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Abstract 
Calculation of electron correlation energy in molecules involves a very important computational 
effort, even in the simplest cases. Nowadays, using the new parallel libraries (PETSc and SLEPc) 
and MPI, we can resolve this calculation faster and with very big molecules. This result is a very 
important advance in chemical computation. 
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1. Introduction 
Quantum Chemistry is a highly computational demanding discipline that has proved to be extremely useful in 
the qualitative and semiquantitative interpretation in chemistry. Calculations of Molecular Orbitals are almost a 
routine at present. They can even be found in many experimentalist articles on chemical reactivity. 

However, nowadays, the challenge relies on chemical accuracy. Many efforts are devoted to calculate energy 
differences between different points of the same potential energy surfaces, or between different potential energy 
surfaces. These values represent relevant chemical magnitudes, such as reaction energies, activation energies or 
spectroscopic transitions. The challenge consists in calculating them with the same exactitude as the precision of 
the experimental values to be compared. Since experimental accuracy is nearly 1 kcal/mol, the calculations 
would be as accurate as 1 part per 105 to 107, depending on the size of the molecule. 

The basis for almost all molecular calculations is the molecular orbitals (MO) calculated by means of the 
Hartree-Fock-Roothaan Self Consistent Field (SCF) procedure. However, the approximate nature of the mono- 
electron potential in the SCF procedure seriously limits the quantitative applicability of its results. Due to the 
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fact that correlated movements of the electrons in the molecule should be taken into account. This movement 
involves energy, the correlation energy, EC, which is 100 to 1000 times greater that the chemical precision. 

The methods to calculate EC are based on three different approaches: Configuration Interaction (CI), the 
Many Body Perturbation Theory and the Coupled Cluster (CC) theories [1]. Other works have proposed several 
techniques to take into account the highest value of EC. Two of these methods, due to their noniterative nature, 
are specially suitable for parallelization. The first one is based on perturbative calculation over a SDCI wave 
function [2]. The second is based on the dressed matrices technique. With this method, the Hamiltonian matrix 
spanned by a model space is dressed or modified by an addition of the appropriate terms in the diagonal or in 
some rows or columns in order to incorporate the effects due the outer space (mainly, triply excited, T, and qua- 
druply excited, Q determinants). Then, the average value of this dressed Hamiltonian is calculated. It has been 
shown that this is a very powerful technique to calculate EC [3]. We call this method Mean Value Total Dress- 
ing, MVTD. 

Both methods can be programmed in a very similar way, and a large part of the resulting code, here called 
TQ2, is common. 

Thanks to PETSc and SLEPc parallel libraries working with MPI, we have improved the performance a faster 
and optimal parallelization of these codes with a very important result. At this moment we can calculate the 
Electron Correlation Energy faster and in bigger molecular systems. This work presents these results. 

2. Theoretical Background 
The calculation of the Electron Correlation Energy in molecules is one of the fundamental problems of Comput-
er Chemistry. The objective is to consider the simultaneous movement and connection of all the electrons in the 
electric field generated by the nucleus. The electron calculation is done for a position fixed or nailed to the nuc-
leus (Born-Oppenheimer approximation) [4]. In the theoretical study of a chemical reaction, it is fundamental to 
evaluate the energetic contribution of the dynamic system formed by electrons with the purpose of obtaining 
precise values of the difference of energy between products and reagents. This takes place in the simplest case, 
where a new chemical bond is the reaction of two molecules or atoms, A and B: 

A B A B+ → −                                     (1) 
The energy present in the chemical process is only one small fraction (smaller than 0.01%) of the total energy 

of A and B. It is clear the necessity of very precise methods to evaluate the electron energy, since the accumu- 
lated error in the estimation of the energies of A, B and A − B, increases the error in the estimation of  

( )A B A BE E E− − + . 
From the point of view of the Quantum Mechanics, the correlation energy of a molecule (for example, A in 

the normal state) can be defined as the difference between the exact electron energy EA and the best estimation 
of the energy evaluated at monoelectron level, that is to say, with a method of calculation that only considers an 
equally divided way [1] of the collective effect of the other electrons in each of them. The energy of the mono- 
electron model, denominated Energy Limit of Hartree-Fock, EHF [4], is: 

corr HF
A A AE E E= −                                   (2) 

In Figure 1 we can see the different energies: 
• (a) Correlation Energy; 
• (b) Complete CI Energy; 
• (c) Experimental Energy. 

