
PhD THESIS

TRAMMAS: Enhancing Communication in
Multiagent Systems

Author: Luis Antonio Búrdalo Rapa
Advisors: Dr. Andrés Terrasa Barrena

Dr. Vicente Julián Inglada

Departamento de Sistemas Informáticos y Computación,
Universidad Politècnica de València,

Valencia, Spain

January 2016

A mi familia, tanto a los que me han aguantado todo
este tiempo, como a los que aún no saben leer ;)

Y especialmente a ti, papá. Cómo me jode que no
hayas podido tener esto entre tus manos...

Agradecimientos

Desde que empecé, allá por el 2004, he ido leyendo los agradecimientos en las tesis
de mis compañeros, al tiempo que fantaseaba con lo que pondrı́a en los de la mı́a.
No me explico cómo, después de tantos años pensando, no se me ocurre nada ahora
que por fin me toca a mı́. Me vienen tantos momentos y personas a la mente que me
siento como un tiburón frente a un banco de peces: no sé ni por qué o quién empezar.
Gracias sobre todo a mi familia, por estar ahı́ siempre y ser una de esas patas que a
veces me falta para mantenerme en pie y seguir caminando. Es algo que se suele dar
por hecho, pero en realidad no todo el mundo tiene la suerte que he tenido yo con
ellos.
Gracias a Andrés y Vicente, mis dos directores, por su paciencia y su tesón, por
saber encarrilarme cuando tiendo al caos, por saber darme caña cuando ha llegado el
momento para poder ponerle el punto final al trabajo de estos años y, sobre todo, por
ser mucho más que unos directores de tesis. Creo que hace unos meses ninguno de
los tres pensaba que este trabajo se llegase a acabar. Gracias por no tirar la toalla.
¡Cañas y pintas por doquier!
Gracias también a Vicente Botti por dejarme jugar con sus trenes allá por el 2002, por
haber contado conmigo todo este tiempo y por amenazar con robarme las guitarras si
no acababa. Gracias a Ana Garcı́a-Fornes y a Agustı́n Espinosa, sin cuyo trabajo una
parte importante de esta tesis no se habrı́a llevado a cabo.
Gracias infinitas a todos los compañeros y amigos del GTI-YA (GTI-IA Y
Adyacentes), por hacer que las horas de trabajo, los volcados de pila en hexadecimal,
los malabarismos de LATEX, los accept y reject, las noches, festivos y vacaciones al pie
del cañón pasasen siempre entre cafés, pandorinos, cervezas, testeos de red, charlas
de autobús, verbenas, conciertos, pelı́culas y muchas, muchas risas:

III

Gracias a Sole y Fanny, a las que conocı́ por casualidad durante la carrera, por las
que conocı́ en primera instancia el trabajo que se llevaba a cabo en el grupo de
investigación, a las que no cambiaba por nada y de las que no me he separado desde
entonces. Gracias a Stella y Elena, por estar siempre ahı́ 24/7, por conocerme tanto
y quererme aún más, por dejarme ser vuestra amiga, por dejarme formar parte de
vuestras vidas y ser siempre una parte tan importante y bonita de la mı́a. Gracias
a Carlos (Doc 3C) y a Damián, por madrugar conmigo todos los sábados durante
muchos años con la excusa de dejarnos los dedos en las cuerdas y hacer que los
madrugones en fin de semana apenas supusiese un esfuerzo. Gracias a Javi por
compartir mis primeros pasos en un mundo musical en el que me encontré un poco
más a mı́ mismo.
Gracias también a Pepe, Mari Carmen, Martı́, Mafuente, Nancy, Natalia, Flora, Óscar
y Patti, con quienes tuve la suerte de compartir laboratorio a lo largo de mis años en
la universidad. Y gracias a tantos otros con quienes no compartı́ laboratorio, pero
tuve la suerte de compartir trabajo, viajes, mesa a la hora de comer, alegrı́as, penas y
el dı́a a dı́a todos estos años: Carlos G., Fabián, Juancho, Juan Ángel, Gus, Juanmi,
Jose, Lluı́s, Jaume, Vı́ctor, Sergio, Alejandro, Marı́a, Marlene, Jorge, Laura, Inma,
Aı́da, Eva, Luis, Emilio, Miguel, Eliseo, Miguel Ángel, Adriana, Antonio, Óscar...
En realidad, con la mayorı́a de estas personas he compartido mucho más de lo que se
puede abarcar en un par de páginas. Lo que más me molestó de verdad al dejar de
trabajar como investigador en la universidad, fue dejar de veros casi a diario.
No puedo pasar por alto a un montón de personas con las que no compartı́ mi dı́a a dı́a
laboral, pero sı́ muchas otras cosas de las que me he alimentado estos años. Muchos
seguramente no sabéis cuánto me habéis ayudado, cuánto me seguı́s ayudando y
cuánto os sigo necesitando de una u otra manera. Gracias a Pepe F. y Alicia, a Laura,
a Lidón, a Fabiola, a Ana, a Valentina (ninaninanina), a César, a Daniela, a Carol, a
Raúl, a Paco, a Mac, a Pai, a Giovanna, a Susana, a Vanessa, a Edu, a la gente de la
Sanford Alligator Band y de Blue Dots y a muchos otros que me repiquetean en la
cabeza ahora mismo... Si fuésemos los músicos del Titanic, me quedarı́a tocando con
vosotros hasta el final sin dudarlo.
Gracias a todos por este viaje. Habrı́a que ir pensando en embarcarse en el siguiente...
¿Quién se viene?

IV

Resumen

A lo largo de los últimos años, los sistemas multiagente han demostrado ser un
paradigma potente y versátil, con un gran potencial a la hora de resolver problemas
complejos en entornos dinámicos y distribuidos, gracias a su comportamiento
flexible y adaptativo. Este potencial no es debido únicamente a las caracterı́sticas
individuales de los agentes (como son su autonomı́a, y su capacidades de reacción
y de razonamiento), sino que también se debe a su capacidad de comunicación y
cooperación a la hora de conseguir sus objetivos. De hecho, por encima de la
capacidad individual de los agentes, es este comportamiento social el que dota de
potencial a los sistemas multiagente.

El comportamiento social de los sistemas multiagente suele desarrollarse empleando
abstracciones, protocolos y lenguajes de alto nivel, los cuales, a su vez, se basan
normalmente en la capacidad para comunicarse e interactuar de manera indirecta
de los agentes (o como mı́nimo, se benefician en gran medida de dicha capacidad).
Sin embargo, en el proceso de desarrollo software, estos conceptos de alto nivel son
soportados habitualmente de manera débil, mediante mecanismos como la mensajerı́a
tradicional, la difusión masiva, o el uso de pizarras, o mediante soluciones totalmente
ad hoc. Esta carencia de un soporte genérico y apropiado para la comunicación
indirecta en los sistemas multiagente reales compromete su potencial.

Esta tesis doctoral propone el uso del trazado de eventos como un soporte flexible,
efectivo y eficiente para la comunicación indirecta en sistemas multiagente. La
principal contribución de esta tesis es TRAMMAS, un modelo genérico y abstracto
para dar soporte al trazado de eventos en sistemas multiagente. El modelo permite
a cualquier entidad del sistema compartir su información en forma de eventos de
traza, de tal manera que cualquier otra entidad que requiera esta información sea

V

capaz de recibirla. Junto con el modelo, la tesis también presenta una arquitectura
abstracta, que redefine el modelo como un conjunto de funcionalidades que pueden
ser fácilmente incorporadas a una plataforma multiagente real. Esta arquitectura
sigue un enfoque orientado a servicios, de modo que las funcionalidades de traza son
ofrecidas por parte de la plataforma de manera similar a los servicios tradicionales.
De esta forma, el trazado de eventos puede ser considerado como una fuente
adicional de información para las entidades del sistema multiagente y, como tal,
puede integrarse en el proceso de desarrollo software desde sus primeras etapas.

VI

Resum

Al llarg dels últims anys, els sistemes multiagent han demostrat ser un paradigma
potent i versàtil, amb un gran potencial a l’hora de resoldre problemes complexes
a entorns dinàmics i distribuı̈ts, gràcies al seu comportament flexible i adaptatiu.
Aquest potencial no és només degut a les caracterı́stiques individuals dels agents
(com són la seua autonomia, i les capacitats de reacció i raonament), sinó també a la
seua capacitat de comunicació i cooperació a l’hora d’aconseguir els seus objectius.
De fet, per damunt de la capacitat individual dels agents, es aquest comportament
social el que dóna potencial als sistemes multiagent.

El comportament social dels sistemes multiagent solen desenvolupar-se utilitzant
abstraccions, protocols i llenguatges d’alt nivell, els quals, al seu torn, es basen
normalment a la capacitat dels agents de comunicar-se i interactuar de manera
indirecta (o com a mı́nim, es beneficien en gran mesura d’aquesta capacitat).
Tanmateix, al procés de desenvolupament software, aquests conceptes d’alt nivell
son suportats habitualment d’una manera dèbil, mitjançant mecanismes com la
missatgeria tradicional, la difusió massiva o l’ús de pissarres, o mitjançant solucions
totalment ad hoc. Aquesta carència d’un suport genèric i apropiat per a la
comunicació indirecta als sistemes multiagent reals compromet el seu potencial.

Aquesta tesi doctoral proposa l’ús del traçat d’esdeveniments com un suport flexible,
efectiu i eficient per a la comunicació indirecta a sistemes multiagent. La principal
contribució d’aquesta tesi és TRAMMAS, un model genèric i abstracte per a donar
suport al traçat d’esdeveniments a sistemes multiagent. El model permet a qualsevol
entitat del sistema compartir la seua informació amb la forma d’esdeveniments de
traça, de tal forma que qualsevol altra entitat que necessite aquesta informació siga
capaç de rebre-la. Junt amb el model, la tesi també presenta una arquitectura

VII

abstracta, que redefineix el model com un conjunt de funcionalitats que poden
ser fàcilment incorporades a una plataforma multiagent real. Aquesta arquitectura
segueix un enfoc orientat a serveis, de manera que les funcionalitats de traça
són oferides per part de la plataforma de manera similar als serveis tradicionals.
D’aquesta manera, el traçat d’esdeveniments pot ser considerat com una font
addicional d’informació per a les entitats del sistema multiagent, i com a tal, pot
integrar-se al procés de desenvolupament software des de les seues primeres etapes.

VIII

Summary

Over the last years, multiagent systems have been proven to be a powerful and
versatile paradigm, with a big potential when it comes to solving complex problems
in dynamic and distributed environments, due to their flexible and adaptive behavior.
This potential does not only come from the individual features of agents (such as
autonomy, reactivity or reasoning power), but also to their capability to communicate,
cooperate and coordinate in order to fulfill their goals. In fact, it is this social
behavior what makes multiagent systems so powerful, much more than the individual
capabilities of agents.

The social behavior of multiagent systems is usually developed by means of high
level abstractions, protocols and languages, which normally rely on (or at least,
benefit from) agents being able to communicate and interact indirectly. However,
in the development process, such high level concepts habitually become weakly
supported, with mechanisms such as traditional messaging, massive broadcasting,
blackboard systems or ad hoc solutions. This lack of an appropriate way to support
indirect communication in actual multiagent systems compromises their potential.

This PhD thesis proposes the use of event tracing as a flexible, effective and efficient
support for indirect interaction and communication in multiagent systems. The
main contribution of this thesis is TRAMMAS, a generic, abstract model for event
tracing support in multiagent systems. The model allows all entities in the system to
share their information as trace events, so that any other entity which require this
information is able to receive it. Along with the model, the thesis also presents
an abstract architecture, which redefines the model in terms of a set of tracing
facilities that can be then easily incorporated to an actual multiagent platform. This
architecture follows a service-oriented approach, so that the tracing facilities are

IX

provided in the same way than other traditional services offered by the platform.
In this way, event tracing can be considered as an additional information provider for
entities in the multiagent system, and as such, it can be integrated from the earliest
stages of the development process.

X

Contents

I Introduction and Objectives 3

1 Introduction 5
1.1 Motivation . 7
1.2 Objectives . 11
1.3 Structure of the Thesis . 12
1.4 Publications List . 12
1.5 Research Projects . 16

II Selected Papers 19

2 Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 21
2.1 Introduction . 23
2.2 Previous Work . 27

2.2.1 Scheduling Policies . 27
2.2.2 Previous Comparative Studies 30

2.3 The Testing Framework . 33
2.3.1 The Load Generator Module 33
2.3.2 The Code Generator Module 36
2.3.3 The Instrumented RTOS 38
2.3.4 The Result Extractor Module 40

2.4 Experiment Design . 41

XI

2.5 Results . 46
2.5.1 Experiment 1: 40% of Nominal Hard Utilization 46
2.5.2 Experiment 2: 80% of Nominal Hard Utilization 49

2.6 Conclusions . 53

3 Supporting Social Knowledge in Multiagent Systems through Event
Tracing 63
3.1 Introduction . 65
3.2 Event tracing in multiagent systems 67
3.3 Tracing system requirements . 70

3.3.1 Functional requirements 71
3.3.2 Efficiency requirements 72
3.3.3 Security requirements . 73

3.4 Conclusions and future work . 74

4 TRAMMAS: A Tracing Model for Multiagent Systems 77
4.1 Introduction . 79
4.2 Related work . 82

4.2.1 Tracing in multiagent systems 82
4.2.2 Indirect interaction and communication 86

4.3 Requirements . 87
4.3.1 Functional requirements 88
4.3.2 Efficiency requirements 88
4.3.3 Security requirements . 89

4.4 The TRAMMAS model . 89
4.4.1 Trace event . 90
4.4.2 Tracing entities . 91
4.4.3 Tracing roles . 92
4.4.4 Selective event tracing . 94
4.4.5 Security . 95

4.5 Tracing system architecture . 96
4.5.1 Tracing services . 98
4.5.2 The Trace Manager . 98

4.6 Example . 101
4.7 Conclusions and further work . 104

XII

5 Improving the Tracing System in PANGEA Using the TRAMMAS Model109
5.1 Introduction . 111
5.2 Related Work . 112
5.3 TRAMMAS Overview . 114
5.4 Description of PANGEA Including TRAMMAS 117
5.5 Case Study and Results . 119
5.6 Conclusions . 122

6 An Adaptive Framework for Monitoring Agent Organizations 125
6.1 Introduction . 127
6.2 The Trace&Trigger Framework . 129

6.2.1 Magentix2 Support . 129
6.2.2 Organization Management Module 132
6.2.3 Adaptation Module . 133
6.2.4 Adaptation Life-Cycle . 137

6.3 Case study . 139
6.3.1 Estimation of the Adaptation Impact 141
6.3.2 Event Tracing Specification 145

6.4 Evaluation . 146
6.4.1 Specific change in demand 149
6.4.2 Progressive change in demand 151
6.4.3 Stable demand . 152
6.4.4 Slight change in demand 153
6.4.5 Quick change in demand 155

6.5 Related Work . 156
6.5.1 Tracing in Multiagent systems 156
6.5.2 Indirect communication in Multiagent systems 158
6.5.3 Adaptation in agent organizations 159

6.6 Conclusions . 161

III Discussion 163

7 General Discussion of the Results 165
7.1 Results on Event Tracing in Real-Time Systems 167
7.2 The Tracing Process and the Tracing System Requirements 168
7.3 The TRAMMAS Model . 169
7.4 The TRAMMAS Architecture . 171

XIII

1

7.5 Integration of TRAMMAS in the PANGEA Multiagent Platform . . 172
7.6 Integration of TRAMMAS in the Magentix2 Multiagent Platform:

Trace&Trigger . 175

8 Conclusions and Future Work 179

Bibliography 185

Part I

Introduction and Objectives

3

CHAPTER

1

Introduction

1.1 Motivation . 7
1.2 Objectives . 11
1.3 Structure of the Thesis 12
1.4 Publications List . 12
1.5 Research Projects . 16

5

1. Introduction 7

1.1 Motivation

Multiagent systems are a software engineering paradigm for designing and

developing complex software systems, where autonomous software entities (agents)

solve problems that are beyond the capacities or knowledge of each of them as

individuals, by interacting with one another in terms of high level protocols and

languages [128, 102, 90]. In the last years, multiagent systems have been proven

to be a powerful and versatile paradigm with a big potential when it comes to solving

complex problems in distributed environments.

For their development and execution, multiagent systems require a specific

framework called multiagent platform, which is in charge of providing all the basic

infrastructure required to create and manage the system [115]. These facilities

habitually include run time management, agents’ lifecycle management, and also

some abstractions which allow for the development of multiagent systems without

having to take into account the internals of the multiagent platform, or any detail on

its interaction with the operating system.

Unlike it occurs in systems with just one singular agent, where goal achievement

usually depends on the agent’s reasoning power, success in multiagent systems comes

to a large extent from agents’ ability to perceive their environment [124] and other

agents in the system [90], as well as from their capabilities to react according to

that perceived information. This reaction can result in internal or external responses.

Internally, agents can decide to change their goals, or their current strategy in order to

achieve them. Externally, they can choose to modify their environmental conditions

(if possible) or to interact with other agents in the system, in order to exchange (obtain

and/or transmit) information with them. In turn, this information exchange becomes

a new perception input for agents, which may then trigger new internal or external

actions.

These environmental and social abilities make it possible for agents to associate and

coordinate in complex ways, such as forming teams or taking part in negotiations or

8 1.1. Motivation

auction protocols. Also, these capabilities make it possible for agents to incorporate

abstract concepts like norms, agreements, reputation or trust to their internal logic, in

order to achieve their goals in an effective and efficient way. However, despite being

so fundamental, many aspects regarding the relation of agents with their environment

and their sociability are, most of the times, poorly supported by multiagent platforms

and by agent programming languages [26]. As a consequence, the actual capabilities

of multiagent systems become limited in terms of functionality, versatility and

scalability.

Regarding the environment, it is a common developing practice to consider the

environment as a mere set of resources, external to agents and to their communication

infrastructure, instead of considering it one of the multiagent system components, a

first-class abstraction [124] with whom agents interact. As a consequence, non-agent

entities are rarely considered in the system design or architecture and, even when

they are considered, their interaction with agents is usually addressed in an ad

hoc way. This poor integration is also discussed in [97] and [26], which claim

that the environment should be better supported by agent oriented programming

languages and platforms, as well as playing a more relevant role in the development

of multiagent systems from the first design steps.

As with the environment, many social and organisational aspects in agent

communication, as well as the knowledge needed to support this social behavior

(social knowledge [90]), are weakly supported by agent platforms and agent

oriented programming languages [26]. Multiagent system developers usually design

their systems by thinking in terms of high level interaction protocols and social

abstractions, while most of the times they have traditional agent messaging as

the only interaction mechanism available. As a result, these concepts are usually

implemented by using basic, limited approaches such as massive broadcasting [39,

78, 83] or blackboard systems [55].

This lack of appropiate tools for the support of agents’ environmental and social

knowledge reduces the scalability and effectiveness of multiagent systems and thus, it

1. Introduction 9

hinders their actual potential [26]. An additional mechanism, which agents could use

in order to extract information from the running system and the environment, could

be useful in order to overcome these limitations. In combination with traditional

messages, this mechanism could be used as the necessary knowledge provider agents

require in order to be able to properly interact with other agents and with the

environment using high level social abstractions.

Information extraction from systems at run time has been used for decades in different

areas of Computer Science, such as event-driven architectures [94] or real-time

systems [44, 118]. This extraction can be carried out either during the development

process, as a debug/validation mechanism, or after that, as a monitoring mechanism

to extract information from systems at run time. When a system behavior needs to

be observed, some run time information needs to be generated and retrieved. One of

the ways in which this information may be obtained is event tracing. A trace event

is a data object representing an action which is executed by either a running process

or by the operating system. A brief survey of some approaches using trace analysis

can be found in [116], which also presents a generic and extensible framework for

the automatic extraction of temporal properties of real-time systems at run time.

Retrieving trace events from a running system requires the system to be instrumented

at hardware or software level. This instrumentation implies modifying the system

which is being studied and thus, it is necessary to take the degree of intrusiveness

into account, in order to minimize the interference caused by the tracing process.

The POSIX 1003.1-2001 standard [73] includes the definition of standard tracing

services, so that tracing facilities are supported in a consistent, native way, from

the operating system itself. As a result, once incorporated to a real-system, they

become available for any running process, with minimal interference and overhead.

Authors in [116] adapted the POSIX tracing standard to be suitable for small,

embeded, real time systems and incorporated these facilities to the real time operating

system RT-Linux [20], showing very low memory and computation time overhead in

experimental results.

10 1.1. Motivation

The author’s research experience and results in the use of trace events to retrieve

information from running real-time systems, showed that event tracing is an effective

way to extract information from critical, embeded systems, in an efficient way,

minimizing the computational intrusiveness and without interfering in their regular

functionality. Some of this experience, the one published in [37], is included in this

thesis as Chapter 2. As a result of this experience, this thesis proposes that an event

tracing mechanism for multiagent systems, similar to the one proposed by POSIX

for processes, could be used by running agents in order to retrieve information from

their environment and from other running agents in the system. In a similar way to the

POSIX proposal, this event tracing mechanism can be incorporated to the multiagent

platform, so that event tracing facilities are offered by the platform itself minimizing

the interference caused by the tracing process in the multiagent system.

Event tracing has been, and still is, widely used in the field of multiagent systems

as a mechanism to extract information. In fact, it is so common to use event

tracing to monitor multiagent systems, that many of the most popular multiagent

platforms have developed their own tracing facilities, and have made them available

for other developers or users. This is the case of JADE [21], JACK [4], Zeus [45]

or Jason [24, 25], for example. Also, there are many tools developed by third party

authors to trace different multiagent platforms, like JADEX [101], Java Sniffer [120]

or ACLAnalyser [28, 29, 111] for JADE, MAMSY [109] for Magentix, the tool suite

developed in [95] for Zeus.

In most of this work, however, there is a common factor: The information extracted

from the system is mainly intended to be received and processed by a human

observer, which uses this information for debugging or validation purposes, or in

order to study and characterize the multiagent system. This thesis proposes that

an event tracing mechanism for multiagent systems, similar to the one proposed

by the POSIX standard, could be used, not only as a debug/validation tool, but

also as a more appropiate environmental and social information provider for agents

than ad hoc approaches. Such mechanism could be used as an indirect way of

1. Introduction 11

communication, which agents could use together with traditional messages. As a

result, more sophisticated ways of agent coordination would be available and high

level social abstractions would also become more reliable, even from the first stages

of multiagent systems design and development.

1.2 Objectives

This thesis proposes the use of a generic, event-trace based support for indirect

communication in multiagent systems, which may be used by any entity in the system

as a better social knowledge provider than traditional agent-to-agent messages. The

term entity in this work comprehends agents in the system and also non-agent entities

which may play a role in the multiagent system, like data bases or sensors. The

final goal of this thesis is to prove that, by means of event tracing, entities in

the system are able to improve the way in which they communicate, associate,

coordinate and make use of some high level social abstractions, such as teams or

virtual markets/organizations, in order to enhance their social potential.

This goal can be subdivided in the following, below detailed, sub-objectives:

• Review of the current state of the art about indirect communication in

multiagent systems in order to identify advantages and lacks in previous

approaches.

• Specification of a list of requirements that a generic event tracing support

would have to meet in order to serve as an appropiate indirect communication

mechanism for entities in a multiagent system.

• Development of an abstract model to incorporate a standarized trace-based

support for indirect communication which covers the previously mentioned

list of requirements.

12 1.3. Structure of the Thesis

• Development of a generic architectural design which allows the concepts in the

trace model to be incorporated to a real multiagent platform, so that all entities

in the system, both agent and non-agent entities, can benefit from event tracing

as an indirect communication mechanism.

• Incorporation of the proposed model and architectural design into at least one

existing multiagent platform.

• Validation of the developed model and architectural design by solving a case

of study and analysing the obtained results.

1.3 Structure of the Thesis

Considering the motivation and objectives of this thesis, the rest of the document is

structured as follows:

• Part I. Introduction and Objectives: In this part, the motivation and

objectives of this thesis, as well as the structure of the document are presented.

• Part II. Selected Papers: This part presents a selection of the most

representative articles supporting this thesis which were published in

conferences and journals.

• Part III. Discussion: This part presents a final review and discussion of

published work and results, as well as future directions for further research.

1.4 Publications List

In this section, all the international publications related to this thesis are listed. They

have been classified according to their type (journals or international conferences) as

1. Introduction 13

well as whether they are listed in JCR or in CORE, respectively. Those publications

which have been included in this document are marked with (*).

• Journals listed in JCR:

– (*) L. A. Búrdalo, A. Terrasa, A. Espinosa and A. Garcı́a-Fornes.

Analyzing the Effect of Gain Time on Soft Task Scheduling Policies

in Real-Time Systems. IEEE Transactions on Software Engineering
Vol. 38 N. 6 pp. 1305-1318 . (2012) Impact Factor: 2.588 · DOI:

10.1109/TSE.2011.95

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6025357

– (*) L. A. Búrdalo, A. Terrasa, V. Julián and A. Garcı́a-Fornes.

TRAMMAS: A tracing model for multiagent systems. Engineering
Applications of Artificial Intelligence Vol. 24 N. 7 pp. 1110-1119.

(2011) Impact Factor: 1.665 · DOI: 10.1016/j.engappai.2011.06.010

http://www.sciencedirect.com/science/article/pii/S0952197611001102

– (*) J. M. Alberola, L. A. Búrdalo, V. Julián, A. Terrasa and

A. Garcı́a-Fornes. An Adaptive Framework for Monitoring Agent

Organizations. Information Systems Frontiers Volume 16 Issue 2,

April 2014 Pages 239-256. Kluwer Academic Publishers Hingham, MA,

USA. Impact Factor: 1.077 · DOI: 10.1007/s10796-013-9478-x

http://link.springer.com/article/10.1007%2Fs10796-013-9478-x

• Other international journals:

– (*) L. A. Búrdalo, A. Terrasa, A. Garcı́a-Fornes and A. Espinosa.

Supporting social knowledge in multiagent systems through event tracing.

Journal of Physical Agents Vol. 3 N. 3 pp. 19-24. (2009)

http://www.jopha.net/index.php/jopha/article/viewArticle/55

• International conferences listed in CORE:

14 1.4. Publications List

– L. A. Búrdalo, A. Terrasa, A. Garcı́a-Fornes and A. Espinosa.

Towards Providing Social Knowledge by Event Tracing in Multiagent

Systems. Hybrid Artificial Intelligence Systems, 4th International

Conference, HAIS 2009, Salamanca, Spain, June. Lecture Notes

in Computer Science, Volume 5572 484-491, 2009. DOI:

10.1007/978-3-642-02319-4 58. Print ISBN: 978-3-642-02318-7.

Online ISBN: 978-3-642-02319-4. CORE ERA2010 Rank: C.

http://link.springer.com/chapter/10.1007%2F978-3-642-02319-4 58

• Other international conferences:

– L. A. Búrdalo, A. Terrasa, V. Julián and A. Garcı́a-Fornes. A Tracing

System Architecture for Self-adaptive Multiagent Systems. Advances

in Practical Applications of Agents and Multiagent Systems, 8th

International Conference on Practical Applications of Agents and

Multiagent Systems, PAAMS 2010, Salamanca, Spain, 26-28 April 2010.

Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-12384-9 25. Print

ISBN: 978-3-642-12383-2. Online ISBN: 978-3-642-12384-9.

http://link.springer.com/chapter/10.1007%2F978-3-642-12384-9 25

– (*) L. A. Búrdalo, A. Terrasa, V. Julián, C. Zato, S. Rodrı́guez, J.

Bajo and J. M. Corchado. Improving the Tracing System in PANGEA

Using the TRAMMAS Model. Advances in Artificial Intelligence –

IBERAMIA 2012. Lecture Notes in Computer Science, At pp. 422-431,

Volume: Volumen 7637. Springer Berlin Heidelberg. Print ISBN:

978-3-642-34653-8. Online ISBN: 978-3-642-34654-5.

http://link.springer.com/chapter/10.1007%2F978-3-642-34654-5 43

– J. M. Alberola, L. A. Búrdalo, V. Julián, A. Terrasa and A. Garcı́a-Fornes.

Dynamic Monitoring for Adapting Agent Organizations. Proceedings

of the Third International Workshop on Infrastructures and Tools for

Multiagent Systems – AAMAS 2012 . At page 121. Editorial Universitat

Politècnica de València ISBN: 978-84-8363-850-7.

1. Introduction 15

https://riunet.upv.es/handle/10251/16889

The publications selected to be included in the Part II of this document are the most

relevant and closely related to this research work, regarding the objectives set in

Section 1.2.

Chapter 2 (previously published in [37]) presents results of a study on the influence

caused by the over estimation of worst case execution times of tasks in a real-time

system. The paper also presents the framework developed by the atuhors to carry on

the study. By means of even tracing, this framework allowed for the observation of

different task sets executing over a real-time operating system. This observation was

carried out at run time with a minimal interference in the regular execution of the

tasks sets and published results contributed to show the effectiveness and efficiency

of event tracing as a mechanism to extract information from critical systems,

which made this mechanism a good candidate to support indirect communication

in multiagent systems.

Chapter 3 (previously published in [34]) presents the list of functional, efficiency

and security requirements a generic event tracing support has to meet in order to

serve as an appropiate indirect communication mechanism for entities in a multiagent

system. This list was developed attending to both the authors’ previous experience in

event tracing, and current, state-of-the-art research in the fields of Event Tracing and

Indirect Communication in Multiagent Systems.

Chapter 4 (previously published in [36]) introduces TRAMMAS, a generic, abstract

model for providing multiagent systems with an event tracing support. Together with

the abstract model, a generic, service-oriented architecture is also presented. This

architecture can be integrated within a generic multiagent platform to allow tracing

entities in the TRAMMAS model to exchange trace events.

Chapter 5 (previously published in [38]) details the incorporation of the TRAMMAS

model and architecture to the multiagent platform PANGEA [129]. The paper also

includes a study on how the use of event tracing as an indirect communication

16 1.5. Research Projects

mechanism can reduce the amount of information transmitted and received by entities

in the multiagent system when compared to the use of regular agent messages.

Chapter 6 (previously published in [13]) details the incorporation of an event tracing

support based on the presented TRAMMAS model and architecture to the multiagent

platform Magentix2 [60, 115]. In this work, trace events are used as a way to

dynamically detect situtations when a multiagent system has to change its objectives

or behaviour in order to adapt to internal or environmental changes. The paper

also includes a study on the benefits of using event tracing against traditional agent

messages in order to detect local and global changes.

1.5 Research Projects

The research work presented in this PhD Thesis was carried out in the context of the

following research projects:

• Agreement Technologies

– Funder: Consolider Ingenio CSD2007-00022

– Lead Applicant: Carles Sierra

– Years: 2007 - 2012

• Advances on Agreement Technologies for Computational Entities
(ATforCE)

– Funder: Generalitat Valenciana, Consellerı́a d’Educació, Direcció

General de Polı́tica Cientı́fica PROMETEO 2008/051

– Lead Applicant: Vicente Botti Navarro

– Years: 2008 - 2011

• MAGENTIX II: Una Plataforma para Sistemas Multiagente Abiertos

1. Introduction 17

– Funder: Ministerio de Ciencia e Innovación TIN2008-04446/TIN

– Lead Applicant: Ana Ma Garcı́a-Fornes

– Years: 2009 - 2011

• Organizaciones Virtuales Adaptativas: Arquitecturas y Métodos de
Desarrollo

– Funder: Ministerio de Ciencia e Innovación TIN2009-13839-C03-01

– Lead Applicant: Vicente J. Julián Inglada

– Years: 2010 - 2012

• PlanInteraction: Interacción Multi-Agente para Planificación

– Funder: MICINN TIN2011-27652-C03-00

– Lead Applicant: Eva Onaindı́a de la Rivaherrera

– Years: 2012 - 2014

• iHAS: Sociedades Humano-Agente: Diseño, Formación y Coordinación

– Funder: Ministerio de Economı́a y Competitividad

TIN2012-36586-C03-01

– Lead Applicant: Vicente J. Julián Inglada

– Years: 2013 - 2015

Part II

Selected Papers

19

CHAPTER

2
Analyzing the Effect of Gain Time on

Soft Task Scheduling Policies in Real-Time
Systems

2.1 Introduction . 23
2.2 Previous Work . 27
2.3 The Testing Framework 33
2.4 Experiment Design . 41
2.5 Results . 46
2.6 Conclusions . 53

AUTHORS:
LUIS BÚRDALO, ANDRÉS TERRASA, AGUSTÍN ESPINOSA AND ANA GARCÍA-FORNES

{lburdalo,aterrasa,aespinos,agarcia}@dsic.upv.es
DEPARTAMENTO DE SISTEMAS INFORMÁTICOS Y COMPUTACIÓN

UNIVERSIDAD POLITÉCNICA DE VALENCIA

CNO/ DE VERA SN
46022 VALENCIA, SPAIN

21

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 23

Abstract

In hard real-time systems, gain time is defined as the difference between the

worst-case execution time of a hard task and its actual processor consumption at

run time. This paper presents the results of an empirical study about how the

presence of a significant amount of gain time in a hard real-time system questions

the advantages of using the most representative scheduling algorithms or policies for

aperiodic or soft tasks in fixed-priority preemptive systems. The work presented

here refines and complements many other studies in this research area, in which

such policies have been introduced and compared. This work has been performed

by using the authors’ testing framework for soft scheduling policies, which produces

actual, synthetic, randomly-generated applications, executes them in an instrumented

real-time operating system, and finally processes this information to obtain several

statistical outcomes. The results show that, in general, the presence of a significant

amount of gain time reduces the performance benefit of the scheduling policies under

study when compared to serving the soft tasks in background, which is considered

the theoretical worst case. In some cases, this performance benefit is so small that the

use of a specific scheduling policy for soft tasks is questionable.

