−α)(−2ty+ y2) f̂ (y|x)dy+

∫ ∞

t
α(−2ty+ y2) f̂ (y|x)dy

= (1−2α)t2F̂(t|x)+αt2 +
∫ t

−∞
(1−2α)(−2ty+ y2) f̂ (y|x)dy−2αt µ̂(x)+αµ̂2(x)

= (1−2α)

[

t2F̂(t|x)−2t

∫ t

−∞
y f̂ (y|x)dy+

∫ t

−∞
y2 f̂ (y|x)dy

]

+α
[

t2−2t µ̂(x)+ µ̂2(x)
]

where µ̂2(x) is the second raw moment of f̂ (y|x).

PROOF. (for proposition 7.6) From proposition 7.5, we have:

r∗(x, ℓS,α , f̂ ) = argmin
t

L (x, t, f̂ , ℓS
α)

= argmin
t

{

(1−2α)

[

t2F̂(t|x)−2t

∫ t

−∞
y f̂ (y|x)dy+

∫ t

−∞
y2 f̂ (y|x)dy

]

+α
[

t2−2t µ̂(x)+ µ̂2(x)
]

}

Again, in order to find the minimum, we calculate the first derivative and equal it to 0:

(1−2α)

[

t2 f̂ (t|x)+2tF̂(t|x)−2

∫ t

−∞
y f̂ (y|x)dy−2t · t f̂ (t|x)+ t2 f̂ (t|x)

]

+2αt−2αµ̂(x)+0 = 0

(1−2α)

[

2tF̂(t|x)−2

∫ t

−∞
y f̂ (y|x)dy

]

+2αt−2αµ̂(x) = 0

The second derivative is:

(1−2α)
[

2F̂(y|x)+2t f̂ (y|x)−2t f̂ (y|x)
]

+2α = (1−2α)2F̂(y|x)+2α

which is always positive since both F̂(y|x) and α are between 0 and 1. Consequently, we have a
minimum.

PROOF. (for proposition 7.7) Assuming f̂ (t|x) is a normal distribution, we can standardise f̂ (t|x)

as φ(t ′) with t ′ = t ′−µ̂(x)
σ̂(x) Then, proposition 7.6 reduces to:

(1−2α)

[

2t ′Φ(t ′)−2

∫ t ′

−∞
yφ(y)dy

]

+2αt ′−0 = 0

The partial (from −∞ to t) first moment of the standard normal distribution is just −φ(t). This
can also be seen as a truncated standard normal distribution whose expected value is: E(u|u≤ t) =

− φ(t)
Φ(t) . Since the truncated standard normal distribution is normalised by Φ(t) we get −φ(t). This
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can also be obtained by just solving the integral. From here,

(1−2α)
[

2t ′Φ(t ′)+2φ(t ′)
]

+2αt ′ = 0

t ′Φ(t ′)+φ(t ′)+ t ′
α

1−2α
= 0

where t is obtained using t = σ̂(x)t ′+ µ̂(x).

PROOF. (for proposition 8.2) We start from the expression of the expected loss (proposition 7.3):

L (x, t, f̂ , ℓA
α) = −

∫ t

−∞
y f̂ (y|x)dy+αµ̂(x)+ tF̂(t|x)−αt

In order to reduce
∫ t
−∞ y f̂ (y|x)dy, we see that it is a partial moment of the normal distribution.

This is equal to an unnormalised version of the expected value of a truncated distribution, which is

E(X |X ≤ T ) = µ−σ
φ(τ)
Φ(τ) with τ = T−µ

σ . Consequently, this term reduces to Φ(t ′)µ̂(x)− σ̂(x)φ(t ′)

with t ′ = t−µ̂(x)
σ̂(x) (t = σ̂(x)t ′+ µ̂(x)). So, we have:

L (x, t, f̂ , ℓA
α) = αµ̂(x)+ tΦ(t ′)−αt−Φ(t ′)µ̂(x)+ σ̂(x)φ(t ′)

= (t− µ̂(x))Φ(t ′)+ σ̂(x)φ(t ′)−α(t− µ̂(x))

=

[

t− µ̂(x)

σ̂(x)
Φ(t ′)+

σ̂(x)

σ̂(x)
φ(t ′)−α

t− µ̂(x)

σ̂(x)

]

σ̂(x)

= [t ′Φ(t ′)+φ(t ′)−αt ′]σ̂(x)

PROOF. (for proposition 8.3) We start from the expression of the expected loss (proposition 7.5):

L (x, t, f̂ , ℓS
α) = (1−2α)

[

t2F̂(t|x)−2t

∫ t

−∞
y f̂ (y|x)dy−

∫ t

−∞
y2 f̂ (y|x)dy

]

+α[t2−2t µ̂(x)+ µ̂2(x)] (17)

We reduce
∫ t
−∞ y f̂ (y|x)dy as we did in the proof of proposition 8.2, as a partial moment of the normal

distribution, to Φ(t ′)µ̂(x)− σ̂(x)φ(t ′) with t ′ = t−µ̂(x)
σ̂(x) (t = σ̂(x)t ′+ µ̂(x)).

We reduce
∫ t
−∞ y2 f̂ (y|x)dy as a partial second order moment of the normal distribution (or a

full second order moment of the truncated normal distribution), to Φ(t ′)(µ̂(x)2−2µ̂(x)σ̂(x) φ(t ′)
Φ(t ′) +

σ̂(x)2(1− t ′
φ(t ′)
Φ(t ′) )). The last term µ̂2(x) is the second order moment of the normal distribution,

which is just µ̂(x)2 + σ̂(x)2. Plugging all this into (17), and using the short notation µ for µ̂(x) and
σ for σ̂(x) we have:
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L (x, t, f̂ , ℓS
α) = (1−2α)

[

t2Φ(t ′)−2t(Φ(t ′)µ−σφ(t ′))−Φ(t ′)(µ2−2µσ
φ(t ′)

Φ(t ′)
+σ2(1− t ′

φ(t ′)

Φ(t ′)
))

]

+α[t2−2tµ +(µ2 +σ2)]

= (1−2α)Φ(t ′)

[

t2 +−2t(µ−σ
φ(t ′)

Φ(t ′)
)− (µ2−2µσ

φ(t ′)

Φ(t ′)
+σ2(1− t ′

φ(t ′)

Φ(t ′)
))

]

+α((t−µ)2 +σ2)

= (1−2α)Φ(t ′)
[

t2 +−2t(µ−σq(t ′))− (µ2−2µσq(t ′)+σ2(1− t ′q(t ′)))
]

+α((t−µ)2 +σ2)

= Φ(t ′)(1−2α)
[

t2−2t(µ−σq(t ′))− (µ2−2µσq(t ′)+σ2(1− t ′q(t ′)))
]

+α((t−µ)2 +σ2)

= Φ(t ′)(1−2α)
[

(t ′σ +µ)2−2(t ′σ +µ)(µ−σq(t ′))− (µ2−2µσq(t ′)+σ2(1− t ′q(t ′)))
]

+α((t ′σ)2 +σ2)

= Φ(t ′)(1−2α)
[

(t ′σ)2 +µ2 +2t ′σ2q(t ′)−2µ2 +2µσq(t ′)−µ2 +2µσq(t ′)−σ2 +σ2t ′q(t ′))
]

+ασ2(t ′+1)

= Φ(t ′)(1−2α)
[

(t ′σ)2 +3t ′σ2q(t ′)−2µ2 +4µσq(t ′)−σ2
]

+ασ2(t ′+1)

with q(t ′) = φ(t ′)
Φ(t ′) .
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