These differences show the necessity to calculate with the highest possible exactitude the correlation energy. 

3. TQ2 Program 
TQ2 program has been implemented [2] [3] based on variations to obtain a physically acceptable estimation of 
the correlation energy. TQ2 requires a necessary chain of calculations to obtain the mentioned energy. The suc- 
cession of calculations necessary to obtain the electron correlation energy is the following [4]: 

1) Orbital integrals calculation between atomic: starting off the nature of the atoms that form the molecule 
and its geometry (its disposition in the space) and using a base of constructed functions as Gaussian linear com- 
binations of jϕ  with the following form: 
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Figure 1. Energy comparation. 

 

j kj k
j

a gϕ =∑                                      (3) 

The calculations of integrals one, two and three are needed in the following stages. 
2) Orbital calculation of molecular ones: they are obtained as a linear combination of Orbital Atomic: 

i kj k
j

cψ ϕ=∑                                      (4) 

The electrons are described by means of the space functions and spin: 

i i iχ ψ σ=                                       (5) 

In order to obtain the Orbital Molecular ones, the Fock’s operator is calculated, which requires the integrals 
obtained in the previous stage. 

3) Coefficients ckj: they are obtained by iterative optimization of the reference energy, EHF, formulated as: 

0 0
HFE Hϕ ϕ=                                    (6) 

where H is the electron one Hamiltonian and 0ϕ  are the Fock’s operator diagonalization function. This func-
tion 0ϕ  is calculated in the form of determinants of Salter: 

( ) ( ) ( )0 1 21 , 2 , , n nφ χ χ χ=                                (7) 

When the iterative process converges, Orbital Molecular and EHF of reference are obtained simultaneously. 
4) Calculation of the electron correlation energy: HF is obtained in the Equation (6).  
Great part of the calculation carried out in the three first steps has been solved by using the chain of HONDO 

programs [5], which is very effective for the mentioned calculations, but it solves them in a sequential way. 

Introduction to Total Dressing 
TD is based on the model of effective Hamiltonian [6], where an N-dimensional reference model SDTQ is used. 
The wave function SDTQCI is: 

[ ]
0 i i

i SD SD
c cα α

α
φ φ φ

∈ ∉

Ψ = + +∑ ∑                                (8) 

where the space is being partitioning in: 
1) Space main model, 0φ , that is the wave function Hartree-Fock. 
2) Space intermediate model, that includes all the mono and diexcitations obtained from 0φ . 
3) External space, constituted of tri and quadriexcitations of 0φ . 
An operator of suitable coating ∆  is: 

( )0 P H Pε = Ψ + ∆ Ψ                                 (9) 

where P is a projection operator that excludes the components from Ψ  in the external space: 
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i i
i S

P φ φ
∈

=∑                                    (10) 

With this formulation, it is possible to reduce the problem to the following standard eigenvalues equation with 
( )dim 1N S= −  values [7]. For the resolution we only need to define N elements of Δ , leaving the rest with 

value zero: 

( ) ε+ − =  0P H Δ P P1P c 0                               (11) 

Several definitions of Δ  are: 
1) Diagonal Dressing:  

1

0

ii i
Si

ij

c H
c α α

α∈
∆ =

∆ =

∑
                                 (12) 

2) Hermitic Row-Column Dressing:  

0 0

00 0 0
0

0

i i i
S

i i
S i

ij

c H

c H c

α α
α

α α
α

∉

∉ ≠

∆ = ∆ =

∆ = − ∆

∆ =

∑

∑ ∑                               (13) 