2.1 Introduction

In the field of hard real-time systems, the main goal is to achieve that none of the

so-called hard tasks in the system ever fails to meet its temporal requirements, usually

defined in terms of deadlines. The current practice for achieving this goal is to

adopt a certain scheduling paradigm in the development of the real-time system. The

paradigm imposes both a particular task model at design time and a corresponding

scheduling policy at run time, and then provides the system designer with a formal,

off-line feasibility analysis by which it is possible to prove whether all hard tasks

will be able to meet their deadlines before the system starts running. One of the

24 2.1. Introduction

most sound and widespread paradigms is fixed-priority preemptive scheduling. In

this paradigm, the task model requires each hard task to have some known temporal

attributes (release times, computation times, deadlines, etc.) and a fixed priority.

At run time, the system always selects the ready task with the highest priority for

execution in a preemptive manner.

Hard real-time systems may also include some other tasks without hard or strict

deadlines, which are normally referred to as soft tasks. The scheduling paradigm

typically considers that the execution of a soft task produces some utility value to

the system if the task can be completed before some point in time (related to the

task’s arrival time), after which this value progressively decreases; in contrast, the

utility value of a hard task instantly drops to zero after reaching its deadline. Soft

tasks are by definition not included in the off-line guarantee analysis, resulting in

two main consequences. First, the system is not a priori committed to run them

in a given time. And second, soft tasks are less restricted by the task model; in

particular, their worst-case execution times or their exact arrival patterns do not need

to be determined at design time. Thus, the general way to deal with soft tasks in

hard real-time systems is to try to run them as soon as possible when they arrive to

the system (thereby maximizing their utility), without compromising the deadlines of

hard tasks. In systems following the fixed-priority preemptive paradigm, the trivial

solution for this is to assign soft tasks a lower priority than any hard task, which

relegates them to running in the background. In order to improve the poor quality

of service obtained by this background policy, many authors have proposed specific

scheduling algorithms or policies for soft tasks. These policies are normally run-time

algorithms that work in a compatible way with the fixed-priority preemptive scheme

by which hard tasks are dispatched.

The off-line feasibility (or schedulability) analysis is based on comparing the

temporal requirements of each hard task against its theoretical worst-case running

scenario. In order to do so, one of the input parameters of the analysis is the

worst-case execution time (WCET) of each hard task. This is probably the most

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 25

difficult issue in the system design, since obtaining an accurate value of a task’s

WCET can be very complex, or even impossible, depending on the characteristics

of both the task’s code and the hardware on which the code is to be executed. An

extensive study of different techniques and tools, as well as existing trends and open

issues in the field of timing analysis in real-time systems can be found in [126].

Since an underestimated value of a hard task’s WCET can make an apparently safe

system crash at run time, the traditional approach has been to overestimate the

WCETs of hard tasks. On the other hand, even if an accurate estimation of a task’s

WCET can be assumed, the worst-case behavior is actually very rare, since tasks

do not always take the exact worst-case path within their code, and thus, it is often

the case for tasks to consume only a fraction of this maximum time, as pointed out

in [99]. Taking these two facts into account, it can be concluded that the usual case

for hard tasks is to consume less processor time than their WCETs at run time, and

often very significantly less. In real-time systems, the difference between a task’s

WCET and its actual processor consumption at run time is referred to as gain time.

When related to WCET overestimation, gain time has traditionally been considered

as a design problem for hard tasks, but also as a benefit for soft tasks. The problem

with WCET overestimation of hard tasks is that it restricts the ability of the system

to be schedulable on a particular processor. This means that the system may be

wrongly rejected by the off-line analysis, thereby forcing the system designer either

to redesign the hard task set or to run the system in a faster (and more expensive)

hardware than actually needed. However, from the viewpoint of soft tasks, gain time

is considered an advantage, since it increases the expected amount of processor time

available to their execution. In fact, some scheduling algorithms for soft tasks are

designed to make an effective use of gain time, in order to further improve the running

opportunities of soft tasks.

On the contrary, this paper presents the results of an empirical study about how the

presence of a significant amount of gain time in a real-time system considerably

reduces the advantages of using some of the most representative scheduling

26 2.1. Introduction

policies for soft tasks in fixed-priority preemptive systems. This work refines and

complements many other previous studies in this research area, in which these

scheduling policies have been introduced and compared, usually in a theoretical way

or by means of simulations. For this reason, the study has considered some of the

usual assumptions in the previous work regarding the specification of the experiment

load and the evaluation of the scheduling algorithms. In particular, the most important

assumptions are the following: soft tasks are assumed to have no deadlines, soft tasks

are dispatched in FIFO order, and the performance of the algorithms is measured by

means of the average response time of soft tasks.

The study presented here has been carried out by using the authors’ testing framework

for soft scheduling policies. The framework first generates synthetic test programs

and then runs each program on an instrumented operating system (a modified version

of Open Real-Time Linux) that implements the scheduling policies under study. As

a result of each execution, the framework automatically produces a complete set

of statistical data about the performance of the scheduling policy. The framework

has been carefully designed in order to make the results of the different scheduling

policies comparable, which basically involves two main aspects. First, the policies

themselves have been implemented in order to run the applications on equal terms;

in particular, all policies have a compatible interface of system calls, which allow

application tasks to have exactly the same code regardless of the policy running the

application. And second, the results of each execution are processed in order to

make all experiments comparable with each other. Furthermore, the combination of

experiments with different factors (such as amount of hard tasks, hard task utilization,

soft task utilization, etc.) can be used to determine to what extent each of these factors

individually affects the behavior of the different scheduling policies.

The main results of this paper show that, in general, the fact that hard tasks

consume less execution time than their estimated WCETs (which in turn produces the

availability of gain time) negatively affects the performance benefit of using any of the

policies under study with respect to scheduling soft tasks in background. This is also

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 27

true even for those policies that are specifically designed to efficiently reclaim and

use gain time. In nearly all cases, this performance benefit is significantly reduced

as the amount of gain time increases in the system. Under some conditions, this

performance benefit is so small, or even negative, that the use of a specific scheduling

policy for soft tasks becomes questionable. The final purpose of this work is for it

to be used as a guide to determine which scheduling policies for soft tasks are more

appropriate depending on the running conditions of the system and, specifically, the

amount of gain time that is available at run time.

This paper is structured as follows: First, Section 2.2 describes the scheduling

policies that take part in this work and some of the results obtained in previous

comparative studies. Section 2.3 introduces the framework used to generate and run

the experiments designed for this study, which are described in Section 2.4. The

results of the experiments are presented in Section 2.5. Finally, Section 6.6 discusses

the conclusions of the study.

2.2 Previous Work

2.2.1 Scheduling Policies

This study includes five of the most representative scheduling policies for aperiodic

or soft tasks in fixed-priority preemptive real-time systems: Deferrable Server [86]

(DS), Sporadic Server [17] (SS), Extended Priority Exchange [112] (EPE), Dynamic

Approximate Slack Stealing [16, 50] (DASS), and Dual Priorities [48, 50] (DP).

The execution of soft tasks in background, or Background scheduling (BG), is also

included in the study as a lower bound in the performance of soft task scheduling.

Server-based scheduling policies are founded on the idea of reserving some execution

bandwidth for soft tasks by means of adding a special task called “server” to the hard

task set which in turn runs the soft tasks. The priority and temporal parameters of

the server (period and computation time, also called budget or capacity) are adjusted

28 2.2. Previous Work

to off-line guarantee the entire task set. Both the Deferrable Server and the Sporadic

Server work in a very similar way at run time. The main difference between them is

the run-time strategy they use to replenish their budgets as soft tasks use them. This,

in turn, limits the particular off-line equations that can be applied to analyze their

schedulability. These conditions are more pessimistic for DS than for SS.

The Extended Priority Exchange algorithm uses a more complicated run-time

strategy than the two previous algorithms. This strategy is based on the fact that

there may be some available capacity for running soft tasks at each priority level as

well as producing dynamic priority exchanges among tasks in order to preserve and

use this capacity in an advantageous way for soft tasks. The initial capacity available

at each priority level is computed off line in order to guarantee the schedulability of

hard tasks, but it can be increased at run time if hard tasks consume less than their

WCET.

Slack-based algorithms are based on delaying the execution of hard tasks in order

to run soft tasks as soon as possible without missing any hard deadline. The

family of slack scheduling algorithms includes some exact [85, 51, 103, 104] and

approximate [50] versions. Among these algorithms, the Dynamic Approximate

Slack Stealing algorithm is the only one that is feasible in practice, since the

others present an excessive temporal or spatial overhead. The DASS is based on

a fine-grained run-time supervision of the application tasks’ execution, in order to

keep track of the available slack time at each (hard task’s) priority level. Then, soft

tasks can safely run before hard tasks while there is slack time available in the system

(that is, at all active hard priority levels) without compromising any hard deadline.

The Dual Priorities algorithm is based on assigning two priorities to each hard task,

an upper band and a lower band, while soft tasks run in a middle band. The middle

and lower bands have to be below the upper band of any hard task. At run time,

every hard task starts its periodic activations in its lower band until a promotion time

is reached; then, it runs the rest of the activation in its upper band. The system may

assign any priority ranges to the middle and lower bands, as long as the hard task

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 29

set is schedulable in the upper band. Compared to DASS, the main benefit of the

DP algorithm is that it needs very little run-time supervision by the system, since

promotion times can be calculated off-line.

Because of the purpose of this study, it is important to note that for both the DASS

and DP algorithms, some extensions have been developed in order to reclaim gain

time as it becomes available at run time, and then to use this gain time to run soft

tasks. These extensions, originally defined in [85, 50] (for slack-based algorithms)

and [50, 48] (for DP), are referred to as Propagated Gain Time and Self Gain Time in

this paper:

• Propagated Gain Time. Both DASS and DP admit an extension by which the

available gain time of any hard task i (gi) is computed every time it ends an

activation (gi is calculated by subtracting the actual computation time spent by

the task in the activation from the task’s WCET). By definition, this time may

be used to run soft tasks at task i’s or any lower priority level (hence the name

propagated).

The implementation of the propagated gain time extension is different for each

algorithm. In particular, DASS with this extension adds gi to the slack time

available at task i’s and lower priority levels, thereby increasing the amount

of time that all (active) hard tasks may be safely delayed to run soft tasks.

On the other hand, DP with this extension may delay for gi time units the

promotion times of hard tasks with priorities lower than i, thereby increasing

the opportunities for running soft tasks (in their middle band).

• Self Gain Time. This extension is exclusive for the DP algorithm. In DP, the

promotion time of each hard task is computed off-line in such a way that the

task can safely run (for its entire WCET) after reaching this promotion time.

Thus, if at the beginning of an activation, the task is allowed to run for some

time in its lower band, then it is safe to delay its promotion for that amount

of time in the current activation, potentially increasing the amount of time soft

30 2.2. Previous Work

tasks may be run in their middle-band priority.

2.2.2 Previous Comparative Studies

This section first presents the main conclusions of the simulation studies made by

other authors. It must be noted that results from different simulation studies are

difficult to compare because not all of them consider the same policies and they do

not present comparable testing strategies. However, it is commonly accepted that the

performance of the soft task scheduling policies is measured by means of the average

response time of soft tasks, which are usually considered to have no deadlines and are

served in FIFO order. The final part of the section concisely presents some general

results derived from the authors’ empirical testing framework, where all policies have

been tested on equal terms.

In general, server-based policies improve the results obtained by scheduling soft tasks

in background when the system’s total utilization (including hard and soft tasks) is

not too high; however, as the utilization of hard tasks grows, these policies tend

to perform like background scheduling. When comparing the DS and SS policies,

different studies do not come to the same conclusions. Studies in [65, 86, 17, 114]

conclude that SS is better than DS because it allows for larger capacities and gets

higher utilization values, while [66] shows larger response times for SS than for DS

and. Finally, [22] concludes that both policies have similar response times and can

get similar utilization values. Compared to servers, [112] shows that EPE obtains

better results than DS when the hard utilization is high.

Slack-based policies are taken into account in several studies. When compared with

the server-based and EPE policies [66, 62, 50, 49, 48], the main conclusion is that

slack-based algorithms outperform all of them. However, some of these studies also

state that the main drawback of slack-based algorithms is that most of them are not

practicable due to their high overhead. In particular, the Dynamic Slack Stealing

(DSS) policy is commonly used as a reference to compare other policies since it

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 31

has been proved to be optimal (see [51]) in the sense that it minimizes the response

times of soft tasks without missing any hard deadlines (however, Tia et al. [119]

showed some situations in which it is better not to use spare capacity immediately

and therefore, optimality cannot be achieved). When compared with this optimal or

exact version, the DASS exhibits a close performance with much less overhead. In

particular, the study in [50] shows that the DASS presents a performance that is very

near to DSS until the total load in the system (hard+soft+overhead) gets to 90%, at

which point the system performance starts to degrade. The results in [62] show that

DASS is very near to DSS in all cases, although in this study overhead is considered

to be negligible.

The Dual Priorities scheduling policy (DP) is compared to other scheduling policies

in [49, 48, 62, 64]. The results are very similar in all the studies: DP gets lower

response times than BG, EPE and server-based policies. In fact, DP performs in a

similar way to DASS when the system utilization is less than 90%, although response

times are better for slack-stealing-based policies. [64] also shows that DP performs

better than BG if and only if soft load is served in FIFO order.

Nearly all these studies do not consider the run-time overhead produced by the

specific scheduling policies. Some studies do consider overhead, but in terms of

theoretical worst-case costs (in orders of magnitude). The only studies in which

run-time overhead is included are [66], which uses the number of context switches

in the different simulations to approximate the total overhead produced by the

scheduling policies, and [50], which includes extra CPU cycles in the simulations

to approximate the cost of calculating the available amount of slack in the system.

This study also includes the implementation of BG, DSS and DP in a real operating

system and some overhead results, which show that DP presents a moderately higher

amount of overhead than BG, while DSS incurs in such a great overhead penalty that

makes it unfeasible in practice in systems with large numbers of hard tasks.

In contrast with these simulation studies, a general empirical study running real

applications in a Real Time Operating System (RTOS) was presented in [33].

32 2.2. Previous Work

This study presented three general results: (1) in general, all the algorithms

perform better than BG, even considering overhead; (2) all policies improve their

performances compared to background as the hard task utilization grows; and (3),

these performance improvements of all policies with respect to BG tend to disappear

as the number of hard tasks increases, and the same happens as the soft task utilization

grows. In addition, the study also presented some conclusions for each policy. The

two server-based policies (DS and SS) perform much worse than DASS or DP, in

spite of producing less overhead. In particular, differences in performance range

from 15% in systems with low utilization up to 40% or more in heavy loaded systems.

When compared, SS always performs better than DS, although the difference between

the two policies is not very significant unless the system presents a high hard task

utilization. This confirms the theoretical disadvantage of DS respect to SS about

having a more restrictive feasibility test, which leads to lower server capacity and

poorer performance. However, SS is more difficult to implement and produces more

overhead than DS. Due to the overhead, the performance of the DASS policy is worse

than expected (in the simulation studies) and most of the times it is outperformed by

DP. This confirms the conclusions of [48]. However, DASS gets slightly better results

than DP in heavy loaded systems, especially when the total utilization gets close to

100%.

Some of these scheduling policies have been subject to more recent studies in the

field of multi-processor systems. For example, SS has been adapted and optimized to

be effectively used in multi-processor systems [59]; DS has been shown to improve

the performance of soft tasks when compared to BG in asymmetric multi-processor

systems [40]; and both an optimal slack-based policy and DP have been used in order

to globally allocate soft tasks among processors [18, 19], with DP outperforming the

slack policy in heavy loaded systems.

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 33

Figure 2.1: The Testing Framework

2.3 The Testing Framework

This section summarizes the framework used to generate and run the experiments

described later in the paper. As depicted in Figure 2.1, the framework is basically

composed by four modules: Load Generator, Code Generator, the instrumented

RTOS, and Result Extractor. These modules are now described, placing special

emphasis on the main design ideas that support the validity of the results presented

in the paper.

2.3.1 The Load Generator Module

The framework can be configured to generate tests for many different scenarios,

depending on the particular goals of the experiment. This configuration is mainly

34 2.3. The Testing Framework

carried out in the input file of the Load Generator module, or load specification

file. According to the specification included in this file, the module generates

the experiment’s set of task set specification (TSS) files as an output. The load

specification file contains the desired values of the parameters that the load generator

will combine in order to create the task sets, as well as the number of task sets

to generate for each parameter combination (or number of replicas). The main

parameters that can be specified in the file include the number of hard and soft tasks,

hard tasks utilization, soft tasks utilization, the priority levels for soft tasks, maximum

hyperperiod, and hard tasks gain time. The Load Generator considers all possible

combinations of the input parameters and then, for each combination, it generates as

many task sets (TSS files) as the number of specified replicas. As a result, each TSS

file contains a complete specification of a task set, including the number of tasks,

their types (hard or soft) and their attributes (execution times, budgets, deadlines,

periods, priority bands, etc.).

Each task set is randomly generated within the limits of its corresponding

combination of input parameters, with two main restrictions: the set of hard tasks

has to be schedulable, and the budgets assigned to soft tasks in server-based policies

are maximized (while keeping the hard tasks schedulable). In particular, for each task

set to generate, the Load Generator follows this procedure:

1. The period of each task (Ti) is randomly generated, according to three input

parameters: the maximum hyperperiod of the task set, the type of random

distribution to use (uniform or exponential) and the range of this distribution

(maximum and minimum values). The set of generated periods is accepted

if the resulting hyperperiod is not greater than the maximum specified value;

otherwise, the process starts again.

2. According to the input specification, tasks are separated into two groups: hard

and soft. Then, in each group, the individual utilization of each task (Ui) is

computed by using the Uunifast algorithm [23] (which has been shown to

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 35

produce unbiased random task sets) according to two input parameters per

group: the number of tasks and the utilization.

3. The WCET of each task (Ci) is calculated as follows: Ci = TiUi. The input

specification may establish a minimum WCET; if so, the task set is discarded

if any Ci is below this value (and then the procedure returns to the first step).

4. The deadline for each task (Di) is generated between Ci and Ti by using a

uniform distribution.

5. The group of hard tasks is reordered by deadline (lowest deadline first). Then,

hard tasks are assigned priorities following a deadline monotonic policy (the

lower the deadline, the higher the priority). At run time, the actual priority

of each task will depend on the particular scheduling policy, but in any case,

the relative priority among hard tasks is maintained according to this initial

assignment.

6. For each hard task i, its computation time (Compi) is calculated as a function

of its WCET and the gain time percentage (G) specified in the input file:

Compi =
(100−G) ∗ Ci

100
(2.1)

7. The budgets for the servers in DS and SS policies are calculated as the

maximum values that keep the hard task set schedulable according to the exact

schedulability test (based on the maximum response time of each task) required

by each server policy. If the hard task set is not schedulable for any of the two

tests, then the task set is discarded and the procedure returns to the first step.

8. The initial parameters of some policies, such as the promotion times of hard

tasks in the dual-related policies or the initial aperiodic time available for hard

tasks in the EPE algorithm, are calculated.

9. In order to better approach the usual run-time behavior of tasks, and also to

ensure that different policies running the same task set will face exactly the

36 2.3. The Testing Framework

same load, the framework also generates a list of activations per task. In the

list, each activation corresponds to a task’s release and it stores the run-time

parameters that may vary in different releases of the same task. In particular,

for each activation k of any task i, two values are calculated:

(a) The actual computation time of the release (Compi[k]). This value is

computed by using a normal distribution with a mean equal to Compi
and a standard deviation value defined by the input specification.

(b) The time of the next release (Ti[k]). If task i is periodic, this value is

always set to Ti. Otherwise, if task i is aperiodic, this value is randomly

generated by using a uniform distribution with a range centered on Ti
plus-minus some percentage value defined by the input specification.

After this procedure successfully generates a schedulable task set, all its relevant

temporal parameters are written in the corresponding TSS file.

2.3.2 The Code Generator Module

The Code Generator module is responsible for producing actual test programs for

each TSS file (task set), specifically, one test program per soft scheduling policy to

be tested. Test programs are C source files that contain synthetic code generated for a

particular TSS file and scheduling policy, in a compatible way to the system interface

of the instrumented RTOS on which tests will be run, which is compatible with the

POSIX standard. Each task set requires the generation of a different test program per

policy because in POSIX, the selection of the scheduling parameters (priority and

policy) for each task is performed by the application at run time.

The generation of test programs has been designed to make the running conditions

of each test program both as close to its specification (TSS file) as possible, and as

similar for all policies as possible, so that results are not biased for any particular

policy. In order to achieve these goals, the test programs in the group corresponding

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 37

to the same TSS file (one program per policy) are generated to meet the following

four requirements:

• In every program in the group, execution starts at a critical instant, in which

all tasks are simultaneously released. This is the worst scenario for soft tasks,

but it is also a straightforward way of making all scheduling policies start on

equal terms.

• In every program in the group, any given task i is generated in order to follow

the sequence of release times (Ti[k]) specified in the TSS file. This ensures that

the release pattern of each task will be the same for every policy.

• In every program in the group, any given task i is generated to have exactly

the same code. This is possible because the policies under study have been

designed with a compatible set of system calls, and the selection of the

particular policy is performed at run time.

For each task i, the code is generated in order to spend a computation time

equal to Compi[k] for each release k, as specified in the TSS file. In order

to do so, the framework incorporates a calibration mechanism that adjusts the

generation of code to the expected computation time for a particular processor.

In practice, this calibration mechanism achieves actual execution times to be

between 90% and 100% of the expected ones.

• In every program in the group, hard tasks are released for two consecutive

hyperperiods, while soft tasks are released during the first hyperperiod only.

This is further discussed below.

In the simulation studies mentioned in Section 2.2, each experiment is carried out

by executing the simulated workload for a given period of time, which is normally

the hyperperiod of the experiment’s hard task set. The rationale for this is that the

release pattern of the hard task set is repeated after each hyperperiod, and the same is

true for the running conditions for the soft workload. However, with this approach,

38 2.3. The Testing Framework

it may happen that some soft workload is pending (i.e., awaiting execution) at the

end of the first hyperperiod, especially in heavily loaded systems. Furthermore, for

any given task set, the amount of pending soft workload at the first hyperperiod may

be notably different from one scheduling policy to another. The problem with this

is that the measurements corresponding to pending soft workload are not included in

the experiment’s results.

In the framework described in this paper, the solution for this is to generate the soft

workload during the first hyperperiod, in such a way that the specified soft utilization

is met, but to run the experiment until there is no pending soft workload, even if

this happens after reaching the first hyperperiod. In this way, for any given task

set, the running conditions are equal to all the scheduling policies, and the results of

each policy always include the entire soft workload. However, if any two policies

running the same task set finish at different times, the results related to the system

overhead are not directly comparable. Taking both restrictions into account, the

strategy adopted by the framework is to generate the soft workload during the first

hyperperiod of each experiment, but to run the experiment until exactly its second

hyperperiod, in order to guarantee that both the performance results are complete for

all policies and that their overhead results are comparable. This solution is valid as

long as the experiment design (in particular, the sum of hard and soft utilizations,

plus the overhead) allows the entire soft workload to be completed before the second

hyperperiod.

2.3.3 The Instrumented RTOS

The instrumented Real-Time Operating System (RTOS) on which test programs

are run is a modified version of Open Real-Time Linux [127], which is a small,

hard real-time executive running under Linux. From the application’s perspective,

Open RT-Linux provides a programming interface that is compatible with the POSIX

standard [73]. Internally, this RTOS has a simple run-time behavior, in which the

system deals with each hardware interruption or system call invocation by means

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 39

of a specific function and then, in all cases, the same scheduling function is called;

this function is the one that is responsible for selecting the new task to be run, and

then dispatching it, which provokes a context switch if the selected task is different

from the running one. The original scheduling policy that Open RT-Linux applies by

default for all tasks is fixed-priority preemptive (that is, POSIX’s ”SCHED FIFO”),

which has been used by the framework as the background (BG) policy. Because of

its simple design and small size, Open RT-Linux produces very low and predictable

overhead at run time. According to the experiments presented in this paper, carried

out on a Pentium III 700Mhz computer, the average cost of the aforementioned

scheduling function in RT-Linux ranges from 4.5µs (4 tasks) to 12µs (16 tasks), while

the maximum cost ranges from 12µs (4 tasks) to 30µs (16 tasks).

The framework has extended Open RT-Linux in two main ways: the implementation

of the soft scheduling policies under study and the incorporation of a tracing

mechanism by which it is possible to collect run-time information as applications

are executed.

The soft scheduling policies under study have been implemented and provided as new

scheduling choices for soft tasks at run time. To do this, some of these policies had

to be redesigned in order to be provided with POSIX-like interfaces (as presented

in [32]). The framework provides a specialized version of the system scheduler

module for each policy, in order to avoid the implementation of any given policy

to affect any other (in terms of overhead).

The tracing mechanism introduced to the RTOS includes a general, POSIX-like

tracing system, and a particular instrumentation of the RTOS code which traces some

system events (e.g., scheduling decisions, context switches, costs of the scheduler’s

functions, etc.) in order to analyze the behavior of the different scheduling policies.

As a result, the execution of any real-time program on the instrumented RTOS can

automatically produce a log file containing the events traced inside the RTOS during

this execution. Both the instrumentation and the collection of events have been

designed to make the overhead related to event tracing predictable and equivalent

40 2.3. The Testing Framework

for all policies (the average cost of tracing each event is under 500 ns in a 700Mhz

Pentium III processor, as shown in [117]). In particular, the set of system events and

their instrumentation points are the same for all policies; at run time, events are traced

to memory during the program execution, being dumped to the log file only after the

application tasks have stopped running.

2.3.4 The Result Extractor Module

The Result Extractor module is responsible for extracting useful information from

the logs generated by the instrumented RTOS when it runs the test programs. In

particular, the extractor module works in three steps, which are presented below.

In the first step, the extractor module opens the log corresponding to an individual

test program execution and then traverses it in order to calculate some predefined

metrics. A metric is defined as a property of a program’s execution. Examples of

metrics are some temporal properties of application tasks (response times, execution

times), costs of RTOS functions, number of context switches, etc. The output of

this step is a basic statistical analysis of each metric (average, maximum, minimum

and standard deviation). Among all the metrics, some of them are selected to be the

relevant results of the tests (for example, the average response time of soft tasks), and

then they are further processed by the module.

In the second step, the module combines the relevant results of all the executions

corresponding to the same task set (one per policy). For each result, the module

calculates the result ratio for each policy as the division of the policy’s result value

and the corresponding value obtained by the reference policy, which is BG. This

ratio thus represents the result difference of using this scheduling policy with respect

to using the BG policy for this particular task set.

In the third step, after the relevant result ratios have been computed for each task

set, the extractor module combines the result ratios corresponding to different task

sets in the experiment. The corresponding result ratios of different task sets are

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 41

directly comparable with each other because ratios express the relative differences

of results between a particular policy and the BG policy in each task set. For each

relevant result, this third and final step obtains two types of outcomes: a global value

per policy, expressing the average ratio for all the task sets in the experiment, and

the variation of the result ratio for each policy as a function of the different input

parameters of the experiment (or factors), such as the soft load utilization or the

amount of gain time, for example. This variation is computed by grouping the result

ratios of all tests according to the different values of this factor, and then calculating

the average ratio value for each group. For example, if an experiment comprised task

sets with four different values of gain time (0%, 25%, 50% and 75%), one possible

outcome would be the variation of the soft task response time of each policy as a

function of gain time. For each policy, the module would obtain four values: it would

first classify all the experiment results according to the gain time (in four groups),

and then, for each group, it would compute the average of the soft task response time

ratios obtained by this policy in all the experiments in the group. These four values

would show the variation (or evolution) of the result ratio for this policy as the factor

varies.

2.4 Experiment Design

The main goal of this study is to determine to what extent the presence of gain

time in real-time systems with hard and soft tasks influences the performance of the

most representative scheduling algorithms for soft tasks in fixed-priority preemptive

real-time systems. In order to better describe the experiments and their results, the

following two concepts related to the hard task set in the system are defined: the

nominal hard utilization, or nominal hard load, is the theoretical utilization of the hard

task set, derived from the WCET values established at the schedulability analysis. On

the other hand, the real hard utilization is the actual utilization of the hard task set at

run time, derived from the real execution time consumed by hard tasks as the system

42 2.4. Experiment Design

runs. Thus, the difference between the nominal and the real utilization in a given task

set will determine the amount of gain time that will be available for soft tasks at run

time. Please note that according to the framework described above, the experiment

sets as input parameters both the percentages of nominal hard load and gain time, and

then the real hard utilization is derived from them.

The main decision about the experiment design was to determine the number

of experiments to be carried out and to select the amount of nominal and real

hard utilization in each experiment. Some preliminary experiments with the same

framework proved that differences in performance between systems with and without

gain time increased along with the nominal hard utilization for all the scheduling

policies. For this reason, a total of four experiments were designed, with each of

them fixing a particular value of nominal hard utilization: 20%, 40%, 60%, and

80%. Then, for each experiment, the framework generated four series of task sets

with different percentage values of gain time (0%, 25%, 50%, and 75%), thereby

producing different values of real hard utilization. Because of size limitations, this

paper presents the results of the two experiments that rendered the most significant

results: the ones with 40% and 80% of nominal hard utilization1. The rest of

this section presents the parameter configuration of both experiments in full detail

(summarized in Table 2.1).

The next design decision was to determine which input specification parameters to

fix and which others to vary in order to generate the task sets for each experiment. In

particular, periods of hard tasks were generated by following a uniform distribution

between 50 and 2000 milliseconds, with a maximum hyperperiod of 10 seconds.

This distribution, along with its limits, were chosen in order to produce task sets that

are comparable with previous studies in the literature, such as [50, 66, 62] (some of

these studies concluded that choosing a uniform or exponential distribution did not

1Gain time had little effect on the performances of the scheduling algorithms in the experiment of
20% of nominal hard load, since the absolute amount of gain time was very small in this case, while the
effect in the experiment of 60% of nominal hard load was intermediate between the results of the two
experiments presented in the paper.

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 43

Table 2.1: Parameter summary of the experiments

Experiment 1: 40% Nominal hard load
hard tasks 4, 8, 12, 16

Policies
BG, DS, SS, EPE, DASS,

DASS-GAIN, DP, DP-GSELF,
DP-GPROP, DP-GBOTH

% Gain time Soft task utilization
0 10% to 60% (in steps of 10%)

25 10% to 70% (in steps of 10%)
50 10% to 80% (in steps of 10%)
75 10% to 90% (in steps of 10%)

replicas 50

Experiment 2: 80% Nominal hard load
hard tasks 4, 8, 12, 16

Policies
BG, DS, SS, EPE, DASS,

DASS-GAIN, DP, DP-GSELF,
DP-GPROP, DP-GBOTH

% Gain time Soft task utilization
0 10% to 20% (in steps of 10%)

25 10% to 40% (in steps of 10%)
50 10% to 60% (in steps of 10%)
75 10% to 80% (in steps of 10%)

replicas 50

affect the results). On the other hand, the rest of the parameters in the specification

were varied within certain limits in each experiment, in order to be able to study

the influence of these parameters on the performances of the policies under study.

In particular, for each experiment, the framework generated task sets for all the

combinations of the following varying parameters: number of hard tasks (4, 8, 12,

and 16), percentage of gain time (0%, 25%, 50%, and 75%) and soft load utilization

(from 10% up to achieving 100% of total real utilization, in increments of 10%).

For each possible combination of all input parameters, 50 replicas (different task

sets) were generated. In the generation of each task set, the run-time variability

parameters of hard and soft tasks were set in the following manner: the computation

44 2.4. Experiment Design

time of each (hard or soft) task was varied in an interval of [−10%, 10%] of the

task’s real computation time (using a normal distribution), while the arrival pattern

of each soft task was varied within an interval of [−10%, 10%] of the task’s period

(using a uniform distribution). Please note that, as explained in Section 2.3, the

framework always generates task sets in such a way that (1) hard task are schedulable

according to the feasibility analysis, and (2) the budgets for the server (soft) tasks in

server-based policies are as large as possible.

