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Abstract 

Pruning urban forests generates significant amounts of ligncellulosic biomass every year. The 

energy potential of this biomass is unclear. The aim of this research was direct analysis of the 

gross calorific value (GCV), elemental composition and moisture content of Morus alba L., 

Platanus hispanica Münchh. and Sophora japonica L. by means of laboratory equipment. 

This analysis allowed for further development of indirect GCV prediction models which are 

economically attractive and less time consuming to direct analysis. These models presented 

high coefficients of determination (R2 0.66-0.96). It has been determined that the species with 

highest mean GCV is Sophora japonica L. (19615.68 kJ/kg- dry sample) whereas the one 

with the lowest is the Morus alba L. (18192.87 kJ/kg- dry sample). Elemental analysis 

showed highest carbon (48.22%), hydrogen (6.17%) and nitrogen (1.16%) content in Sophora 

japonica L. in dry samples. Sulfur was constant at the level 0.05% for all analyzed species. 

Also percentage of bark and wood density were determined. Mean percentage of bark was 

highest for Platanus hispanica Münchh. (13.05%) while wood density was highest for 

Sophora japonica L. (0.86 g cm-3). This way the research has proven that the biomass 

produced by pruning urban forests appears to be an interesting source of renewable energy. 
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1. Introduction  
 

Numerous researchers have published mathematical models for predicting the calorific value 

of various biomass materials from the concentration of the main elements, such as percentage 

of carbon, hydrogen, nitrogen and others [1-3]. Models have been also derived from 

proximate analysis [4-6]. The indirect calculation of calorific value with this type of models is 

justified by the high cost of employing a calorimetric bomb [7-9]. The calorific value is 

constant for each material with defined elemental composition. The moles of each component 

in a sample are obtained by multiplying the sample weight by the weight percentage of each, 

divided by the atomic weight of each element being able to obtain its empirical formula 

CHwOxNySz, where w is the number of moles of hydrogen per mole of carbon; x is the 

number of moles of oxygen per mole of carbon; y is the number of moles of nitrogen per mole 

of carbon; z is the number of moles of sulfur per mole of carbon. In other words, the values of 

w, x, y and z are obtained by dividing the moles of each element contained in the sample by 

the moles of carbon. Based on these values a specific calorific value for dry material is given. 

When measuring the calorific value of biomass, it has to be taken into account that it is a 

porous material with the ability of retaining water. Moreover, the moisture content of the 

material is likely to change its empirical formula and the gravimetric percentages of C, H, O 

and N. Therefore, standards for determining the calorific value for a particular material, such 

as UNE 164001:2005 EX [10], point to that it should be determined in the anhydrous state, in 

dry basis. In this state (without water), the calorific value of a material with defined 

composition would be constant and determination of indirect prediction models would not be 

applicable. Nevertheless, such models can be found very useful when the empirical 

composition varies in humidity, presence or absence of foliage, bark percentage or, when it 

comes to obtaining the calorific value of an indeterminate mixture of materials.  

 

The development of mathematical models for indirect determination of the calorific value is 

useful in materials that may have variability in composition, and there is some uncertainty 

concerning the conditions of use, or the proportion in the mixture of materials. For that, 

economical and reliable methods are required. Such situation is commonly observed in the 

industrial field. For that, researchers as Jenkins et al. [11], Yin [6] and Callejón-Ferre et al. [7-

8] provide models for specific types of mixtures. 

 



Usually, the received biomass for combustion in industrial facilities is found with some 

moisture. Since forced drying processes excessively raise production costs, they are rarely 

used in the production of energy. Air drying rarely decreases moisture content below 20% in 

Mediterranean conditions [12-14]. Moreover, it is common that biomass power plants not 

only work with a well-defined type of material but also with variable mixtures of different 

types of biomass. For these reasons the composition of biomass used in industry has 

variability that directly influences the expected calorific value. The uncertainty of calorific 

value causes that its determination before the introduction of the materials in the boiler would 

be meaningful for understanding its energy performance. If the direct determination of the 

calorific value by means of a calorimetric bomb is more expensive than the determination of 

the composition, as demonstrated in this work, the development of indirect prediction models 

for calorific value from the percentage of the different elements is fully justified. 

 

Large quantity of residual biomass with potential energy and industrial end can be obtained 

from management operations of urban forests. The profitability of exploiting these resources 

is conditioned by the amount of existing biomass within urban community ecosystems, whose 

methods of quantification have been studied by Sajdak and Velazquez [15] and Velázquez et 

al. [16]. These researches point to the residual biomass which can be obtained by pruning of 

one tree. The obtained averages are 31.67 kg dry biomass/tree of Morus Alba L. located in 

street; 77.78 kg dry biomass/tree of Morus Alba L. located in the park; 23.98 kg/tree of 

Platanus hispanica Münchh; and 18.07 kg/tree of Sophora japonica L. Whole calculation of 

the residues in a city will depend on the inventory of each city. Therefore we cannot predict 

exactly. The aim of this research was focused on direct and indirect measurement of energy 

characteristics of lignocellulosic waste from urban tree pruning.  

 
 
2. Materials and Methods 
 
2.1. Vegetal Material 

 

The species analyzed in this work were mulberry (Morus alba L.), Platanus hispanica 

Münchh. and Sophora japonica L., which are very popular ornamental trees in the 

Mediterranean areas. Morus alba L. known as white mulberry is a species of the family 

Moraceae, genus Morus; Platanus hispanica Münchh. (Platanus acerifolia, Platanus 

hybrida) is a tree in the family Platanaceae, genus Platanus and Sophora japonica L. also 



known as Styphnolobium japonicum and Pagoda Tree is a species in the family Fabaceae, 

genus Styphnolobium [17]. All species are extensively cultivated ornamental, parkland and 

roadside trees in the temperate regions. They are widely observed in linear plantations in 

streets as well as isolated trees in gardens [18]. 

