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Abstract 20 

Aims Responses to salt stress of two Gypsophila species that share territory, but with different 21 

ecological optima and distribution ranges, were analysed. G. struthium is a regionally dominant 22 

Iberian endemic gypsophyte, whereas G. tomentosa is a narrow endemic reported as halophyte. The 23 

working hypothesis is that salt tolerance shapes the presence of these species in their specific 24 

habitats. 25 

Methods Taking a multidisciplinary approach, we assessed the soil characteristics and vegetation 26 

structure at the sampling site, seed germination and seedling development, growth and flowering, 27 

synthesis of proline and cation accumulation under artificial conditions of increasing salt stress. 28 

Results Soil salinity was low at the all sampling points where the two species grow, but moisture 29 

was higher in the area of G. tomentosa. No considerable differences were found in the species’ salt 30 

tolerance. The different responses observed in the studied parameters did not show a clear pattern 31 

indicating that one of them was more tolerant to salinity. 32 

Conclusions G. tomentosa cannot be considered a true halophyte as previously reported because it 33 

is unable to complete its life cycle under salinity. The presence of G. tomentosa in habitats 34 

bordering salt marshes is a strategy to avoid plant competition and extreme water stress.  35 
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Introduction 1 

 2 

Soil endemics are plants present in diverse territories and climates whose distribution is limited by 3 

their specificity to different soil types. Gypsophytes and halophytes, confined in gypsum and salty 4 

soils, respectively, are excellent examples. Diverse anatomical and physiological mechanisms 5 

enable these species to colonise extreme habitats where they find less competition. Furthermore, 6 

restricted adaptation to the environmental conditions of soil endemics limits their presence to 7 

specific plant communities in these habitats. 8 

Saline soils contain diverse types of salts, such as NaCl, CaCl2, gypsum (CaSO4), MgSO4, 9 

KCl, etc. Erosion, water flow and topography are responsible for salt distribution. Therefore, the 10 

most soluble ones are accumulated by lixiviation in the lowest areas in small endorheic hollows 11 

(saline depressions), while the least soluble ones, like gypsum, remain on hills. This characteristic 12 

behaviour has been described for diverse territories (Peinado and Martínez-Parras 1982; Breckle 13 

1999).  14 

One clear example of natural stressful environments is the gypsum habitat, which often 15 

shelters rare, threatened and endemic plants. Gypsum soils cover more than 100 million ha around 16 

the world and they have certain physical constraints, such as limited water retention, presence of a 17 

hard soil surface crust that can restrict seedling establishment, mechanical instability and lack of 18 

plasticity and cohesion, structural deterioration and low porosity that interfere with root growth 19 

(Palacio et al. 2007). In addition, such soils also have some unsuitable chemical characteristics for 20 

plant development: deficiency of some macronutrients, ionic antagonisms (Ca/Mg), unbalanced ion 21 

concentration, with excess sulphur and calcium, and toxicity due to a high concentration of sulphate 22 

ions (Mota et al. 2004; Palacios et al. 2007). 23 

Soil salinity is usually related to presence of sodium chloride. A high NaCl concentration in 24 

soil is one of the most restrictive environmental factors (osmotic and ionic stress), and only a small 25 

category of plants, halophytes, have adapted to survive and complete their biological cycle under 26 

such conditions. The exact definition of halophytes is ambiguous and controversial (Grigore et al. 27 

2012a, and references therein). Halophytes are generally considered to be plants that can grow and 28 

complete their life cycle in habitats with soil salinity above 200 mM NaCl (Flowers et al. 1986; 29 

Flowers and Colmer 2008). This is a broad operational definition since, obviously, the 30 

concentration threshold largely varies among species, and there is a continuous spectrum of salt 31 

tolerance among plant species, ranging from typical glycophytes (salt-sensitive plants) to extreme 32 

halophytes. Natural saline habitats range from wet maritime environments, such as salt marshes and 33 

mangrove swamps, to arid salt deserts (Flowers et al. 1986). The estimated area of salt-affected 34 
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soils comes close to 1 billion ha, which represents about 7% of the earth's continental extent 1 

(Ghassemi et al. 1995).  2 

For our study, we selected two Iberian endemic species of the genus Gypsophila L., that 3 

coexist in the same territory, but whose scale of distribution and ecological optimum considerably 4 

differ. Taxonomically, the two species are closely related, and are included in the subgenus 5 

Gypsophila (López Gonzalez 1990). Both are perennial, and have some morphological and 6 

phenological differences. Gypsophila struthium L. subsp. struthium is one of the most abundant 7 

gypsophytes in Spain, and is exclusive of gypsum soils. It is specifically adapted to gypsum, which 8 

even has a positive effect on the germination of its seeds (Cañadas et al. 2013). This species is 9 

endemic in the SE Iberian Peninsula, with a wide distribution in the C, E and S, in the Murcian-10 

Almerian, Balearic-Catalonian-Provençal, Baetic and Mediterranean Central Iberian biogeographic 11 

provinces. G. tomentosa L., an Iberian endemism from C, E and S Spain, is less frequent, has much 12 

smaller populations and is considered as a halophyte, specific for saline environments (Peinado and 13 

Martínez-Parras 1982; García Fuentes et al. 2001; Marchal et al. 2008), but is also regarded as a 14 

subgypsophyte (Mota et al. 2009). The two species can share the same geographic area, but usually 15 

appear in different plant communities. G. struthium subsp. struthium is frequent in several 16 

associations of the vegetation order Gypsophiletalia Bellot and Rivas Goday in Rivas Goday et al. 17 

1957 (Rivas Martínez et al 2001; Ferrandis et al. 2005; Marchal et al. 2008), whereas G. tomentosa 18 

is characteristic of three associations, all of which belong to the order Limonietalia Br.-Bl. & O. 19 

Bolòs 1958 (Peinado and Martínez-Parras 1982; Rivas Martínez et al. 2001).  20 

There is some evidence that Mediterranean restricted endemics are more ecologically 21 

specialised than their widespread congeners (Médail and Verlaque 1997; Debussche and Thompson 22 

2003), but detailed case studies are still scarce. Indeed, there are still relatively few papers that deal 23 

with either stress tolerance in endemics that include characteristics of their habitats (Lidón et al. 24 

2009; Boscaiu et al. 2013a) or response to stress in congeners with different scales of distribution 25 

(Ishikawa and Kachi 2000).  26 

Two main questions were posed in the present study. Firstly, what are the most important 27 

edaphic differences between the habitats of the two species? Secondly, does their tolerance to NaCl 28 

differ, and if so, does soil salinity shape their distribution pattern? Such questions can be 29 

approached only from a multidisciplinary perspective. Therefore, a detailed field study in the 30 

selected area was carried out, followed by an analysis of the two species’ response to salt stress in 31 

different developmental stages to assess: (a) soil characteristics in relation with the two species’ 32 

distribution pattern; (b) the phytosociological characterisation of the study area; (c) the two species’ 33 

seed germination and seedling growth responses at different salt concentrations; (d) the two species’ 34 
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growth and flowering under salt stress conditions; (e) synthesis of proline, one of the commonest 1 

osmolytes in plants; and (f) levels of mono- and bivalent cation accumulation. 2 

 3 

Material and methods  4 

 5 

Origin of plant material 6 

 7 

Seeds of G. struthium were collected from a protected area, Los Cabecicos, and seeds of G. 8 

tomentosa were taken from an adjoining area, Salinas de la Redonda, with halophytic vegetation 9 

dominated by Sarcocornia fruticosa and Arthrocnemum macrostachyum. Both localities are situated 10 

at an altitude of roughly 500 m, in the Valley of Villena in the Vinalopó basin, a river that is dry for 11 

most of the year; this valley is located in the Alicantine sector of the Murcian-Almerian 12 

biogeographic province (SE Spain), and is surrounded by small mountains of the Baetic range. The 13 

substrate is formed mainly by a gypsicolous Keuper Triassic formation with saline facies alternating 14 

with Jurassic dolomites (Alonso 1996). The climate is of an upper Mesomediterranean thermotype, 15 

continental, with accentuated temperature contrast (m1=-0.4; M8=31). Rainfall is very low (less than 16 