By combining all these different specification parameters, the total number of task

sets for the experiments of 40% and 80% of nominal hard utilization were 6000

and 4000, respectively. For each task set, the framework generated a series of

test programs, one for each of the ten scheduling policies considered in this study:

Background (BG), Deferrable Server (DS), Sporadic Server (SS), Extended Priority

Exchange (EPE), Dynamic Approximate Slack Scheduling (DASS), DASS with the

propagated gain time extension (DASS-GAIN), Dual Priorities (DP), DP with the

propagated gain time extension (DP-GPROP), DP with the self gain time extension

(DP-GSELF) and DP with both types of gain time extensions (DP-GBOTH). As a

result, the total number of test programs generated, compiled and executed for the

two experiments were 60000 and 40000, respectively. All programs were run on a

Pentium III 700Mhz computer, with 384Mb of RAM.

In every task set, the soft load was modeled (and generated) as a single aperiodic

task configured to have the best running opportunities according to each scheduling

policy under study: in BG, the soft task is always scheduled at the lowest priority.

In SS and DS, the soft task is scheduled at the highest priority as long as there is

some budget left, and it is otherwise relegated to running in the background. In EPE,

the DASS-related and the DP-related policies, the soft task is always scheduled in

a middle-band priority, while hard tasks start their activations in their lower-band

priorities (where the soft task can preempt them) and then they may change to their

upper-band priorities if certain running conditions are reached (in particular, the

available capacity is exhausted in EPE, or the available slack is exhausted in DASS,

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 45

or the tasks’ promotion times are reached in DP). According to some studies, this

configuration may not be optimal in the case of DS and SS (in [22] it is shown that,

by assigning the soft task the highest priority, the budget adjustment in server-based

policies may not be optimal if task deadlines are lower than their periods). However,

the selection of the optimal server parameters (budget, period and priority) is still an

open research issue. For this reason, the experiments were set to schedule servers at

the maximum priority, which is the most common approach in the literature.

In order to be able to compare the results with previous studies, the performances

of the scheduling polices were measured by means of the average response time of

soft tasks. In addition, the experiments also measured the overhead of the scheduling

algorithms, in order to globally quantify the extra cost incurred by each algorithm and

to relate it to its performance, if possible. In particular, the experiments measured

two overhead indicators in each test: the number of context switches and the total

scheduling time spent by the RTOS (the cumulated cost of the scheduling function

inside the RTOS for the duration of each test). In this context, it has to be noted

that the potential effect of the overhead on the performance of a scheduling policy

depends on the proportion between the overhead values and the computation times

of the application tasks (the effect increases as task computation times get closer to

the scheduling costs). Taking this into account, the experiments were configured in

order to generate task sets with task computation times in a reasonable range when

compared to the average scheduling overhead of the reference policy (BG) measured

on the same testing hardware. In particular, the experiments were configured for this

base overhead to be around 10% of the total execution time, which is considered to

be enough to influence the policy performance, but still within a reasonable range

when compared to the overhead in real systems.

46 2.5. Results

2.5 Results

The experiments considered three relevant results for each scheduling policy in

each test: the soft task response time, the number of context switches, and the

total scheduling cost, with the first one measuring the performance and the last two

measuring the overhead of the scheduling algorithms. As explained in Section 2.3.4,

these relevant results are expressed in relative terms (ratio values) with respect to the

respective results obtained by BG, which is the reference policy. Thus, a ratio value

of 1.0 expresses a result that is equal to the one obtained by BG, a ratio value of 0.9

expresses a result that is 10% lower than the result obtained by BG, and so on.

The following subsections analyze the results obtained in the two experiments: 40%

and 80% of nominal hard utilization, named Experiment 1 and Experiment 2.

2.5.1 Experiment 1: 40% of Nominal Hard Utilization

The global performance results of the experiment for each scheduling policy are

presented in Table 2.2. This table shows the performance difference between each

policy and the BG policy by means of a set of percentile values of the soft task

response time ratios for all the 6000 task sets in the experiment (hence including all

combinations of the varying parameters in the experiment: number of hard tasks, gain

time, and soft load).

According to the values in the table, both DS and SS get better results than BG in

a very low number of task sets only (the 5th percentile values are 0.88 in DS and

0.85 in SS, meaning that in 5% of the task sets, these algorithms get 12% and 15%

of improvement in the soft task response time over BG). However, all values from

the 25th percentile on are higher than 1.0 for both policies, which means that in at

least 75% of the cases, they present slightly negative benefits when compared to BG,

due to their extra overhead. DASS-related and DP-related policies perform better

than BG in all cases, but only significantly better in a reduced number of task sets

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 47

Table 2.2: Soft task response time ratios in Experiment 1 (percentile values)

Percentiles
Policy 5% 25% 50% 75% 95%
DS 0,8850 1,0007 1,0026 1,0058 1,0135
SS 0,8590 1,0011 1,0030 1,0061 1,0126
EPE 0,6721 0,9035 0,9692 0,9957 1,0073
DASS 0,5149 0,7568 0,8876 0,9594 0,9967
DASS-GAIN 0,5129 0,7403 0,8661 0,9384 0,9867
DP 0,5575 0,7837 0,8947 0,9551 0,9920
DP-GSELF 0,5416 0,7822 0,8928 0,9545 0,9919
DP-GPROP 0,5570 0,7845 0,8931 0,9552 0,9924
DP-GBOTH 0,5429 0,7822 0,8924 0,9540 0,9919

(their improvement over BG is around 25% in their 25th percentile, but this figure is

reduced to 5% of improvement in their 75th percentile). In addition, the ratio values

show almost no difference among these six policies, which implies that the gain time

reclaiming extensions of DASS or DP do not improve the results obtained by these

two algorithms in the experiment. Finally, the ratios of EPE show intermediate results

between DS/SS and DASS/DP-related policies. The improvement of EPE over BG is

10% or higher in 25% of cases, it is negligible in at least 50% of the cases, and it is

negative in at least 5% of cases, again due to its extra overhead.

The performance difference between each specific policy and BG can be further

analyzed by considering the effect of gain time. In Figure 2.2, the average ratio of

the soft task response time of each policy is represented as a function of the available

gain time. For each policy, the graph presents the average of the ratio values obtained

by the policy in all the task sets with a particular amount of gain time. As can be

observed, the ratio values for all policies become closer to 1 as the amount of gain

time grows, meaning that the performance difference between each policy and BG is

reduced as the amount of available gain time increases. This effect is more acute in

DASS-related and DP-related policies, since they obtain much better results (between

30% to 35% of benefit) in systems with no gain time than in systems with 75% of

gain time (where the benefit is only around 5%).

48 2.5. Results

Finally, Figures 2.3, 2.4, 2.5 and 2.6 show the combined effect of gain time with

the increase of the amount of soft load in the system. This is done by showing

four graphs, each one depicting the average values of the soft task response time

ratios as a function of the amount of soft load, in task sets with a specific amount

of gain time (graphs correspond to tests where hard tasks had 0%, 25%, 50%, and

75% of gain time, respectively). Please note that the number of points for every

policy in each graph is different because task sets were produced in such a way

that the soft task utilization was generated in increments of 10% until a 100% of

total (hard plus soft) real utilization was reached. There are three relevant aspects

to be pointed out about these graphs. First, in the four graphs, the results classify

policies in three groups (the two server-based policies, EPE, and the DASS-related

and DP-related policies) with little difference among the policies in each group.

This is consistent with the conclusions derived from both Table 2.2 and Figure 2.2.

Second, considering each graph separately, the performance benefits of all policies

with respect to BG are reduced as the amount of soft load increases in the system (this

confirms the conclusions of [33], independently of the amount of gain time available

in the system). And third, considering the four graphs together, the performance

benefits of all policies with respect to BG are reduced, some of them severely, as the

amount of gain time increases in the system. In the last graph (75% of gain time),

there is practically no benefit in using any of the policies, especially for a high amount

of soft load.

Regarding the overhead results of the experiment, Table 2.3 displays the global

values, in terms of the increment percentage with respect to BG of two average ratios:

the total number of context switches (second column) and the total scheduling cost of

each execution (third column). For each increment value, the number in parenthesis

expresses its standard deviation. The context switch values in the table show that,

except for the EPE algorithm (with 8% of increment), there is a small general penalty

in the number of context switches for using specific policies for soft tasks rather than

using BG (less than 3% in all these policies). The DASS algorithm even presents a

negative value, meaning that this policy actually produces fewer context switches (on

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 49

Table 2.3: Average overhead ratios (and std. dev.) in Experiment 1 (values in % of increment with
respect to BG)

Policy # C. Switch Total sched. Cost
DS +0,90 (3,24) +14,36 (13,25)
SS +1,42 (4,42) +18,58 (15,23)
EPE +8,35 (6,04) +53,36 (25,76)
DASS -0,79 (3,06) +43,15 (23,42)
DASS-GAIN +2,74 (4,99) +43,99 (24,35)
DP +2,37 (3,95) +24,82 (17,04)
DP-GSELF +2,34 (3,92) +22,06 (16,45)
DP-GPROP +2,38 (3,97) +25,96 (17,41)
DP-GBOTH +2,34 (3,94) +24,98 (17,19)

average) than BG. On the other hand, considering the total scheduling cost of each

test, it is clear that there is a significant penalty for using specific policies with respect

to using BG, especially in some of the policies. In particular, the extra overhead is

considerably higher than BG in DASS-related policies and EPE.

2.5.2 Experiment 2: 80% of Nominal Hard Utilization

The global performance results of the experiment are shown in Table 2.4. This table

shows the performance difference between each policy and the BG policy by means

of a set of percentile values of the soft task response time ratios for all the 4000 task

sets in the experiment (including all combinations of the varying parameters).

Comparing the data in this table with the global results of Experiment 1 (in Table 2.2),

the policies in this second experiment present the following performances: the two

server-based policies again present the worst results, only slightly better than in the

previous experiment (both policies now perform better than BG in at least 25% of the

cases). EPE now performs considerably better than BG in a large number of cases

(20% better in 50% of the cases, and 40% better in half of them); in fact, EPE now

show ratios that are similar to DASS, or even slightly better (from the 75th percentile

on). In this experiment, there is a great difference between the two versions of DASS.

50 2.5. Results

Table 2.4: Soft task response time ratios in Experiment 2 (percentile values)

Percentiles
Policy 5% 25% 50% 75% 95%
DS 0,5672 0,9815 1,0028 1,0079 1,0196
SS 0,3549 0,9088 1,0007 1,0064 1,0162
EPE 0,2022 0,5872 0,8135 0,9318 1,0016
DASS 0,0761 0,5321 0,8137 0,9495 1,0018
DASS-GAIN 0,0632 0,2427 0,5147 0,7538 0,9068
DP 0,2076 0,4291 0,6334 0,8032 0,9543
DP-GSELF 0,1539 0,3674 0,6000 0,7958 0,9543
DP-GPROP 0,2083 0,4285 0,6333 0,8022 0,9535
DP-GBOTH 0,1539 0,3644 0,5983 0,7930 0,9532

For every percentile rank shown in the table, the ratio value of DASS is notably

higher than the value of DASS-GAIN, meaning a better performance for the latter.

Globally, DASS-GAIN obtains the best performance results in this experiment, while

the performance of DASS is worse than all the dual-based policies, and sometimes

worse than EPE. Finally, the performances of the four DP-related policies are quite

homogeneous, with DP-GSELF and DP-GBOTH only moderately improving the

results of the other two, and all of them being intermediate between DASS-GAIN and

DASS. If compared with the previous experiment, the performances of all DP-related

algorithms are now much better in all percentile ranks.

These global results are now refined by introducing the effect of gain time on the soft

task response ratios, as shown in Figure 2.7. This graph again shows that gain time

poses a negative effect on the performance benefit of all policies with respect to BG.

In fact, comparing this graph with the one for the previous experiment, the effect is

now more severe for all policies. This general trend presents an exception, the EPE

policy in systems with no gain time, which is further discussed below. When looking

at specific policies, some relevant aspects may be pointed out: SS now outperforms

DS, especially in systems with no gain time. EPE gets better performance than DASS

in systems with large amounts of gain time (50% or higher). The effect of gain

time on DASS is critical, where the performance benefit ranges from around 85%

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 51

in systems without gain time to less than 10% in systems with a 75% of gain time);

this effect is also evident in DASS-GAIN, but this latter policy only degrades up to an

average benefit of 25% due to its ability to effectively use gain time for executing soft

tasks. Finally, DP-GSELF and DP-GBOTH outperform both DP and DP-GPROP in

systems with a low amount of gain time, but this difference tends to disappear as gain

time augments.

The special case of the EPE policy is now discussed. According to the graph, EPE

performs worse in systems without gain time than in systems where there is some

gain time available (up to 50% of gain time). The reason for this can be related

to (1) the extra overhead of this algorithm and (2) the inefficient way in which the

algorithm computes off-line the initial aperiodic time available for hard tasks (which

is more evident in this second experiment, where task sets have a high nominal hard

utilization). The algorithm is designed to increase these aperiodic time values at run

time by reclaiming gain time; however, in systems with no available gain time, EPE

cannot compensate its poor initial configuration, and thus its performance gets closer

to BG. Excluding this particular case, the effect of gain time on the EPE algorithm

time shows the same trend than on any other policy.

Finally, Figures 2.8, 2.9, 2.10 and 2.11 show the influence of the soft task utilization

in the performance ratios of all policies in each of the four possible gain time values

of the experiment. The conclusions that can be drawn from these graphs are similar to

the ones in the previous experiment and are consistent with the general performance

results of this experiment presented above: first, in systems with any particular value

of gain time, the average performance benefits of all policies versus BG decrease as

the amount of soft utilization grows. Second, for any given value of soft utilization,

all policies exhibit less performance benefit with respect to BG as the amount of gain

time increases in the system (except for the case of EPE in systems with no gain time,

as discussed above). And third, all policies perform better now than in the previous

experiment, for any given value of gain time. In this second experiment, there is a

clear advantage of using some specific policies for soft tasks with respect to using

52 2.5. Results

BG, even in systems with a high percentage of gain time. Among such policies, the

best results are rendered by DASS-GAIN and the four DP-related policies.

Table 2.5: Average overhead ratios (and std. dev.) in Experiment 2 (in % of increment with respect to
BG)

Policy # C. Switch Total sched. cost
DS +4,48 (7,44) +14,23 (12,98)
SS +6,01 (9,75) +18,05 (14,69)
EPE +11,86 (8,02) +51,04 (26,69)
DASS +1,20 (5,85) +43,09 (23,41)
DASS-GAIN +4,14 (8,10) +44,74 (24,79)
DP +2,49 (5,40) +23,32 (16,57)
DP-GSELF +2,53 (5,53) +21,84 (16,84)
DP-GPROP +2,48 (5,41) +23,52 (16,31)
DP-GBOTH +2,52 (5,56) +23,88 (17,51)

Table 2.5 presents the global overhead results for this experiment. When compared

with the previous experiment, the values for the total scheduling costs are similar

for each policy, while the values for the number of context switches are now higher

in all policies except the DP-related ones. In particular, server-based policies have

increased their context switch penalties with respect to BG around 4% (due to a

higher number of times in which their budgets run out), the DASS-GAIN exhibits an

increment of around 2% (due to the presence of a greater amount of absolute gain

time, which allows more tasks to be run within the intervals of reclaimed gain time),

and the EPE algorithm has incremented its penalty from around 8% to almost 12%

(due to both more gain time available and a mechanism of reclaiming and using this

time less efficiently than other algorithms, such as DASS-GAIN).

When analyzing the global overhead ratios as a function of the experiment

parameters, the one with the greatest influence was, as expected, the number of

hard tasks (since all the scheduling policies are based on certain computations to

be performed over the entire list of hard tasks). In order to better show this, this

second experiment was extended to incorporate task sets with more hard tasks (up to

32). The results are presented in Figure 2.12. The graph shows that the number of

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 53

hard tasks in the system produces a linear increment of the total overhead ratio with

respect to BG in all policies, but this effect is more pronounced in some policies than

in others. In particular, three different groups of policies can be observed: (1) the

overhead values of DS and SS with respect to BG are barely affected; (2) for DASS,

DASS-GAIN and EPE, the effect of this parameter is very significant (in EPE, the

total scheduling cost is 26% higher than BG with 4 tasks, but it gets up to 87% higher

with 32 tasks); and (3) the DP-related policies present an intermediate effect, in which

the ratio worsens by around 7% every time the number of hard tasks doubles.

2.6 Conclusions

This paper has presented the results of an empirical study on the most relevant

scheduling policies for soft tasks in fixed-priority, preemptive real-time systems. In

particular, the goal of the study was to characterize the effect of gain time on the

behavior of these scheduling policies. The existence of gain time, which is defined

as the difference between the WCET of a hard task and its actual execution time, is

typical in many real-time systems, for two main reasons. First, because the WCET

overestimation is still a common practice in the design of many real-time systems in

order to ensure the safety of the schedulability analysis. And second, because even

if WCETs are accurately calculated, the typical case for tasks is to consume only a

fraction of their WCETs at run time. Traditionally, gain time has been regarded as

a design problem for hard tasks (when related to WCET overestimation), but also

as an opportunity for soft tasks, which can use this spare time in order to improve

their response times. Indeed, some scheduling policies for soft tasks have included

specific extensions to make an effective use of this gain time.

The most general conclusion of the paper is that, other things being equal, the

increase in gain time in the system significantly reduces the advantages of using any

of the policies under study. More specifically, the relative performance benefits of

all policies with respect to serving soft tasks in background (BG) are significantly

54 2.6. Conclusions

reduced for all policies as gain time increases. This is consistent with the theoretical

definition of these policies, where performance can be directly related to some

policy variables that depend on the hard nominal load (such as the servers’ budgets,

the run-time available capacity/slack for EPE/DASS, or the promotion times for

DP). Furthermore, the results presented in the paper have shown that this negative

influence of gain time may affect policies differently, depending on some system

parameters, as it is now summarized.

In systems with low hard nominal utilization, gain time produces a homogeneous

negative effect on all policies with respect to BG. Although all policies still perform

better than BG except in some particular cases (DS and SS actually perform worse

than BG in systems with high percentages of gain time, due to their extra overheads),

adopting any of them becomes less worthwhile as the amount of gain time increases,

especially for systems with high soft load utilization. Moreover, in the case of DASS

or DP, their gain-time extensions have no effect on their respective performance

benefits with respect to BG.

In systems with high hard nominal utilization, there is an even more pronounced

negative impact of gain time on all policies (compared to BG), but this impact does

not affect all policies in the same way. Both server-based policies provide good

results when no gain time is available, but they rapidly degrade to BG as gain time

augments, since their budgets become artificially small, and they cannot compensate

this at run time. Moreover, as soft utilization grows, they end up performing worse

than BG due to their extra overhead (especially due to the higher number of context

switches, which is also a consequence of server budgets being very small). It has to

be noted that SS has been implemented according to its official definition by POSIX;

a recent study [113] claims that this definition has some defects which directly affect

its performance and proposes some corrections, which have not been incorporated

to the standard yet. EPE performs worse when there is no gain time available,

because of being unable to compensate both its high overhead and its inefficiency

at computing the initial capacity values of hard tasks. However, in systems with gain

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 55

time, it presents much better results, and it ends up outperforming both server-based

policies and DASS. Gain time has a very strong negative effect on DASS, which

makes this policy degrade dramatically as gain time augments. In this case, its

gain time extension becomes vital to compensate this degradation, to the extent that

DASS-GAIN outperforms all other policies, even considering its extra overhead.

Finally, the four DP policies (DP plus its three gain time extensions) present the

most stable behavior in the performance results as gain time augments. In this case,

the incorporation of gain time extensions does not produce a clear benefit, and all

policies tend to perform equally (and equal to DASS-GAIN) with greater values of

gain time. Also, since that DP has a straightforward implementation and produces

little overhead, this policy is probably the best choice for these systems.

Acknowledgment

This work is partially funded by research projects PROMETEO/2008/051,

CSD2007-022 and TIN2008-04446.

Appendix A: Figures

56 2.6. Conclusions

Figure 2.2: Soft task response time ratios as a function of gain time in Experiment 1

Figure 2.3: Soft task response time ratios as a function of soft load in Experiment 1, 0% of gain time

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 57

Figure 2.4: Soft task response time ratios as a function of soft load in Experiment 1 with 25% of gain
time

Figure 2.5: Soft task response time ratios as a function of soft load in Experiment 1 with 50% of gain
time

58 2.6. Conclusions

Figure 2.6: Soft task response time ratios as a function of soft load in Experiment 1 with 75% of gain
time

Figure 2.7: Soft task response time ratios as a function of gain time in Experiment 2

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 59

Figure 2.8: Soft task response time ratios as a function of soft load in Experiment 2 with 0% of gain
time

Figure 2.9: Soft task response time ratios as a function of soft load in Experiment 2 with 25% of gain
time

60 2.6. Conclusions

Figure 2.10: Soft task response time ratios as a function of soft load in Experiment 2 with 50% of gain
time

Figure 2.11: Soft task response time ratios as a function of soft load in Experiment 2 with 75% of gain
time

2. Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in
Real-Time Systems 61

Figure 2.12: Total overhead ratios as a function of the number of hard tasks in Experiment 2

CHAPTER

3
Supporting Social Knowledge in

Multiagent Systems through Event
Tracing

3.1 Introduction . 65
3.2 Event tracing in multiagent systems 67
3.3 Tracing system requirements 70
3.4 Conclusions and future work 74

AUTHORS:
LUIS BÚRDALO, ANDRÉS TERRASA, ANA GARCÍA-FORNES AND AGUSTÍN ESPINOSA

{lburdalo,aterrasa,agarcia,aespinos}@dsic.upv.es
DEPARTAMENTO DE SISTEMAS INFORMÁTICOS Y COMPUTACIÓN

UNIVERSIDAD POLITÉCNICA DE VALENCIA

CNO/ DE VERA SN
46022 VALENCIA, SPAIN

63

3. Supporting Social Knowledge in Multiagent Systems through Event Tracing65

Abstract

Social knowledge is one of the key aspects of MAS in order to face complex problems

in dynamical environments. However, it is usually incorporated without specific

support on behalf of the platform and that does not let agents take all of the advantage

of this social knowledge. At present time, the authors of this paper are working in

a general tracing system, which could be used by agents in the system to trace other

agents’ activity and that could be used as an alternative way for agents to perceive

their environment. This paper presents first results of this work, consisting of the

requirements which should be taken into account when designing such a tracing

system.

3.1 Introduction

These days, the use and importance of multiagent systems (MAS) has increased

because their flexible behavior is very useful to deal with complex problems in

dynamic and distributed environments. This is not only due to agents individual

features (like autonomy, reactivity or reasoning power), but also to their capability

to communicate, cooperate and coordinate with other agents in the MAS in order to

fulfil their objectives.

The necessary knowledge to support this social behavior is referred to by Mařik et

al in [90] as social knowledge. This social knowledge plays an important role in

increasing the efficiency in highly decentralized MAS. Social abstractions such as

teams, norms, social commitments or trust are the key to face complex situations

using MAS; however, these social abstractions are mostly incorporated to the MAS at

user level; this is, from the multiagent application itself, without specific support from

the multiagent platform, by means of messages among agents or blackboard systems.

This weak integration of high level social abstractions, also mentioned by Bordini et

al in [26], prevents agents in the MAS from exactly knowing what is happening in

66 3.1. Introduction

their environment, since they depend on other agents actively informing them about

what they are doing. This dependance on other agents sets out two major problems.

First, it can lead to excesive overhead in some of the agents. And second, it is also

difficult to trust the information provided directly by other agents using messages in

open MAS.

An alternative solution to provide social knowledge could be an event tracing system,

integrated within the multiagent platform, which could be used by agents in the

system to perceive their environment without having to actively notify each change

to the rest of the agents which could be interested in what they do. Such a tracing

system, integrated within the multiagent platform and providing a trustworthy event

set which were capable to reflect not only communication among agents, but also

agents’ perceptions, etc, could be used as a way to provide social knowledge to

the MAS. Also, when coming from the multiagent platform, tracing information

related to agent’s activity is more trustworthy than agent’s traditional messages or

blackboards, since agents do not have the chance to deliberately communicate false

information about their activity. Agents can trust the trace system as much as they

can trust the multiagent platform.

Applications which extract information from the system by processing event streams

at run time are already considered in the field of event driven architectures [89] and

the idea of an standard tracing system available for processes in a system already

existed in the field of operating systems (and at present it is contemplated by the

POSIX standard[73]). These concepts can be applied to th field of MAS, where

event tracing is still considered a facility to help MAS developers in the verification

and validation processes.

This paper presents the requirements of such a general, platform-integrated tracing

system applied to MAS. These requirements should be taken into account in order to

develop a general abstract trace model for MAS, which could be finally incorporated

to a real multiagent platform. The rest of the paper presents is structured as folows:

Section 4.2 comments existing work by other authors in the field of tracing MAS.

3. Supporting Social Knowledge in Multiagent Systems through Event Tracing67

Section 4.3 presents a set of requirements which should be taken into account in order

to design a general tracing system which could be used to improve agents sociability.

Finally, section 6.6 comments this work’s main conclusions and future work which

is still to be carried out in order to incorporate such a tracing system to a MAS.

3.2 Event tracing in multiagent systems

One of the most popular tracing facilities for MAS is the Sniffer Agent provided by

JADE[21]. This tool keeps tracking of all of the messages sent or received by agents

in the system and allows the user/administrator/developer to examine their content.

These messages can be stored in a log file to be examined after the application has

stopped running, so that the MAS can also be traced off-line. JADE also provides an

Introspector Agent, which can be used to examine the life cycle of any agent in the

system, its behaviors and the messages it has sent or received.

JADEX[101] provides a Conversation Center, which allows a user to send messages

directly to any agent while it is executing and to receive answers to those messages

from a user-friendly interface. It also provides a DF Browser to track services offered

by any agent in the platform at run time and a BDI Tracer which can be used to

visualize the internal processes of an agent while it is executing and show causal

dependencies among agents’ beliefs, goals and plans. Apart from these facilities,

JADEX also incorporates a Remote Agent, which provides access to some of JADE’s

tracing facilities, like the Agent Introspector and the Sniffer Agent.

The JACK[4] multiagent platform does not provide a sniffer agent, but it supports

monitoring communication among agents by means of Agent Interaction Diagrams.

It also provides other introspecting tools with different functionalities: a Design

Tracing Tool, to view internal details of JACK applications during execution, and a

Plan Tracing Tool, to display and trace the execution of plans and the events that

handle them. JACK also provides debugging tools that work at a lower level of

abstraction in order to debug the multiagent system in a more exhaustive way: Audit

68 3.2. Event tracing in multiagent systems

Logging, Generic Debugging/Agent Debugging.

Other examples of tracing facilities provided by platforms is ZEUS’ Society

Viewer[45] which, apart from showing organisational inter-relationships among

agents in the system, it can also show messages exchanged among agents. ZEUS

also provides an Agent Viewer, which allows the user/administrator to monitor and

change the internal state of the agent, its actions, used resources, etc. JASON[24, 25]

provides its Mind Inspector Tool, to examine the internal state of agents across the

distributed system when they are running in debugging mode.

Apart from those tools provided by multiagent platforms themselves, there are

many tracing facilities provided by third party developers. This is the case of Java

Sniffer[120], developed by Rockwell Automation, a stand alone java application

based on JADE’s Sniffer Agent which is able to connect to a running JADE system in

order to track messages among agents, to reason about them and to show them to the

user from different points of view. Another third party tool based on JADE’s Sniffer

Agent is ACLAnalyser[28], which intercepts messages interchanged by agents during

the execution of the application and stores them in a relational database. After

the execution, this message database can be inspected to detect social pathologies

in the MAS. Later work by the same authors [29] combine results obtained with

ACLAnalyser with data minning techniques to help in the MAS debugging process.

MAMSY, the management tool presented in [109] lets the system administrator

monitorize and manage a MAS running over the Magentix multiagent platform[7].

MAMSY provides graphical tools to interact with the MAS and visualize its internal

state at run time, including not only nodes and agents, but also organizational units.

It also provides a message tracing tool, similar way to JADE’s Sniffer Agent, which

lets the system administrator visualize message interchange among agents.

In [95], the authors describe an advanced visualisation tools suite for MAS developed

with ZEUS, although the authors also claim these tools could be used with other

platforms (more precisely, with CommonKADS). The developed suite allows for

inspecting message interchange among agents in a society, displaying graphically

3. Supporting Social Knowledge in Multiagent Systems through Event Tracing69

the different tasks in the society and its execution state, examining and modifying

the internal state of any of the agents in the system and comparing statistics not only

for individual agents, but also for agent societies. It also allows for the graphical

display of the different tasks in the society and their execution states, examining and

modifying the internal state of any of the agents in the system and comparing statistics

not only for individual agents, but also for agent societies.

Tracking messages has also been used in [98], which comments an ampliation of the

Prometheus methodology and the related design tool to help the designer to detect

protocol violations by tracing conversations among agents in the system and to detect

plan selection inconsistencies.

Lam et al present in [81] an iterative method based on tracing multiagent applications

to help the user understanding the way those applications internally work. Lam et

al also present a Tracer Tool which implements the described Tracing Method. The

Tracer Tool can be applied to any agent system implementation, regardless of agent or

system architecture, providing it is able to interface with Java’s logging API (directly

or via a CORBA interface). Results obtained with this method were presented in [82].

Bose et al present in [27] a combination of this Tracer Tool with a Temporal Trace

Language (TTL) Checker presented in [3]. This TTL Checker enables the automated

verification of complex dynamic properties against execution traces.

As it can be appreciated, tracing facilities in MAS are usually conceived as debugging

tools to help in the validation and verification processes. It is also usual to use these

tracing tools as a help for those users which have to understand how the MAS works.

Thus, generated events are destinated to be understood by a human observer who

would probably use them to debug or to validate the MAS and tracing facilities are

mostly human-oriented in order to let MAS users work in a more efficient and also

comfortable way. Some multiagent platforms provide their own tracing facilities,

although there is also important work carried out by third party developers. However,

even those tracing facilities which were not designed by platform developer teams are

usually designed for a specific multiagent platform. There is not a standard, general

70 3.3. Tracing system requirements

tracing mechanism which let agents and other entities in the system trace each other

as they execute like the one provided by POSIX for processes.

3.3 Tracing system requirements

From the viewpoint of the tracing process, a MAS can be considered to be formed

by set of tracing entities, or components that are susceptible of generating and/or

receiving tracing events. The tracing system needs to consider, at least, the following

list of components inside the MAS as tracing entities: agents, organizational units

(or any type of agent aggregation supported by the multiagent platform) and the

multiagent platform itself (and its components).

Unlike existing work on tracing MAS, previously mentioned in Section 4.2, a tracing

system which could be used as a knowledge provider must not be human-oriented,

but entity-oriented, so that these tracing entities are able to receive events and process

them or incorporate them to their reasoning process at run time in order to take

advantage from that.

In order to generate trace events, the source code of tracing entities needs to be

instrumented to include the code which actually produces such events. Attending to

where this instrumentation code is placed, trace events can be classified as platform

events or application events.

Platform events are instrumented within the source code of the platform (either in

its “core” or in any of its supporting agents). These events represent the generic,

application-independent information that the platform designer intends to provide to

agents. On the other hand, application events are instrumented within the code of the

application agents. These events represent customized run-time information defined

by the application designer in order to support specific needs of the application

agents.

The rest of the section presents a set of requirements which should be taken into

3. Supporting Social Knowledge in Multiagent Systems through Event Tracing71

account when developing such a tracing system. These requirements have been

classified in three main groups: functional, efficiency and security requirements.

3.3.1 Functional requirements

Tracing roles. Any tracing entity in the MAS must be able to play two different

roles in the tracing process: event source (ES) and event receiver (ER). From

the viewpoint of tracing entities, these two tracing roles are dynamic and not

exclusive, in the sense that each tracing entity can start and stop playing any of

them (or both) at any time, according to its own needs. The relation between ES

and ER entities is many to many: it must be possible for events generated by an

ES entity to be received by many ER entities, as well as it must also be possible

for an ER entity to receive events from multiple ES entities simultaneously.

Chronologically ordered event delivery requierement: Events generated in the

system must be delivered to ER entities in chronological order or, at least,

include information related to the time when they were produced to allow ER

entities to process them in chronological order.

Dynamic definition of event types. Trace events can be classified in event types

attending to the information which is generated and attached to them when they

are generated. In order to let the event processing be more flexible and efficient,

it must be possible for tracing entities to dynamically define new event types at

run time. This must be applied to both platform and application event types.

Publication of event types. At any time, ER entities must be able to know which

ES entities are producing events and of which types. So, as a consequence of

event types being dynamic, the tracing system should keep and up-to-date list

of such traceable event types (and ES entities) and to make this list available to

all tracing entities in the MAS.

On-line and off-line tracing. In order to let entities work with both historical and

run time information, both on-line and off-line tracing should be supported. In

72 3.3. Tracing system requirements

on-line tracing, events are delivered to ER entities as they are traced by the

tracing system (with a potential delay due to the internal processing of events

by the tracing system). In contrast, in off-line tracing, events generated by

ES entities are not delivered to running entities, but stored in a log file. Both

tracing modes must not be exclusive, meaning that it must be possible for the

events generated by any ES entity to be delivered to some ER entities while

also being stored in some log files. However, the tracing system does not need

to support concurrent access to the events stored in a log file.