In Equations (12) and (13), the values of Δ  come from the vector c, which it is obtained in Equation (11). It 
is therefore necessary to use an iterative procedure until reaching the auto-consistency. Several approximate 
procedures have been developed to evaluate the coefficients cα  from the set of coefficients ci. For this it is ne- 
cessary that the coefficients ci are sufficiently next to the exact values. The coefficients ci resulting from SDCI 
are not good because the wave function SDCI leads to an estimation of the Correlation Energy that does not 
grow linearly with the number of electrons. The resulting error is very important, being able to lead to the 100% 
of errors in systems of about 30 electrons. A wave function that it has corrected this defect can be obtained in 
the coating scheme and is known s the function ( )2 SDCISC − . It is obtained calculating vector c of the Equa- 
tion (11) using the following coating diagonal: 

0ii j j
j Di

c H
∈

∆ = ∑                                    (14) 

where Di is the set of all the diexcitations that can be done on iφ  and 0φ . The dressing or coating (SC) is a par- 
tial coating, because it only includes in the estimation of cα  the effects of the essential correlation to obtain the 
correct dependancy of the energy with the number of electrons. 

Available Total Dressing methods are [7]: 
1) Perturbative Evaluation of the Coefficients cα : The coefficients are calculated according to equation: 

1
i i

i S
c c H

Dα α
α

φ φ
∈

= ∑                                (15) 

where Dα  is a denominator of Epstein-Nesbet type (Method TD1), 

00D H Hα αα= −                                   (16) 

An additional correction allows us to apply a displacement EPVα  (method TD1EPV): 

00D H H EPVα αα α= − −                                (17) 

2) Coupled Cluster Evaluation of the Coefficients cα : The coefficients cα  of the quadriexcitations are 
calculated from the expression: 

( ),

Q
i j

i j
c c cα = ∑                                    (18) 

where the pair of indices ( ),i j  runs on all di-excitations of 0φ  that generates αφ . The coefficients of tri-ex- 
citations are calculated like in the method TD1 (Equation (15)) for the contributions connected or nonfactori-
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zables and in according with the expression: 

( )

,

,

T U
i j

i j
c c cα = ∑                                     (19) 

where ( ),i j  runs on pairs (mono, diexcitations) of 0φ  that generate αφ , for the contributions disconnected or 
factorizables. This method is denominated TD2' or MVTD (Mean Value Total Dressing). A variant of this me- 
thod, denominated TD2'EPV, consists of evaluating the contributions of the connected triexcitations in TD1EPV 
method. 

4. Projection Methods for Sparse Eigenvalue Problems 
In this section, we discuss projection methods for solving the real symmetric standard eigenvalue problem,  

,Ax xλ=                                      (20) 

where n nA ×∈ , λ∈  (eigenvalue) and nx∈  (eigenvector). Projection methods are appropriate when the 
matrix A is very large but its application to a vector is relatively cheap (e.g., it is sparse) and only part of the 
spectrum is required. If we number the eigenvalues consecutively from left to right, then we might want to 
compute the first k eigenpairs, ( ),i ixλ , 1, ,i k=  , usually with k n . The basic principle of projection me- 
thods is to find the best approximations to the eigenvectors in a given subspace of small dimension. Let V be an 
n m×  matrix, with k m n≤  , whose columns iv  constitute an orthonormal basis of a given subspace  , 
i.e., T

mV V I=  and { }1 2span , , , mv v v =  . Then the eigenvalues of the so-called Rayleigh quotient matrix 
TT V AV=  approximate eigenvalues of the original matrix. More precisely, if i i iTy yθ=  then the eigenpair 

approximations are i iλ θ=  and i ix Vy= . These approximate eigenvectors belong to subspace   and are the 
best possible approximations in that subspace. For background material on projection methods, the reader is re- 
ferred to [8] [9]. 