400 mm/year) due to the rain shadow effect of the mountains, and the ombrotype is semi-arid in the 17 

valley and dry in the neighbouring mountains (Rivas-Martínez and Rivas-Saenz 1996-2009). 18 

 19 

Vegetation analysis 20 

 21 

Plant communities in the two species’ sampling area were analysed by following the 22 

phytosociological methods of the Sigmatist School of Zurich-Montpellier, which were successively 23 

integrated (Rivas-Martínez 2005; Géhu 2006; Biondi 2011; Géhu 2011). 24 

 25 

 26 

Soil analysis 27 

 28 

Soil analyses were carried out on the samples collected in November. This month is optimal for 29 

seed germination in both species as it is part of the wet season, when temperatures are still mild and 30 

seeds show no dormancy after dispersal, as we previously determined (Moruno et al. 2011). Soil 31 

sampling was performed along a linear transect from the zone where G. struthium inhabits up to the 32 

saline depression, including the area where G. tomentosa grows (Fig. 1). In all, 28 samples were 33 

taken every 5 m at a depth of 20 cm using a 100-cm
3
 cylinder to determine bulk density for the 34 

chemical analysis. Three soil profiles were characterised by identifying the horizons, texture, colour 35 
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and content in chlorides, carbonates and organic matter by a qualitative valuation (FAO 2006). Soil 1 

salinity was characterised in a saturation extract by measuring electrical conductivity (EC) with a 2 

Hanna Instruments HI98312 portable conductimeter, and soil pH was measured using a Hanna 3 

Instruments HI98107 portable pH-meter. Ca
2+

 and Mg
2+

 were analysed by complexometric 4 

methods. Anions were analysed by standard procedures: HCO3
-
 by titration with H2SO4; SO4

2-
 by 5 

the Versenate method; Cl
-
 by the silver nitrate method. Na

+
 and K

+
 were estimated as the difference 6 

between the sum of the measured anions and cations on the basis of ionic balance. Limestone was 7 

measured by the Bernard calcimeter method. Finally, the following physical parameters were 8 

determined for each sample: field moisture, humidity, saturation density. 9 

 10 

Germination experiments 11 

 12 

In a first experiment, seeds were germinated in Petri dishes (four replicates of 25 seeds each) on 13 

0.6% agar with NaCl solutions (0, 100, 200, 300, 400 and 500 mM). Germination was carried out at 14 

15°C in the darkness, which is considered the optimal condition for these species (Moruno et al. 15 

2011). Seed germination was monitored over 20 days and the germinated seeds were removed from 16 

the dishes. Germination was expressed as the final mean percentages ± standard deviation (s.d.). 17 

Additionally, reduction of germination percentage was calculated as RGP = 1-(number of 18 

germinated seeds in the salt/germinated seeds in the control) x 100. Velocity of germination 19 

(MGT) was expressed as the mean germination time (Brenchley and Probert 1998). The 20 

germination rate was also expressed using a modified Timson’s index (TI) according to Ungar 21 

(1996).  22 

All the seeds that did not germinate in the previous experiment were thoroughly washed in 23 

distilled water and were then transferred to new Petri dishes with 0.6% agar. They remained in the 24 

germination chamber under the aforementioned conditions in order to check their recovery capacity. 25 

The recovery germination percentage was determined by applying the equation described by Khan 26 

et al. (2000). Furthermore, the total germination percentage (germinated seeds in salt solution + 27 

germinated seeds after being transferred to distilled water) was calculated. 28 

The osmotic potential () at each NaCl concentration was assessed by the van’t Hoff's 29 

equation. As the linear relation between the inverse of MGT and  (Bradford 1990) is accepted, the 30 

base potential (b) of each species was calculated by extrapolating the least-squares regression line 31 

on the 1/MGT plot against  to the x-axis intercept. The hydrotime (Ɵ) was also estimated as the 32 

inverse of the slope of this regression line (Kebreab and Murdoch 1999). 33 

 34 

Effects of salinity on seedling development 35 
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 1 

To test the effect of salinity on seedling development, radicle and plumule growth were measured. 2 

For this purpose, seeds were sown in 14-cm diameter Petri dishes with 1% agar supplemented with 3 

0, 50, 100, 150 and 200 mM NaCl at 15ºC. Seeds were placed in a line and arranged vertically in 4 

the incubator to allow radicle growth on the agar surface to facilitate measurements. The seedlings´ 5 

radicle and plumule lengths were determined after post-sowing day 9 using the ImageJ software 6 

(Rasband 1997-2012). The reduction percentage of radicle and plumule development was calculated 7 

as RPR and RPP, respectively 1-(length in salt/length in control) x 100 (Madidi et al. 2004). At 8 

the end of the experiment, the seedling survival (SS) percentage was calculated. 9 

 10 

Effects of salinity on plant growth and flowering 11 

 12 

Plants (n=20) were obtained by directly sowing seeds in pots with a mixture of peat, coconut fibre 13 

and sand (appreciatively 3:2:1). They were kept in a greenhouse with controlled maximal and 14 

minimal temperatures. When plants were 2-months-old, treatments with aqueous NaCl solutions 15 

(100, 200, 300, 400 and 500 mM) and a control without salt were applied. Plants were watered 16 

weekly by applying the corresponding salt solutions or distilled water on the trays where the pots 17 

were placed. After 90 days, four plants from each treatment were harvested and fresh weight was 18 

measured. Leaf material was partially stored at -80ºC until used for the analysis described below 19 

and was partially dried in an oven at 60ºC until constant weight to be then ground to a moderately 20 

coarse powder and stored at room temperature. 21 

The saline treatments were continued with the remaining plants (n=16) until flowering. The 22 

number of flowers was recorded weekly. After anthesis, all the flowers were enclosed in paper bags 23 

to avoid loss of seeds, which were harvested after capsules had ripened. Fresh plant weight decrease 24 

(RPW) and reduction of flower production (RPF) were expressed as percentages in relation to the 25 

values obtained in the controls. 26 

 27 

Proline determination  28 

 29 

Proline content was determined from the frozen plants (n=4) following the method of Bates et al. 30 

(1972), but with the modifications by Vicente et al. (2004). Extraction was carried out with 3% 31 

sulphosalicylic acid, and cell debris were removed by filtration. One filtrate volume was mixed with 32 

one volume of freshly prepared acid ninhydrin and one volume of glacial acetic acid to be incubated 33 

at 95ºC for 1 h. The reaction was stopped by cooling on ice and samples extracted with two 34 
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volumes of toluene. The absorbance of the organic phase was determined at 520 nm using toluene 1 

as a blank.  2 

 3 

Cation accumulation 4 

 5 

Na
+
, K

+
, Ca

2+
 and Mg

2+
 were quantified in the dry leaves obtained from the same individuals for 6 

proline determination. Dry leaf material was digested in a microwave digestor (Model: Ethos One, 7 