3.3.2 Efficiency requirements

In any computing system, tracing can be a very expensive process in terms of

computational resources. In the case of MAS, the fact that they are by nature highly

decentralized systems, both in number of running entities (agents) and hosts, can

make their tracing even more expensive. In this context, the tracing process must be

optimized in order to minimize the overhead it produces to the system, since a very

sophisticated but excessively costly tracing system can become completely useless in

practice. The following list introduces a minimal set of efficiency design guidelines

that should be considered when designing a tracing system for MAS, in order to make

this system realizable and useful. The first two requirements focus on the potential

overload of the tracing system while the last one allows entities to set their own limits

in the resources devoted to the tracing process.

Selective event delivery. Each ER entity should be able to express which event

types it wants to receive, and the tracing system should only deliver events

which belong to such types to the entity. Furthermore, each ER entity should be

able to change dynamically which events it wants to receive, since entities may

need different tracing information at different times during their execution.

Selective event tracing. The tracing system should not spend resources in tracing

events which belong to event types that currently no entity wants to receive.

3. Supporting Social Knowledge in Multiagent Systems through Event Tracing73

Resource limit control. Each ER entity should be able to limit the maximum

amount of its resources to be allocated to receive events, both in on-line and

off-line tracing modes. In on-line tracing, if there is some memory data object

where events are delivered to until they are retrieved by the corresponding

ER entity, then this entity should be able to define the maximum amount of

memory devoted to such data object. In off-line tracing, the ER entity that

sets the tracing up to the corresponding log file should be able to define the

maximum size of the file.

3.3.3 Security requirements

Tracing in an open MAS has obvious security issues, since many of the events

registered by the tracing system may contain sensitive information that can be used by

agents to take advantage from, or even to damage, the MAS. This scenario enforces

the necessity of applying some security policy over the events that can be delivered to

entities, specially if they are application entities. This policy can be materialized in

many different ways, but in essence, it has to allow for the definition of security rules

in the MAS that limit the availability of events to the right ER entities. The following

list of requirements express a minimum set of restrictions by which it is possible to

incorporate such security rules to the tracing system.

Authorization to ER entities. Each ES entity in the system must be able to

decide which ER entities can receive the events that it generates. This can

be accomplished by means of an authorization mechanism, provided by the

tracing system, which can be used by ES entities to restrict the event types that

are available to each ER entity. Such authorization rules must be dynamic,

so that ES entities are able to modify the list of authorized ER entities

corresponding to each event type at run time.

Supervisor entities. Situations where an entity must be able to access to other ES

entity’s events in order to fulfil its objectives, even though the ES entity does

74 3.4. Conclusions and future work

not agree with that, are very common in MAS. This can happen, for instance, in

normative environments where an agent has to watch the other in order to verify

that norms are not being violated and to apply the corresponding sanctions in

case they are. The tracing system must also provide mechanisms to let an

ER receive events generated by an ES without its authorization under some

circumstances.

Delegation of authorizations. If an ER entity is currently authorized to be delivered

events corresponding to certain event types, then this entity can delegate this

authorization to other ER entities in the system; then, each of them can do so

with other entities (potentially forming an authorization tree). At any node in

the tree, the corresponding entity can add or remove delegations dynamically.

If a delegation is removed, all the potential subsequent delegations (subtree)

are also removed.

Platform entities authorization. By definition, the tracing system must be granted

the authorization for all event types defined in the MAS, both at the platform

and application levels. This is required for the tracing system to be able to keep

track of any event being generated in the MAS, independently of the privacy

rules defined by each ES entity.

3.4 Conclusions and future work

Social knowledge is one of the most important features that make MAS appropiate

to deal with complex problems in dynamic and distributed environments. The key

to this is the capacity of agents to communicate and coordinate with other agents in

the MAS in order to get their objectives. This capacity, though based on high level

social concepts such as social commitments, trust, norms or reputation, is usually

incorporated to the MAS at user level, using messages or blackboard systems, without

support from the multiagent platform. This can produce too much overhead, reducing

3. Supporting Social Knowledge in Multiagent Systems through Event Tracing75

the scalability of the MAS. Also, it has to be taken into account that sometimes it is

difficult to trust information sent by other agents, specially in open MAS.

A general event tracing system, which agents in the MAS could use to trace other

agents in their environment, could be used as a more appropiate and trustworthy

social knowledge provider. This paper presents the first step towards defining such

a tracing system, which is the identification of its requirements. This paper has

identified requirements in different aspects: functionallity, efficiency and security.

Some of the presented requirements set important problems out. Some of these

problems are more obvious. For example, the problem of delivering events in

chronological order in a distributed MAS. However, others are less evident. For

instance, the problem of determining which ES entity is the owner of each trace event,

since the instrumented code that produces an event is not always within the source

code of the entity which originated it. Just as an example, consider events could

as property of those entities which source code has been instrumented to produce

them. In this case, all platform events would belong to the multiagent platform,

while agents in the MAS would only be owners of application events. It could be

more understandable and easier to incorporate considering that events belong to the

ES entity which originated them.

Future work will include the design of a general abstract model for MAS which

contemplated all of the requirements exposed above and which, after that, could be

implemented and incorporated to a multiagent platform.

Acknowledgment

This work is partially supported by projects PROMETEO/2008/051, CSD2007-022

and TIN2008-04446, which is co-funded by the Spanish government and FEDER

funds.

CHAPTER

4
TRAMMAS: A Tracing Model for

Multiagent Systems

4.1 Introduction . 79
4.2 Related work . 82
4.3 Requirements . 87
4.4 The TRAMMAS model 89
4.5 Tracing system architecture 96
4.6 Example . 101
4.7 Conclusions and further work 104

AUTHORS:
LUIS BÚRDALO, ANDRÉS TERRASA, VICENTE JULIÁN AND ANA GARCÍA-FORNES

{lburdalo,aterrasa,vinglada,agarcia}@dsic.upv.es
DEPARTAMENTO DE SISTEMAS INFORMÁTICOS Y COMPUTACIÓN

UNIVERSIDAD POLITÉCNICA DE VALENCIA

CNO/ DE VERA SN
46022 VALENCIA, SPAIN

77

4. TRAMMAS: A Tracing Model for Multiagent Systems 79

Abstract

Agent’s flexibility and autonomy, as well as their capacity to coordinate and

cooperate, are some of the features which make multiagent systems useful to work

in dynamic and distributed environments. These key features are directly related

to the way in which agents communicate and perceive each other, as well as their

environment and surrounding conditions. Traditionally, this has been accomplished

by means of message exchange or by using blackboard systems. These traditional

methods have the advantages of being easy to implement and well supported by

multiagent platforms; however, their main disadvantage is that the amount of social

knowledge in the system directly depends on every agent actively informing of what it

is doing, thinking, perceiving, etc. There are domains, for example those where social

knowledge depends on highly distributed pieces of data provided by many different

agents, in which such traditional methods can produce a great deal of overhead, hence

reducing the scalability, efficiency and flexibility of the multiagent system. This work

proposes the use of event tracing in multiagent systems, as an indirect interaction and

coordination mechanism to improve the amount and quality of the information that

agents can perceive from both their physical and social environment, in order to fulfill

their goals more efficiently. In order to do so, this work presents an abstract model of

a tracing system and an architectural design of such model, which can be incorporated

to a typical multiagent platform.

4.1 Introduction

Due to their flexible and adaptative behavior, multiagent systems are commonly

applied to solve complex problems in dynamic and distributed environments. This

is not only due to agents’ individual features (like autonomy, reactivity or reasoning

power), but also to their capability to communicate, cooperate and coordinate with

other agents in the multiagent system in order to fulfill their goals. In fact, it is

80 4.1. Introduction

this social behavior, more than their individual capabilities as agents, what makes

multiagent systems so powerful. Social abstractions such as teams, norms, social

commitments or trust are the key to face complex situations using multiagent systems.

In [90], Mařik et al. refer to the necessary knowledge to give support to all

these social abstractions as social knowledge, and they also point that it plays an

important role in increasing the efficiency in highly decentralized multiagent systems.

Traditionally, these social abstractions are mostly incorporated to the multiagent

system at user level; this is, from the multiagent application itself, by means of

messages among agents or blackboard systems, without any specific support from

the multiagent platform. These traditional methods may be easy to implement;

however, each agent’s social knowledge depends almost completely on the rest of

the agents in the multiagent system actively informing of what they are doing, which

has some major problems. First, it can lead to excessive overhead in some agents,

specially in situations where agents have to send their information to many other

agents because of not being able to determine which of them are really interested in

receiving it. Second, it can also be difficult to trust the information provided directly

by other agents using messages. This is usually solved by considering that agents

are benevolent, but this may not be true in open multiagent systems. And third, it

is very difficult to incorporate high level social abstractions, which usually require

indirect interaction or coordination, using traditional messages, which are a direct

way of communication. This weak integration of high level social abstractions is

also mentioned as an important flaw by Bordini et al in [26].

This work proposes the use of event tracing as a way to provide indirect interaction

and coordination in multiagent systems, which can be later used to give support to

high level social abstractions. In particular, this document introduces TRAMMAS, an

abstract event TRAce Model for MultiAgent Systems which lets all the entities in the

multiagent system share trace information, both at run time or by means of historic

information (trace log files).

Applications which extract information from the system at run time are already

4. TRAMMAS: A Tracing Model for Multiagent Systems 81

considered in the field of event driven architectures [89]. Also, the idea of an

standard tracing system available for processes in a system already exists in the field

of operating systems, for example, in the case of the POSIX standard[73]. However,

event tracing facilities are usually conceived in the field of multiagent systems as

debugging tools to help in the system’s validation and verification processes. Thus,

generated events are destined to be understood by a human observer rather than to be

used by agents or other entities in the multiagent system.

The TRAMMAS model is proposed to provide a standardized, trace-based support

for indirect communication which may be used by any entity in a multiagent system,

not only by agents. In order to do so, the model has adopted the taxonomy published

by Omicini el al. in [97], which is based on two main abstractions: agents and

artifacts. On the one hand, agents are autonomous, proactive entities that encapsulate

control and are in charge of the goals/tasks that altogether define and determine the

whole multiagent system behavior. On the other hand, artifacts are those passive,

reactive entities in charge of the services and functions that make individual agents

work together in a multiagent system. According to this vision, both agents and

artifacts are considered as tracing entities by the model. More over, the model also

supports aggregations of agents or agents and artifacts. As a consequence, any entity

in the multiagent system, as well as the multiagent platform itself are also considered

susceptible of generating trace events.

The proposed model is based on the publish/subscribe software pattern, which allows

subscribers to filter events attending to attributes (content-based filtering). Unlike

in some publication/subscription patterns, such as the well known observer pattern,

the presented trace event model does not require publishers to be aware of which

subscribers they have or to which information they are subscribed. The proposed

model does not rely on a single, centralized broker, but on a distributed manager,

which is in charge of coordinating the event tracing process. This avoids excessive

centralization which may lead to bottle necks and poorly scalable systems.

This paper also presents an architectural design, compatible with the TRAMMAS

82 4.2. Related work

model, which proposes all the tracing information to be offered as tracing services.

As with traditional services, entities in the multiagent system have to request these

tracing services when they are interested in receiving tracing information. The

architecture is designed to integrate the model within a generic multiagent platform.

The rest of this paper is structured as follows: First of all, Section 4.2 reviews

previous work carried out by different authors in the fields of event tracing and

indirect interaction in multiagent systems. Then, Section 4.3 reviews generic

requirements of a tracing system, which were taken into account when developing

the TRAMMAS model, which is described in Section 4.4. Section 4.5 presents an

architectural design which allows for the incorporation of the model to a multiagent

platform. Section 4.6 presents an example of an agent based GPS system with certain

information needs, where TRAMMAS is compared with other techniques which are

not based on event tracing. Finally, Section 4.7 comments the conclusions of this

work, as well as some future lines of work.

4.2 Related work

There is a need in multiagent systems for indirect ways of interaction and

coordination and different research efforts have been carried out in order to satisfy

these needs. However, most existing work on event tracing is mainly focused on

debugging rather than on the field of agent interaction and communication. This

section is divided in two parts. First, Section 4.2.1 will review existing work in the

field of event tracing in multiagent systems and second, Section 4.2.2 will review

related work focused on indirect interaction and communication.

4.2.1 Tracing in multiagent systems

Event tracing facilities in multiagent systems are usually conceived as debugging

tools to help in the validation and verification processes. It is also usual to use these

4. TRAMMAS: A Tracing Model for Multiagent Systems 83

tracing tools as a help for those users which have to understand how the multiagent

system works. Thus, generated events are destined to be understood by a human

observer who would probably use them to debug or to validate the multiagent system

and tracing facilities are mostly human-oriented in order to let multiagent system

users work in a more efficient and also convenient way.

One of the most popular tracing facilities for MAS is the Sniffer Agent provided by

JADE[21]. This tool keeps tracking of all of the messages sent or received by agents

in the system and allows the user/administrator/developer to examine their content.

These messages can be stored in a log file to be examined after the application has

stopped running, so that the MAS can also be traced off-line. JADE also provides an

Introspector Agent, which can be used to examine the life cycle of any agent in the

system, its behaviors and the messages it has sent or received.

Both the Sniffer agent and the Introspector Agent make use of the Event Notification

Service (ENS), provided by JADE itself. Agents running over JADE can request

the AMS to sniff the activity of other agents or the platform itself in order to be

notified each time an event occur. Events managed by the ENS are classified in four

main groups: life-cycle related events, message transfer protocol related events, agent

messaging events and agent internals related events. The event set provided by the

ENS cannot be modified dynamically, in the sense that agents cannot publish new

event types for other agents to request them to the ENS. Also, since JADE does not

support agent aggregations nor artifacts, only agents are susceptible of generating or

receiving trace events.

JADEX[101] provides a Conversation Center, which allows a user to send messages

directly to any agent while it is executing and to receive answers to those messages

from a user-friendly interface. It also provides a DF Browser to track services offered

by any agent in the platform at run time and a BDI Tracer which can be used to

visualize the internal processes of an agent while it is executing and show causal

dependencies among agents’ beliefs, goals and plans. Apart from these facilities,

JADEX also incorporates a Remote Agent, which provides access to some of JADE’s

84 4.2. Related work

tracing facilities, like the Agent Introspector and the Sniffer Agent.

The JACK[4] multiagent platform does not provide a sniffer agent, but it supports

monitoring communication among agents by means of Agent Interaction Diagrams.

It also provides other introspecting tools with different functionalities: a Design

Tracing Tool, to view internal details of JACK applications during execution, and a

Plan Tracing Tool, to display and trace the execution of plans and the events that

handle them. JACK also provides debugging tools that work at a lower level of

abstraction in order to debug the multiagent system in a more exhaustive way: Audit

Logging, Generic Debugging/Agent Debugging.

Other examples of tracing facilities provided by platforms is ZEUS’ Society

Viewer[45] which, apart from showing organizational inter-relationships among

agents in the system, it can also show messages exchanged among agents. ZEUS

also provides an Agent Viewer, which allows the user/administrator to monitor and

change the internal state of the agent, its actions, used resources, etc. JASON[24, 25]

provides its Mind Inspector Tool, to examine the internal state of agents across the

distributed system when they are running in debugging mode.

Apart from those tools provided by multiagent platforms themselves, there are

many tracing facilities provided by third party developers. This is the case of Java

Sniffer[120], developed by Rockwell Automation, a stand alone java application

based on JADE’s Sniffer Agent which is able to connect to a running JADE system in

order to track messages among agents, to reason about them and to show them to the

user from different points of view. Another third party tool based on JADE’s Sniffer

Agent is ACLAnalyser[28], which intercepts messages interchanged by agents during

the execution of the application and stores them in a relational database. After

the execution, this message database can be inspected to detect social pathologies

in the MAS. Later work by the same authors ([29]) combine results obtained with

ACLAnalyser with data mining techniques to help in the MAS debugging process.

MAMSY, the management tool presented in [109] lets the system administrator

monitorize and manage a MAS running over the Magentix multiagent platform[7].

4. TRAMMAS: A Tracing Model for Multiagent Systems 85

MAMSY provides graphical tools to interact with the MAS and visualize its internal

state at run time, including not only nodes and agents, but also organizational units.

It also provides a message tracing tool, similar way to JADE’s Sniffer Agent, which

lets the system administrator visualize message interchange among agents.

In [95], the authors describe an advanced visualization tools suite for MAS developed

with ZEUS, although the authors also claim these tools could be used with other

platforms (more precisely, with CommonKADS). The developed suite allows for

inspecting message interchange among agents in a society, displaying graphically

the different tasks in the society and its execution state, examining and modifying

the internal state of any of the agents in the system and comparing statistics not only

for individual agents, but also for agent societies. It also allows for the graphical

display of the different tasks in the society and their execution states, examining and

modifying the internal state of any of the agents in the system and comparing statistics

not only for individual agents, but also for agent societies.

Tracking messages has also been used in [98], which comments an ampliation of the

Prometheus methodology and the related design tool to help the designer to detect

protocol violations by tracing conversations among agents in the system and to detect

plan selection inconsistencies.

Lam et al present in [81] an iterative method based on tracing multiagent applications

to help the user understanding the way those applications internally work. Lam et

al also present a Tracer Tool which implements the described Tracing Method. The

Tracer Tool can be applied to any agent system implementation, regardless of agent or

system architecture, providing it is able to interface with Java’s logging API (directly

or via a CORBA interface). Results obtained with this method were presented in [82].

Bose et al present in [27] a combination of this Tracer Tool with a Temporal Trace

Language (TTL) Checker presented in [3]. This TTL Checker enables the automated

verification of complex dynamic properties against execution traces.

As it can be appreciated, although there is also important work carried out by third

party developers, many multiagent platforms provide their own tracing facilities.

86 4.2. Related work

However, even these tracing facilities which were not designed by platform developer

teams are usually designed for a specific multiagent platform. Also, most of this work

is focused on human users, rather than agents. There is not a standard, general tracing

mechanism which lets agents and other entities in the system trace each other as they

execute like the one provided by POSIX for processes.

4.2.2 Indirect interaction and communication

The problem of giving support to additional ways of indirect communication

and coordination has already been addressed by other authors using overhearing

techniques. Overhearing is normally defined as an ‘indirect interaction whereby an

agent receives information for which it is not addressee’ [83, 78, 55]. This techniques

have already been used, among others, in order to maintain social situational and

organizational awareness [107], to allow team organization [84, 83], to monitor teams

in a non-intrusive way [78] and to develop advising systems [6, 39].

Most of the work in overhearing is modeled and implemented using message

broadcasting. This is a very straightforward way to do it, but it does not address

the relationship between indirect interaction and the environment. However,

using broadcasting to perform overhearing is contradictory, since the definition of

overhearing, as well as the overhearer role defined for multi-party dialogues in [91],

implies that the sender is not always aware of who is receiving its messages, apart

from the specified receivers (this is, who are the overhearers). Using broadcasting

makes the difference between the overhearer and the message receiver disappear,

since both require to be directly contacted by the sender. Overhearing by broadcasting

has also the additional flaw of making it impossible to model sending messages to

unknown agents which enter an open system unless these new agents inform of their

arrival, which reduces the possibilities of the overhearing model.

Outside the field of overhearing, the environment is claimed in [124] as a first

class abstraction, complementary to agents in the system and, at the same time,

4. TRAMMAS: A Tracing Model for Multiagent Systems 87

independent from them, since it provides the surrounding conditions for agents to

exist, as well as an exploitable design abstraction for building multiagent system

applications. As pointed out in [100] and [110], the environment should give support

to both direct and indirect interaction in multiagent systems and thus, overhearing

should be managed by the environment in order to save this gap between the

overhearer and the sender.

Authors in [100] propose a model of environment which supports not only direct

communication, but also overhearing without broadcasting. The proposed model

considers also non-agent entities present in the multiagent system. In a similar way,

[110] introduces a model for the environment, which considers not only agents, but

also objects (non-agents) and messages. This model lets agents carry out an active

perception of their environment, determining after a symbolic data analysis which

data are interesting and discarding the rest. However, objects are seen in this model

only as entities which generate overhearing information, never as overhearers.

Unlike reviewed work about event tracing in multiagent systems, overhearing

techniques are focused in providing information to agents. However, overhearing

only considers indirectly receiving regular agent-to-agent messages, which usually

do not reflect actions carried out by entities in the system (agents or not), nor by

changes in the visible state of these entities.

4.3 Requirements

This section presents a summary of the requirements which were taken into account

when developing the presented model for tracing systems. These requirements can be

classified in three groups: functional, efficiency and security requirements. A more

detailed description of these requirements can be found in [35].

88 4.3. Requirements

4.3.1 Functional requirements

Any entity in the multiagent system should be able to generate and receive trace

events in a non-exclusive way at run time. Events are delivered to entities as

they are generated and they must be able to order chronologically any trace event

sequence it may receive. In order to let entities work with both historical and run

time information, both on-line and off-line tracing must be supported. In on-line

tracing, events are delivered to entities as they are generated. In contrast, in off-line

tracing, events generated by entities are not delivered to running entities, but stored

in a log file, which can be later opened and processed. Both tracing modes must not

be exclusive, meaning that it must be possible for the events generated anywhere in

the system to be delivered to some entities while also being stored in some log files.

4.3.2 Efficiency requirements

Event tracing must be optimized in order to minimize the amount of consumed

resources, as well as the overhead it may produce to the multiagent system. Thus,

each entity should be able to limit the maximum amount of resources to be allocated

to receive events. In the same way, entities must be able to decide which trace events

to receive, and only those trace events which are to be delivered to any entity must

be retrieved. In order to do so, it must be possible to classify trace events in different

classes or types attending to the information which they represent. It must be possible

for entities to dynamically define new event types at run time and, as a consequence,

an up-to-date list of available traceable event types and which entities generate them

must be available to all entities in the multiagent system. Finally, in order to avoid

being a bottle neck for the multiagent system, the support of event tracing must be as

decentralized as possible.

4. TRAMMAS: A Tracing Model for Multiagent Systems 89

4.3.3 Security requirements

Letting tracing entities trace each other’s activity has obvious security issues,

specially in open multiagent systems. In order to address these issues, each entity

must be able to decide which other entities in the system can receive its events, either

by means of a direct authorization or either by letting other entity in the system decide

in its name. Special circumstances, like normative environments, where certain

entities have to be able to access to trace events generated by other entities even

without an explicit authorization of the origin entity, must also be addressed. Finally,

any trace event being generated in the multiagent system must be susceptible of being

traced, independently of the privacy rules defined by each entity.

4.4 The TRAMMAS model

The lack of a standard mechanism which gives support to indirect interaction based

on trace events, like the one proposed by the POSIX standard, usually forces

developers to design and implement indirect interaction mechanisms as a part of the

multiagent application, which makes agent’s internal logic more complex and agent

applications more difficult to maintain.

This section presents TRAMMAS, a platform independent trace model for tracing

events in multiagent systems, considering the set of requirements previously

described in Section 4.3, which objective is providing multiagent systems with a

mechanism for indirect interaction and communication. Once incorporated to a

multiagent system, either at platform or user level, this trace model would let agents

and other entities in the system generate and receive trace events generated by other

entities in the system. Also, human developers/operators can use these tracing events

in order to trace the multiagent system in order to debug it or to verify its functioning.

From the viewpoint of this model, a multiagent system can be considered to be

formed by a set of tracing entities which are susceptible of generating and/or

90 4.4. The TRAMMAS model

receiving certain information related to their activity as trace events. Events

generated by a tracing entity are recorded and delivered to other tracing entities,

so that they can retrieve and process all that information in order to fulfill their

corresponding goals. The rest of the section will describe in more detail the

TRAMMAS model.

4.4.1 Trace event

This model defines a trace event as a piece of data representing an action which has

taken place during the execution of an agent or any other component of the multiagent

system. Trace events are generated each time the execution flow of an application

reaches certain instructions (tracing points) in its source code.

This model defines the following common attributes for each event:

• Event type: Trace events can be classified according to the nature of the

information which they represent. This event type is necessary for tracing

entities in order to be able to interpret the rest of the data attached to the trace

event.

• Time stamp: Global time at which the event took place, necessary to be able

to chronologically sort events produced anywhere in the multiagent system.

• Origin entity: The tracing entity which originated the event.

• Attached data: Additional data which could be necessary to correctly interpret

the trace event. The amount and type of these data will depend on the event

type. Some trace events may not need any additional information.

Attending to the origin entity which generates them, trace events can be classified:

• Domain independent trace events: These trace events are generated by the

multiagent platform itself and thus, they can be present in any multiagent

4. TRAMMAS: A Tracing Model for Multiagent Systems 91

system. Examples of domain independent trace events could be new agent

in the platform or new service request.

• Domain dependent trace events: These trace events are designed as a part

of the multiagent system, in order to give support to its specific needs. Within

a virtual market, an example of domain dependent trace event could be sold

product.

Trace events can be processed or even combined in order to generate compound trace

events, which can be used to represent more complex information. Both domain

dependent and domain independent trace events can also be classified into simple and

compound. For instance, within a virtual market, a compound event like transaction

done could be the result of combining simple trace events sold product and paid

product.

4.4.2 Tracing entities

In this model, a tracing entity is defined as any component of the multiagent system

or the multiagent platform which is able to generate or receive tracing information.

Thus, from the point of view of the tracing process, any multiagent system is seen as

a set of tracing entities. In this trace model, tracing entities can be classified in three

main groups:

• Agents. Agents are all those autonomous and proactive entities which define

the multiagent system behavior. This category includes not only all of the

individual application agents in the multiagent system, but also those which

may be part of the multiagent platform.

• Artifacts. Artifacts are all those passive elements in the multiagent system

which are susceptible of generating events at run time or receiving them as

an input [97]. Artifacts model elements of the multiagent system such as

92 4.4. The TRAMMAS model

databases, resources modeled as web services, physical sensors and actuators

and so on. Two or more artifacts can be combined in order to perform more

complex tasks and they are also susceptive of generating or receiving trace

events as a tracing individual. From the point of view of the tracing system,

these combinations of artifacts are also modeled as single artifacts.

• Aggregations. If the multiagent system supports aggregations of agents (or

agents and artifacts), such as organizational units [14], then such aggregations

are modeled by the tracing system as a single tracing entities, in the sense

that trace events can be generated from or delivered to these entities as tracing

individuals.

From the point of view of the model, the multiagent platform can be seen as a set

of agents and artifacts. Therefore, elements of the multiagent platform are also

susceptible of generating and receiving trace events as any other element in the

multiagent system.

4.4.3 Tracing roles

Any tracing entity in the multiagent system is able to play two different roles related

to the tracing process (or tracing roles): event source (ES) and event receiver (ER).

ES entities are those which generate trace events as they execute, while ER entities

are those which receive these events. The relation between ES and ER entities is

many to many: it is possible for events generated by an ES entity to be received by

many ER entities, as well as it is also possible for an ER entity to receive events from

multiple ES entities simultaneously.

These two tracing roles are not exclusive and any tracing entity can play one or both

of them at the same time. Regarding to the time when tracing entities can start and

stop playing these roles, there are important differences between agents or agent

aggregations and artifacts. On the one hand, agents and aggregations can start or stop

4. TRAMMAS: A Tracing Model for Multiagent Systems 93

playing any of these roles dynamically according to their current state. On the other

hand, artifacts, which are passive/reactive entities, have to adopt the corresponding

roles at design time.

The model considers a third tracing role, the Trace Manager role (TM). The TM role

is responsible for controlling and coordinating the entire tracing process: registering

tracing entities and event types, as well as giving support to the selective event tracing

and security models, further explained in Sections 4.4.4 and 4.4.5. This means that

there must be at least one tracing entity playing this role in order to give support to

all these necessary features. The TM role can be played by a single entity or by a set

of different entities in the multiagent platform at the same time, acting coordinately,

even in different nodes of the multiagent system.

When a tracing entity is playing the ER tracing role, the tracing system provides it

with a stream, which can be seen as a special mailbox where trace events are stored

before the ER retrieves them. Streams can either be pieces of memory (in on-line

tracing) or log files (in off-line tracing). In both cases, the ER entity which owns the

stream can limit its size in order not to overload its resources. In addition, the model

defines a set of full policies in order to let tracing entities decide what to do with

incoming trace events if the stream gets full: stop delivering events to the stream,

overwriting previously delivered events in chronological order or flushing events to a

log file:

• Trace until full: When the tracing stream becomes full, the tracing system

stops delivering trace events to that stream and informs the corresponding

tracing entity by means of a specific trace event.

• Trace loop: When the tracing stream becomes full, the tracing system starts

overwriting previously delivered trace events in chronological order, starting

from those which were generated first, and informs the corresponding tracing

entity by means of a specific trace event.

• Trace flush: When the tracing stream becomes full, the tracing system flushes

94 4.4. The TRAMMAS model

all events to a log file and continues delivering trace events to the stream after

informing the corresponding tracing entity.

Trace until full and trace loop policies are specific for on-line tracing, while trace

flush is a specific policy for off-line tracing.

Figure 4.1 shows all the interactions among ES and ER. In particular, it can be seen

how trace events are generated in ES entities before arriving to ER entities, while the

TM controls the entire process, interacting with ES and ER entities.

TRACE
MANAGER

Event Source Event Receiver

AGENT

ARTIFACT

AGGREGATION

EVENTS

Publish/Unpublish trace events
Add/Remove direct authorization

Look up for trace events
Subscribe to trace events

Unsubscribe from trace events
Add/Remove delegated authorization

AGGREGATION

CONTROLS

STRM
AGENT

STRM

STRM

ARTIFACT

Figure 4.1: Interaction between the different tracing roles in the TRAMMAS model

4.4.4 Selective event tracing

The model defines a subscription protocol based on trace event types which helps

reducing as much as possible the overhead which tracing information can cause to

the multiagent system. ER entities must subscribe to those trace events types which

they are interested in. In the same way, once an ER entity is not interested in receiving

events of a type to which it had previously subscribed, the ER entity may unsubscribe

from them. As a consequence, only trace events of those types to which at least one

4. TRAMMAS: A Tracing Model for Multiagent Systems 95

ER has previously subscribed are generated and ER entities do not receive any tracing

information in which they are not interested in.

Each ES entity has to publish which tracing information it can provide in order to

give support to this subscription mechanism at run time. In Figure 4.1 it can be seen

how ES entities request the TM to publish and unpublished those trace events they

can provide. It can also be appreciated how ER entities are able look for available

trace events as well as they can also subscribe and unsubscribe at run time.

4.4.5 Security

When an ES entity publishes its trace events, it has also to specify which roles and/or

entities in the multiagent system are authorized to receive such events. In this way,

ES entities decide which ER entities can receive their trace events. This is defined as

direct authorization. When an ER entity wants to receive events of a specific event

type which come from a specific ES, it has to be authorized as an entity or it has to be

able to assume one of the authorized roles. ER entities which are authorized to receive

trace events from certain ES entity can also authorize other roles or entities to receive

the same trace events. This is defined as authorization by delegation. In this way,

the TM maintains an authorization graph for each event type which is being offered

by each ES. This authorization graph is dynamic, since tracing entities can add and

remove authorizations at run time. When an authorization, direct or by delegation is

removed, all those delegated authorizations which depended on the removed one are

also removed.

The direct authorization mechanism has the advantage of being conceptually simple;

however, asking for an authorization each time an ER entity needs to trace an ES

entity can cause an important overhead to ES entities, which may receive too many

authorization requests. Authorization by delegation can help reducing the overhead

this authorization mechanism can cause to some ES entities while still keeping the

security model conceptually simple.

96 4.5. Tracing system architecture

The tracing system does not control which entities can assume each role in order to

receive trace events of a specific event type or to add and remove authorizations. The

model relies on the multiagent platform to provide the necessary security mechanisms

to prevent agents from assuming unappropriated roles.

Figure 4.2 shows an UML-like diagram, where all of the model concepts and

relationships commented in Section 4.4 are represented in a formal way.

4.5 Tracing system architecture

This section describes a generic architecture by which it is possible to incorporate

the TRAMMAS model to a multiagent system. In particular, the architecture has

been designed to be integrated within a generic multiagent platform by following a

service-oriented approach, with the final goals of taking full advantage of the model

and to address efficiency and scalability issues. Once the model is implemented

within a real multiagent platform, it can be referred to as the Tracing System, that is,

the part of the platform in charge of making it possible that entities running on the

platform can trace each other.

The architecture considers the same tracing entities than the model (agents, artifacts

and aggregations), and it also considers such tracing entities able to play the Event

Source (ES) and Event Receiver (ER) tracing roles. According to the model, agents

and aggregations will be able to dynamically adopt and abandon such tracing roles at

run time, while artifacts will be designed to statically play one of them, or both,

and they will not be able to change this at run time. The architecture proposes

the ES entities to offer their respective tracing information in the form of tracing

services, which would be requested by the ER entities that were interested in (and

also authorized to) receiving such information. Tracing services are described in

Section 4.5.1.

4. TRAMMAS: A Tracing Model for Multiagent Systems 97

The Trace Manager role is considered by the architecture to be played by the

multiagent platform itself. This is accomplished by incorporating the functionality

related to this role into the platform, in the form of an extra component called the

Trace Manager. Depending on the platform, the Trace Manager may be designed as a

single component or as a set of components, possibly distributed among the platform

nodes. The Trace Manager component is further described in Section 4.5.2.