4.1. Restarted Krylov Methods 
The quality of the eigenpair approximations ( ),i ixλ   depends on how the subspace   is built. A popular 
choice is to use the Krylov subspace associated with matrix A and a given initial vector 1v , where: 

( ) { }2 1
1 1 1 1 1, span , , , , m

m A v v Av A v A v−=                           (21) 

Without loss of generality, in the sequel we will assume that 1v  has unit length. 
In the case of a symmetric matrix, we can use the Lanczos algorithm to compute an orthogonal basis of the 

Krylov subspace. This method also provides the projected matrix T, which is a symmetric tridiagonal matrix in 
this case. This computation is efficient and numerically stable, provided that an appropriate methodology is em- 
ployed to guarantee a good quality of orthogonality among the basis vectors. In brief, the full-orthogonalization 
Lanczos method computes the basis vectors jv  in sequence, starting from 2v . Each vector jv  is the result of 
orthogonalizing 1jAv −  with respect to the previous 1j −  vectors, and then normalizing with respect to the 
Euclidean norm. 

After m steps of the Lanczos algorithm, the computed quantities satisfy the relation  

1 ,T
m mAV VT f e+= +                                  (22) 

where 1mf +  would yield the next basis vector (after normalization) if the process were to be continued, and me  
is the mth coordinate vector. 

As the number of columns in V grows, eigenvalues of T will tend to converge to eigenvalues of A. The rate of 
convergence will be fast provided that the initial vector 1v  is rich in the direction of the wanted eigenvectors. 
However, in practice this is usually not the case and consequently many iterations are likely to be required. This 
is a serious problem because increasing the number of iterations (m) implies a growth in storage requirements 
and, more importantly, a growth of computational cost per iteration (mainly because orthogonalization is increa- 
singly expensive and also because the cost of computing eigenpairs of T becomes non-negligible). A work- 
around for this is to restart the algorithm, that is, stop after m iterations and rerun the method with a new 1v  
computed from the recently obtained spectral approximations. One possible approach is to explicitly compute 

1v  as a linear combination of a subset of the current approximate eigenvectors. This is called explicit restart. 
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The main difficulty with explicit restart is how to choose the parameters for building the new starting vector. 
A better approach is to do some form of implicit restart, that avoids the need to explicitly compute a new 

starting vector 1v . In the context of Lanczos, one such technique is the so-called thick-restart Lanczos method 
[10]. In brief, this technique keeps   approximate eigenvectors (those corresponding to eigenvalues in the 
wanted part of the spectrum) and discards the rest, then completes the basis with m −   new Lanczos vectors (a 
typical choice is 2m= ). Apart from enhancing convergence between restarts, this technique allows the itera- 
tion to focus on a certain part of the spectrum, such as the leftmost eigenvalues. 

The restart is also a good moment to keep track of already converged eigenvalues, so that they can be deflated. 
Deflating converged eigenvalues means modifying the iteration so that they do not reappear in the spectrum of T. 
This can be done in different ways, but the most effective one is called locking and consists in extracting the 
converged eigenvector from the active basis V but still consider it in the orthogonalization step. A schematic de- 
scription of Lanczos with thick-restart and locking is shown below. 

1) Set X =∅  (already converged eigenvectors)  
2) Run m steps of Lanczos  
3) Restart loop (until k eigenpairs have converged)  
a) Compute eigenpairs of T and check for newly converged eigenpairs  
b) Add newly converged eigenvectors to X  
c) Keep   approximate eigenvectors in the basis  
d) Run m −   steps of Lanczos  
Note that the number of columns of X  can grow as required. In this way, the iterative eigensolver can be 

used to compute more than m eigenpairs. For instance, if one wants to compute k = 8000 eigenpairs of a matrix 
of order n = 50,000, then setting for instance m = 10,000 would be too much computational effort for extracting 
eigenpairs of T, whereas with the above scheme it is possible to work with m = 300, say, and iterate until all 
wanted eigenpairs have been retrieved. 

4.2. The SLEPc Library 
SLEPc, the Scalable Library for Eigenvalue Problem Computations [11], is a software package for the solution 
of large-scale eigenvalue problems on parallel computers. Apart from the standard eigenvalue problem of Equa- 
tion (20), it also addresses other types of problems such as the generalized eigenvalue problem or the singular 
value decomposition. SLEPc can work with either real or complex arithmetic, in single or double precision, and 
it is not restricted to symmetric (Hermitian) problems. It can be used from code written in C, C++, FORTRAN, 
and Python. SLEPc has been employed successfully in many different application areas such as nuclear engi- 
neering [12] or plasma physics [13]. 