Milestone Microwave Laboratory Systems) as detailed by Grigore et al. (2012b). Quantification of 8 

Na
+ 

and K
+
 was performed by a flame photometry Jenway PFP7, and by an atomic absorption 9 

spectrometry (Model: Varian SpectrAA 220) for the bivalent cations, at 239.9 nm for Ca
2+

 and at 10 

202.6 nm for Mg
2+

.  11 

 12 

Data analysis  13 

 14 

The statistical analysis was performed using the SPSS 16.0 statistical software. Germination 15 

percentages were arcsine-transformed prior to the analysis. The significance of the differences 16 

among treatments was tested by applying a one-way ANOVA because this test is a very robust 17 

method that provides good approximations for small samples when model assumptions are not fully 18 

satisfied (Khan and Rayner 2003). When the ANOVA null hypothesis was rejected (p˂0.05), a post 19 

hoc Tukey test was used to estimate homogeneous groups when more than two samples were 20 

compared.  21 

 22 

Results 23 

 24 

Vegetation analysis 25 

 26 

The selected species are characteristic of two associations included in the different vegetation 27 

orders: Gypsophiletalia (G. struthium) and Limonietalia (G. tomentosa), belonging to the classes 28 

Rosmarinetea officinalis Rivas-Martínez, T.E. Díaz, F. Prieto, Loidi & Penas 2002 and 29 

Sarcocornietea fruticosae Br.-Bl. and Tüxen ex A. and O. Bolòs 1950, respectively. 30 

G. struthium characterises the community Helianthemo thibaudii-Teucrietum libanitidis 31 

Rivas Goday & Rigual in Rivas Goday, Borja, Monasterio, Galiano, Rigual & Rivas-Martínez 1957 32 

corr. Díez Garretas, Fernández-González & Asensi 1996 nom. mut. This type of vegetation 33 

corresponds to a priority habitat according the Nature 2000 Network, 1520
*
 Iberian gypsum steppes 34 

(Gypsophiletalia). 35 
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G. tomentosa is characteristic of the association Limonio delicatuli-Gypsophiletum 1 

tomentosae Peinado et Mart. Parras 1982, an endemic community of subsaline soils from the SE 2 

area of the Iberian Peninsula with hyperhalophilous vegetation, including Sarcocornia fruticosa and 3 

Arthrocnemum macrostachyum (Frankenio corymbosae-Arthrocnemetum macrostachyi, Limonio 4 

cossoniani-Sarcocornietum fruticosae). An idealised catenal schema of the vegetation communities 5 

along the analysed transect is represented in Fig. 1. 6 

 7 

Soil analysis  8 

 9 

Three sections with distinctive features were identified along the transect, which corresponded to 10 

the three different profiles analysed (Fig. 2). The first section (soil samples 1 to 14) corresponds to 11 

the area of G. struthium, the second one (samples 15 to 25) to that of G. tomentosa, whereas the 12 

third one (samples 26-28) is situated in the more depressed area, in the salt marsh, where neither 13 

species grows (see Fig. 1). Regarding physical characteristics, the samples of the first two sections 14 

mainly presented a sandy texture, whereas the third section had a finer texture that varied from 15 

sandy-silty to silty-clayey the deeper the soil depth. This texture type is specific for saline lands 16 

with temporary flooding. However, the first section was characterised by more marked stoniness 17 

and compaction, as shallow soil depth hampers plant rooting, and low water retention capacity and 18 

humidity (<15%). In the second section, soil was deeper in the upper zone, but became shallower 19 

towards the lowest area, where organic matter content was very low. In these areas, the gypsum 20 

crust is formed increasing bulk density from 0.7 to 1.3 g cm
−3

. As reflected in Fig. 3, field moisture 21 

was higher in the second transect (15-22%) and reached the maximum values in the third section 22 

(20-30%). 23 

Regarding EC, both the first sections showed relatively low values, ranging from 2.4 to 3.0 24 

dS/m. However, some peaks of 5.0-6.0 dS/m were observed in the second section as a result of the 25 

formation of small depressions in the basal area of the transect. The third section (26 to 28) is 26 

situated in the lower area and is identified by a high EC (33-73 dS/m) (Fig. 3). 27 

Along the whole transect, pH was comprised between 6.6 and 7.9, and the percentage of 28 

limestone varied between 5-25%, with smaller values towards the lower points. The chemical 29 

composition (Fig. 4) of samples from the first section showed saturation of CaSO4 and MgSO4 (16-30 

29 mmol/L), with Ca
2+

 being the predominant cation. In the second section, chlorides were already 31 

present, which increased when approaching the third section of the transect, where they became 32 

dominant (Cl
-
>600 mmol/L). This establishes a close relationship between EC and chloride 33 

concentration (Fig. 5).  34 

 35 
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Germination assays 1 

 2 

The germination responses under different salinities for both species are shown in Table 1. All the 3 

considered parameters showed statistically significant differences according to the variation of 4 

osmotic potential in both species. Maximum germination percentage values were obtained in the 5 

absence of salt stress in the control treatments. Increasingly negative water potentials lowered the 6 

germination percentage in both species. No significant differences were observed up to a salinity 7 

value corresponding to 100 mM, but the effects on the germination percentages became evident at 8 

150 mM, and seeds did not germinate at 300 mM of NaCl.  9 

Significant differences in the reduction of germination percentage (RGP) between both 10 

species were found at 150 mM and 200 mM NaCl. This reduction was more marked for G. 11 

tomentosa, with germination declining from 95.0% to 10.4% from 0 to 200 mM NaCl, whereas the 12 

germination percentage of G. struthium only lowered from 86.6% at 0 mM to 49.4% at 200 mM. 13 

These values imply an RGP at 200 mM of 89.0% and 42.9% for each species, respectively (Table 14 

1). Velocity parameters MGT and TI were significantly lower in G. tomentosa at 100 mM (Table 1; 15 

Fig. 6). The statistical analysis of the velocity indices for both two species gave F values of 39.9 16 

and 118.4 for MGT, and of F=49.7 and F=637.3 for TI. Larger differences in the response of G. 17 

tomentosa to increasing salt levels in the medium were found. 18 

The linear regression of the germination rates at the different osmotic potentials tested 19 

provide a b of -1.80 MPa for G. struthium and of -1.37 MPa for G. tomentosa. The hydrotime (Ɵ) 20 

calculated for G. struthium was 8.81 MPa day and was 6.74 MPa day for G. tomentosa. The b 21 

values should be treated with caution as they were obtained from extrapolation which went beyond 22 

the range of the experimental conditions. We considered these calculated values, b and Ɵ, as 23 

theoretical figures. The regression followed the same pattern in both species. At all the osmotic 24 

potential values, G. struthium was above G. tomentosa (Fig. 6), indicating fiercer competitiveness 25 

for G. struthium.  26 

The percentages (R) and the mean germination time (MGTR) in the recovery experiments 27 

are also presented in Table 1. The one-way ANOVA indicated that these two parameters were not 28 

significant for G. struthium (R: P=0.415, F=1.050; MGTR: P=0.378, F=1.135) and for G. 29 

tomentosa (R: P=0.454, F=0.967; MGTR: P=0.595, F=0.715).  30 

In G. struthium, slightly lower recovery percentages were obtained at 150, 200 and 500 mM, 31 

but total germination (seeds germinated in salt solution and seeds germinated during recovery) for 32 

both species reached similar values to those in control (Gs: P=0.139, F=1.774; Gt: P=0.423, 33 