Besides incorporating the Trace Manager functionality, the architecture also proposes

the platform to be the entity which generates the domain independent trace events,

or more precisely, the entity which offers the domain independent tracing services to

the rest of tracing entities in the multiagent system. This has two main implications.

First, the platform will need to be instrumented at the source code level, in order to

generate the trace events corresponding to each domain independent tracing service.

And second, the generation of such events at the platform level will allow for the

production of tracing information that would not be available otherwise, because of

being internal to the platform (e.g., changes in an agent’s life cycle). In general, the

generation of domain independent tracing information at the platform level presents

several advantages, with the most important being efficiency and reliability.

The architecture has been designed to be included in a generic multiagent platform,

with no specific requirements other than the support of very general concepts such

as ’agent’ or ’service’. For example, if the platform does not supports artifacts

or aggregations, then the tracing system will not be able to support them as

tracing entities, without any other negative effect. On the contrary, having some

features available on the platform could make the Tracing System to be easier to

implement. For example, if a general authorization scheme is already implanted on

the platform, then the Tracing System may be able to use it directly, without the

need of implementing its own. In any case, the incorporation of the architecture

to the platform will need the availability of the platform’s source code, in order to

both implementing the Trace Manager and performing the instrumentation which

will generate the domain independent trace events.

98 4.5. Tracing system architecture

4.5.1 Tracing services

Event types described in Section 4.4 are modeled in the architecture as tracing

services. Tracing services are special services which are offered by tracing entities to

share their trace events, in a similar way to traditional services. Each tracing entity

may offer a set of tracing services, corresponding to the different event types which

the tracing entity generates. In the same way as trace events in the model, tracing

services can be classified attending to the tracing entity which offers them. Tracing

services can also be compound, like trace events in the model, in order to provide

more complex tracing information.

When a tracing entity wants to offer any tracing information, it must publish the

corresponding tracing service so that other tracing entities can request it if they are

interested in its trace events. When a tracing entity does not want to receive certain

trace events anymore it only has to cancel the request to the corresponding tracing

service. Domain Independent Tracing Services are offered by the multiagent platform

and Domain Dependent Tracing Services are offered by tracing entities.

As with traditional services, when tracing services are published, it is also published

which agent roles or tracing entities are authorized to request the service. In this

way, when an tracing entity wants to request a tracing service, it has to be previously

authorized directly or it has to be able to assume an authorized role. Authorizations

for a tracing service can be added and removed at run time by the tracing entity which

published it by means of updating the corresponding published data on that tracing

service. Tracing entities which have assumed a role which is authorized to request a

tracing service, can also authorize other roles to request the service.

4.5.2 The Trace Manager

As previously commented, the Trace Manager is not a single component, but a set

of components integrated within the multiagent platform, which work together to

4. TRAMMAS: A Tracing Model for Multiagent Systems 99

coordinate the entire tracing process. Trace Manager functions can be divided in

four modules, each of which can be carried out by one or more components in the

multiagent platform, even in different nodes in the platform:

• Trace Entity Module (TEM): Module in charge of registering and managing

all the tracing entities.

• Tracing Services Module (TSM): Module in charge of registering and

managing all of the tracing services offered by ES entities.

• Subscription Module (SUBM): Module in charge of storing and managing

subscriptions to each tracing service and ES entity.

• Authorization Module (AM): Module in charge of storing and managing the

authorization graph for each tracing service and ES.

Figure 4.3 shows how tracing entities interact with the Trace Manager depending on

the tracing role that they are playing. These interactions are detailed below:

• Publish/Unpublish Service: When an ES entity wants to share its trace events

it has to publish the corresponding tracing services before any other entity can

request that information. Published tracing services are stored in the TSM.

When the ES does not want to offer a tracing service anymore, it has to remove

the publication. If the tracing service is the first one offered by the ES entity,

then this ES is internally registered in the TEM.

• Add/Remove Direct Authorization: ES entities which have published a

tracing service can specify which roles have to be assumed by ER entities

in order to request that tracing service. ES entities add and remove direct

authorizations for each of the tracing services which they provide and the

corresponding authorization graph is stored in the AM.

100 4.5. Tracing system architecture

• Add/Remove Delegated Authorization: ER entities which have assumed a

role which authorizes them to request a tracing service can also authorize other

roles to request that tracing service. In the same way, ER entities can remove

those delegated authorizations which they previously added. Modifications in

the corresponding authorization tree are registered in the AM.

• Look up for Service: ER entities can look up in the TSM to know

which tracing services are available and which ES entities offer them before

requesting any tracing information.

• Request Service / Cancel Request: ER entities which want to receive certain

trace events from an ES have to request the corresponding tracing service to the

Trace Manager. The Trace Manager verifies against the AM that the ER entity

has authorization for that tracing service before adding the subscription to the

SUBM. When an ER entity does not want to receive events corresponding to

a specific tracing service, it has to cancel the request of that service and the

corresponding subscription is also deleted in the SUBM. If the ER entity which

requests the tracing service was not subscribed to any other tracing service,

then this entity is internally registered and listed in the TEM. In the same way,

when an ER entity cancels all of its requests, it is internally removed from the

TEM. As a consequence, only those trace events for which there is at least one

tracing service request in the SUBM are recorded.

Figure 4.3 shows how some of the modules can interact among them in certain

circumstances. The first time a tracing entity requests or publishes a tracing service,

the SUBM or the TSM registers that entity in the TEM module. In the similar way,

when a tracing entity unpublishes a tracing service or modifies its corresponding

authorization graph, it may be necessary to cancel subscriptions to that tracing service

for certain tracing entities.

4. TRAMMAS: A Tracing Model for Multiagent Systems 101

4.6 Example

This section will present an example of multiagent system, where different techniques

are used to share information among agents. Theoretical costs of transmitting the

necessary information can be used as a measure of the efficiency and scalability of

each technique and so, they are studied in the best and worst case for each technique.

Let us consider an agent-based GPS system which, apart from suggesting the best

route to get to a destination, it lets vehicles share certain information about the state

of the road so that other vehicles can find the best route to their destination or modify

it if necessary. For instance, important decreases in the speed of vehicles may be

indicative of a traffic jam, a change in the direction may be indicative of a blocking

of the way, and so on.

Figure 4.4 shows an example of road map, with some nodes (A to F) connected

among them by different roads. In each node there is a station with an agent which

receives data from vehicles about the state of its adjacent roads and can also sends

recommendations to vehicles about the best route to get to their destination. Each

on board device also has an agent in charge of sending, receiving and processing

information from the different stations. In the figure, vehicles 1 to 5 departed from

different origins to different destinations and have initially been suggested an initial

route by the GPS system. Initial routes for each vehicle are also shown in the bottom

of the figure. In this case, there is a trouble in the road between A and C which forces

vehicles 1 and 2 to reduce their speed dramatically. The on board GPS system of

these two vehicles informs adjacent nodes (nodes A and C) about this decrease in the

speed, and the stations in nodes A and C should inform to those vehicles which have

the road between A and C in their route so that they are aware of the problem and can

make an appropriate decision: find a different way to their destination, go back home

or, at least, being alert and avoid having an accident.

From now on, the example will only take consider the transmission of relevant

information from stations in each node to those vehicles which may be interested.

102 4.6. Example

The internal reasoning process by which stations receive information from vehicles

and determine that there is a traffic jam in a road or that a road is closed is out of

scope of this work. The road map will be considered to be in a general situation

where there are ncars vehicles in the system and there is a total amount of nrem
remarkable situations to be reported to vehicles on the road.

The rest of the section will explain different strategies to solve the problem of sharing

all this information among the different vehicles and stations. Two different solutions

have been considered: One based on broadcasting information to all vehicles and one

based on an event tracing system like the one presented in this paper.

For the solution based on broadcasting, it will be considered that there is a service,

available for agents in nodes, in charge of registering agents in the system (like the

AMS in FIPA). As a consequence, for each of the nrem remarkable situations, each

station would have to ask the service for agents in the market (this implies a message

from the station agent to the service provider to ask for the existing agents and the

corresponding answer from the service provider to the station agent). After that,

the station agent would have to actively send a message to all vehicle agents in the

system each time a remarkable situation is detected. Considering the number of

vehicles previously specified, the number of messages sent to inform about all of the

remarkable situations would be nmsg = (2 + ncars) ∗ nrem. This solution would not

only cause unnecessary information traffic, since messages are sent to vehicles which

may not be interested in that information, but also would cause overhead in these non

interested vehicle agents, which would also have to process this extra information. In

Figure 4.4, vehicles 4 and 5 would be informed of a problem in the road between A

and C, although none of them had it in its route.

To solve this problem using an event tracing system like the one presented in this

paper, station agents have to publish data relating to their adjacent roads as tracing

services. So, for each adjacent road, station agents publish a tracing service. Vehicles

interested in a road request the corresponding tracing service to one of the stations

which provides it and, from that moment, they receive a trace event each time a

4. TRAMMAS: A Tracing Model for Multiagent Systems 103

Table 4.1: Summary of best and worst case costs as a function of the number of vehicles (ncars) for a
constant number of remarkable observations (kremarkable) with the different techniques: Broadcasting
and event tracing.

Number of transmissions for krem situations
Best case Worst case

Broadcast kremarkable ∗ (2 + ncars) kremarkable ∗ (2 + ncars)
E. Tracing 0 kremarkable ∗ ncars

remarkable situation is detected. In this case, no messages are sent, but trace events.

For each remarkable situation, the total amount of trace events transmitted (nt events)

would be the number of cars which are interested in that road and requested the

corresponding tracing service. In a system where krem remarkable situations have

taken place, the number of trace events transmitted would be 0 ≤ nt events ≤
(krem ∗ (ncars)). When there is not any vehicle interested in a road, no trace

events are generated and so, the amount of information transmitted is reduced to that

which is strictly necessary. Also, since stations do not have to know which vehicles

are interested in their adjacent roads, their internal logic remains simple, unlike in

previously shown solutions.

Table 4.1 shows the number of transmissions (either messages or trace events) as a

function of the number of remarkable situations observed in the system. The number

of transmissions in the worst case is in the same order for both techniques. However,

the best case is constant for event tracing while it is higher using broadcasting. Also,

event tracing simplifies station agents’ internal logic, since they only have to process

data sent as they drive by vehicle agents and do not have to send the information to

all vehicles each time a remarkable situation takes place. Also, vehicle agents can

decide about which roads they want to keep informed, which is less overheading for

them, since they do not have to process unrequiered information about roads they are

not going to drive through or roads they have already passed. In the same way, station

agents do not have to spend resources in sending data to vehicles which do not need

it.

Theoretical results show that event tracing provides a way to coordinate different

104 4.7. Conclusions and further work

vehicles without having to contact directly with none of them. The amount of

information interchanged among agents in the system is reduced to the minimum

necessary, which makes the system more efficient and scalable. Station agents’

internal logic keeps as simple as possible, which makes the multiagent system be

also easier to develop and maintain.

4.7 Conclusions and further work

This paper presents TRAMMAS, an abstract model of an event tracing system

for multiagent systems. Unlike most traditional tracing systems, the presented

model is not only conceived as a helping tool for multiagent system developers or

administrators, but also as an additional indirect communication mechanism which

lets agents and other entities in the system generate trace events, as well as receiving

events generated by other entities.

By allowing trace event interchange not only among single agents, but also among

non-agent entities (modeled as artifacts) and aggregations of agents and artifacts,

the proposed model provides a more flexible support for indirect interaction and

coordination than message-guided approaches like overhearing. As a consequence,

the incorporation of the model to a multiagent system can improve the way in which

entities in the multiagent system perceive each other and their environment, which in

turn improves the way in which high level social abstractions can be developed and

incorporated to the multiagent system.

Along with the trace model, a generic architecture has also been presented. This

architecture lets concepts and mechanisms described by the model be incorporated

to a multiagent system at the platform level, not only because it is more efficient and

flexible than incorporating them at application level, but also because it makes tracing

information more reliable, since it has been generated by the multiagent platform

itself.

4. TRAMMAS: A Tracing Model for Multiagent Systems 105

It would also be possible to design a different architecture which were less integrated

within the platform and did not required instrumenting the platform source code.

However, providing trace event support only at application level would make it very

difficult to provide domain independent trace events support, at least in a reliable and

efficient way.

Finally, an example where different techniques and strategies have been used to

transmit the necessary information among agents has been presented. The analysis

performed for each of these techniques shows that event tracing can help reducing

the amount of unnecessary information which has to be transmitted and processed,

while keeping agents’ internal logic as simple as possible and thus, contributing to

the scalability and feasibility of multiagent systems.

The trace model presented in this paper has been integrated with the next version of

the multiagent platform MAGENTIX, in order to be able test it in a real multiagent

system and to compare results using event tracing with other techniques. Currently,

the trace model is also being integrated with the multiagent platform SPADE[67].

Acknoledgements

This work is partially supported by projects PROMETEO/2008/051, CSD2007-022,

TIN2008-04446 and TIN2009-13839-C03-01.

106 4.7. Conclusions and further work

Figure 4.2: TRAMMAS UML model

4. TRAMMAS: A Tracing Model for Multiagent Systems 107

ERES

TRACE MANAGER

Publish/Unpublish Service

Look up for Service

Request Service
Cancel Request

EVENTS

TEM

TSM

AM

SUBM

Add/Remove
Direct Authorization Add/Remove

Delegated Authorization

Register

CONTROLS

Register

Unsubscribe

Unsubscribe

Figure 4.3: Architecture model of the tracing system and interactions among tracing entities depending on their
tracing roles and the Trace Manager’s internal modules

108 4.7. Conclusions and further work

C

D

F

A

E

B

1
2

3

4

5

CAR 1: F , E , A , C
CAR 3: D , A , C
CAR 5: C , B , F

CAR 2: E , A , C
CAR 4: E , A , D

CAR 6: F , E , A , C

ROUTE TABLE

6

Figure 4.4: Multiagent system based virtual market where customer and seller agents negotiate before
buying/selling products.

CHAPTER

5
Improving the Tracing System in

PANGEA Using the TRAMMAS Model

5.1 Introduction . 111
5.2 Related Work . 112
5.3 TRAMMAS Overview 114
5.4 Description of PANGEA Including TRAMMAS 117
5.5 Case Study and Results 119
5.6 Conclusions . 122

AUTHORS:
LUIS BÚRDALO, ANDRÉS TERRASA, VICENTE JULIÁN, CAROLINA ZATO, SARA

RODRÍGUEZ, JAVIER BAJO, JUAN M. CORCHADO

{lburdalo,aterrasa,vinglada}@dsic.upv.es
DEPARTAMENTO DE SISTEMAS INFORMÁTICOS Y COMPUTACIÓN

UNIVERSIDAD POLITÉCNICA DE VALENCIA

CNO/ DE VERA SN
46022 VALENCIA, SPAIN

{carol zato,srg,jbajope,corchado}@usal.es
DEPARTMENT OF COMPUTER SCIENCE AND AUTOMATION

UNIVERSITY OF SALAMANCA

SALAMANCA, SPAIN

109

5. Improving the Tracing System in PANGEA Using the TRAMMAS Model111

Abstract

This paper presents the integration of the tracing model TRAMMAS in an agent

platform called PANGEA. This platform allows to developed multiagent systems

modeled as Virtual Organizations. The concepts of roles, organizations and norms

are fully supported by the platform assuring flexibility and scalability. Before

TRAMMAS, this platform uses a Sniffer Agent to trace the information reducing its

scalability as a centralized mechanism. TRAMMAS proposes the use of event tracing

in multiagent systems, as an indi- rect interaction and coordination mechanism to

improve the amount and quality of the information that agents can perceive in order

to fulfill their goals more efficiently. Moreover, the event tracing system can help

reducing the amount of unnecessary information.

5.1 Introduction

Distributed multi-agent systems (MAS) have become increasingly sophisticated

in recent years, with the growing potential to handle large volumes of data and

coordinate the operations of many organizations [70]. In these systems, each agent

independently handles a small set of specialized tasks and cooperates to achieve

the system-level goals and a high degree of flexibility [68]. Multiagent systems

have become the most effective and widely used form of developing this type of

applica- tion in which communication among various devices must be both reliable

and efficient. One of the problems related to distributed computing is message

passing, which is in turn related to the interaction and coordination among intelligent

agents. Conse- quently, a multiagent architecture must necessarily provide a robust

communication platform and control mechanisms.

This article presents a multiagent platform based on a Virtual Organization (VO)

paradigm. In this paradigm, the social behavior (based on abstractions such as norms,

teams, organizations, roles, commitments, etc.) plays and important role and it has to

112 5.2. Related Work

be incorporated as a decentralized mechanism. This platform called PANGEA (Plat-

form for Automatic coNstruction of orGanizations of intElligent Agents) includes a

robust communication model that allows intelligent agents to connect from a variety

of devices. On the other hand, TRAMMAS is a tracing model that is incorporated

to the platform to improve the amount and quality of the information that agents can

perceive from both their physical and social environment, in order to fulfill their goals

more efficiently.

The remainder of the paper is structured as follows: the next section introduces

some previous works made in tracing systems. Section 5.3 presents an overview

of the TRAMMAS model. Section 5.4 explains the inclusion of TRAMMAS inside

PANGEA. Next, Sect. 5.5 presents a case study and some results. Finally, Sect. 5.6

shows some conclusions.

5.2 Related Work

The tracing systems within the multiagent architectures have been traditionally used

for tasks of “debugging” and the control of certain agents’ behavior.

The most outstanding example of this case is the Sniffer Agent and the Introspecter

Agent of JADE [21]. The Sniffer Agent allows registering all the messages sent and

received by the MAS and later, by means of a log file, to examine its content. The

Introspecter Agent allows knowing all the events related to the life cycle of an agent,

the messages sent and received as well as its behavior. Nevertheless, in this model

all the communication flow is centralized and must pass through this agent to be ana-

lyzed and later, registered. Once the information is in the log files, humans must study

it since is not prepared for the treatment by agents. The own agents cannot extract

log information and the procedure cannot be automated. JADEX [101] provides a

Conversa- tion Center, which allows a user to send messages directly to any agent

while it is executing and to receive answers to those messages from a user-friendly

interface. The JACK [1, 4] multiagent platform supports monitoring communication

5. Improving the Tracing System in PANGEA Using the TRAMMAS Model113

between agents by means of Agent Interaction Diagrams. It also provides a Design

Tracing Tool, to view internal details of JACK applications during execution, and a

Plan Tracing Tool, to trace the execution of plans and the events that handle them.

Other examples of tracing facilities provided by platforms are ZEUS’s [45] Society

Viewer and Agent Viewer, which display organizational inter-relationships among

agents and their messages and agent’s internal state. Also, JASON [25] provides a

Mind Inspector tool to examine agents’ internal state.

Apart from those tools provided by multiagent platforms themselves, there are

many tracing facilities provided by third party developers. This is the case of Java

Sniffer [120], developed by Rockwell Automation based on JADE’s Sniffer Agent.

Another third party tool based on JADE’s Sniffer Agent is ACLAnalyser [28], which

intercepts messages interchanged by agents during the execution of the application

and stores them in a relational database, which can be lately inspected to detect

social pathologies in the MAS. These results can be combined with data mining

techniques to help in the multiagent system debugging process [29]. MAMSY,

the management tool presented in [109] lets the system administrator monitorize

and manage a MAS running over the Magentix multiagent platform [7]. MAMSY

provides graphical tools to interact with the MAS and visualize its internal state at

run time. In [95], the authors describe an advanced visualization tools suite for MAS

developed with ZEUS, although the authors also claim these tools could be used with

CommonKADS.

As previously mentioned, the multiagent system that is proposed is based on Virtual

Agent Organizations [61]. Consequently, the PANGEA platform makes it possible

to create open systems that resolve the inflexibility of a multiagent system. The new

open and collaborative architectures require a control focused on the interaction and

global knowledge rather than autonomous behaviors. For this reason, traceability has

become a key point for the distributed knowledge. As it can be appreciated, tracing

facilities in MAS are usually conceived as debugging tools to help in the validation

and verification processes. It is also usual to use these tracing tools as help for those

114 5.3. TRAMMAS Overview

users which have to understand how the MAS works. Thus, generated events are

de- signed to be understood by a human observer who would probably use them to

debug or to validate the MAS and tracing facilities are mostly human-oriented in

order to let MAS users work in a more efficient and also comfortable way. Some

multiagent plat- forms provide their own tracing facilities, although there is also

important work car- ried out by third party developers. However, even those tracing

facilities which were not designed by platform developer teams are usually designed

for a specific multiagent platform. This reason leads us to integrate TRAMMAS

with our platform to probe its independency and to achieve a distributed way to share

knowledge between our PANGEA agents in a distributed way.

5.3 TRAMMAS Overview

Multiagent systems can be considered to be formed by a set of tracing entities or

components which are susceptible of generating and/or receiving certain information

related to their activity as trace events. A trace event is a piece of data representing an

action which has taken place during the execution of an agent or any other component

of the multiagent system. Each trace event has these attributes [35]:

• Event type: Trace events can be classified according to the nature of the infor-

mation which they represent. This event type is necessary for tracing entities

in or- der to be able to interpret the rest of the data attached to the trace event.

• Time stamp: Global time at which the event took place, necessary to be able to

chronologically sort events produced anywhere in the multiagent system.

• Origin entity: The tracing entity which originated the event.

• Attached data: Additional data which could be necessary to correctly interpret

the trace event. The amount and type of these data will depend on the event

type. Some trace events may not need any additional information.

5. Improving the Tracing System in PANGEA Using the TRAMMAS Model115

Tracing entities can be considered to be playing two different tracing roles. When

they are generating trace events, tracing entities are considered Event Source entities

(ES). When they are receiving trace events, tracing entities are considered Event Re-

ceiver entities (ER). Any tracing entity can start and stop playing any of these two

roles, or both, at any time.

This architecture considers three different kinds of tracing entities: Agents, arti- facts

and aggregations.

On the one hand, agents are all those autonomous and proactive entities which de-

fine the multiagent system behavior. On the other hand, artifacts are all those passive

elements in the multiagent system (databases, physical sensors and actuators, etc.)

susceptible of generating events at run time or receiving them as an input [97]. Arti-

facts can combine in order to perform more complex tasks, generating or receiving

trace events as a tracing individual. From the point of view of the tracing system,

these combinations of artifacts are also modeled as single artifacts.

If the multiagent system supports aggregations of agents (or agents and artifacts),

such as teams or organizations, then such aggregations are considered by the tracing

system as single tracing entities, in the sense that trace events can be generated from

or delivered to these entities as tracing individuals. Agents and artifacts within an

aggregation are still tracing entities and thus, they can also generate and receive trace

events individually, not only as members of the aggregation.

From the point of view of the architecture, the multiagent platform can be seen as

a set of agents and artifacts. Therefore, the components of the platform are also

susceptible of generating and receiving trace events.

When a tracing entity is playing the ER tracing role, the tracing system provides it

with a stream, which can be seen as a special mailbox where the Trace Manager

de- livers the trace events for this ER entity. These streams can either be pieces of

memory or log files. In both cases, the ER entity which owns the stream has to limit

its size in order not to overload its resources.

116 5.3. TRAMMAS Overview

Event types are modeled in this architecture as tracing services. A tracing service is

a special service which is offered by an ES entity to share its trace events, in a similar

way to a traditional service. Each ES entity can offer different tracing services, and

the same tracing service can be offered by many different ES entities.

As with traditional services, when an ER entity is interested in receiving trace events

of a specific event type, which are generated by a given ES, it has to request the

corresponding service. From that moment on, the Trace Manager starts recording the

corresponding trace events and delivering them directly to the ER stream until the

ER cancels the request. The Trace Manager only records those trace events, which

have been requested by an ER entity, so that no resources are spent in recording and

delivering trace events, which have not been requested by any ER entity.

The Trace Manager provides a list of all the available tracing services and the ES

entities, which offer them. When an ES entity wants to offer any tracing information,

it must inform the Trace Manager in order to publish the corresponding tracing ser-

vice so that other tracing entities can request it if they are interested in its trace events.

When a tracing entity does not want to receive certain trace events anymore it has to

cancel the request to the corresponding tracing service.

In order to let ES entities decide which ER entities can receive their trace events,

when an ES entity publishes a tracing service, it has also to specify which agent roles

are authorized to request that service to that ES entity (direct authorization). In this

way, when an ER entity wants to request a tracing service to an ES, it has to be able to

assume one of the authorized agent roles. ER entities which are authorized to request

a tracing service to certain ES entity can also authorize other roles to request the same

tracing service to that ES entity. This is defined as authorization by delegation. In

this way, the tracing system maintains an authorization graph for each tracing service

which is being offered by each ES. This authorization graph is dynamic, since tracing

entities can add and remove authorizations at run time. When an authorization, direct

or by delegation, is removed, all those delegated authorizations which depended on

the removed one are also removed.

5. Improving the Tracing System in PANGEA Using the TRAMMAS Model117

The tracing system does not control which entities can assume each role in order to

request or to add authorizations for a tracing service. It is the multiagent platform

which has to provide the necessary security mechanisms no prevent agents from

assuming inappropriate roles.

5.4 Description of PANGEA Including TRAMMAS

Developing PANGEA, we are looking for a platform that can integrally create,

manage and control VOs. When launching the main container of execution, the

communication system is initiated; the agent platform then automatically provides

the following agents to facilitate the control of the organization:

• OrganizationManager: the agent responsible for the actual management of

organizations and suborganizations. It is responsible for verifying the entry

and exit of agents, and for assigning roles. To carry out these tasks, it works

with the OrganizationAgent, which is a specialized version of this agent.

• InformationAgent: the agent responsible for accessing the database containing

all pertinent system information.

• ServiceAgent: the agent responsible for recording and controlling the

operation of services offered by the agents.

• NormAgent: the agent that ensures compliance with all the refined norms in

the organization. For example, preventing an agent to take an unauthorized

role.

• Sniffer: manages the message history and filters information by controlling

com- munication initiated by queries.

One of the most important features that characterize the platform is the use of the

IRC protocol for communication among agents. Internet Relay Chat (IRC) is a

118 5.4. Description of PANGEA Including TRAMMAS

Real Time Internet Protocol for simultaneous text messaging or conferencing. This

protocol is regulated by 5 standards: RFC1459[96], RFC2810 [74], RFC2811 [75],

RFC2812[76] y RFC2813 [77]. This allows for the use of a protocol that is easy to

implement, flexible and robust. The open standard protocol enables its continuous

evolution. There are also IRC clients for all operating systems, including mobile

devices.

All messages include the following format:

prefix command command-parameters\r\n

The prefix may be optional in some messages, and required only for entering

messages; the command is one of the originals from the IRC standard. For the

diffusion of the defined trace event taking into account the format of the IRC

messages, the event attributes have been included as parameters of the messages.

The communication platform is able to treat the messages according to its format and

to distribute them suitably.

In line with this design, the inclusion of TRAMMAS in PANGEA is relatively easy.

As previously commented, a tracing service is a special service which is offered by

an ES entity to share its trace events. Therefore, the unique existing condition is that,

as far as possible, an ES entity should implement its tracing service as a Web Service.

This allows the ServiceAgent of PANGEA to offer the services to all the agents in

the rest of suborganizations.

An EventTracing Suborganization has been included to create the tracing system.

Figure 5.1 shows the agents and its relationships. This suborganization carry out the

tasks that the model TRAMMAS assign to the Trace Manager. Four agents form the

suborganization:

• TraceEntityAgent in charge of registering and managing all the tracing entities.

5. Improving the Tracing System in PANGEA Using the TRAMMAS Model119

Figure 5.1: Platform overview

• TracingServicesAgent in charge of registering and managing tracing services

offered by ES entities.

• SubscriptionAgent, which stores and manages subscriptions to each tracing

service and ES entity.

• AuthorizationAgent which stores and manages the authorization needed for

each tracing service and ES entity.

Figure 5.2 shows how tracing entities interact with the EventTracing Suborganization.

5.5 Case Study and Results

The case study presents an example of VO, where different techniques are used to

share information among agents. The agents created by PANGEA are implemented

120 5.5. Case Study and Results

Figure 5.2: Interactions between agents in the EventTracing Suborganization

using different technologies and have different features, among which are the use of

sensors. Virtual Organizations of agents are an interesting possibility to handle the

large amounts of data provided by sensors because they can provide the necessary

capacity to handle open and heterogeneous systems such as those normally found

in the information fusion process. Several agents in the VO will be deployed on

computers within a LAN and various agents will be on mobile devices.

Theoretically, the cost of transmitting the necessary information between them can be

used to measure the efficiency and scalability of PANGEA platform. It also enables

to compare the techniques used in the construction of each of the agents.

Let us consider a VO focuses on people detection, specifically developed for a work

environment, which can facilitate tasks such as activating and personalizing the work

environment; these apparently simple tasks are in reality extremely complicated for

some people with disabilities [122].

ZigBee sensors are used to deploy the detection prototype. ZigBee is a low cost, low

5. Improving the Tracing System in PANGEA Using the TRAMMAS Model121

power consumption, two-way wireless communication standard that was developed

by the ZigBee Alliance [2]. It is based on the IEEE 802.15.4 protocol, and operates

on the ISM (Industrial, Scientific and Medical) band at 868/915MHz and a 2.4GHz

spectrum.

The proposed proximity detection system is based on the detection of presence

by a localized sensor called the control point which has a permanent and known

location. Once the Zigbee tag carried by the person has been detected and

identified, its location is delimited within the proximity of the sensor that identified it.

Consequently, the location is based on criteria of presence and proximity, according

to the precision of the system and the number of control points displayed. The

parameter used to carry out the detection of proximity is the RSSI (Received Signal

Strength Indication), a parameter that indicates the strength of the received signal.

This force is normally indicated in mW or using logarithmic units (dBm). 0 dBm

is equivalent to 1mW. Positive values indicate a signal strength greater than 1mW,

while negative values indicate a signal strength less than 1mW [122].

In our Case Study we have a distribution of computers and laptops in a real office

environment, separated by a distance of 2 meters. The activation zone is approximate-

ly 90cm, a distance considered close enough to be able to initiate the activation pro-

cess. It should be noted that there is a “Sensitive Area” in which it is unknown exactly

which computer should be switched on; this is because two computers in close prox-

imity may impede the system’s efficiency from switching on the desired computer.

Tests demonstrate that the optimal distance separating two computers should be at

least 40cm.

The agents share certain information about the state of the sensors so that other agents

can carry out the detection in an optimal way. For instance, important increases in

the RSSI of sensors may be indicative of a proximity to a computer and so on.

The example considers the transmission of relevant information of sensors between

agents which may be interested. The internal reasoning process by which agents

receive information from sensors is out of scope of this work. The case study will

122 5.6. Conclusions

Number of transmissions for nrem situations
Best case Worst case

Broadcast kremarkable ∗ (2 + nsens) kremarkable ∗ (2 + nsens)
EventTracing Suborganization 0 kremarkable ∗ (2 + nsens)

Table 5.1: Summary of best and worst case costs as a function of the number of Nsens agents for a
constant number of remarkable situation (Kremarkable)

be considered to be in a general situation where there are nsens agents in charge of

controlling n sensors in the system and there is a total amount of nrem remarkable

situations to be reported to agents. Table 5.1 shows the number of transmissions as a

function of the number of remarkable situations occurred in the system. The number

of transmissions in the worst case is in the same order for both techniques (broadcast

and the EventTracing Suborganization). However, the best case is constant for event

tracing while it is higher using broadcasting.

Results show that the event tracing technique provides a way to coordinate different

agents in charge of sensors without having to contact directly with none of them. The

amount of information interchanged among agents in the system is reduced to the

minimum necessary, which makes the system more efficient and scalable.

5.6 Conclusions

This paper has presented a platform called PANGEA, which has been improved

thanks to TRAMMAS. PANGEA has great potential to create open systems, and

more specifically, virtual agent organizations. This architecture includes various tools

that make it easy for the end user to create, manage and control these systems. One of

the greatest advantages of this system is the communication platform that, by using

the IRC standard, offers a robust and widely tested system that can handle a large

number of connections, and that additionally facilitates the implementation for other

potential extensions. Before TRAMMAS, the Sniffer agent offers services that can be

invoked to study and extract message information but this was centralized and limited

5. Improving the Tracing System in PANGEA Using the TRAMMAS Model123

if we want to create a platform for building Large-Scale Agent-Based Systems.

TRAMMAS offers an additional indirect communication mechanism which lets

agents and other entities in the system generate trace events, as well as receiving

events generated by other entities. The incorporation of this model to PANGEA

has improved the way in which entities and agents perceive each other and their

environment, which in turn improves the way in which high-level social abstractions

can be developed and incorporated to the multiagent system.

Finally, the event tracing suborganization can help reducing the amount of

unnecessary information which has to be transmitted and processed, while keeping

agents’ internal logic as simple as possible and thus, contributing to the scalability

and feasibility of VOs.

Acknowledgement

This work has been partially supported by the MICINN project TIN

2009-13839-C03-03.