SLEPc provides a collection of eigensolvers, most of which are based on the subspace projection paradigm 
described in the previous paragraphs. In particular, it includes a robust and efficient parallel implementation of 
the thick-restart Lanczos method, as well as its more general variant for non-symmetric problems called the 
Krylov-Schur method [14]. The Lanczos solver includes the possibility to set the m parameter described in the 
previous subsection, thus allowing the computation of a large number of eigenpairs. This feature is missing in 
other software such as ARPACK [15]. In addition to Krylov solvers, other methods such as Davidson-type or 
conjugate-gradient solvers are under development. 

SLEPc is built on top of PETSc (Portable, Extensible Toolkit for Scientific Computation [16]), a parallel 
framework for the numerical solution of partial differential equations, whose approach is to encapsulate mathe- 
matical algorithms using object-oriented programming techniques in order to be able to manage the complexity 
of efficient numerical message-passing codes. All the PETSc software is freely available and used around the 
world in many application areas. PETSc is object-oriented in the sense that all the code is built around a set of 
data structures and algorithmic objects. The application programmer works directly with these objects rather 
than concentrating on the underlying data structures. The three basic abstract data objects are index sets, vectors 
and matrices. Built on top of this foundation are various classes of solver objects, including linear, non-linear 
and time-stepping solvers. SLEPc inherits all the good properties of PETSc, including portability to a wide 
range of parallel platforms, scalability to a large number of processors, and run-time flexibility giving full con- 
trol over the solution process (one can for instance specify the solver at run time, or change relevant parameters 
such as the tolerance or the size of the subspace basis). 
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The solvers in PETSc and SLEPc have a data-structure neutral implementation. This means that the computa- 
tion can be done with different matrix storage formats, and also even with a matrix that is not stored explicitly 
(this requires some user-defined operations such as the matrix-vector product). By default, a matrix in PETSc is 
stored in a parallel compressed-row sparse format (called aij), where each processor stores a subset of rows. 
Other formats include the symmetric variant (sbaij), where only the upper triangular part is stored, as well as the 
dense storage (both sequential and parallel). 

5. Older Results 
In the past we made the TQ2 parallelization [17] using the PVM library and master and slave strategy, with one 
processor making only the data distribution and communications. This work was a very important advance, but 
nowadays it is not powerful for big molecules. 

Trial calculations with the developed parallel code were carried out on the following platforms: 
• Cluster of IBM RISC System/6000 370 workstations with AIX 3.2.5 Operating System ans xlf 2.3 

FORTRAN compilation. 
• SP1 computer (first generation HPS) with Thin nodes. AIX Version 3.2.4 and Fortran-90 compiler xlf v3.2. 

The message exchange was performed with the standard PVM library (version 3.3.5) and TCP/IP on the 
switch. 

• SGI Origin 2000 with 64 processors R10000/195 Mhz nodes. The application was compiled with native SGI 
PVM library. 

We have chosen as trial molecule the HF molecule with a very large basis set, a contracted basis set [5s, 4p, 
3d, 2f, 1g] for the F atom and [4s, 3p, 2d, 1f] for the H atom. 

Tables 1-3 show the results in terms of Execution Time, Speedup and Efficiency on the three platforms. Re- 
sults are presented too in Figures 2-4. 

Obviously, the use of master-slave strategy (with one node only make the job distribution) is a not correct so- 
lution. Now, we are using the actual parallel libraries PETSc [16] and SLEPc [11] and a MPI system, can make  
 

Table 1. Execution time (seconds) in different systems. 

Processors FDDI SP1 O2000 

2 712.93 638.96 148.90 

4 248.91 241.11 52.57 

8  120.37 26.51 

16   18.59 

 
Table 2. Speedup in different systems. 

Processors FDDI SP1 O2000 

2 0.96 0.95 0.99 

4 2.74 2.70 2.80 

8  5.41 5.56 

16   7.93 

 
Table 3. Efficiency in different systems. 