F=1.052) for all the NaCl treatments (Fig. 7). 34 
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The mean germination time for the recovery tests in both species was around 3 days less 1 

than the value calculated for the controls (Table 1).  2 

When analysing the development of seedlings, we found high sensitivity to the salt 3 

environment (Fig. 8). Radicle length showed a significant reduction for both species, even at 50 4 

mM NaCl (Fig. 8a), with a mean elongation of 8.99 mm for G. struthium and of 3.09 mm for G. 5 

tomentosa. This reduction was more marked in G. tomentosa with an RPR value of 85.2% than in 6 

G. struthium with a reduction of 56.5% at this concentration (Table 2) (Gs: P=0.000, F=112.611; 7 

Gt: P=0.000, F=484.612). Plumule growth also reduced at increasing salt concentrations: the 8 

plumule development of G. tomentosa was maintained with an RPP from 47.0 to 75.6% at between 9 

50 and 150 mM NaCl, while it reduced for G. struthium at 50 mM with an RPP of 23.4%, and no 10 

growth was detected at higher concentrations (Gs: P=0.000, F=40.943; Gt: P=0.000, F=210.378). 11 

In G. struthium, the percentage of surviving seedlings after 9 days lowered at 100 mM NaCl, 12 

although a portion of the sample remained alive even at 200 mM. Conversely in G. tomentosa, 13 

seedling survival was maintained at up to 150 mM NaCl, but growth was affected by salt (Table 2). 14 

 15 

Effects of salinity on plant growth and reproductive success 16 

 17 

Some salt treatments induced significant differences in the biomasses of the two species, as shown 18 

by the one-way ANOVA (denoted by an asterisk in Fig. 9). A lower fresh plant weight percentage 19 

(RPW) of G. tomentosa, if compared to the control, was observed even at 100 mM NaCl, although 20 

G. struthium continued to develop normally under this condition. Weight in G. tomentosa decreased 21 

progressively at increasing salt concentrations. However the G. struthium plants were severely 22 

affected at 300 mM NaCl, and their weight sharply dropped. The means of fresh weight and the s.d. 23 

for each treatment and species are shown in Figure 9, while reduced growth if compared to the 24 

control is presented in Table 2.  25 

G. tomentosa flowered in all the treatments, but the number of flowers produced per plant 26 

was strongly affected by salt stress (see Table 2). Moreover, only the control plants produced viable 27 

seeds, whereas seeds were aborted in all the plants used in the saline treatments. In G. struthium, 28 

only the plants in the control treatment produced flowers.  29 

 30 

Proline determination  31 

 32 

An increase in proline, one of the commonest osmolytes in plants, was recorded in both species, as 33 

depicted in Figure 10. In G. struthium, the mean proline content increased from the control to the 34 

high saline treatment at 500 mM NaCl by 135-fold. In G. tomentosa, the plants from the control 35 
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treatment showed higher proline values than G. struthium. For this reason, although the values 1 

recorded at 500 mM NaCl were strikingly similar for both species, the difference between this 2 

treatment and the control was only 37-fold. The differences among treatments were significant for 3 

each species, but starting with the concentration of 200 mM NaCl the ANOVA was unable to detect 4 

differences between the two species. 5 

 6 

Effects of NaCl treatments on cation accumulation  7 

In G. struthium, the sodium levels in the control plants were low, but gradually increased in the 100 8 

and 200 mM NaCl treatments to reach maximal values at 300 and 500 mM NaCl. G. tomentosa 9 

gave higher Na
+
 values in all the treatments, except that of 500 mM NaCl, where the level of this 10 

cation suddenly dropped. Interestingly, this species is characterised by high Na
+
 levels in the control 11 

(6-fold more than C. struthium), therefore the sodium increment in the saline treatments was far 12 

more accentuated in G. struthium. In this latter species, an increase of up to 8.5-fold in the 300 and 13 

500 mM NaCl treatments was recorded, whereas in G. tomentosa the maximal Na
+ 

values found in 14 

the plants of the 300 mM NaCl treatment were only 2.15-fold if compared to the control plants (Fig. 15 

11a). The K
+ 

accumulation pattern was similar for both species, with significant differences for the 16 

control and the 100 mM NaCl treatments as compared to the others, but the K
+
 values were always 17 

higher in G. tomentosa. As expected, the K
+
 levels lowered in both species in comparison to the 18 

control (Fig. 11b). Regarding calcium content, G. struthium gave the largest amounts in the control, 19 

and lowest ones in the 200 and 300 mM NaCl treatments. In G. tomentosa, Ca
2+

 decreased from the 20 

control to the 500 mM NaCl treatment, and a slight increment was recorded in the 300 and 400 mM 21 

treatments. When comparing the Ca
2+ 

levels in the two species, considerably higher levels were 22 

detected in G. struthium, ranging from the double amount in the control to 6-fold in the 200 and 500 23 

mM treatments vs. G. tomentosa (Fig. 11c). The mean magnesium values in G. struthium did not 24 

vastly vary, and were significantly lower only in the 400 and 500 mM treatments than in the 25 

control. Variation was greater in G. tomentosa with higher values in the control plants and the 100 26 

mM NaCl treatment, while the recorded Mg
2+

 values were always higher for G. struthium (Fig. 27 

11d).  28 

 29 

Discussion 30 

 31 

Distribution of soil endemics is related with plant specialisation, stress-tolerance and 32 

competitiveness. Two different behavioural strategies have been defined for the plants growing in 33 

gypsum soils in an attempt to justify the different distribution observed in regionally dominant 34 

gypsophiles and narrow-gypsophile endemics. Several authors (Meyer 1986; Palacio et al. 2007) 35 
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have proposed that these groups can fit two models, the ‘specialist’ model and the ‘refuge’ model, 1 

respectively. The target species in this study, G. struthium subsp. struthium, a regionally dominant 2 

gypsophyte, and G. tomentosa, restricted to the border of salt marshes in lower areas of gypsum 3 

habitats, correspond to these two different distribution patterns.  4 

The soil requirements of G. tomentosa are not clearly established in the literature; in general, 5 

it has been reported as a halophyte and also as a subgypsophyte (Peinado and Martínez-Parras 1982; 6 

Mota et al. 2009). Our findings help clarify this issue. The analysis carried out on the vegetation 7 

structure in the studied communities indicated that it corresponds to the typical configuration and 8 

floristic composition observed in habitats of a complex geological composition that combines salt 9 

and gypsum soils (Peinado and Martínez-Parras 1982; Breckle 1999). Soil texture and composition 10 

did not reveal major differences between the two species areas. However, the area where G. 11 

struthium grows is characterised by low water retention capacity and humidity, greater stoniness 12 

and compaction, while soils where G. tomentosa inhabits are deeper and with higher humidity 13 

levels. In general terms, the ion concentration increases towards lower areas, and the increase in 14 