CHAPTER

6
An Adaptive Framework for Monitoring

Agent Organizations

6.1 Introduction . 127
6.2 The Trace&Trigger Framework 129
6.3 Case study . 139
6.4 Evaluation . 146
6.5 Related Work . 156
6.6 Conclusions . 161

AUTHORS:
JUAN M. ALBEROLA, LUIS BÚRDALO, VICENTE JULIÁN, ANDRÉS TERRASA AND ANA

GARCÍA-FORNES

{jalberola,lburdalo,vinglada,aterrasa,agarcia}@dsic.upv.es
DEPARTAMENTO DE SISTEMAS INFORMÁTICOS Y COMPUTACIÓN

UNIVERSIDAD POLITÉCNICA DE VALENCIA

CNO/ DE VERA SN
46022 VALENCIA, SPAIN

125

6. An Adaptive Framework for Monitoring Agent Organizations 127

Abstract

Multiagent technologies are usually considered to be suitable for constructing agent

organizations that are capable of running in dynamic and distributed environments

and that are able to adapt to changes as the system runs. The necessary condition

for this adaptation ability is to make agents aware of significant changes in both

the environment and the organization. This paper presents mechanism, which

helps agents detecting adaptation requirements dynamically at run time, and an

Trace&Trigger, which is an adaptation framework for agent organizations. It consists

of an event-tracing-based monitoring mechanism that provides organizational agents

with information related to the costs and benefits of carrying out an adaptation

process at each moment of the execution. This framework intends to overcome

some of the problems that are present in other approaches by allowing the dynamic

specification of the information that has to be retrieved by each agent at each

moment for adaptation deliberation, avoiding the transference of useless information

for adaptation deliberation. This framework has been integrated in the Magentix2

multiagent platform. In order to test its performance benefits for any agent

organization, an example based on a market scenario is also presented.

6.1 Introduction

Nowadays, one of the goals of multiagent systems is to construct systems that are

capable of autonomous and flexible decision-making and that can cooperate with

other entities within a society. In these scenarios, dynamic agent organizations

that are able of adjusting themselves in order to gain advantage in their current

environments are likely to become increasingly important [88]. Similar to the needs

of human organizations [53], dynamic agent organizations have to modify/adapt their

structure and behavior by adding, removing, or substituting components while the

system is running and without bringing it all down. As pointed out by Dignum et

128 6.1. Introduction

al. in [57], in these cases, the changes in the environment of agents are the ones that

trigger reorganization, and, thus, this dynamic adaptation requires that systems be

able to evaluate their own health in order to find out when an adaptation is needed.

Being able to monitor an agent organization is important in order to determine why

and when an organization needs to be adapted. According to [69], monitoring is

essential in order to be able to detect undesirable behavior that needs to be corrected.

However, detecting these changes in the environment is not trivial.

Current approaches for agent organization adaptation propose different techniques

for monitoring the organization in order to figure out when an adaptation is required.

In most of them, both the internal adaptation logic for deciding when an adaptation

is required and the information required to be monitored are usually predefined at

design time and cannot be modified during the execution. This restriction assumes

that requirements associated to the adaption process are always known in advance.

However, as stated in [5], adaptive systems may cause monitoring requirements

to change throughout the agent organization’s life-span, and, thus, the information

required to be monitored can also change during the execution depending on the

current requirements of the system.

Assuming that monitoring needs are static and known in advance at design time

makes it difficult to develop dynamic applications that can adapt at run time. It

is necessary to be able to count on an adaptive approach that can overcome the

monitoring limitations imposed by static designs. Therefore, an adaptive approach

should apply not only to the behavior and structure of the system, but it should also

apply to the design of the monitoring system [106], especially when dealing with the

management of complex systems over long periods of time.

This paper presents Trace&Trigger, which is an agent organization adaptation

framework that consists of a dynamic monitoring mechanism and an adaption

assistant. The monitoring mechanism helps agents detect adaptation requirements

dynamically at run time and also feeds the adaption assistant so that it can provide

organizational agents with information related to the costs and benefits of carrying

6. An Adaptive Framework for Monitoring Agent Organizations 129

out an adaptation at each moment of the execution.

The rest of the paper is organized as follows. Section 6.2 describes in detail

both components of the adaptation framework: The event-tracing-based monitoring

system and the adaption mechanisms. Section 6.3 shows an example of how to

incorporate the framework to an adapting agent organization; and the performance

of the organization is evaluated in Section 6.4. Section 6.5 details previous work by

other authors in the field of monitoring and adapting multiagent systems. Finally,

Section 6.6 presents the main conclusions of this work.

6.2 The Trace&Trigger Framework

The Trace&Trigger framework presented in this work has been designed to run on

the Magentix2 multiagent platform [60], which is a platform for open multiagent

systems developed in Java. This platform provides a specific mechanism to obtain

the information necessary for any adaptation (Section 6.2.1). Specific mechanisms

have been incorporated to let agents determine the costs and benefits of performing

an adaptation at run time (Section 6.2.2) as well as the mechanisms required to carry

out the necessary actions to perform that adaptation (Section 6.2.3).

6.2.1 Magentix2 Support

In addition to the message-based communication layer, Magentix2 also provides

communication layer for event-tracing, which allows agents to generate and receive

trace events at run time. As a result, agents and other entities running on the

Magentix2 platform can not only communicate in a direct way by means of ACL

messages, but they can also communicate in an indirect way by means of trace events.

These event tracing facilities have been incorporated to the platform according to

the TRAMMAS model, which is a platform-independent trace model for tracing

events in multiagent systems. Its objective is to provide multiagent systems with

130 6.2. The Trace&Trigger Framework

a mechanism for indirect interaction and communication.

The TRAMMAS model conceives the multiagent system as a set of trace entities

that share information by means of generating and receiving trace events. A trace

entity is any component in the multiagent system that is able to generate and receive

trace events: agents, non-agents (artifacts, according to the definition in [97]), or

aggregations of agent and non-agent entities. However, this work will only consider

individual agents. A trace event is a piece of data that represents a significant

computation that takes place during the execution of any component inside the

multiagent system. This model defines the following common attributes for each

event:

• Event type: Trace events can be classified according to the nature of the

information which they represent. So that, the rest of the data attached to the

trace event can be interpretated.

• Time stamp: Global time at which the event took place; it is necessary to

be able to chronologically sort events produced anywhere in the multiagent

system.

• Origin entity: The trace entity that originated the event.

• Attached data: Additional data that could be necessary to correctly interpret

the trace event. The amount and type of these data will depend on the event

type. Some trace events may not need any additional information.

Trace entities in the multiagent system may participate in the tracing process by

playing two different tracing roles: the Event Source (ES) role and the Event Receiver

(ER) role. ES entities are those that generate trace events as they execute, while ER

entities are those that receive these events. The relation between ES and ER entities

is many-to-many: it is possible for events generated by an ES entity to be received by

many ER entities; it is also possible for an ER entity to receive events from multiple

6. An Adaptive Framework for Monitoring Agent Organizations 131

ES entities simultaneously. These two tracing roles are not exclusive and any trace

entity can play one or both of them at the same time.

The model defines a publication/subscription protocol by which: (1) any agent can

publish the types of events that it is able to generate (before generating them); and (2)

any agent can subscribe to those trace events in which it is interested (before starting

to receive them). This protocol helps reduce as much as possible the overhead that

tracing information can cause to the multiagent system. ER entities must subscribe

to those trace event types that they are interested in. Similarly, once an ER entity

is not interested in receiving events of a type to which it had previously subscribed,

the ER entity may unsubscribe from them. As a consequence, only trace events of

those types to which at least one ER has previously subscribed are generated and ER

entities do not receive any tracing information in which they are not interested. This

publication/subscription mechanism is dynamic in the sense that, at any time during

the execution, agents can change their publications and subscriptions. In order to give

support to this publication/subscription mechanism, trace events are offered to agents

in the system as trace services in a way similar to the way that traditional services

are offered in the multiagent system.

A third tracing role, the Trace Manager role (TM), is also considered in the model. It

is responsible for controlling and coordinating the entire tracing process: registering

tracing entities and event types, and giving support to the tracing and security models.

This means that there must be at least one trace entity playing this role in order to give

support to all these necessary features. The model establishes that the TM role can

be played by a single entity or by a set of different entities in the multiagent platform

at the same time (in coordination) even in different nodes of the multiagent system.

The tracing process and the relations and interactions among tracing roles in the

system are shown in Figure 6.1.

The tracing facilities described above have been incorporated to Magentix2 by

incorporating a specific agent that plays the TM role. Agents have to send an

ACL message to the TM agent whenever they want to publish or unpublish their

132 6.2. The Trace&Trigger Framework

TRACE
MANAGER

Event Source Event Receiver

AGENT

ARTIFACT

AGGREGATION

EVENTS

Publish/Unpublish trace events

Add/Remove direct authorization

Look up for trace events

Subscribe to trace events

Unsubscribe from trace events

Add/Remove delegated authorization

AGGREGATION

CONTROLS

STRM
AGENT

STRM

STRM

ARTIFACT

Figure 6.1: Interaction between the different tracing roles in the TRAMMAS model

available trace services and also when they want to subscribe to a trace service or

to unsubscribe from it. The TM agent interacts with the Magentix2 communication

layer so that trace events generate by an agent are only injected into the network if

there is an agent interested in receiving them; no trace event is received by an agent

unless the agent has previously requested it.

The TRAMMAS abstract model and the architecture model (which was considered in

order to incorporate event tracing facilities to the Magentix2 platform) are described

in more detail in [36].

6.2.2 Organization Management Module

Magentix2 provides support to virtual organizations by means of the THOMAS

architecture [105], which defines flexible services that can be used by agents.

This architecture has been used to define the organization’s management and the

services provided by agents. The THOMAS architecture is composed of a Service

Facilitator (SF) and an Organization Management System (OMS). The SF allows

for the registration and search of services provided by internal or external entities

6. An Adaptive Framework for Monitoring Agent Organizations 133

by following Service-Oriented Architectures guidelines. The OMS is in charge

of the management of organizations, taking control of their underlying structure,

services provided by the agents, and their relationships. This module allows for

the development of open and dynamic multiagent systems, where agents are able

to dynamically enter and leave the system, change their services, and change their

relationships or the roles that they play in the organizations. A special agent, which

is called manager agent, is defined to manage the execution of each organization.

This agent has complete information about the current state of the organization and

has permission to interact with the SF and OMS to change it.

6.2.3 Adaptation Module

Since the manager agent is in charge of coordinating every adaptation process in an

agent organization, it estimates the impact for each potential change. This impact

represents the costs/benefits that the application of an individual change (such as the

addition or deletion of a service) would cause, not only to those components involved

in the change, but also to other components in the organization. Furthermore, it also

shows the cost for carrying out the application of this change.

The Reorganization Facilitator service (RF) [8, 12] is the service that is in charge

of calculating (at any time) which adaptation has the lowest impact for the system.

Individual impacts that are calculated by the organization manager agent are

transferred to the RF in order to calculate the adaptation of the organization. This

service implements an adaptation mechanism based on organization transitions in

order to obtain the best adaptation from a current organization.

This process finds the organization whose transition impact is the lowest and the

sequence of steps required to achieve it. Several changes can be considered by using

the Multi-Transition Deliberation Mechanism (MTDM) [9, 11]. This mechanism

calculates transitions in different dimensions (roles, services, relationships, agent

population) from the current organization to other organizations. These transitions

134 6.2. The Trace&Trigger Framework

have high expected utility based on the cost of the transition to these new

organizations. The MTDM decides which transition is finally implemented and

provides the sequence of changes required to carry out the transition. We summarize

the main components of this model below.

6.2.3.1 Organization

Organization models allow us to represent both the elements that make up the

organization and the interactions among these elements. Several approaches can be

found in the literature for modeling agent organizations based on the requirements of

the applications. Current organization models have been compared and reviewed by

works such as Vázquez-Salceda et al. [121], Dignum [56], or Argente et al. [15].

Although several approaches can be used to model organizations, we use the

following adaptation of the organization model proposed in [58] since we found it

to be appropriate for the requirements of the model proposed.

An organization at a specific moment t is defined as a tuple Ot = 〈OtO, OtR〉, where

OtO stands for Organizational Objects and represents the individual objects of the

organization. It is defined asOtO = {Rt, St, At}, whereRt represents the set of roles

contained in the organization at a specific moment t; St represents the services that

the organization is offering at a specific moment t; and At represents the population

of agents at a specific moment t.

OtR stands for Organizational Relationships and represents relationships of the

organization by means of a link between the objects. It is defined as

OtR = {offerst, providest, playst, acquaintancet},

where:

• offerst = {(r, s) ∈ Rt × St} represents the relationships between roles and

6. An Adaptive Framework for Monitoring Agent Organizations 135

services, where (r, s) represents that the role r offers the service s at moment

t.

• providest = {(a, s) ∈ At × St} represents the relationships between agents

and services, where (a, s) represents that the agent a provides the service s at

moment t.

• playst = {(a, r) ∈ At × Rt} represents the relationships between agents and

roles, where (a, r) represents that the agent a plays the role r at moment t.

• acquaintancet = {(a, a′) ∈ At × At} represents the relationships between a

pair of agents, where (a, a′) represents that the agents a and a′ are connected

by an acquaintance relationship at moment t. These relationships define the

structural topology of the organization.

Given an organization Ot at a specific moment t, in order for an agent a to be able to

play a role r at time t, agent a must provide all the services s that r offers at time t:

∀(a, r) ∈ playst | (r, s) ∈ offerst → (a, s) ∈ providest

6.2.3.2 Organization transition

The concept of organization transition was first introduced in [52] and allows us to

relate two different organizations at different moments, current (c) and future (f). It is

the mechanism by which an organization is adapted into a new one. This mechanism

is based on individual changes that are applied to the objects and relationships of Oc

in order to obtain the objects and relationships of Of .

A transition event (ε) defines each individual change that can be applied to an

object or to a relationship during the organization transition in terms of addition

or deletion. An addition transition event applied to an object or to a relationship

(e.g, add agent(a), add provides(a, s)) causes the object or the relationship to be

136 6.2. The Trace&Trigger Framework

added to the specific set of Of , while a deletion event applied to an object or to a

relationship causes the object or the relationship to be deleted from the specific set

of Of . Given two organizations, Oc and Of , we define τ = {ε1 . . . εn} as the set of

transition events that cause a transition to Of when all of them are applied to Oc.

6.2.3.3 Organization Transition Impact

In order to calculate the organization with the highest potential for improvement in

utility based on the transition cost for several changes, we define the concept of

organization transition impact. This impact is a measurement of the effects of an

organization transition in terms of organization utility based on the costs for carrying

out this transition.

The application of the set of events τ associated to an organization transition provides

us with information regarding what changes must be carried out in order to fulfill the

transition. Each event ε ∈ τ has an associated impact i(ε) if ε is applied. This

impact represents the costs/benefits that the application of this event produces in the

organization. This impact shows the effect of this event in the components involved

in the change and also how other components are affected by this event. Moreover,

the impact shows the cost for carrying out the application of the event.

For any set of events τ that allows a transition from the current organization Oc to a

future organization Of , we define the impact that is associated to the organizational

objects i(τOO
) as the impact of applying all the events associated to objects. This

impact is computed as the aggregated impact of the events that allow a transition

from OcO to OfO and entails operations of addition and deletion of roles, services, and

agents:

i(τOO
) =

∑
ε∈τOO

i(ε)

Similarly, we define i(τOR) as the impact of applying all the events associated to

relationships. This impact allows a transition from OcR to OfR and refers to addition

6. An Adaptive Framework for Monitoring Agent Organizations 137

and deletion events of offers, provides, plays, and acquaintance relationships:

i(τOR
) =

∑
ε∈τOR

i(ε)

Finally, we can compute the organization transition impact as:

I(τ) = i(τOO
) + i(τOR

) =
∑
ε∈τ

i(ε)

If τ is composed by a sequence of ordered subsets τ1, . . . , τn, the organization

transition impact is represented as the aggregation of the impact of all the subsets:

I(τ) =
∑
τi∈τ

I(τi)

Each organization transition that is focused on a specific dimension provides

the future organization Of that could be transitioned to, which minimizes the

organization transition impact.

6.2.4 Adaptation Life-Cycle

Figure 6.2 shows how agents in the multiagent system interact with each other and

make use of the different facilities provided by the Trace&Trigger framework in order

to evaluate the state of the system at run time, calculate the costs and benefits of any

potential adaptation, and carry out that adaptation.

The organization manager needs to obtain certain information that is related to

the organization performance at run time. The organizational knowledge that the

manager agent possesses is used to estimate the adaptation impacts of individual

changes. The monitoring of the organization behavior is carried out by means of the

support for event tracing provided by Magentix2. To share their relevant information,

138 6.2. The Trace&Trigger Framework

AGENT

TRACE
MANAGER

AGENT

Org.

Manager

AGENT

RF

THOMAS

OMS/SF

AGENT

...

Individual
knowledge

ACL

Org.
knowledgeIndividual

knowledge

Tracing services
Subscriptions

MAGENTIX2 COMMUNICATION LAYER

TRACE EVENTS

CONTROL
TRACING
PROCESS

ACL MESSAGES:
Publish tracing service

Unpublish tracing service
Subscribe to tracing service

Unsubscribe from tracing service

Adaptation
calculation

Adaptation
request

ACL

ACL

Figure 6.2: Trace&Trigger framework

agents in the organization publish their trace services by sending an ACL message to

the TM. Those agents in the system that are interested in that information subscribe

to those trace services by requesting it from the TM via an ACL message, too.

Since information required for adaptation deliberation can change at run time, the

organization manager sends requests to the TM agent for dynamically subscribing

or unsubscribing. In this way, the organization manager agent retrieves all the

information that is needed at each moment in a transparent way for the rest of the

agents.

Organizational agents may also require some runtime information regarding the

organization. These agents can also subscribe to trace services and unsubscribe from

them. In this way, organizational agents can carry out tasks that do not affect other

agents in the organization and that do not require the supervision of the organization

manager. With the information received from the system, the organization manager

has to determine which specific changes can be carried out. In order to do so, the

6. An Adaptive Framework for Monitoring Agent Organizations 139

organization manager has to interact with the RF service, which provides a sequence

of changes that could be applied to improve the organization performance. If there is

any promising adaptation that could be applied, the organization manager can interact

with the OMS and the SF services in order to carry out this adaptation.

6.3 Case study

To help demonstrate how the Trace&Trigger framework can improve the adaptation

capabilities of an organization, a case study based on a market domain has been

implemented. The following conceptual elements are considered in this domain:

factories, which generate products; and enterprises, which are able to sell these

products to consumers as well as provide stock to other enterprises. The enterprises

represent an organization whose objective is to make as much profit as possible. The

organization can improve its performance at run time by adapting to the needs and

demands of the market. Similar to the domain proposed in this case study, other

domains with restrictions could also be used ([87]).

The organization has been modelled following the notation presented in Section

6.2.3.1. At a given moment t, the agent organization is composed of a set of agents

At = {a1 . . . an}, which represent the enterprises. Each agent ax is able to provide

a set of services St(ax), which are a subset of all of the services provided by the

organization: St(ax) ⊆ St = {s1 . . . sp}. Each agent ax that provides a service

sy at a given moment t is represented as providert(ax, sy) and has a current stock

stockt(ax, sy) associated to it. This stock is the maximum number of products that

ax can sell or provide to other agents at time t. Each agent is connected to other

agents by acquaintance relationships, which allow them to share their stock with

other agents. An acquaintance relationship acquaintancet(az, ax) allows an agent

az to be a stock provider of service sy for agent ax at time t. An agent ax that

provides a service sy at time t has a list of stock providers associated to it, which is

represented as SP t(ax, sy) = {az, . . . , an}.

140 6.3. Case study

S0

S
E
R
V
E

S0'

S0''

S1

S1'

S1''

S2

SERVE

R
E
S
T
O
C
K

O
R
G
A
N
IZ
E

SERVE
RE

ST
OC

K

O
R
G
A
N
IZ
E

..
.

Figure 6.3: Life cycle of the agent organization

At each time step, the organization passes through three states: Serve (state S),

Restock (state S′), and Reorganize (state S′′). Figure 6.3 shows the transitions

between these states. In the state S, each agent ax receives a number of requests

for each service sy that it provides, which is represented as requestst(ax, sy). Sales

of a product sy that are carried out by a provider ax at time t are represented as:

salest(ax, sy) =

{
requestst(ax, sy) if stockt(ax, sy) > requestst(ax, sy)

stockt(ax, sy) otherwise

and therefore, the stock is reduced: stockt(ax, sy)− salest(ax, sy).

After receiving the requests, the organization reaches the state S′, in which agents

restock their products depending initially on the sales that were carried out in the

previous state: restockt(ax, sy) = salest(ax, sy). Each agent tries to restock their

services through one of their stock providers. Providers are requested sequentially

until one of them agrees to restock the required amount. If agent ax and stock

6. An Adaptive Framework for Monitoring Agent Organizations 141

provider az reach an agreement, the required stock is transferred from az to ax,

incurring in a transportation cost for each individual product, which is represented

as tcost(az, ax, sy). If none of the stock providers is able to restock the demand,

finally the agent ax restocks the product directly from the specific factory F (sy)

as a last resort. This requires a higher transportation cost, which is represented as

tcost(F (sy), ax, sy).

Agent ax may in turn receive requests for restocking a service sy from another agent

aw. In this case, agent ax only agrees to restock agent aw if the amount requested is

less than its current stock: stockt(ax, sy) ≤ restockt(aw, sy); and if ax can in turn

restock this amount from its provider. If the restock is agreed, the available stock of

ax is reduced to stockt(ax, sy)− restockt(aw, sy) and the restock required by ax is

increased based on the stock required to be transferred transf t(ax, sy). This term

represents the amount of products transferred to other agents.

Finally, the last state S′′ represents the adaptation deliberation. In this state, the

organization manager tries to distribute the services to agents in order to improve the

profit of the organization. This profit is measured as the sales carried out by each

agent ax for each service sy based on the sale price of the service price(sy) and the

transportation cost required to restock the sold amount:

P t(O) =
∑
ax∈At

∑
sy∈St

salest(ax, sy)× (price(sy)− tcost(provider(ax, sy), ax, sy)

The changes that are considered in this example are the addition and deletion of

services. Therefore, as we stated in Section 6.2.3, the manager must estimate the

impact of these changes.

6.3.1 Estimation of the Adaptation Impact

As stated in Section 6.2.3.3, the impact estimation involves the benefits produced

by the adaptation, the costs associated to the adaptation, and how this adaptation

142 6.3. Case study

would influence all the components of the organization. In this example, we focus on

addition and deletion events regarding services, but other organizational dimension

could also be changed [11].

The addition of a new service in an agent ax implies the reduction of the maximum

stock of the rest of the services provided by this agent, from SMAX
n to SMAX

n+1 , with

n being the number of services provided by the agent and SMAX being a constant

defined for all the agents. The effect of this is estimated based on how the addition

of a new service would have affected the sales of each service sy during the previous

period between t − 1 and t. These sales would have been limited to the new stock,

producing a sales opportunity cost defined as follows:

o salest(ax, sy) =

{
salest(ax, sy)− SMAX

n+1 if salest(ax, sy) > SMAX
n+1

0 otherwise

This opportunity cost represents the sales of service sy that would not have been

carried out if another service had been added. The profit associated to this cost

P (o salestt(ax, sy)) depends on the price of the service and on whether these sales

have been restocked from a stock provider or from the factory.

Apart from this cost, the addition of a new service would have affected the

transferences to other agents transf t(ax, sy). Similar to the sales opportunity cost, a

transference opportunity cost can be defined, which is also limited to the new stock:

o transf t(ax, sy) =

{
restockt(ax, sy)− SMAX

n+1 if restockt(ax, sy) > SMAX
n+1

0 otherwise

The transference opportunity cost represents the restock to other agents of service

sy that could not be carried out if another service had been included. The profit

6. An Adaptive Framework for Monitoring Agent Organizations 143

associated to this cost P (o transf t(ax, sy)) depends on the difference between the

transference cost from a stock provider agent and the transference cost from the

factory F (sy).

In addition, if agent ax would have provided the new service sn, some estimated

sales (estimatedt(ax, sn)) would have been carried out. These sales have an

associated profit P (estimatedt(ax, sn)), which can be measured by considering the

transportation cost from the factory, which represents the worst case. Furthermore,

other agents that also provide this service sn could be negatively affected if a new

agent is providing the same service. This can be represented as a sales opportunity

cost associated to these other agents o salest(az, sn)∀az, sn ∈ St(az). This

cost represents the possible sales loss for these agents. Finally, the addition of a

new service has an associated fixed cost for setting up this service, which can be

represented as up(ax, sn). By aggregating all this information, the impact of adding

a new service sn to an agent ax is represented as IA(ax, sn):

IA(ax, sn) =

P (estimatedt(ax, sn))−
∑

s∈St(ax)

(
P (o salest(ax, s)) + P (o transf t(ax, s)

)
−

−
∑
az∈At

P (o salest(az, sn))− up(ax, sn)

In contrast to the addition of a service, the deletion of a service implies increasing the

maximum stock of the rest of the services, from SMAX
n to SMAX

n−1 , with n being the

number of services provided by the agent. Thus, if the stock of a service sy during the

period between t− 1 and t has been dropped to 0, the agent manager could estimate

that a higher number of extra sales would be carried out with a bigger stock. This

value is represented as estimatedt(ax, sy), which has a specific profit associated to

it P (estimatedt(ax, sy)).

Furthermore, if an agent had not provided a service sp, the sales associated to this

144 6.3. Case study

service salest(ax, sp) as well as the transferences to other agents transf t(ax, sp)

would not have been carried out. Therefore, the specific profit associated to the

deletion of a service can be estimated depending on whether or not the service sp
has been restocked from factory.

In addition, other agents that also provide this service sp could be positively affected

if an agent stops providing this service. This can be represented as a negative

opportunity cost associated to these other agents o salest(az, sp)∀az, sp ∈ St(az).
This represents the possible sales gain by these agents. Finally, the deletion of

a service has an associated fixed cost for turning off this service, which can be

represented as off(ax, sp). Therefore, the impact of deleting a service sp that is

already being provided by agent ax is represented as ID(ax, sp):

ID(ax, sp) =∑
s∈St(ax)

P (estimatedt(ax, s))−
(
P (salest(ax, sp)) + P (transf t(ax, sp))

)
−

−
∑
az∈At

P (o salest(az, sp)− off(ax, sp)

Depending on the number of services provided by each agent, the manager considers

the possibility of adding a service if the agent provides less than δ services and none

of the services provided are restocked with more that what is actually needed. This

would mean that it could be beneficial for the agent to add another service and reduce

the stock of the current ones. In contrast, the deletion of a service is considered if

the agent provides δ services or more. This would mean that it could be beneficial

to delete some of the current services in order to increase the stock capacity of this

highly demanded service. In order to deal with how all the information required

for adaptation deliberation is retrieved, in the following section we show how the

monitoring mechanism based on event tracing is used.

6. An Adaptive Framework for Monitoring Agent Organizations 145

6.3.2 Event Tracing Specification

By using event tracing, agents can publish, request, and cancel subscriptions

dynamically in order to send and retrieve only the information that is interesting

at each moment. To allow every agent to know the stock that is available in its

stock providers, each agent ax publishes the stock of each service sy provided at

the beginning of each time step. This information is published by means of the

STOCK AVAILABLE trace event. All the agents that are interested in receiving this

information (i.e., the agents that have ax associated as a provider of the service sy)

request a subscription to this event. Thus, each agent az only receives the specific

information that is required at each moment according to the following restriction:

TE.type = STOCK AV AILABLE ∧ TE.source = ax, ax ∈ P t(az, sy)

In order to manage the information required for adaptation deliberation of the

organization, the manager requests subscriptions to different events depending on

the services provided by each agent. On the one hand, the manager is interested in

receiving information from those agents that can add a new service (those that provide

fewer than δ services) and have requested more restock than actually required. This

is implemented by publishing the RESTOCK trace event in the state S′. By using this

trace event each agent publishes the information of the restock that it is carrying out.

Therefore, the manager is interested in receiving information from those agents that

can add a new service and that have requested a restock amount that is higher than

the one required:

TE.type = RESTOCK ∧ TE.source = ax, |St(ax)| <
δ ∧ TE.value > τ

(1)

We define this restriction as a threshold τ , which represents the estimated stock

146 6.4. Evaluation

required for the next time step in order to satisfy the sales and restocks received in the

current time step, based on the stock that is still available. Therefore, this threshold is

initially defined as: τ =
(
SMAX

n − stock(ax, sy)
)
− stock(ax, sy). For the deletion

of services, the manager is interested in receiving information from those agents that

are able to delete a service (those that provide δ services or more) and have sold all

the stock of a service. We can use the STOCK AVAILABLE trace event published by

agents to obtain this information:

TE.type = STOCK AV AILABLE ∧ TE.source =
ax, |St(ax)| ≥ δ ∧ TE.value ≤ σ

(2)

Similar to the above trace event, we define a threshold that could be modified at run

time. This threshold is initially defined as σ = 0, to represent the notification of any

event of positive stock available.

Finally, the manager also needs to know how many restocks are carried out from

factories in order to calculate the profit based on the transportation costs. This is

represented as a FACTORY REQUEST trace event that is published by agents and is

sent when the agent carries out a request to an specific factory:

TE.type = FACTORY REQUEST ∧ TE.source = any

6.4 Evaluation

In this section, we analyze different experiments to measure the performance of

the adaptation framework. For these experiments, we define an organization of

agents, which can have zero, one, or two different stock providers. As we stated

in Section 6.2.2, the agent manager is responsible for managing the organization

dynamics. This agent determines whether or not changes are required, depending on

the information obtained from providers through events. Depending on the conditions

of the environment, subscribed events might not reveal relevant information that is

6. An Adaptive Framework for Monitoring Agent Organizations 147

different from previous events.

Figure 6.4: Messages/events received: (a) in the manager; (b) in the whole organization

To start, we would like to present some experiments regarding traffic reduction

by using adaptive monitoring. Figure 6.4 (a) shows the number of events that

are received by the manager in a static and a dynamic monitoring strategy over

50 iterations 1. In this experiment, the thresholds σ and τ remain constant. As

1In the case of static monitoring, events are represented as messages.

148 6.4. Evaluation

can be observed, the number of events received is greater without using event

tracing, and the differences between the two approaches becomes greater as the

population of agents increases. This proves that the information that needs to be

monitored in dynamic systems may be different throughout the organization’s life

span. Therefore, dynamic monitoring (in which only the required information is

retrieved) considerably reduces the traffic load in the system. Note that in the static

approach, the information needed to be monitored must be specified at design time,

and therefore, a lot of information is transferred that is finally not used by the

manager. Figure 6.4 (b) shows the performance of the three approaches based on

the messages exchanged in the whole organization. In this experiment, it can be

observed that dynamic monitoring clearly outperforms a static approach.

In the following subsections, we analyze how the thresholds τ and σ influence the

profit of the organization and the number of events that are received in accordance

with the user demand. These thresholds can be adapted in accordance with demand in

order to reduce the number of events without losing profit. As an example, in a stable

scenario in which the user demand is similar over several iterations, the reception

of events may not be relevant unless the demand changes significantly. Therefore,

the initial threshold can be extended to a range of acceptable values. In contrast, in

a scenario in which the user demand is more variable, this range should be tighter

because the information provided by new events may be quite different from the

previous events. What is more, these restrictions could be different for all the agents

of the organization.

An average value associated to an event is calculated by considering the last values.

The number of values that are taken into account to obtain this average defines the

estimation period length φ. A threshold range ρ is also defined as a parameter that

determines the allowed fluctuation of the threshold of the monitored event. Therefore,

events whose values are ranged in the interval between [φ − ρ, φ + ρ] will not be

retrieved.

In the experiments described in the following subsections, we test the performance of

6. An Adaptive Framework for Monitoring Agent Organizations 149

an adaptive strategy. Each time-step when a RESTOCK or a STOCK AVAILABLE event

of a specific agent is not received, the values ρ and φ are increased; when an event

is received, these values are decreased. We also test the performance of different

static threshold ranges (from ρ = 0 until ρ = 20) for two different estimation period

lengths (φ = {5, 10}) as well as the performance of a classic monitoring strategy in

which the thresholds are as defined initially.

We test these strategies in different scenarios with different patterns of user demand:

(1) when demand changes at a specific moment; (2) when demand changes

progressively over a period of time; (3) when demand remains stable; (4) when

demand changes slightly; and (5) demand changes quickly.

6.4.1 Specific change in demand

The first experiment represents a scenario in which the user demand remains constant

until the time-step t = 15, when a change in the demand occurs and from then on

remains constant. Figure 6.5 shows the profit of the organization and the events

received for the different monitoring strategies. Figures 6.5(a) and 6.5(b) represent

the profit at each time-step achieved for an estimation period length of φ = 5 and

φ = 10, respectively. Figures 6.5(c) and 6.5(d) represent the number of accumulated

events that are received at each time-step.