Processors FDDI SP1 O2000 

2 0.48 0.47 0.49 

4 0.68 0.67 0.60 

8  0.67 0.69 

16   0.49 
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Figure 2. Execution time for HF. 

 

 
Figure 3. Speedup for HF. 

 

 
Figure 4. Eficiencie time for HF. 



E. Ramos 
 

 
9 

and optimal parallelization faster and best built that the older. 

6. New Parallelization Strategy 
In this section, we provide some details about the implementation of the codes, by making use of the parallel 
capabilities of the SLEPc and PETSc frameworks. We place especial emphasis on optimization issues, such as 
efficient memory management and reduction of memory requirements. 

6.1. How SLEPc Eigensolvers Are Parallelized 
We start by describing the parallelization strategy used by SLEPc eigensolvers. Both PETSc and SLEPc are 
oriented to large-scale computation on distributed memory parallel computers with a message-passing paradigm 
(with the MPI standard). As mentioned before, matrices in PETSc are generally stored by blocks of rows. Vec- 
tors also follow the same data distribution, so every processor owns a continuous chunk of the vector elements. 
According to the description of the Lanczos algorithm in section 4, we can discuss the parallelization of the 
main operations:  
• Matrix-vector product, 1jAv − . In PETSc, this operation is implemented with mesh-based computations in 

mind, so that it is particularly efficient in finite-element applications, for example. 
• Vector operations that require global communication, such as orthogonalization, inner product and norm. 

Global communication should be avoided whenever possible, and SLEPc implementations are carefully de- 
veloped with this issue in mind [18]. 

• Trivially parallelizable vector operations, such as addition. 
• Operations on the small projected matrix, T. These operations are carried out sequentially, in a replicated 

way (all processors perform the same computation). This is usually benign as to parallel performance, pro- 
vided that the size of the projected problem is not large. This is one of the reasons why using a small value 
of m compared to k can be beneficial. The other reason is memory consumption as described next. 

In order to determine the memory requirements of the eigensolver, we have to focus on Equation (22). We 
assume that matrix A is of dimension n. Apart from the matrix A (whose storage will be discussed later) and 
minor workspace, the memory requirements can be summarized as follows:  
• Storage of basis vectors V and eigenvectors X: the number of columns of V grow up to the maximum, m 

(mpd in SLEPc’s terminology), and there is also need to store the eigenvectors as they converge, up to the 
requested number, k (nev in SLEPc’s terminology). So we need to store at least m k+  vectors, that is 

( )localn m k+  floating-point numbers per processor (assuming the local dimension is localn n p= , and p is 
the number of processors).  

• Storage of the projected matrix: for this we need two square arrays, one for T and the other for its eigenvec- 
tors, both of dimension m m× . This memory is replicated in all processors, not distributed. This amount of 
memory is negligible except in the case that m is too large.  

As an example, suppose we have a problem of order n = 80,000 and we want to solve it with p = 8 processors, 
computing k = 1000 eigenvalues with m = 500. The local part of the vectors would be local 10,000n = . The 
memory in each processor would be: 
• Basis vectors and eigenvectors: ( )local 15,000,000n m k+ =   
• Projected problem: 22 500,000m =  
• Total: 15,500,000 floating-point numbers, that is roughly 120 Mbytes (in double precision).  

We mentioned in passing that all the code is prepared to work correctly in single precision arithmetic. In the 
following, we use double precision throughout. 

6.2. Matrix Storage 
Together with the sparse storage, distributing the matrix across several processes makes it possible to increase 
the size of the molecular cluster under study, which is crucial for analyzing problems of real scientific interest. 
However, it is possible to enhance the properties related to parallelization by using an appropriate ordering, as 
will be discussed below. Before that, we treat two important issues: memory preallocation and exploitation of 
symmetry. 

Matrix preallocation is necessary because PETSc uses a dynamic memory scheme for flexible storage of ma-



E. Ramos 
 

 
10 

trices (the used memory grows as new nonzero elements are added). Since allocation of memory is time-con- 
suming, this scheme is very inefficient especially for very large matrices with many nonzero elements. The solu- 
tion is to preallocate, that is, to do a priori estimation of the number of nonzero elements and reserve a suffi- 
ciently large chunk of memory for them. Sometimes, it is sufficient to estimate nonzero elements very roughly 
for preallocation. In our case, we have the CSR matrix storage and know the non zeros elements. 