Na
+
 and Cl

-
 is especially significant at the last points of the studied transect. In contrast to what 15 

might be expected, EC is relatively low in both areas: along the transect analysed and only at two 16 

sampling points, where G. tomentosa grows, EC slightly surpassed 4 dS/m, the value at which soil 17 

is considered saline (USDA-ARS, 2008). High EC was recorded only in the lowest area, in the 18 

central part of the lagoon, where neither species is able to grow.  19 

The seed germination percentage in both species drastically lowered with increasing salt 20 

concentrations (at 150 mM in G. tomentosa and at 200 mM in G. struthium). Velocity of 21 

germination is a more sensitive parameter; it was already affected at 100 mM in G. tomentosa and 22 

at 150 mM in G. struthium. Likewise, the calculated hydrotime values show that G. struthium is a 23 

more competitive species than G. tomentosa when the osmotic potential decreases. The obtained 24 

results indicate that G. tomentosa is more sensitive to salt than G. struthium in the germination 25 

phase.  26 

The recovery results demonstrate that those seeds exposed to high salinity showed equal 27 

germination as those from the control after transference to water. High recovery germination 28 

percentages indicate that previous seed germination was inhibited by an osmotic effect, whereas 29 

low germination indicates specific ion toxicity (Khan 2002). The seeds of both species obtained 30 

high recovery of germination when transferred to distilled water from hypersaline conditions after 31 

20 d of exposure to all the salinity concentrations studied. The recovery germination experiments 32 

indicate no specific ion toxicity and that the osmotic effect limited germination.  33 

The priming effects observed in other halophylous species of this genus, e.g., Gypsophila 34 

oblanceolata (Sekmen et al. 2012), were not observed in either of the species studied. Although 35 
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germination velocity increased as compared to the control, this is not a consequence of salt 1 

stimulation, but is due to the fact that the imbibition phase of germination had already finished.  2 

These data indicate that seeds can remain in soil under field conditions when salinity levels 3 

go beyond their tolerance limits and germinate during the rainy period, in autumn, when salinity 4 

levels lower. In order to gain a complete understanding of the behaviour of G. tomentosa, it should 5 

be added that this species has adapted its phenology so that seeds are dispersed in autumn, this 6 

being the rainfall period. This, along with lack of primary dormancy, allows fresh seeds to be ready 7 

to germinate during the period in which salinity is almost alleviated. 8 

Greatly reduced seedling development is considered to be the result of osmotic pressure, the 9 

ion toxic effect of salt and unbalanced nutrient uptake (Eskandari and Kazemi 2011). The seedlings 10 

of G. tomentosa survived at a concentration of up to 150 mM NaCl and maintained their viability. 11 

G. struthium obtained less viable seedlings when starting at 100 mM NaCl, although some 12 

seedlings survived during the test even at 200 mM. The measures and observations made on the 13 

reduction of seedling development and subsequent survival indicate a significant difference 14 

between both species. The seedlings of G. tomentosa displayed better physiological tolerance. Their 15 

growth reduced dramatically when the NaCl concentration increased, but they survived, which 16 

means that their further development is feasible when salinity is alleviated. This behaviour enables 17 

growth to continue after exposure to salt, thus species may colonise temporary saline soils.  18 

Fresh weight progressively diminished in a concentration-dependent manner only in G. 19 

tomentosa as growth at the 100 mM NaCl concentration was not affected in G. struthium. The 20 

response at the reproduction stage proved more conclusive than the fresh weight analysis. G. 21 

tomentosa flowered in all the treatments, although the numbers of flowers significantly lowered 22 

with increasing salinity. In G. struthium however, only the plants from the control treatment 23 

flowered. Yet even in G. tomentosa, only these control plants proved reproductively successful 24 

since the plants from the saline treatments produced only aborted seeds. Apparently, even low 25 

saline concentration affects this species’ reproductive success, which has implications for the floral 26 

phenology. Therefore we consider that this species is not a “sensu stricto” halophyte. This 27 

correlates with the soil analysis data: even though G. tomentosa is cited as a halophyte, our results 28 

indicate that it grows only on the borders of high saline areas, where it shelters from more 29 

competitive species. At the collection site, G. tomentosa flowers at the beginning of autumn when 30 

soil salinity is alleviated by the typical intense rainfalls during this period. On the contrary, G. 31 

struthium starts flowering at the beginning of summer because soil salinity does not play an 32 

ecological role in its habitat.  33 

One of the major effects of saline stress is the osmotic component, which induces 34 

physiological drought. Plants compensate for this high osmotic pressure in the rizosphere by 35 
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synthesising the so-called osmolytes, diverse chemical compounds which, in large concentrations, 1 

play a major role in osmotic adjustment. Thanks to their specific hydrophilic structure, they act as 2 

osmoprotector substances by protecting thylakoids, and thus maintaining plasma membrane 3 

integrity (stabilising proteins under dehydration conditions and protecting cells from oxidative 4 

stress) and cause no negative effects on the metabolism of plants (Flowers et al. 1986; Flowers and 5 

Colmer 2009; Cushman 2001; Ashraf 2009). One of the commonest osmolytes in plants is proline, 6 

an amino acid that accumulates in the cytosol under stress conditions induced by salinity and 7 

drought, but also by high temperature, nutritional deficiencies, presence of heavy metals, air 8 

pollution, high UV radiation, and some biotic stress such as pathogen infection (Saradhi et al. 1995; 9 

Hare and Cress 1997). The synthesis of proline has been found to be significant in relation to the 10 

environmental factors in the G. struthium plants sampled in natural environments (Alvarado et al. 11 

2000; Boscaiu et al. 2013a). Nonetheless, this is the first report on proline accumulation under 12 

experimental artificial stress conditions in Gypsophila. The proline levels recorded in the plants 13 

treated with salt (from 200 to 500 mM NaCl) were up to 10-fold higher than in those plants 14 

collected in the field (Boscaiu et al. 2013a). This may be explained by the accumulation of salt in 15 

the pots, which resulted in a high EC of the substrate at the end of the 3-month treatments. The EC 16 

reported in similar experiments by far surpasses that we recorded at the sampling site, with values 17 

reaching almost 100 dS/m in the plants treated for 3 months with 500 mM NaCl (Boscaiu et al. 18 

2013b).  19 

Although all the plants, including glycophytes, can synthesise proline in response to stress, 20 

many studies have indicated that proline accumulation represents a general response in halophytes 21 

(Flowers and Hall 1978; Tipirdamaz et al. 2006; Grigore et al. 2011). Higher proline levels have 22 

been correlated with higher tolerance to salinity when comparing two related species or varieties 23 

(e.g., Chutipaijit et al. 2009; Boscaiu et al. 2013a), but there are also many examples that show no 24 

positive correlation between Pro contents and salt-tolerance (e.g., Lutts et al. 1996; Ashraf and 25 

Foolad 2007; Chen et al. 2007). Both the studied species accumulated proline under salt stress, but 26 

G. tomentosa presented higher levels of proline in the control treatment. This pattern suggests that 27 

the synthesis of this compound is constitutive in G. tomentosa, this being the species that is exposed 28 

much more to salinity in its natural environments.  29 

Apart from osmolyte synthesis, another basic salt tolerance mechanism in halophytes is the 30 

accumulation of inorganic ions to lower the osmotic potential, unlike glycophytes, which limit 31 

sodium uptake. Halophytes’ ability to maintain a low cytosolic sodium concentration by 32 

compartmenting toxic ions in vacuoles is essential to avoid the inhibition of enzymatic activities 33 

and metabolic processes (Flowers et al. 1986). This strategy is advantageous since the accumulation 34 

of inorganic ions is more economical than the synthesis of compatible organic solutes. In the two 35 
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species under study, Na
+
 increased under saline treatments, but highest values obtained with the salt 1 

treatments were less than double those in the control treatment. A significant reduction was also 2 

noted in potassium content with increasing salinity. The maximal Na:K ratio was around 2 in both 3 

species, which is much lower than that in extreme halophytes where it can exceed 10 (Flowers et al. 4 