It can be observed that the threshold range and the estimation period length influence

the organization’s performance. The lower the value of ρ, the shorter the time period

required by the organization to react to the change. This occurs because changes

in the demand cause the threshold range to be exceeded earlier when this range is

tight. For the highest values of ρ (10 and 20), the change in the demand is not large

enough to receive the event. As a result, the organization does not adapt and a higher

profit is not achieved. The classic strategy carries out the adaptation earlier than

other strategies because this strategy retrieves all the subscribed events that exceed

the initial thresholds. The problem with this strategy is that it receives a similar

150 6.4. Evaluation

number of events every time-step, even when the demand remains constant (from

t = 15 on). In contrast, the rest of the strategies detect that the demand stabilizes and

the number of events received also eventually stabilizes without lowering the profit

of the organization.

(a) Organization profit for φ = 5 (b) Organization profit for φ = 10

(c) Events received for φ = 5 (d) Events received for φ = 10

Figure 6.5: Profit of the organization and events received for a specific change in demand.

The influence of the estimation period length on the profit of the organization can be

also observed A period of φ = 5 causes some strategies (such as ρ = 5) to detect

significant changes in demand earlier, and therefore to carry out the adaptation earlier

as well. The number of events required to stabilize the system is also lower than for

6. An Adaptive Framework for Monitoring Agent Organizations 151

φ = 10. This is because a greater number of measures are considered to estimate

the average value. It can be observed that the profit for the dynamic strategy is the

same as the profit for the highest performing strategies. Despite the fact that some

strategies can converge converge earlier than the dynamic strategy to the best profit,

the dynamic strategy requires fewer events. As an example, the profit of the dynamic

and the classic strategies is the same from t = 27 on; however, the dynamic strategy

stops the reception of events when the demand stabilizes.

6.4.2 Progressive change in demand

The second experiment represents a scenario in which the user demand changes

slightly and progressively from time-step t = 15 to time-step t = 30 (Figure 6.6).

The objective of this experiment is to compare the moment at which the manager

receives events and decides whether or not an adaptation is required. Similar to the

first experiment, strategies with the lowest values of ρ receive events earlier. As in the

first experiment, the dynamic strategy is able to reduce the values of ρ and φ when

the demand is changing and to increase them when the demand is stable until this

strategy stops receiving events from t = 41 on.

In summary, the lower the value of ρ, the earlier events are received because the

threshold is exceeded earlier. Thus, a higher profit is achieved earlier. In addition,

event though the number of events that are received is higher for strategies with low

ρ values, this number eventually stabilizes. Similarly, low values of φ may obtain a

higher profit earlier than larger values. Nevertheless, the number of events received is

also important. As observed in this second experiment, different values of estimation

period length may carry out the adaptation at the same moment by requiring a lower

number of events. In other cases, the adaptation moment may be earlier (for ρ = 10),

but this would not be too significant if the demand is stable over a long period of

time.

152 6.4. Evaluation

(a) Organization profit for φ = 5 (b) Organization profit for φ = 10

(c) Events received for φ = 5 (d) Events received for φ = 10

Figure 6.6: Profit of the organization and events received for a progressive change in the demand.

6.4.3 Stable demand

Figure 6.7 shows a scenario in which the demand is stable during the entire execution.

This causes all the strategies to find the configuration with the highest profit in the

former iterations. However, the classic monitoring strategy is constantly receiving

events even though these events do not provide relevant information for adaptation.

In contrast, dynamic strategy increases the values of ρ and φ when the demand

stabilizes, which causes the dynamic strategy to stop receiving events from t = 12

6. An Adaptive Framework for Monitoring Agent Organizations 153

on.

(a) Organization profit for φ = 5 (b) Organization profit for φ = 10

(c) Events received for φ = 5 (d) Events received for φ = 10

Figure 6.7: Profit of the organization and events received for stable demand.

6.4.4 Slight change in demand

Figure 6.8 shows an experiment in which slight changes in demand occur at different

moments, causing the profit of the organization to periodically slightly increase and

decrease. However, these slight changes are not enough to require an adaptation.

Therefore, all the strategies obtain the same profit, but those with the highest values

154 6.4. Evaluation

of ρ and φ require fewer events than other strategies. As an example, for a ρ value of

5, the number of events received stabilizes for φ = 10 but not for φ = 5. Similarly,

for the same value of φ, in strategies with a ρ value of 20 or 10, the number of events

received stabilizes, while for ρ = 0 the number of events increases. In scenarios

of this type it is not useful to use a threshold range that is too tight because slight

changes cause the reception of events that are not significant for adaptation. The

dynamic monitoring strategy is able to fit scenarios both when the demand changes

and when it stabilizes.

(a) Organization profit for φ = 5 (b) Organization profit for φ = 10

(c) Events received for φ = 5 (d) Events received for φ = 10

Figure 6.8: Profit of the organization and events received for slight changes in demand.

6. An Adaptive Framework for Monitoring Agent Organizations 155

(a) Organization profit for φ = 5 (b) Organization profit for φ = 10

(c) Events received for φ = 5 (d) Events received for φ = 10

Figure 6.9: Profit of the organization and events received for quick change in demand.

6.4.5 Quick change in demand

For the last experiment, Figure 6.9 shows a scenario in which the demand changes

quickly, and therefore the number of events increases while the demand is not stable.

As the figure shows, the profit obtained by the dynamic strategy is practically the

same as the profit obtained by the classic strategy, carrying out the adaptation only

one or two time-steps later than the classic strategy. In addition, similar to the rest of

the experiments, the dynamic strategy is able to stop the reception of events when the

156 6.5. Related Work

demand stabilizes.

In summary, Table 6.1 shows the average profit during all the iterations and the

average number of events received for all the strategies. We must point out that the

dynamic strategy obtains a profit that is similar to the profit of the classic strategy;

however, the dynamic strategy requires fewer events than the classic strategy. This

compromise between profit and event traffic is more remarkable in fairly stable

scenarios (stable and slight changes), in which the difference between the events

received is quite significant and the profit obtained is the same. It can also be observed

that, depending on the scenario, some static values for ρ and φ achieve a good profit,

but these are only suitable for specific scenarios. In contrast, the dynamic monitoring

strategy is able to adapt these values based on the user demand.

6.5 Related Work

In this section we discuss the most relevant work carried out in relation to tracing

in multiagent systems (Section 6.5.1), indirect communication in multiagent systems

(Section 6.5.2), and adaptation in agent organizations (Section 6.5.3).

6.5.1 Tracing in Multiagent systems

Event-tracing facilities in multiagent systems are usually conceived as debugging

tools to help in the validation and verification processes. It is also common to use

these tracing tools as help for those users who have to understand how the multiagent

system works. Therefore, generated events are usually destined to be understood by

a human observer.

Most of the current multiagent platforms provide their own tracing facilities through

different kinds of support. As an example, JADE[21] and Zeus[45] provide support

for keeping track of all the messages exchanged among agents; JASON[24, 25],

JADEX[101], and Magentix [7, 109] provide support for examining the internal

6. An Adaptive Framework for Monitoring Agent Organizations 157

Table 6.1: Average profit and events received for each scenario.

Profit Events
Scenario Strategy φ = 5 φ = 10 φ = 5 φ = 10

Specific change in demand

ρ = 20 9909±48 9909±48 5±4 11±6
ρ = 10 9909±48 9909±48 5±4 11±6
ρ = 5 10002±44 9979±46 11±5 23±7
ρ = 0 10018±41 10018±41 20±7 41±8
classic 10018±41 61±1

dynamic 9998±44 10±4

Progressive change in demand

ρ = 20 9376±177 9359±178 5±4 12±6
ρ = 10 9511±142 9495±147 13±6 25±8
ρ = 5 9542±131 9535±133 19±7 37±8
ρ = 0 9566±127 9566±127 38±8 51±5
classic 9566±127 59±1

dynamic 9511±140 24±8

Stable demand

ρ = 20 10138±38 10138±38 5±4 11±6
ρ = 10 10138±38 10138±38 5±4 11±6
ρ = 5 10138±38 10138±38 5±4 11±6
ρ = 0 10138±38 10138±38 5±4 11±6
classic 10138±38 115±1

dynamic 10138±38 13±6

Slight change in demand

ρ = 20 10106±37 10093±44 5±4 11±6
ρ = 10 10106±37 10106±37 5±4 11±6
ρ = 5 10106±37 10106±37 83±7 11±6
ρ = 0 10106±37 10106±37 108±6 113±4
classic 10106±37 121±1

dynamic 10106±37 11±6

Quick change in demand

ρ = 20 9761±125 9764±126 6±5 13±6
ρ = 10 9759±130 9764±126 11±6 21±8
ρ = 5 9663±160 9634±168 38±8 46±7
ρ = 0 9834±142 9833±135 42±7 51±5
classic 9834±142 58±2

dynamic 9770±160 54±3

158 6.5. Related Work

state of agents and organizations; and JACK[4] provides support for monitoring

communication among agents and other introspecting tools.

Apart from the tools provided the multiagent platforms themselves, there are other

tracing facilities provided by third parties, such as Java Sniffer [120] (which provides

support for reasoning about the messages exchanged) or ACLAnalyser [28] (which

stores messages in a relational database in order to examine them). In addition, the

results obtained by ACLAnalyser can be used together with data-mining techniques

to debug multiagent systems [29, 111]. Tracking messages can also be used to help

designers detect protocol violations and inconsistencies [98]

Although there are important works that are related to tracing facilitates, as we stated

above, most of them are focused on human users rather than agents. Therefore, there

is no standard general tracing mechanism that allows agents and other entities in the

system to trace each other as they execute.

6.5.2 Indirect communication in Multiagent systems

The problem of providing support for additional ways of indirect communication

and coordination has already been addressed by other authors using overhearing

techniques. Overhearing is normally defined as an ‘indirect interaction whereby

an agent receives information for which it is not addressee’ [83, 78, 54]. These

techniques have already been used to maintain social situational and organizational

awareness [107], to allow team organization [84, 83], to monitor teams in a

non-intrusive way [78], and to develop advising systems [6, 39].

Most of the work in overhearing is modeled and implemented using message

broadcasting. However, using broadcasting to perform overhearing is contradictory.

This is because the definition of overhearing (and the definition of the overhearer role

defined for multi-party dialogues [91]) implies that the sender is not always aware of

who is receiving its messages, apart from the specified receivers.

6. An Adaptive Framework for Monitoring Agent Organizations 159

The authors in [124] claim that the environment is a first-class abstraction that is

complementary to agents in the system. At the same time, the environment is

independent from the agents since it provides the surrounding conditions for agents

to exist, as well as an exploitable design abstraction for building multiagent system

applications. As pointed out in [100] and [110], the environment should give

support to both direct and indirect interaction in multiagent systems, and therefore,

overhearing should be managed by the environment in order to close the gap between

the overhearer and the sender. In contrast to current approaches for overhearing, our

proposal considers an indirect reception of agent-to-agent messages and also uses the

tracing facilities.

6.5.3 Adaptation in agent organizations

For adaptation in agent organizations, monitoring the behavior of the organization

is a crucial phase in determining that an adaptation is required [10]. Some current

approaches define the monitoring process as an automatic response when changes

occur. Other approaches provide an implicit mechanism for reasoning about the

current state of the organization.

MACODO [125] is a middleware that provides support for the management of

organization adaptation. In this approach, adaptation is triggered by external events

(e.g., when an agents stops playing a role) and by other changes in the environment.

Laws are specified to trigger the adaptation when these are satisfied. However, this

specification is carried out at design time and cannot be changed at run time. Similar

to this approach, some approaches specify adaptation by means of triggers that cannot

be modified at run time [108, 92, 93, 123, 71].

Other works provide a more proactive decision mechanism for detecting that an

adaptation is required, such as 2-LAMA [41, 42]. In 2-LAMA, the monitoring

process is carried out by several agents, who perceive information about a subset

of agents and share the information in order to make decisions. However, the

160 6.5. Related Work

information that needs to be shared is also specified at design time and cannot be

changed while the system is running. Similarly, the adaptation support provided by

Moise [72] allows the implementation of agents that are in charge of determining

when an adaptation is required. Nevertheless, the monitoring mechanisms are not

defined at the adaptation approach level and must be implemented by the system

designer (providing his own methods and tools). A similar issue associated to the

static specification of the information that is monitored appears in other works such

as [52, 30, 31].

The work of Kota et al. [79, 80] provides a self-adaptive model for task-solving

environments in which each pair of agents is able to evaluate and change its

relationships. In this approach, the information that is monitored can change during

execution since it depends on the current relationships of each agent. However, this

dynamic monitoring is only valid for task-solving domains of this kind, in which

other organizational dimensions cannot be considered. Similar to Kota’s approach,

the work presented in [63] is specifically focused on changes in the relationships.

The restriction of considering the internal adaptation logic and the information to

be monitored as predefined at design time forces systems to be designed in which

the requirements for adaptation must be known in advance. This impedes the

development of applications in which these requirements may not be specifically

known or which could even be different throughout the organization’s life-span. As

stated in [5], adaptive systems may cause monitoring requirements to also change.

Therefore, an adaptive approach should apply not only to the behavior and structure

of the system but also to the design of the monitoring system [106], especially when

dealing with the management of complex systems over long periods of time. Static

mechanisms that do not consider changes regarding which information has to be

monitored may be useful in small application domains with a priori, well-known

organizational structures; however, they would not be suitable for large-scale or

complex systems. As the number of agents in the organization and their complexity

grow, much more information is exchanged among agents. Most of this information

6. An Adaptive Framework for Monitoring Agent Organizations 161

might not be useful at every moment of the execution and only contributes to

considerably increasing the traffic in the system. This is especially critical for

approaches in which a middleware or centralizing entity is responsible for adaptation

deliberation or implementation (e.g., as in [43]). Also, the internal logic of agents

can become very complex and costly.

In contrast to the above approaches, our proposal uses event tracing as a dynamic

monitoring mechanism to allow agents to determine at run time the events that are

received during the execution. In the experiments presented, the reception of the

events depends on the values of ρ and φ, which change according to whether the

demand is changing or stable. In addition, the amount and type of information that

each agent has to deal with depend on the actual state of the organization and changes

as the system changes.

6.6 Conclusions

Monitoring an agent organization becomes essential when determining whether or

not an adaptation is required at a specific moment. Most monitoring techniques

for agent organizations that can be found in the literature either rely on predefined

rules (which cannot be changed at run time), or they assume that the information

that has to be monitored does not change as the system executes. Consequently,

these approaches are only applicable in small domains that have a small number of

agents and a priory, well-known organizational requirements; they cannot be applied

in large-scale or complex domains.

The Trace&Trigger adaptation framework proposed in this work allows for the

specification at run time of the information that has to be retrieved from the agent

organization according to its state at each moment. This enables the organization to

adapt to these changes. This monitoring is complemented by an adaptation module,

which allows the sequence of the most promising changes to be obtained. This

module also determines the potential improvement and cost of carrying out these

162 6.6. Conclusions

changes so that the organization can adapt to the current requirements.

The experimental results show how the performance of the agent organization

improves when using the proposed framework for adapting to changes in service

demands. On the one hand, the scalability of the system is improved by reducing the

traffic when the information that is retrieved is determined at run time. On the other

hand, when the adaptation logic is also changed at run time according to the state of

the system (in our case, the demand), the reception of events can stabilize without

losing profit.

As future lines of research, we plan to include more thorough studies on agent

organizations, not only considering adaptation to changes in services provided

by each agent, but also considering changes in the agent population or in the

relationships among these agents. We also plan to include strategies for improving

monitoring requirements based on past experience.

Acknowledgements

This work has been supported by projects TIN2011-27652-C03-01 and

TIN2012-36586-C03-01.

Part III

Discussion

163

CHAPTER

7

General Discussion of the Results

7.1 Results on Event Tracing in Real-Time Systems 167
7.2 The Tracing Process and the Tracing System

Requirements . 168
7.3 The TRAMMAS Model 169
7.4 The TRAMMAS Architecture 171
7.5 Integration of TRAMMAS in the PANGEA

Multiagent Platform . 172
7.6 Integration of TRAMMAS in the Magentix2

Multiagent Platform: Trace&Trigger 175

165

7. General Discussion of the Results 167

In this chapter, the main results achieved in this thesis are discussed. Experimental

results obtained by using event tracing in the field of real-time systems are

commented in Section 7.1. Section 7.2 summarizes the list of requirements to be

taken into account in order to develop an event tracing mechanism which any entity in

a multiagent system can use as an appropiate mechanism for indirect communication.

Sections 7.3 and 7.4 respectively discuss the TRAMMAS abstract model and the

TRAMMAS architecture proposed in this thesis to integrate event tracing into a

multiagent platform. The proposed model and architecture were integrated into two

multiagent platforms. Section 7.5 discusses the main aspects of the incorporation of

TRAMMAS in the PANGEA multiagent platform. Section 7.6 summarizes the main

aspects of the integration of TRAMMAS in the multiagent platform Magentix2 and

it also presents a brief discussion on the main results obtained using event tracing in

order to detect important changes which may require the multiagent system to adapt.

7.1 Results on Event Tracing in Real-Time Systems

Chapter 2 presents an empirical study which compared different scheduling policies

running over the real-time operating system RT-Linux [20]. The study was carried

out using the framework described in Section 2.3. The event tracing support

incorporated to the real-time operating system kernel, as described in [117], was used

to extract information from running applications in order to compare their behavior

and performance using different scheduling policies under different load conditions.

Other previous results obtained using this framework were also published in [32] and

[33].

The study in Chapter 2 was aimed to determine to which extent different scheduling

policies, well known in the area of Real-Time Systems, are affected by the presence

of gain time in the system, depending on the number of tasks, the amounts of

hard and soft load and the percentage of gain time in hard tasks. Results were

publisehd in [37] and they show that, in general, the fact that hard tasks consume less

168 7.2. The Tracing Process and the Tracing System Requirements

execution time than their estimated WCETs (which in turn produces the availability

of gain time) considerably reduces the performance benefit of using some of the most

representative scheduling policies for soft tasks in fixed-priority preemptive systems

compared to serving the soft tasks in background, which is considered the theoretical

worst case. This is also true even for those policies that are specifically designed

to efficiently reclaim and use gain time. Under some conditions, this performance

benefit is so small, or even negative, that the use of a specific scheduling policy for

soft tasks becomes questionable.

7.2 The Tracing Process and the Tracing System
Requirements

The first steps in the development of a general event tracing system which agents

could use as an effective information source were to define the tracing process and

those entities which take part in it, as well as to identify the requirements and needs

of such tracing system. Both steps were described and published in [34], which is

included as Chapter 3 of this thesis.

As explained in Chapter 3, from the point of view of the tracing process, the

multiagent system is seen as a set of entities which are susceptible of generating

and/or consuming trace events. These entities (tracing entities from this point) may

be individual agents or any kind of agent aggregation supported by the multiagent

platform. Furthermore, the multiagent platform itself and its components can also be

seen as tracing entities.

The study in Chapter 3 identified the requirements and proposed them to be classified

in the following taxonomy:

• Functional requirements: Requirements related to which entities in a

multiagent system can generate and/or receive trace events, as well as the way

in which trace events are offered by and delivered to entities in the multiagent

7. General Discussion of the Results 169

system and the time at which information has to be generated and delivered to

entities.

• Efficiency requirements: A minimal set of requirements related to the

efficiency of a tracing system for multiagent systems, in order to make this

system realizable and useful. These requirements focus on dealing with the

potential overload and loss of decentralization which an event tracing support

can cause to the multiagent system itself and to the entities in it.

• Security requirements: Requirements related to the ownership, privacy and

security issues of the information which may be exchanged by entities in

the multiagent system and how these entities have to exchange their tracing

information taking these issues into account.

7.3 The TRAMMAS Model

Considering the requirements described in Chapter 3, an abstract, platform

independent model for event tracing in multiagent systems was developed. The

TRAMMAS model was published in [36], which is included in this thesis as Chapter

4.

According to the model, trace events can be classified in two main groups attending to

the source entity which generates them: domain independent trace events, which are

generated by the multiagent platform and thus, they can be present in any multiagent

system, and domain dependent trace events, usually intended to give support to

specific needs of the multiagent system.

The model also defines the concept of tracing entity to identify those entities in

the multiagent system which are susceptible of generating and/or receiving tracing

information during their lifetime. Inspired by the Agents&Artifacts taxonomy

published in [97], the following different tracing entities are considered in the model:

170 7.3. The TRAMMAS Model

• Agents: Autonomous, proactive entities that encapsulate control and are

in charge of the goals/tasks that altogether define and determine the whole

multiagent system behavior.

• Artifacts: Passive, reactive entities in charge of the services and functions that

make individual agents work together in a multiagent system.

• Aggregations: Both agents and artifacts can associate and generate or receive

tracing information as a single entity. The multiagent platform is seen as an

aggregation of agents and artifacts and therefore, elements of the multiagent

platform are also susceptible of generating and receiving trace events as any

other element in the multiagent system.

Tracing entities can play two different tracing roles in the tracing process: Event

Source (ES) and Event Receiver (ER), depending on if they are generating or

receiving trace events. A third, special role is also considered in the model: the

Trace Manager (TM). The TM role is responsible for controlling and coordinating

the entire tracing process: registering tracing entities and event types, as well as

giving support to the selective event tracing and security models. The TM role can be

played by a single entity or by a set of different entities in the multiagent platform at

the same time, acting coordinately, even in different nodes of the multiagent system.

ER entities are provided with a special mailbox, called stream (STRM), where trace

events are stored before the ER retrieves them. Both in on-line and off-line tracing,

ER entities can control the amount of resources comsumed by the tracing process by

limitating the size of their stream.

Selective event tracing and reception are supported in the model through a

publish/subscribe protocol: ES entities publish at run time the tracing information

they can provide and ER entities subscribe to those trace events they are interested

in and unsibscribe from them when they are not, also at run time. In this way, the

possible overhead which tracing information could cause to the multiagent system is

reduced as much as possible.

7. General Discussion of the Results 171

The model also provides an authorization mechanism by means of which ES

entities specify which ER entities are allowed to receive their trace events (direct

authorization) and also by which ER entities which are authorized to receive trace

events from certain ES entity can also authorize other entities to receive the same

trace events (authorization by delegation). The TM maintains an authorization graph

for each event type which is being offered by each ES. This graph is dynamic and

changes at run time, as ES entities add or remove authorizations.

Figure 7.1, extracted from [36], shows the interactions among the different tracing

roles and how trace events are exchanged among them.

TRACE
MANAGER

Event Source Event Receiver

AGENT

ARTIFACT

AGGREGATION

EVENTS

Publish/Unpublish trace events
Add/Remove direct authorization

Look up for trace events
Subscribe to trace events

Unsubscribe from trace events
Add/Remove delegated authorization

AGGREGATION

CONTROLS

STRM
AGENT

STRM

STRM

ARTIFACT

Figure 7.1: Interaction between the different tracing roles in the TRAMMAS model.

7.4 The TRAMMAS Architecture

Chapter 4 describes the TRAMMAS generic achitecture, designed to be integrated

within a generic multiagent platform to allow tracing entities in the model to

exchange trace events. This architecture follows a service-oriented approach. ES

entities offer their tracing information as tracing services, which they have to publish.

ER entities can request a tracing service and, if they are authorized to do so, they will

172 7.5. Integration of TRAMMAS in the PANGEA Multiagent Platform

start receiving trace events of that service, when such events are produced.

In the proposed architecture, the domain independent tracing services are offered by

the multiagent platform. This requires the multiagent platform to be instrumented at

the source code level, which means that the platform source code has to be available

in order to incorporate the event tracing support. However, this intrumentation

presents two main advantages. On the one hand, it makes the tracing system more

efficient and reliable. On the other hand, it makes certain internal information

available as tracing services (for instance, information regarding agents lifecycle).

The architecture establishes that the TM role in the abstract model is to be played

by the multiagent platform itself, in the form of an extra component, also called the

Trace Manager. This component may be designed as a single component or a set of

components, which may also be distributed, depending on the particular platform.

Internally, the TM component is formed by different modules, which are in charge of

different functionalities. Figure 7.2, extracted from [36], shows how tracing entities

interact with these modules when they have to register/unregister tracing entities

and services, to request/cancel tracing services, or to add/remove authorizations. A

detailed description of the TM component and its functionality is presented in [36].

7.5 Integration of TRAMMAS in the PANGEA
Multiagent Platform

The TRAMMAS model and architecture proposed in this thesis were succesfully

incorporated to the multiagent platform PANGEA [129] in order to improve the way

in which entities and agents perceive each other and their environment. First results

of this development were published in [38], which is included as Chapter 5 of this

document.

The multiagent platform PANGEA has a great potential to create open systems,

and more specifically, virtual agent organizations. The communication mechanisms

7. General Discussion of the Results 173

ERES

TRACE MANAGER

Publish/Unpublish Service

Look up for Service

Request Service
Cancel Request

EVENTS

TEM

TSM

AM

SUBM

Add/Remove
Direct Authorization Add/Remove

Delegated Authorization

Register

CONTROLS

Register

Unsubscribe

Unsubscribe

Figure 7.2: TRAMMAS architectural design of the tracing system and interactions between the TM component’s
internal modules and the rest of entities in the system, depending on their tracing roles.

offered by the platform are based on the IRC standard protocol [96], which allows

for handling a large number of connections while also facilitating the incorporation

of potential extensions. A Sniffer agent, which offers services to extract information

from exchanged messages, is also available in the platform; however, this centralized

approach dramatically limited the efficiency and scalability of multiagent systems in

many circumstances.

Figure 7.3 shows how the tracing system was incorporporated to the platform: tracing

services are offered by agents as web services and an EventTracing Suborganization

was incorporated to the platform in order to carry out all of the functions of the

TRAMMAS Trace Manager.

The case of study included in [38] shows how event tracing can contribute to

the scalability and feasibility of virtual organizations by reducing the amount of

unnecessary information which has to be transmitted and processed, while keeping

agents’ internal logic as simple as possible. Table 7.1 summarizes results of the

174 7.5. Integration of TRAMMAS in the PANGEA Multiagent Platform

Figure 7.3: Incorporation of TRAMMAS based tracing support to the PANGEA multiagent platform.

comparison study between a broadcasting based and a event tracing based solutions

carried out in [38]. In the worst case, when all entities in the system are interested

in information regarding all of the rest of entities, theoretical costs of both studied

techniques (broadcast and the EventTracing Suborganization) are in the same order.

However, in the best case, when none of the entities in the system is interested in

receiving any information from the rest, theoretical costs using broadcast are in the

same order as those in the worst case, while theoretical costs of using event tracing

is in the order of 0. These results in Section 5.5, show that event tracing provides a

way for agents to coordinate, without them having to contact directly with each other.

This reduces the amount of information exchanged among agents in the system to the

minimum necessary, which makes the multiagent system more efficient and scalable.

7. General Discussion of the Results 175

Number of transmissions for nrem situations
Best case Worst case

Broadcast kremarkable ∗ (2 + nsens) kremarkable ∗ (2 + nsens)
EventTracing Suborganization 0 kremarkable ∗ (2 + nsens)

Table 7.1: Summary of best and worst case costs as a function of the number of Nsens agents for a
constant number of remarkable situation (Kremarkable)

7.6 Integration of TRAMMAS in the Magentix2
Multiagent Platform: Trace&Trigger

The use of event tracing as an indirect communication mechanism for agents, as well

as to improve their environmental knowledge, was also published in [13], which is

included as Chapter 6 of this document. Trace&Trigger, the framework presented

in [13], is a framework for the adaptation of agent organizations to important

changes in their social or physical environment which may be produced at run

time. The framework consists of a dynamic monitoring mechanism, which helps

agents detecting adaptation requirements dynamically at run time, and an adaption

assistant, which provides organizational agents with information related to the costs

and benefits of carrying out an adaptation at any moment during the execution.

The framework was developed to run on the Magentix2 multiagent platform [60,

115], a platform for open multiagent systems developed in Java. It makes use of three

components: the virtual organization support for agents provided by the THOMAS

architecture [105], the TRAMMAS based event tracing support incorporated to

the platform and the Reorganization Facilitator service (RF) [8, 12]. Figure 7.4,

taken from Chapter 6, shows the developed Trace&Trigger framework and how the

different components of THOMAS and TRAMMAS interact with the Magentix2

platform and with running agents in the system.

The TRAMMAS tracing facilities were incorporated to Magentix2 by means of a

specific agent (TM), which carries out all of the functions of the TRAMMAS Trace

Manager. Agents have to send an ACL message to the TM agent whenever they want

176
7.6. Integration of TRAMMAS in the Magentix2 Multiagent Platform:

Trace&Trigger

AGENT

TRACE
MANAGER

AGENT

Org.

Manager

AGENT

RF

THOMAS

OMS/SF

AGENT

...

Individual
knowledge

ACL

Org.
knowledgeIndividual

knowledge

Tracing services
Subscriptions

MAGENTIX2 COMMUNICATION LAYER

TRACE EVENTS

CONTROL
TRACING
PROCESS

ACL MESSAGES:
Publish tracing service

Unpublish tracing service
Subscribe to tracing service

Unsubscribe from tracing service

Adaptation
calculation

Adaptation
request

ACL

ACL

Figure 7.4: Trace&Trigger framework

to publish or unpublish their available trace services, and also when they want to

subscribe to a trace service or to unsubscribe from it. The TM agent interacts with

the Magentix2 communication layer so that trace events generated by an agent only

cause information traffic if there is an agent interested in receiving them. The TM

also interacts with the communication layer so that no trace event is received by an

agent unless the agent has previously requested it. As a consequence, only the strictly

necessary event tracing traffic is generated.

Section 6.3 presents a case of study based on a market domain, where a virtual

organization of agents has to maximize the global profit that its agents make by

selling products. In order to do so, each seller agent has to adapt the catalogue

of products that it sells and the stock of each product that it has to maintain. The

organization manager receives information from seller agents about sales, demand

and so on. With this information from each seller agent, the organization manager

decides if a seller has to stop offering a product or if it has to change the amount of

7. General Discussion of the Results 177

stocked units of a product because its sales are expected to go up/down in the market.

This case of study was implemented to run over Magentix2 using the Trace&Trigger

framework to help the virtual organization of agents adapting to changes in the virtual

market, while maximizing the global amount of profit.

Experimental results in the virtual market domain, using synthetic load, are presented

in Section 6.4. Different strategies to detect when the virtual organization has to

change in order to adapt to variations in the market were considered. Table 7.1,

extracted from Section 6.4, shows numeric results of all experiments, where both the

final profit and the amount of exchanged messages for the five studied scenarios. As

it can be appreciated, profit values obtained using dynamic adaptation based on event

tracing are very similar to the ones obtained using a classical broadcasting (static)

techniques, while considerably reducing the amount of exchanged information, not

only when the product demand is stable, but also in dynamic scenarios where product

demand varies in time.

178
7.6. Integration of TRAMMAS in the Magentix2 Multiagent Platform:

Trace&Trigger

Table 7.1: Average profit and events received for each scenario.

Profit Events
Scenario Strategy φ = 5 φ = 10 φ = 5 φ = 10

Specific change in demand

ρ = 20 9909±48 9909±48 5±4 11±6
ρ = 10 9909±48 9909±48 5±4 11±6
ρ = 5 10002±44 9979±46 11±5 23±7
ρ = 0 10018±41 10018±41 20±7 41±8
classic 10018±41 61±1

dynamic 9998±44 10±4

Progressive change in demand

ρ = 20 9376±177 9359±178 5±4 12±6
ρ = 10 9511±142 9495±147 13±6 25±8
ρ = 5 9542±131 9535±133 19±7 37±8
ρ = 0 9566±127 9566±127 38±8 51±5
classic 9566±127 59±1

dynamic 9511±140 24±8

Stable demand

ρ = 20 10138±38 10138±38 5±4 11±6
ρ = 10 10138±38 10138±38 5±4 11±6
ρ = 5 10138±38 10138±38 5±4 11±6
ρ = 0 10138±38 10138±38 5±4 11±6
classic 10138±38 115±1

dynamic 10138±38 13±6

Slight change in demand

ρ = 20 10106±37 10093±44 5±4 11±6
ρ = 10 10106±37 10106±37 5±4 11±6
ρ = 5 10106±37 10106±37 83±7 11±6
ρ = 0 10106±37 10106±37 108±6 113±4
classic 10106±37 121±1

dynamic 10106±37 11±6

Quick change in demand

ρ = 20 9761±125 9764±126 6±5 13±6
ρ = 10 9759±130 9764±126 11±6 21±8
ρ = 5 9663±160 9634±168 38±8 46±7
ρ = 0 9834±142 9833±135 42±7 51±5
classic 9834±142 58±2

dynamic 9770±160 54±3

CHAPTER

8

Conclusions and Future Work

179

8. Conclusions and Future Work 181

A study of the state of the art in the field of multiagent systems revealed important

limitations in current approaches when it comes to properly supporting agents’

environmental and social knowledge. These limitations are partially due to the use of

traditional approaches, usually based on agent messages, which fall short as indirect

coordination and communication mechanisms for agents. Previous experience in the

field of real-time systems proved that event tracing techniques could be succesfully

used to extract information from critical and embeded systems at run time, causing

a minimal interference in traced systems. This PhD thesis proposes the use of

event tracing techniques to improve indirect communication and interaction among

entities in a multiagent system and to serve as an appropiate environmental and

social knowledge provider for them. In this way, high level social abstractions in

the literature could be properly supported from the first stages in the design and

development of multiagent systems, allowing these systems to develop their full

potential.