Regarding the symmetry of the matrix, we have three options:  
• aijfull: Compute all matrix elements, without taking symmetry into account. 
• aijhalf: Compute half of the elements only (e.g., the upper triangular part), but store each element twice 

(both in the original position and the symmetric one). The drawback of this option is that it requires explicit 
interprocessor communication during matrix assembly. 

• sbaij: Compute half of the elements only and use a special symmetric storage format.  
For a matrix with nzn  nonzero elements, the total storage requirement is about nzn  floating point numbers 

and nzn n+  integers. In the case of the special sbaij format, the memory usage is reduced roughly by half. By 
default, we use the symmetric storage format, because it saves a lot of memory and it is the best one in terms of 
matrix generation time. 

Although the number of matrix rows assigned to each process is roughly the same, the different number and 
position of nonzero elements in each row can lead to load imbalance and excessive communication overhead in 
the matrix-vector product. For best performance, it may be necessary to perform an appropriate reordering of the 
unknowns, and permute the matrix accordingly. As it is well known, in this context a good ordering can be 
computed by partitioning the adjacency graph associated to the nonzero structure of the matrix, where the goal is 
to obtain p partitions of almost equal size while minimizing the edge-cut between partitions. For this aim, we 
have used ParMETIS [19]. 

7. Code Evaluation 
We have carried out a number of numerical experiments in order to validate the correctness of the parallel codes, 
as well as to assess their parallel efficiency. 

The computer system used for the computational experiments is Tirant, an IBM cluster consisting of 256 JS20 
blade computing nodes, each of them with two 64-bit PowerPC 970FX processors running at 2.2 GHz, inter- 
connected with a low latency Myrinet network. 

7.1. Test Cases and Validation of Numerical Results 
For the code, the experiments we report in this paper are related to the simulation of HF and HB molecules with 
a very large basis set, a contracted basis set [5s, 4p, 3d, 2f, 1g] for the F and B atom and [4s, 3p, 2d, 1f] for the H 
atom. The objective is to calculate the electron correlation energy. 

In order to validate the correctness of the computations, we compare the results from the parallel versions 
with the results from the original sequential code. 

7.2. Parallel Performance for FH 
We now turn our attention to the parallel performance analysis of the overall computation. We will use the terms 
aij and sbaij to refer to the cases where explicit matrix axpy operations are used with the two matrix storage 
strategies considered in Section 6.2. 

In terms of actual response time, we can observe that sbaij have the best time and speedup. We can see a very 
good reduction in execution time and a good parallel strategy in the code. 

In Tables 4-6 and Figures 5-7 we can see the results obtained. 

7.3. Parallel Performance for HB 
We now turn our attention to the parallel performance analysis of the overall computation. We will use the terms 
aij and sbaij to refer to the cases where explicit matrix axpy operations are used with the two matrix storage 
strategies considered in Section 6.2. 

In this case, we can observe that sbaij have the best time and speedup too. We can see a very good reduction 
in execution time and a good parallel strategy in the code. 
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Table 4. Execution time (in seconds) corresponding to the diagonali- 
zation of HF molecule with increasing number of nodes. 

Processors aij sbaij 

1 75.6 70.6 

2 43.4 37.8 

4 24.6 18.4 

8 13.7 9.5 

16 7.3 4.8 

 
Table 5. Speedup corresponding to diagonalization of HF molecule 
with increasing number of nodes. 

Processors aij sbaij 

1 1 1 

2 1.74 1.87 

4 3.07 3.84 

8 5.52 7.43 

16 10.36 14.71 

 
Table 6. Eficiencie corresponding to the diagonalization of HF mo- 
lecule with increasing number of nodes. 

Processors aij sbaij 

1 1 1 

2 0.87 0.93 

4 0.77 0.96 

8 0.69 0.93 

16 0.65 0.92 

 

 
Figure 5. Execution time (seconds) for HF with 
SLEPc. 
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Figure 6. Speedup for HF with SLEPc. 