1986). Both the Na
+
 and K

+
 values were generally higher in G. tomentosa than in G. struthium. 5 

Regarding bivalent cations, G. struthium gave significantly higher values of the Ca
2+

 levels than G. 6 

tomentosa. Such differences in the chemical composition of wide and narrow gypsohytes have also 7 

been reported by Palacio et al. (2007), who found larger amounts of Ca
2+ 

among other elements in 8 

the first category of plants. 9 

It is difficult to assess whether one of the two species is more salt-tolerant than the other 10 

because their responses largely differ at different stages. Germination is apparently more affected 11 

by salinity in G. tomentosa but, conversely, the seedlings in this species better survive salt stress. 12 

However, G. struthium growth is not affected by 100 mM NaCl and may, therefore, be considered 13 

more stress-tolerant. This species is never naturally present in soils with high sodium chloride 14 

content, rather in dry gypsum habitats. Since early responses to saline and water stress are 15 

practically identical (Munns 2002), we considered that the behaviour of the studied species might 16 

be explained by their tolerance to water stress. Thus, the adaptation to these stressful environments 17 

may relate more to general adaptation to arid environments than to chemical soil composition, as 18 

Salmeron-Sánchez et al. (2014) also indicated. In this sense, our results agree with the interpretation 19 

of Pueyo et al. (2007) on the correlation of the distribution of gypsophile plant communities with 20 

the strictness of soil conditions due to a different topography. 21 

 22 

Conclusions 23 

After analysing and discussing the results, we consider that the reduced distribution of the G. 24 

tomentosa populations is related not only to salinity, but also to other factors. The hypothesis of 25 

specific NaCl tolerance as the main control factor conferring the advantage to G. tomentosa in salty 26 

soils is refuted here. Although this species is less competitive than G. struthium in the germinative 27 

phase, it takes full advantage of autumnal flowering and of seedlings’ capacity to survive in the 28 

presence of salt, and it refuges in the peripheral zone of salt marshes where it finds less competition 29 

and more humidity due to soil type and topography. In conclusion, soil NaCl concentration is not 30 

the only key factor in the distribution of the two analysed species. Our data reveal that, on the one 31 

hand, in the studied population, G. tomentosa should not be considered a strict halophyte as 32 

previously reported. Presence of G. tomentosa in habitats bordering salt marshes is a strategy to 33 

avoid plant competition and extreme water stress. On the other hand, even when not confronted to 34 
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salinity in its natural habitats, G. struthium proves more stress-tolerant than G. tomentosa; in fact in 1 

natural environments, it grows under harsher conditions with less soil humidity. 2 

 3 

References 4 

 5 

Alonso MA (1996) Flora y vegetación del Valle de Villena (Alicante). Instituto de Cultura Juan 6 

Gil-Albert, Alicante, Spain 7 

Alvarado JJ, Ruiz JM, López-Cantarero I, Molero J, Romero L (2000) Nitrogen metabolism in five 8 

plant species characteristic of gypsiferous soils. Plant Physiol 156:612–616 9 

Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress 10 

resistance. Environ Exp Bot 59:206–16 11 

Ashraf MY (2009) Salt tolerance mechanisms in some halophytes from Saudi Arabia and Egypt. 12 

Res J Agric & Biol Sci 5:191–206 13 

Bates LS, Waldren RP, Tear LD (1973) Rapid determination of free proline for water-stress studies. 14 

Plant Soil 39:205–207 15 

Biondi E (2011) Phytosociology today: Methodological and conceptual evolution. Plant Biosyst 16 

145:19–29. 17 

Boscaiu M, Bautista I, Lidón A, Llinares J, Lull C, Donat P, Mayoral O, Vicente O (2013a) 18 

Environmental-dependent proline accumulation in plants living on gypsum soils. Acta 19 

Phisiol Plant 35:2193–2204  20 

Boscaiu M, Llul C, Llinares J, Vicente O, Boira H (2013b) Proline as a biochemical marker in 21 

relation to the ecology of two halophytic Juncus species. J Plant Ecol 6:177–186 22 

Bradford KJ (1990) A water relations analysis of seed germination rates. Plant Physiol 94:840–849 23 

Breckle SW (1999) Halophytic and gypsophytic vegetation of the Ebro-Basin at Los Monegros. In: 24 

Melic A, Blasco-Zumeta J (eds) Manifiesto científico por Los Monegros, Bol. SEA 24, pp 25 

101–104 26 

Brenchley JL, Probert RJ (1998) Seed germination responses to some environmental factors in the 27 

sea grass Zoostera capricorni from eastern Australia. Aquat Bot 62:177–188  28 

Cañadas EM, Ballesteros M, Valle F, Lorite J (2013) Does gypsum influence seed germination? 29 

Turk J Bot 38: 141–147 30 

Chen Z, Cuin TA, Zhou M, et al (2007) Compatible solute accumulation and stress-mitigating 31 

effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–255 32 

Chutipajit S, Cha-Um S, Sompornailin K (2009) Differential accumulation of proline and 33 

flavonoids in Indica rice varieties against salinity. Pak. J Bot 41:2497–2506 34 

Cushman JC (2001) Osmoregulation in plants: implications for agriculture. Am Zool 41:758–769 35 



 18 

Debussche M, Thomspon, JD (2003) Habitat differentiation between two closely related 1 

Mediterranean plant species, the endemic Cyclamen balearicum and the widespread C. 2 

repandum. Acta Oecol 24:35–45 3 

Eskandari H, Kazemi K (2011) Germination and seedling properties of different wheat cultivars 4 

under salinity conditions. Not Sci Biol 3:130–134 5 

FAO (2006) Guidelines for Soil Descriptions 5th ed. Food and Agricultural Organization of United 6 

Nation, Rome, Italy 7 

Ferrandis P, Herranz JM, Copete MA (2005) Caracterización florística y edáfica de las estepas 8 

yesosas de Castilla-La Mancha. Invest Agrar Sist Recur For 14:195–216 9 

Flowers TJ, Hall JL (1978) Salt tolerance in Suaeda maritima (L.) Dum. The effect of sodium 10 

chloride on growth and soluble enzymes in a comparative study with Pisum sativum L. J 11 

Exp Bot 23:310–321 12 

Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963 13 

Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–335 14 

García-Fuentes A, Salazar C, Torres JA, Cano E, Valle F (2001) Review of communities of Lygeum 15 

spartum L. in the south-eastern Iberian Peninsula (western Mediterranean). J Arid Environ 16 

48:323–339 17 

Géhu JM. 2006. Dictionnaire de Sociologie et Synécologie Végétales. Berlin-Stuttgart: J. Cramer. 18 

899 p. 19 

Géhu JM. 2011. On the opportunity to celebrate the centenary of modern phytosociology in 2010. 20 

Plant Biosyst 145 suppl.:4–8 21 

Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, 22 

extent, management and case studies. Canberra, Australia. CAB International, The 23 