A set of requirements to be taken into account when developing such an event

tracing mechanism for entities in a multiagent system had to be compiled. These

requirements address, not only functional aspects of the event tracing mechanism,

but also efficiency and security aspects, in order to minimize the impact of such an

event tracing mechanism in the feasibility of the instrumented multiagent system.

From these requirements, the TRAMMAS abstract model was developed. Inspired

by the Agents&Artifacts taxonomy in [97], the model lets any entity in the multiagent

system play one or both tracing roles, Event Source (ES) and Event Receiver (ER), in

order to exchange their information. Together with the model, a generic TRAMMAS

architecture is also proposed in order to incorporate the concepts in the model to

an actual multiagent platform. Tracing facilities are offered by the TRAMMAS

architecture following a service-oriented paradigm, so that entities playing the ES

role offer their tracing information as tracing services which are requested by those

entities playing the ER role when they want to receive it in a similar way to which

traditional services are offered and requested.

182

The proposed model and architecture were integrated in two multiagent platforms:

PANGEA and Magentix2. The integration in Magentix2 was used in conjuntion with

the THOMAS virtual organization support and the reorganization support provided

by the multiagent platform itself in order to develop an adaptation support framework.

This framework could be used by agents in a virtual organization in order to identify

variations in their physical or social environment which may require them to change

their behavior. A comparative study was carried out to compare different adaptation

strategies in a virtual market domain. Experimental results using synthetic load show

that event tracing can be very effective in reducing information traffic in the system

with a minimal performance loss.

Contributions in this PhD thesis prove that event tracing can be used as an

effective indirect mechanism communication for entities in a multiagent system.

In combination with traditional agent messages, it has also proved to be a good

social knowledge provider, more versatile and efficient than using only traditional

messages. High level components in the multiagent system can take advantage of this

improvement in the amount and quality of social and environmental knowledge, in

order to acomplish their mission in the multiagent system with a minimal additional

interference due to the event tracing process.

Regarding future lines of research, incorporating event tracing to the multiagent

system developing process from its very early stages requires introducing trace

events in multiagent system methodologies as an additional mechanism for indirect

communication and interaction, at the same level as traditional messages. In this way,

high level social and environmental aspects would benefit from an appropiate support

from these early stages too and take part in this process as first class entities, without

requiring developers to think of ad hoc solutions to incorporate them to multiagent

systems.

One of the high level abstractions which would benefit from the additional knowledge

provided by an event tracing support is the concept of norm, and its application

in the so-called normative systems [47, 46]. In this way, we are also interested in

8. Conclusions and Future Work 183

using the proposed model as a way to improve the development of the regulatory

mechanisms needed in normative systems, as future work. Regulatory mechanisms

are needed in order to guarantee a globally efficient coordination in open systems

(i.e., ensuring that the different virtual corporate policies are fulfilled), but they need

to take into account the impossibility of directly controlling (the majority of) the

members of a virtual organization. These regulatory mechanisms assume that all the

required information is available in order to control the agents’ actions, but in most

cases, part of this information is hidden, or simply not available on time. An event

tracing approach, like the one proposed in this thesis, can facilitate the obtention of

the required information for such systems, as it has been shown in other scenarios.

Bibliography

[1] (2005). JACK Intelligent Agents Teams Manual. Agent Oriented Software Pty.

Ltd., P.O. Box 639, Carlton South, Victoria, 3053, AUSTRALIA.

[2] (2005). ZigBee specification.

[3] (2006). Specification and Verification of Dynamics in Cognitive Agent Models,

Washington, DC, USA. IEEE Computer Society.

[4] (2008). JACK Intelligent Agents Tracing and Logging Manual - Release 5.3.

Agent Oriented Software Pty. Ltd., P.O. Box 639, Carlton South, Victoria, 3053,

AUSTRALIA.

[5] Abdu, H., Lutfiyya, H., and Bauer, M. A. (1999). A model for adaptive

monitoring configurations. In Proceedings of the 6th IFIP/IEEE IM Conference

on Network Management, pages 371–384.

[6] Aiello, M., Busetta, P., Donà, A., and Serafini, L. (2002). Ontological

overhearing. In ATAL ’01: Revised Papers from the 8th International Workshop

on Intelligent Agents VIII, pages 175–189, London, UK. Springer-Verlag.

[7] Alberola, J., Mulet, L., Such, J., Garcı́a-Fornes, A., Espinosa, A., and Botti,

185

186 Bibliography

V. (2007). Operating system aware multiagent platform design. Fifth European

Workshop On Multi-Agent Systems (EUMAS 2007), pages 658–667.

[8] Alberola, J. M., Julián, V., and Garcı́a-Fornes, A. (2011). Cost-aware

reorganization service for multiagent systems. In Proc. 2nd Int. Workshop

ITMAS11, pages 60–74.

[9] Alberola, J. M., Julián, V., and Garcı́a-Fornes, A. (2012). Multi-dimensional

transition deliberation for organization adaptation in multiagent systems. In

Proceedings of the Eleventh International Conference on Autonomous Agents and

Multiagent Systems (AAMAS-12), pages 1379–1380.

[10] Alberola, J. M., Julián, V., and Garcı́a-Fornes, A. (2013a). Challenges for

adaptation in agent societies. Knowledge and Information Systems, page In Press.

[11] Alberola, J. M., Julián, V., and Garcı́a-Fornes, A. (2013b). Multi-dimensional

adaptation in mas organizations. IEEE Transactions on Systems, Man, and

Cybernetics-Part B: Cybernetics, 43(2), 622–633.

[12] Alberola, J. M., Julián, V., and Garcı́a-Fornes, A. (2013c). Using cost-aware

transitions for reorganizing multiagent systems. Engineering Applications of

Artificial Intelligence, 26(1), 63–75.

[13] Alberola, J. M., Búrdalo, L., Julián, V., Terrasa, A., and Garcı́a-Fornes, A.

(2014). An adaptive framework for monitoring agent organizations. Information

Systems Frontiers, 16(2), 239–256.

[14] Argente, E., Julián, V., and Botti, V. (2009a). Mas modeling based on

organizations. Agent-Oriented Software Engineering IX: 9th International

Workshop, AOSE 2008 Estoril, Portugal, May 12-13, 2008 Revised Selected

Papers, pages 16–30.

[15] Argente, E., Julián, V., and Botti, V. (2009b). MAS Modeling based on

Organizations. In Post-Proceedings 9th International Workshop AOSE’08, volume

5386, pages 16–30. Springer.

Bibliography 187

[16] Audsley, N., Davis, R., Burns, A., and Wellings, A. (1994). Appropriate

mechanisms for the support of optional processing in hard real-time systems. In

11th IEEE Workshop on Real-Time Operating Systems and Software, pages 23–27.

[17] B. Sprunt, L. S. and Lehozky, J. (1989). Aperiodic task scheduling for hard

real-time systems. The Journal of Real-Time Systems, (1), 27–60.

[18] Banus, J. M., Arenas, A., and Labarta, J. (2002). An efficient scheme to allocate

soft-aperiodic tasks in multiprocessor hard real-time systems. In Proceedings of

the International Conference on Parallel and Distributed Processing Techniques

and Applications - Volume 2, pages 809–815.

[19] Banus, J. M., Arenas, A., and Labarta, J. (2003). Dual priority algorithm

to schedule real-time tasks in a shared memory multiprocessor. Parallel and

Distributed Processing Symposium, International.

[20] Barabanov, M. (1997). A Linux-based Real-Time Operating System. Master’s

thesis, Institute of Mining and Technology, New Mexico.

[21] Bellifemine, F., Caire, G., Trucco, T., Rimassa, G., and Mungenast, R. (2007).

Jade administrator’s guide.

[22] Bernat, G. and Burns, A. (1999). New results on fixed priority aperiodic servers.

In IEEE Real-Time Systems Symposium, pages 68–78.

[23] Bini, E. and Buttazzo, G. C. (2005). Measuring the performance of

schedulability tests. Real-Time Systems, 30, 129–154.

[24] Bordini, R. and Hübner, J. (2007). Jason: A java-based interpreter for an

extended version of agentspeak. page 31.

[25] Bordini, R., Hübner, J., and Vieira, R. (2005). Jason and the golden fleece

of agent-oriented programming. In G. Weiss, R. Bordini, M. Dastani, J. Dix,

and A. Fallah Seghrouchni, editors, Multi-Agent Programming, volume 15 of

188 Bibliography

Multiagent Systems, Artificial Societies, And Simulated Organizations, pages

3–37. Springer US.

[26] Bordini, R., Dastani, M., and Winikoff, M. (2007). Current issues in multi-agent

systems development (invited paper). Post-proceedings of the Seventh Annual

International Workshop on Engineering Societies in the Agents World, pages

38–61.

[27] Bosse, T., Lam, D., and Barber, K. (2008). Tools for analyzing intelligent agent

systems. Web Intelligence and Agent Systems, 6(4), 355–371.

[28] Botia, J., Hernansaez, J., and Skarmeta, F. (2004). Towards an approach for

debugging MAS through the analysis of ACL messages, volume 3187/2004, pages

301–312. Springer Berlin / Heidelberg.

[29] Botia, J., Hernansaez, J., and Gomez-Skarmeta, A. (2007). On the application

of clustering techniques to support debugging large-scale multi-agent systems.

Programming multi-agent systems, 4411/2007, 217–227.

[30] Bou, E., López-Sánchez, M., and Rodrı́guez-Aguilar, J. A. (2006). Adaptation

of autonomic electronic institutions through norms and institutional agents. In

Engineering Societies in the Agents World. Number LNAI 4457, pages 300–319.

Springer.

[31] Bou, E., López-Sánchez, M., and Rodrı́guez-Aguilar, J. A. (2007). Towards

self-configuration in autonomic electronic institutions. In COIN 2006 Workshops.

Number LNAI 4386, pages 220–235. Springer.

[32] Búrdalo, L., Espinosa, A., Garcı́a-Fornes, A., and Terrasa, A. (2006).

Framework for the development and evaluation of new scheduling policies in

rt-linux. In OSPERT 2006, pages 42–51.

[33] Búrdalo, L., Espinosa, A., Terrasa, A., and Garcı́a-Fornes, A. (2007).

Experimental results of aperiodic fixed-priority policies in rt-linux. In Workshop

Bibliography 189

on Operating Systems Platforms for Embedded Real-Time applications, pages

10–19.

[34] Búrdalo, L., Terrasa, A., Garcı́a-Fornes, A., and Espinosa, A. (2009a).

Supporting social knowledge in multiagent systems through event tracing. Journal

of Physical Agents, 3(3).

[35] Búrdalo, L., Terrasa, A., and Garcı́a-Fornes, A. (2009b). Towards providing

social knowledge by event tracing in multiagent systems. In HAIS ’09:

Proceedings of the 4th International Conference on Hybrid Artificial Intelligence

Systems, volume 5572/2009 of Lecture Notes in Computer Science, pages

484–491, Berlin, Heidelberg. Springer-Verlag.

[36] Búrdalo, L., Terrasa, A., Julián, V., and Garcı́a-Fornes, A. (2011). Trammas:

A tracing model for multiagent systems. Engineering Applications of Artificial

Intelligence, 24(7), 1110–1119.

[37] Búrdalo, L., Terrasa, A., Espinosa, A., and Garcı́a-Fornes, A. (2012a).

Analyzing the effect of gain time on soft-task scheduling policies in real-time

systems. Software Engineering, IEEE Transactions on, 38(6), 1305–1318.

[38] Búrdalo, L., Terrasa, A., Julián, V., Zato, C., Rodrı́guez, S., Bajo, J., and

Corchado, J. (2012b). Improving the tracing system in pangea using the trammas

model. In J. Pavón, N. Duque-Méndez, and R. Fuentes-Fernández, editors,

Advances in Artificial Intelligence – IBERAMIA 2012, volume 7637 of Lecture

Notes in Computer Science, pages 422–431. Springer Berlin Heidelberg.

[39] Busetta, P., Donà, A., and Nori, M. (2002). Channeled multicast for group

communications. In AAMAS ’02: Proceedings of the first international joint

conference on Autonomous agents and multiagent systems, pages 1280–1287, New

York, NY, USA. ACM.

[40] Calandrino, J. M., Baumberger, D. P., Li, T., Hahn, S., and Anderson,

J. H. (2007). Soft real-time scheduling on performance asymmetric multicore

190 Bibliography

platforms. In IEEE Real Time Technology and Applications Symposium, pages

101–112.

[41] Campos, J., López-Sánchez, M., and Esteva, M. (2009). Assistance layer,

a step forward in Multi-Agent Systems Coordination Support. In International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages

1301–1302.

[42] Campos, J., Esteva, M., Lopez-Sanchez, M., Morales, J., and Salamo, M.

(2011). Organisational adaptation of multi-agent systems in a peer-to-peer

scenario. Computing, 91, 169–215.

[43] Carvalho, G., Almeida, H., Gatti, M., Vinicius, G., Paes, R., Perkusich, A.,

and Lucena, C. (2006). Dynamic law evolution in governance mechanisms

for open multi-agent systems. In 2nd Workshop on Software Engineering for

Agent-oriented Systems.

[44] Chodrow, S., Jahanian, F., and Donner, M. (1991). Run-time monitoring of

real-time systems. In Real-Time Systems Symposium, 1991. Proceedings., Twelfth,

pages 74–83.

[45] Collis, J., Ndumu, D., Nwana, H., and Lee, L. (1998). The zeus agent building

tool-kit. BT Technology Journal, 16(3), 60–68.

[46] Criado, N., Argente, E., and Botti, V. J. (2013). THOMAS: an agent platform

for supporting normative multi-agent systems. J. Log. Comput., 23(2), 309–333.

[47] Criado, N., Argente, E., Noriega, P., and Botti, V. (2014). Reasoning about

norms under uncertainty in dynamic environments. International Journal of

Approximate Reasoning, 55(9), 2049 – 2070. Weighted Logics for Artificial

Intelligence.

[48] Davis, R. and Wellings, A. (1995). Dual priority scheduling. In Proceedings of

the 16th IEEE Real-Time Systems Symposium, pages 100–109.

Bibliography 191

[49] Davis, R. I. (1994). Dual priority scheduling: A means of providing flexibility

in hard real-time systems. Technical Report YCS230.

[50] Davis, R. I. (1995). On exploiting spare capacity in hard real-time systems.

Ph.D. thesis, Department of Computer Science, University of York.

[51] Davis, R. I., Tindell, K., and Burns, A. (1993). Scheduling slack time in

fixed priority preemptive systems. In IEEE Real-Time Systems Symposium, pages

222–231.

[52] DeLoach, S., Oyenan, W., and Matson, E. (2008). A capabilities-based model

for adaptive organizations. Autonomous Agents and Multi-Agent Systems, 16,

13–56.

[53] Deokar, A. V. and El-Gayar, O. F. (2011). Decision-enabled dynamic process

management for networked enterprises. Information Systems Frontiers, 13(5),

655–668.

[54] Dignum, F. and Vreeswijk, G. (2004a). Advances in Agent Communication,

volume 2922 of Lecture Notes in Computer Science, chapter Towards a Testbed

for Multi-party Dialogues, pages 212–230. Springer Berlin / Heidelberg.

[55] Dignum, F. and Vreeswijk, G. A. (2004b). Towards a test bed for multi-party

dialogues. In F. Dignum, editor, Workshop on Agent Communication Languages,

volume 2922 of Lecture Notes in Computer Science, pages 212–230. Springer

Berlin / Heidelberg.

[56] Dignum, V., editor (2009). Multi-agent Systems: Semantics and Dynamics of

Organizational Models. IGI Global.

[57] Dignum, V., Dignum, F., and Sonenberg, L. (2004). Towards dynamic

reorganization of agent societies. In In Proceedings of Workshop on Coordination

in Emergent Agent Societies, pages 22–27.

192 Bibliography

[58] Esparcia, S. and Argente, E. (2011). Formalizing Virtual Organizations. In 3rd

Int. Conf. on Agents and Artificial Intelligence (ICAART 2011), volume 2, pages

84–93. INSTICC.

[59] Faggioli, D., Bertogna, M., and Checconi, F. (2010). Sporadic server revisited.

In Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10,

pages 340–345.

[60] Fogués, R. L., Alberola, J. M., Such, J. M., Espinosa, A., and Garcı́a-Fornes, A.

(2010). Towards dynamic agent interaction support in open multiagent systems.

In Proc. of the 13th Int. Conf. of the Catalan Association for Artificial Intelligence,

volume 220, pages 89–98.

[61] Foster, I., Kesselman, C., and Tuecke, S. (2001). The anatomy of the grid:

Enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl.,

15(3), 200–222.

[62] Garcı́a-Fornes, A., Terrasa, A., and Botti, V. (1997). Planificación de tareas

aperiódicas en sistemas de tiempo real estricto. NOVATICA, Septiembre, 22–30.

[63] Gaston, M. E. and desJardins, M. (2005). Agent-organized networks for

dynamic team formation. In Proceedings of the 4th International Joint Conference

on Autonomous agents and Multiagent Systems (AAMAS05), pages 230–237.

[64] Gaujal, B., Navet, N., and Migge, J. (2003). Dual-priority versus background

scheduling: A path-wise comparison. Real-Time Systems, (25), 39–66.

[65] Ghazalie, T. M. and Baker, T. P. (1995). Aperiodic servers in a deadline

scheduling environment. Real-Time Syst., 9(1), 31–67.

[66] Goossens, J. and Macq, C. (1999). Performance analysis of various scheduling

algorithms for real-time systems composed of aperiodic and periodic tasks. In

CISSAS’99.

Bibliography 193

[67] Gregori, M. E., Cámara, J. P., and Bada, G. A. (2006). A jabber-based

multi-agent system platform. In AAMAS ’06: Proceedings of the fifth international

joint conference on Autonomous agents and multiagent systems, pages 1282–1284,

New York, NY, USA. ACM.

[68] Gruver, W. (2004). Technologies and applications of distributed intelligent

systems.

[69] Guessoum, Z., Ziane, M., and Faci, N. (2004). Monitoring and

organizational-level adaptation of multi-agent systems. In In Proc. of AAMAS

2004, pages 514–521. ACM Press.

[70] Helsinger, A., Thome, M., Wright, T., and Technol, B. (2004). Cougaar:

a scalable, distributed multi-agent architecture. 2004 IEEE International

Conference on Systems.

[71] Hoogendoorn, M. and Treur, J. (2006). An Adaptive Multi-agent Organization

Model Based on Dynamic Role Allocation. In Proc. of the IAT ’06, pages

474–481.

[72] Hübner, J. F., Sichman, J. S., and Boissier, O. (2004). Using the MOISE+ for

a Cooperative Framework of MAS Reorganisation. In Proceedings of the 17th

Brazilian Symposium on Artificial Intelligence (SBIA’04), volume 3171, pages

506–515.

[73] IEEE (2004). 1003.1, 2004 EDITION IEEE Standard for Information

Technology Portable Operating System Interface (POSIX).

[74] Kalt, C. (2000a). Internet Relay Chat: Architecture. RFC 2811 (Informational).

[75] Kalt, C. (2000b). Internet Relay Chat: Channel Management Protocol. RFC

2811 (Informational).

[76] Kalt, C. (2000c). Internet Relay Chat: Client Protocol. RFC 2812

(Informational).

194 Bibliography

[77] Kalt, C. (2000d). Internet Relay Chat: Server Protocol. RFC 2813

(Informational).

[78] Kaminka, G. A., Tambe, D. V. P. M., Pynadath, D. V., and Tambe, M. (2002).

Monitoring teams by overhearing: A multi-agent plan-recognition approach.

Journal of Artificial Intelligence Research, 17.

[79] Kota, R., Gibbins, N., and Jennings, N. R. (2009). Decentralised structural

adaptation in agent organisations. In Organized Adaptation in Multi-Agent

Systems, pages 54–71.

[80] Kota, R., Gibbins, N., and Jennings, N. R. (2012). Decentralised approaches

for self-adaptation in agent organisations. In ACM Transactions on Autonomous

and Adaptive Systems, pages 1–28.

[81] Lam, D. and Barber, K. (2005a). Comprehending agent software. In AAMAS

’05: Proceedings of the fourth international joint conference on Autonomous

agents and multiagent systems, pages 586–593, New York, NY, USA. ACM.

[82] Lam, D. and Barber, K. (2005b). Debugging agent behavior in an implemented

agent system. In R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni,

editors, Programming Multi-Agent Systems, Second International Workshop

ProMAS 2004, Selected Revised and Invited Papers, volume 3346 of Lecture Notes

in Computer Science, pages 104–125. Springer.

[83] Legras, F. and Tessier, C. (2003). Lotto: group formation by overhearing

in large teams. In AAMAS ’03: Proceedings of the second international joint

conference on Autonomous agents and multiagent systems, pages 425–432, New

York, NY, USA. ACM.

[84] Legras Onera, F. (2002). Using overhearing for local group formation. In

AAMAS ’02 Workshop 7 ”Teamwork and Coalition Formation”, pages 8–15.

[85] Lehoczky, J. P. and Ramos-Thuel, S. (1992). An optimal algorithm for

scheduling soft-aperiodic tasks fixed-priority preemptive systems. pages 110–123.

Bibliography 195

[86] Lehoczky, J. P., Sha, L., and Strosnider, J. K. (1987). Enhanced aperiodic

responsiveness in hard real-time environments. pages 261–270.

[87] Li, C. and Li, L. (2012). Collaboration among mobile agents for efficient energy

allocation in mobile grid. Information Systems Frontiers, 14(3), 711–723.

[88] Luck, M., McBurney, P., Shehory, O., and Willmott, S. (2005). Agent

Technology: Computing as Interaction (A Roadmap for Agent Based Computing).

University of Southampton.

[89] Luckham, D. C. (2001). The Power of Events: An Introduction to Complex

Event Processing in Distributed Enterprise Systems. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

[90] Mafik, V. and Pechoucek, M. (2004). Social knowledge in multi-agent systems,

volume 2086/2001 of Lecture Notes in Computer Science, pages 211–245.

Springer Berlin / Heidelberg.

[91] Malouf, R. M. (1995). Towards an analysis of multi-party discourse. Talk.

[92] Mathieu, P., Routier, J. C., and Secq, Y. (2002a). Dynamic organization of

multi-agent systems. In Proceedings of the 1st International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS02), pages 451–452.

[93] Mathieu, P., Routier, J.-C., and Secq, Y. (2002b). Principles for dynamic

multi-agent organizations. In Proceedings of the 5th Pacific Rim International

Workshop on Multi Agents: Intelligent Agents and Multi-Agent Systems

(PRIMA02), pages 109–122.

[94] Michelson, B. (2006). Event-driven architecture overview. Patricia Seybold

Group.

[95] Ndumu, D., Nwana, H., Lee, L., and Collis, J. (1999). Visualising and

debugging distributed multi-agent systems. In AGENTS ’99: Proceedings of the

196 Bibliography

third annual conference on Autonomous Agents, pages 326–333, New York, NY,

USA. ACM.

[96] Oikarinen, J. and Reed, D. (1993). RFC 1459: Internet relay chat protocol.

[97] Omicini, A., Ricci, A., and Viroli, M. (2008). Artifacts in the A&A meta-model

for multi-agent systems. Autonomous Agents and Multi-Agent Systems, 17(3),

432–456.

[98] Padgham, L., Winikoff, M., and Poutakidis, D. (2005). Adding debugging

support to the prometheus methodology. Engineering Applications of Artificial

Intelligence, 18(2), 173–190.

[99] Petters, S. M. (2007). Execution-time profiles. Technical report, NICTA,

Sydney, Australia.

[100] Platon, E., Sabouret, N., and Honiden, S. (2006). Overhearing and direct

interactions: Point of view of an active environment. In Environments for

Multi-Agent Systems II, pages 121–138. Springer.

[101] Pokahr, A. and Braubach, L. (2007). Jadex Tool Guide - Release 0.96.

[102] Potiron, K., El Fallah Seghrouchni, A., and Taillibert, P. (2013). From Fault

Classification to Fault Tolerance for Multi-Agent Systems. SpringerBriefs in

Computer Science. Springer.

[103] Ramos-Thuel, S. and Lehoczky, J. P. (1993). On-line scheduling of hard

deadline aperiodic tasks in fixed priority systems. In 14th IEEE Real-Time Systems

Symposium, pages 160–171.

[104] Ramos-Thuel, S. and Lehoczky, J. P. (1994). Algorithms for scheduling

hard aperiodic tasks in fixed priority systems using slack stealing. In 15th IEEE

Real-Time Systems Symposium, pages 22–35.

[105] Rebollo, M., Giret, A., Argente, E., Carrascosa, C., Corchado, J. M.,

Fernandez, A., and Julián, V. (2009). On the road to an abstract architecture for

Bibliography 197

open virtual organizations. In Proc. of the 10th Int. Work-Conf. on Art. Neural

Networks, pages 642–650.

[106] Ringold, P., Alegria, J., Czaplewski, R., Mulder, B., Tolle, T., and Burnett,

K. (1996). Adaptive Monitoring Design for Ecosystem Management. Ecological

Applications, 6(3), 745–747.

[107] Rossi, S., Rossi, S., and Busetta, P. (2004). Towards monitoring of group

interactions and social roles via overhearing. Proceedings of CIA-04, 3191, 47–61.

[108] Routier, J., Mathieu, P., and Secq, Y. (2001). Dynamic Skill Learning: A

Support to Agent Evolution. pages 25–32.

[109] Sánchez-Anguix, V., Espinosa, A., Hernández, L., and Garcı́a-Fornes, A.

(2009). Mamsy: A management tool for multi-agent systems. 7th International

Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS

2009), pages 130–139.

[110] Saunier, J., Balbo, F., and Badeig, F. (2006). Environment as active support

of interaction. In D. Weyns, H. V. D. Parunak, and F. Michel, editors, E4MAS,

volume 4389 of Lecture Notes in Computer Science, pages 87–105. Springer.

[111] Serrano, E., Gómez-Sanz, J. J., Botı́a, J. A., and Pavón, J. (2009). Intelligent

data analysis applied to debug complex software systems. Neurocomputing, 72,

2785 – 2795.

[112] Sprunt, B., Lehoczky, J., and Sha, L. (1988). Exploiting unused periodic

time for aperiodic service using the extended priority exchange algorithm. In

Proceedings of the Real-Time Systems Symposium, pages 251–258.

[113] Stanovich, M., Baker, T., Wang, A.-I., and Harbour, M. (2010). Defects of

the posix sporadic server and how to correct them. In 16th IEEE Real-Time and

Embedded Technology and Applications Symposium, pages 35–45.

198 Bibliography

[114] Strosnider, J. K., Lehoczky, J. P., and Sha, L. (1995). The deferrable server

algorithm for enhanced aperiodic responsiveness in hard real-time environments.

IEEE Transactions on Computers, 1(44), 73–91.

[115] Such, J. M., Garcı́A-Fornes, A., Espinosa, A., and Bellver, J. (2013).

Magentix2: A privacy-enhancing agent platform. Eng. Appl. Artif. Intell., 26(1),

96–109.

[116] Terrasa, A. and Bernat, G. (2004). Extracting temporal properties from

real-time systems by automatic tracing analysis. In J. Chen and S. Hong, editors,

Real-Time and Embedded Computing Systems and Applications, volume 2968 of

Lecture Notes in Computer Science, pages 466–485. Springer Berlin Heidelberg.

[117] Terrasa, A., Espinosa, A., and Garcı́a-Fornes, A. (2008). Lightweight POSIX

Tracing. Software Practice and Experience, 38(5), 447–469.

[118] Thane, H. (2000). Monitoring, testing, and debugging of distributed real-time

systems. PhD Thesis.

[119] Tia, T.-S., Liu, J. W.-S., and Shankar, M. (1996). Algorithms and optimality of

scheduling soft aperiodic requests in fixed-priority preemptive systems. Real-Time

Syst., 10(1), 23–43.

[120] Tichý, P. and Slechta, P. (2006). Java Sniffer 2.7 User Manual.

[121] Vázquez-Salceda, J., Dignum, V., and Dignum, F. (2005). Organizing

Multiagent Systems. Autonomous Agents and Multi-Agent Systems, 11, 307–360.

[122] Villarrubia, G., Sánchez, A., Barri, I., Soler, E. R., del Viso, A. F., Sánchez,

C. R., Cabo, J. A., Álamos, T., Sanz, J., Seco, J., Zato, C., Bajo, J., Rodrı́guez,

S., and Corchado, J. M. (2012). Proximity detection prototype adapted to a work

environment. In P. Novais, K. Hallenborg, D. I. Tapia, and J. M. C. Rodrı́guez,

editors, ISAmI, volume 153 of Advances in Intelligent and Soft Computing, pages

51–58. Springer.

Bibliography 199

[123] Wang, Z. G. and Liang, X. H. (2006). A Graph Based Simulation of

Reorganization in Multi-agent Systems.

[124] Weyns, D., Omicini, A., and Odell, J. (2007). Environment as a first class

abstraction in multiagent systems. Autonomous Agents and Multi-Agent Systems,

pages 5–30.

[125] Weyns, D., Haesevoets, R., Helleboogh, A., Holvoet, T., and Joosen,

W. (2010). The MACODO middleware for context-driven dynamic agent

organizations. ACM Transaction on Autonomous and Adaptive Systems, 5,

3:1–3:28.

[126] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley,

D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut,

I., Puschner, P., Staschulat, J., and Stenström, P. (2008). The worst-case

execution-time problem – overview of methods and survey of tools. ACM Trans.

Embed. Comput. Syst., 7, 36:1–36:53.

[127] Yodaiken, V. (1999). The RTLinux manifesto. In Proc. of The 5th Linux Expo,

Raleigh, NC.

[128] Zambonelli, F., Jennings, N. R., and Wooldridge, M. (2003). Developing

multiagent systems: The gaia methodology. ACM Transactions on Software

Engineering and Methodology (TOSEM), 12(3), 317–370.

[129] Zato, C., Villarrubia, G., Sánchez, A., Barri, I., Rubión, E., Fernández, A.,

Rebate, C., Cabo, J., Álamos, T., Sanz, J., Seco, J., Bajo, J., and Corchado,

J. (2012). Pangea – platform for automatic construction of organizations of

intelligent agents. In S. Omatu, J. F. De Paz Santana, S. R. González, J. M. Molina,

A. M. Bernardos, and J. M. C. Rodrı́guez, editors, Distributed Computing and

Artificial Intelligence, volume 151 of Advances in Intelligent and Soft Computing,

pages 229–239. Springer Berlin Heidelberg.

	I Introduction and Objectives
	Introduction
	Motivation
	Objectives
	Structure of the Thesis
	Publications List
	Research Projects

	II Selected Papers
	Analyzing the Effect of Gain Time on Soft Task Scheduling Policies in Real-Time Systems
	Introduction
	Previous Work
	Scheduling Policies
	Previous Comparative Studies

	The Testing Framework
	The Load Generator Module
	The Code Generator Module
	The Instrumented RTOS
	The Result Extractor Module

	Experiment Design
	Results
	Experiment 1: 40% of Nominal Hard Utilization
	Experiment 2: 80% of Nominal Hard Utilization

	Conclusions

	Supporting Social Knowledge in Multiagent Systems through Event Tracing
	Introduction
	Event tracing in multiagent systems
	Tracing system requirements
	Functional requirements
	Efficiency requirements
	Security requirements

	Conclusions and future work

	TRAMMAS: A Tracing Model for Multiagent Systems
	Introduction
	Related work
	Tracing in multiagent systems
	Indirect interaction and communication

	Requirements
	Functional requirements
	Efficiency requirements
	Security requirements

	The TRAMMAS model
	Trace event
	Tracing entities
	Tracing roles
	Selective event tracing
	Security

	Tracing system architecture
	Tracing services
	The Trace Manager

	Example
	Conclusions and further work

	Improving the Tracing System in PANGEA Using the TRAMMAS Model
	Introduction
	Related Work
	TRAMMAS Overview
	Description of PANGEA Including TRAMMAS
	Case Study and Results
	Conclusions

	An Adaptive Framework for Monitoring Agent Organizations
	Introduction
	The Trace&Trigger Framework
	Magentix2 Support
	Organization Management Module
	Adaptation Module
	Adaptation Life-Cycle

	Case study
	Estimation of the Adaptation Impact
	Event Tracing Specification

	Evaluation
	Specific change in demand
	Progressive change in demand
	Stable demand
	Slight change in demand
	Quick change in demand

	Related Work
	Tracing in Multiagent systems
	Indirect communication in Multiagent systems
	Adaptation in agent organizations

	Conclusions

	III Discussion
	General Discussion of the Results
	Results on Event Tracing in Real-Time Systems
	The Tracing Process and the Tracing System Requirements
	The TRAMMAS Model
	The TRAMMAS Architecture
	Integration of TRAMMAS in the PANGEA Multiagent Platform
	Integration of TRAMMAS in the Magentix2 Multiagent Platform: Trace&Trigger

	Conclusions and Future Work
	Bibliography