 

 
Figure 7. Eficiencie time for HF with SLEPc. 

 
In Tables 7-9 and Figures 8-10 we can see the results obtained. 

8. Applications of the New Method  
This new method for parallel calculation in computational chemistry has a lot of very important applications: 
• Parallelization of the molecular magnetic susceptibility 
• Parallelization of the anisotropic and isotropic magnetism in molecules 
• Parallelization of energy in every spin in a big molecule 
• Computation of the molecules never calculated with sequential codes 

All these applications need a very strong computational effort for your calculation and the parallel use of 
PETSc and SLEPc offer us the possibility of resolve a very big new problem. 

9. Conclusions and Future Work 
In this paper we have presented the TQ2 program parallelization. The critical part of the computation, diagona- 
lization large-scale sparse matrices, is carried out by means of the SLEPc library. We have evaluated the devel- 
oped code with one moderate-sized test case, which provides us with feedback about the correctness of the new 
programs, and gives us an idea of the scalability to large number of processors. The main conclusions that we  
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Table 7. Execution time (in seconds) corresponding to the diagonali- 
zation of HB molecule with increasing number of nodes. 

Processors aij sbaij 

1 70.2 65.3 

2 41.7 38.8 

4 22.2 19.7 

8 11.2 9.6 

16 6.3 5.8 

 
Table 8. Speedup corresponding to diagonalization of HB molecule 
with increasing number of nodes. 

Processors aij sbaij 

1 1 1 

2 1.68 1.69 

4 3.16 3.31 

8 6.27 6.8 

16 12.32 12.8 

 
Table 9. Eficiencie corresponding to the diagonalization of HB mo-
lecule with increasing number of nodes. 

Processors aij sbaij 

1 1 1 

2 0.84 0.85 

4 0.79 0.83 

8 0.78 0.82 

16 0.77 0.80 

 

 
Figure 8. Execution time (seconds) for HB with 
SLEPc. 
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Figure 9. Speedup for HB with SLEPc. 

 

 
Figure 10. Eficiencie time for HB with SLEPc. 

 
can draw are the following: 
• The parallelization of the program allows us the drastic reduction of the response time of the calculation, 

compared to the original sequential programs and the older parallel version. This is a great advantage, e.g., in 
the solution of moderate-size problems with few processors. More importantly, parallelization will make it 
possible to solve much larger problems, those with real scientific interest, which would otherwise be im-
possible to address due to memory limitations or lack of computational power. 

• The use of state-of-the-art iterative eigensolvers available in SLEPc, which are intended for large-scale 
sparse matrices, is a major improvement over the original codes. These methods allow for the computation 
of just the part of the spectrum of interest, thus saving a lot of computational effort, and can address huge 
problem sizes. In this particular application, the SLEPc solvers have proved to be very robust and efficient, 
with a very fast convergence. 

• We have evaluated different matrix storage schemes and several strategies for handling matrices of the form 
A Bγ+ . We have found that symmetric storage very effective. The evaluation has also provided us with 

very valuable information concerning memory requirements, which will allow us to make accurate estimates 
of memory consumption when solving huge problems. 

• We have a very good results using SLEPc, a useful tool for chemical codes. 
Once we have demonstrated the viability of our approach, the next step is to use the TQ2 program in produc- 
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tion mode, that is, to address challenging problems with real scientific interest. Some preliminary results with 
large molecular clusters are very encouraging and we foresee to achieve some significant breakthroughs in this 
area in a short term. 

We also plan to continue improving the programs. In the next months, we will evaluate some new eigensolv- 
ers that are under development in SLEPc, in particular the Davidson-type methods. 

A broader view of the future work is to apply the same methodology to other codes and applications in related 
areas. The use of the SLEPc library opens the possibility of parallelizing various programs in computational 
chemistry whose scientific advantages are very relevant. This paradigm shift is going to allow us to solve prob- 
lems that until now were impossible to address, since sequential computation is inviable due to the amount of 
time and memory required. 
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