Australian National University, Wallingford, Oxon, UK 24 

Grigore, MN, Boscaiu M, Vicente O (2011) Assessment of the relevance of osmolyte biosynthesis 25 

for salt tolerance of halophytes under natural conditions. Eur J Plant Sci Biotech 5:12–19 26 

Grigore MN, Villanueva M, Boscaiu M, Vicente O (2012a) Do halophytes really require salts for 27 

their growth and development? An experimental approach mitigation of salt stress-induced 28 

inhibition of Plantago crassifolia reproductive development by supplemental calcium or 29 

magnesium. Not Sci Biol 4:23–29 30 

Grigore, MN, Boscaiu M, Llinares J, Vicente O (2012b) Mitigation of salt stressed-induced 31 

Inhibition of Plantago crassifolia reproductive development by supplemental calcium or 32 

magnesium. Not Bot Horti Agrobo 40:58–66 33 

Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in 34 

plants. Plant Growth Reg 21:79–102 35 



 19 

Ishikawa SI, Kachi N (2000) Differential salt tolerance of two Artemisia species growing in 1 

contrasting coastal habitats. Ecol Res 15:241–247 2 

Kebreab E,Murdoch AJ (1999) Modelling the effects of water stress and temperature on 3 

germination rate of Orobanche aegyptiaca seeds. J Exp Bot 50:655–664 4 

Khan MA (2002) Halophyte seed germination: Success and Pitfalls. In: Hegazi AM et al (eds) 5 

International symposium on optimum resource utilization in salt affected ecosystems in arid 6 

and semi arid regions. Desert Research Centre, Cairo, Egypt, pp 346–358 7 

Khan MA, Gul B, Weber DJ (2000) Germination responses of Salicornia rubra to temperature and 8 

salinity. J Arid Environ 45: 207–214 9 

Khan A, Rayner GD (2003) Robustness to non-normality of common tests for the many-sample 10 

location problem. J. Appl. Math. Decis Sci 7:187–206  11 

Lidón A, Boscaiu M, Collado F, Vicente O (2009) Soil requirements of three salt tolerant, endemic 12 

species from south-east Spain. Not Bot Horti Agrobo 37:64–70 13 

López González G (1990) Gypsohila L.In: Castroviejo S et al. (eds.), Flora Ibérica 2. Real Jardín 14 

Botánico, Madrid, pp 408–415 15 

Lutts S, Kinet JM, Bouharmont J (1996) Effects of salt stress on growth, mineral nutrition and 16 

proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars 17 

differing in salinity resistance. Plant Growth Reg 19:207–218 18 

Madidi S, Baroudi B, Ameur FB (2004) Effects of salinity on germination and early growth of 19 

barley (Hordeum vulgare L.) cultivars. Int J Agri Biol 6:767–770 20 

Marchal FM, Lendínez ML, Salazar C, Torres JA (2008) Aportaciones al conocimiento de la 21 

vegetación gispsícola en el occidente de la provincia de Granada (sur de España). Lazaroa 22 

29:95–100 23 

Médail F, Verlaque R (1997) Ecological characteristics and rarity of endemic plants from southern 24 

France and Corsica: implications for biodiversity conservation. Biol Conserv 80:269–281  25 

Meyer SE (1986) The ecology of gypsophile endemism in the Eastern Mojave desert. Ecology 67: 26 

1303–1313 27 

Moruno F, Soriano P, Oscar V, Boscaiu M, Estrelles E (2011) Opportunistic germination behaviour 28 

of Gypsophila (Caryophyllaceae) in two priority habitats from semi-arid Mediterranean 29 

steppes. Not Bot Horti Agrobo 9:18–23 30 

Mota JF, Sánchez Gómez P, Merlo Calvente ME, Catalán Rodríguez P, Laguna Lumbreras E, de la 31 

Cruz Rot M, Navarro Reyes FB, Marchal Gallardo F, Bartolomé Esteban C, Martínez 32 

Labarga JM, Sainz Ollero H, Valle Tendero F, Serra Laliga L, Martínez Hernández F, 33 

Garrido Becerra JA, Pérez García FJ (2009) Aproximación a la checklist de los gipsófitos 34 

ibéricos. Anales de Biología 31:71–80 35 



 20 

Mota JF, Sola AJ, Jiménez-Sánchez ML, Pérez-García F, Merlo ME (2004) Gypsicolous flora, 1 

conservation and restoration of quarries in the southeast of the Iberian Peninsula. Biodivers 2 

Conserv 13:1797–1808 3 

Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239-250 4 

Palacio S, Escudero A, Montserrat-Martí G, Maestro M, Milla R, Albert M (2007) Plants living on 5 

gypsum: beyond the specialist model. Ann Bot 99:333–343 6 

Peinado M, Martínez-Parras JM (1982) Sobre la posición fitosociológica de Gypsophila tomentosa 7 

L. Lazaroa 4:129–140 8 

Pueyo Y, Alados CL, Maestro M, Komac B (2007) Gypsophile vegetation patterns under a range of 9 

soil properties induced by topographical position. Plant Ecology 189:301–311 10 

Rasband WS (1997-2012) ImageJ. U S National Institutes of Health. http://rsb.info.nih.gov/ij/, 11 

Bethesda, Maryland 12 

Rivas-Martínez S (2005) Notions on dynamic-catenal phytosociology as a basis of landscape 13 

science. Plant Biosyst 139:135–144 14 

Rivas-Martínez S, Rivas-Saenz S (1996-2009) Worldwide Bioclimatic Classification System, 15 

Phytosociological Research Center, Spain. http://www.globalbioclimatics.org. Accessed 1 16 

July 2013 17 

Rivas-Martínez S, Fernández-González F, Loidi J, Lousã M, Penas A (2001) Syntaxonomical 18 

checklist of vascular plant communities of Spain and Portugal to association level. Itinera 19 

Geobot 14:5–341 20 

Salmerón-Sánchez E, Martínez-Nieto MI, Martínez-Hernández F, Garrido-Becerra JA, Mendoza-21 

Fernández AJ, Gil de Carrasco C, Ramos-Miras JJ, Lozano R, Merlo ME, Mota JF (2014) 22 

Ecology, genetic diversity and phylogeography of the Iberian endemic plant Jurinea pinnata 23 

(Lag.) DC. (Compositae) on two special edaphic substrates: dolomite and gypsum. Plant 24 

Soil 374:233–250 25 

Saradhi P, Alia P, Arora S, Prasad KV (1995) Proline accumulates in plants exposed to UV radiation and 26 

protects them against UV induced peroxidation. Biochem Biophys Res Commun 209:1–5 27 

Sekmen AH, Turkan I, Tanyolac ZO, Ozfidan C, Dinc A (2012) Different antioxidant defense 28 

responses to salt stress during germination and vegetative stages of endemic halophyte 29 

Gypsophila oblanceolata Bark. Env Exp Bot 77:63–76  30 

Tipirdamaz R, Gagneul D, Duhaze C, Ainouche A, Monnier C, Ozkum D, Larher F (2006) 31 

Clustering of halophytes from an inland salt marsh in Turkey according to their ability to 32 

accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57:139–153  33 

Ungar IA (1996) Effect of salinity on seed germination, growth, and ion accumulation of Atriplex 34 

patula (Chenopodiaceae). Am J Bot 83:604–607 35 



 21 

USDA-ARS (2008) Research Databases. Bibliography on Salt Tolerance. George E. Brown, Jr. 1 

Salinity Lab. US Dep. Agric., Agric. Res. Serv. Riverside, CA. 2 

http://www.ars.usda.gov/Services/docs.htm?docid=8908 3 

Vicente O, Boscaiu M, Naranjo M., Estrelles E, Bellés JM, Soriano P (2004) Responses to salt 4 

stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58:463–481 5 

 6 

7 



 22 

Table 1 Germination parameters (mean  s.d.) for G. struthium (Gs) and G. tomentosa (Gt): 1 

germination percentage (GP), reduction of germination percentage (RGP), mean germination time 2 

(MGT), Timson Index (TI), recovery (R) after 20 d of transfer to distilled water from the studied 3 

NaCl solutions expressed as mM concentrations or the osmotic potential in MPa, and the mean 4 

germination time of recovery (MGTR). Letters indicate homogeneous groups (p<0.05) for each 5 

species. 6 

 7 

 NaCl 

(mM) 

 

(MPa) 

GP (%) RGP (%) MGT 

(days) 

TI (%) R (%) 

 

MGTR 

(days) 

Gs 0 0 86.64.0 a 0 a 5.10.4 a 71.34.9 a - - 

50 -0.21 83.53.8 a 3.64.4 a 5.40.5 a 67.23.8 a - - 

100 -0.43 85.85.5 a 3.34.1 a 6.20.6 a 65.85.4 a - - 

150 -0.64 73.83.2 b 14.93.7 b 8.10.1 b 49.12.2 b 74.610.3 3.00.2 

200 -0.85 49.47.7 c 42.89.6 c 9.51.0 c 29.86.4 c 72.1  6.2 2.90.3 

300 -1.28 0 d 100 d - - 83.010.5 2.90.2 

400 -1.70 0 d 100 d - - 80.0  8.6 3.00.1 

500 -2.13 0 d 100 d - - 74.0  8.3 3.20.2 

Gt 0 0 95.02.0 e 0 e 5.00.3 e 78.43.1 e - - 

50 -0.21 92.83.3 e 3.23.5 e 5.50.3 e 73.21.5 e - - 

100 -0.43 93.95.4 e 2.32.6 e 7.50.6 f 65.53.1 f - - 

150 -0.64 58.54.0 f 38.45.1 f 9.40.1 g 29.33.2 g 91.35.8 3.00.2 

200 -0.85 10.44.2 g 89.04.4 g 13.21.1 h 4.41.9 h 95.60.2 3.00.1 

300 -1.28 0 h 100 h - - 94.05.2 3.10.3 

400 -1.70 0 h 100 h - - 96.03.3 3.20.3 

500 -2.13 0 h 100 h - - 93.02.0 3.00.3 

 8 

9 



 23 

Table 2 Effect of salt concentration on the considered developing parameters for Gypsophila 1 

struthium (Gs) and G. tomentosa (Gt): reduction of radicle length percentage (RPR), reduction of 2 

plumule length percentage (RPP), seedling survival (SS), reduction of fresh plant weight percentage 3 

(RPW) and reduction of flower production percentage (RPF); nt indicates not tested salt 4 

concentrations and a dash denotes insufficient number of seedlings 5 

 6 

  NaCl concentration (mM) 

 parameters 0 50 100 150 200 300 400 500 

Gs RPR (%) 0 56.5 92.4 94.4 96.1 - - - 

 RPP (%) 0 23.4 100 100 100 - - - 

 SS 100 100 37.5 66.7 66.7 - - - 

 RPW (%) 0 nt 0 nt 37.0 72.2 78.0 80.8 

 RPF (%) 0 nt 100 nt 100 100 100 100 

Gt RPR (%) 0 85.2 94.7 96.3 - - - - 

 RPP (%) 0 47.0 72.1 75.6 - - - - 

 SS 100 100 100 100 - - - - 

 RPW (%) 0 nt 27.0 nt 43.6 54.2 65.4 76.5 

 RPF (%) 0 nt 31.0 nt 64.3 56.1 84.3 90.8 

 7 

8 
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Fig. 1 Idealised catenal schema of vegetation communities (schematic diagrams of the transect 1 

showing topography, plant zonation, and the soil sampling points). 1. Helianthemo thibaudii-2 

Teucrietum libanitidis, 2. Limonio delicatuli-Gypsophiletum tomentosae, 3. Frankenio corymbosae. 3 

-Arthrocnemetum macrostachyi, 4. Limonio cossoniani-Sarcocornietum fruticosae, 5. Salt pan. The 4 

first half of the samples taken in the transect (1-14) corresponds to the habitat of G. struthium and 5 

the second half (15-25) corresponds to that of G. tomentosa 6 

 7 

Fig. 2 Profile 1 corresponds to the top transect of Gypsophila struthium, profile 2 to the top of 8 

transect of G. tomentosa, and profile 3 to the central part of the lagoon 9 

 10 

Fig. 3 Soil humidity (Hw), pH and EC in a saturated extract of the samples from the studied 11 

transect. a. Gypsophila struthium (1-14), b. G. tomentosa (15-25) 12 

 13 

Fig. 4 Soil chemical composition: total concentration of ions (Ca
2+

, Mg
2+

, SO4
2−

, Na
+
, K

+
, Cl

−
 and 14 

HCO3
−
) expressed as mmol/L, in a soil-saturation extract of the localities under study. a. 15 

Gypsophila struthium (1-14), b. G. tomentosa (15-25) 16 

 17 

Fig. 5 Relation between soil EC and chloride levels in the soil samples from points 15 to 28 of the 18 

transect, corresponding to communities with Gypsophila tomentosa 19 

 20 

Fig. 6 The effect of the tested osmotic potentials on the germination rate for the Gypsophila 21 

struthium (Gs) and G. tomentosa (Gt) seeds at 15ºC  22 

 23 

Fig. 7 Total germination of seeds (%): seed germination in salt solution (grey bars) after adding 24 

those germinated after been transferred to distilled water (white bars). The same letters indicate 25 

homogeneous groups of results (p<0.05). a. Gypsophila struthium, b. G. tomentosa  26 

 27 

Fig. 8 Development of seedlings of Gypsophila struthium (Gs) and G. tomentosa (Gt). a. Radicle 28 

length, b. Plumule length in millimetres, after post-sowing day 9. Error bars express standard 29 

deviation. The same letters indicate homogeneous groups of results (p<0.05) 30 

 31 

Fig. 9 Mean fresh weight ± s.d. in the G. struthium (Gs) and G. tomentosa (Gt) plants grown in the 32 

presence of the indicated NaCl concentrations. Asterisks indicate significant differences (p<0.05) 33 

between species. Error bars express standard deviation  34 

 35 



 25 

Fig. 10 Mean proline ± s.d levels in the G. struthium (Gs) and G. tomentosa (Gt) plants treated with 1 

increasing salt concentrations and their exponential fitting. Asterisks indicate significant differences 2 

(p<0.05) between species. Error bars express standard deviation  3 

 4 

Fig. 11 Changes in the cation levels of the salt-treated G. struthium (Gs) and G. tomentosa (Gt) 5 

plants. a. Sodium, b. Potassium, c. Calcium and d. Magnesium levels at the indicated NaCl 6 

concentrations. The values shown are means (± s.d.) of the samples from four independent plants 7 

per treatment  8 