 
 
2.2.  Fuel specification 

 
The examined biomass takes origin from pruning operations of Mulberry, Hybrid plane and 

Pagoda tree. The specification of biomass was based on the norm UNE-EN 14961-1 [19]. 

According to this norm, the classification of the origin and sources of solid biofuel examined 

in this work are the following: 

“1. Woody biomass 
1.1.Woody biomass from forest, plantation and other virgin wood 
1.1.7.Wood from gardens, parks, maintenance of roadsides, vineyards and orchards” 
 

According to the specification of solid biofuels based on shape and properties, the analyzed 

material is classified as showed in Table 1. 

 
Table 1. Specification of properties of wood logs. 

Origin: 
According to paragraph 6.1 and Table 1 
of UNE-EN 14961-1. 

Woody biomass: 
Morus alba L. 
Platanus hispanica Münchh.  
Sophora japonica L. 

Commercial form Logs, wood 
Dimensions 
Length (L) (maximum length of a single 
cut), cm  

Morus alba L. 
Platanus hispanica Münchh.  
Sophora japonica L. 

L 100+, (max. 380 cm) 
L 100, 100 cm ±5 cm 
L 100+, (max. 180 cm) 

Diameter (D) (maximum diameter of a 
single cut), cm 

Morus alba L. 
Platanus hispanica Münchh.  
Sophora japonica L. 

D10, 2cm ≤D ≤10cm 
D10, 2cm ≤D ≤10cm 
D2-, D<2 cm 

Humidity (M) (according to received 
mass)% 

Morus alba 
Platanus hispanica Münchh.  
Sophora japonica L. 

M45 
M45 
M45 

Volume or weight, m3 stacked or loose or 
kg as received 

Morus alba L. 
 
Platanus hispanica Münchh.  
Sophora japonica L. 

Mean dry weight 31.13kg street-1 tree; 
77.78kg park tree-1 
Mean dry weight  23.98kg tree-1 
Mean dry weight  18.07kg tree-1  

Proportion by volume of stumps 
 

Morus alba L. 
Platanus hispanica Münchh.  
Sophora japonica L. 

Whole (unsplit) 
Whole (unsplit) 
Whole (unsplit) 

Cut surface Morus alba L. 
Platanus hispanica Münchh.  
Sophora japonica L. 

Smooth and regular 
Smooth and regular 
Smooth and regular 

Wet and rot Morus alba L. 
Platanus hispanica Münchh.  
Sophora japonica L. 

No 
No 
No 



 

 

2.3. Sample preparation 

 

The analyzed Mulberry, Hybrid plane and Sophora japonica L. branches (without leaves) 

were divided into 4 classes, depending on their diameter. The diameter classes represent the 

base of the branch section, midway sections and the upper end section. Next, various wood 

samples within a diameter section were chipped with a hammermill and stored for laboratory 

tests. Within each species and diameter class, convection dried and open air dried samples 

were tested for calorific value and CHNS composition. 

 
2.4. Determination of moisture content 

 

The evaluation of drying process was done according to the norm UNE-EN 14774-2 [20]. 

The process took place in two types of conditions: open-air drying and oven drying. Open-air 

drying was carried out in laboratory environment with average temperature 21.32ºC and 

relative humidity 42.41%. A daily record of results took place until the stabilization of weight 

was obtained. During oven drying, samples were dried in a stove with controlled temperature 

(105 ±2)oC. The drying time did not exceed 24h in order to avoid possible unnecessary loss of 

volatile substances. 

 

2.5.Gross calorific value and elemental composition analysis 

 

Gross calorific value (CGV) of wood samples of Mulberry, Hybrid plane and Pagoda Tree. 

were analyzed by means of a LECO AC500 Automatic Calorimeter, based on norm UNE-EN 

14918 [21]. CHN determinations were carried out based on norm UNE-EN 15104 [22]. To 

measure the content of S (sulfur) a Tru-Spec Add-On Module was used [23-25]. The time and 

reactive cost for GCV determination was analyzed and compared with elemental analysis. 

 

Gross calorific value (GCV) prediction models were developed from CHNS variables by 

means of Statgraphics 5.1 software. Among all tested equations (linear and quadratic), those 

with best results were selected. The correctness of the equations was tested by determining the 

coefficient of determination (R2), standard deviation (sd) and mean absolute error (MAE). 

The multiple regression models for each species which gave highest R2 have been validated. 



For that, two independent data sets have been organized: one set (n=25) to generate the model 

and one set (n=5) for its validation. A t-test was used to compare the mean of real values and 

values calculated by a regression model. Additionally, the analysis of residual plots has been 

performed. 

 

2.6.Determination of wood density 

 

The employed methodology involved the determination of dry weight of samples by means 

of convection drying in temperature (105±2)oC until the stabilization of weight after 24 hours 

was obtained. The samples were immersed in a beaker with water. The obtained difference 

equivalent to the volume of displaced water, equals the volume of the sample submerged 

(Equation 1) [25]. The mean and standard deviation were calculated for the obtained densities.  

Vg
WdD =

           (Equation 1)
 

Where 
D= wood density (g cm-3) 
Wd= oven-dried weight of wood (g) 
Vg= green volume (cm3) 
 

 

2.7. Determination of percentage of bark 

 

To perform this study several branches of Mulberry, Hybrid plane and Pagoda Tree. were 

divided into 4 diameter classes. To determine the percentage of bark, the diameter over bark 

and the diameter under bark were measured with a digital caliper for all analyzed samples 

within a diameter class (Equation 2). The average percentage of bark was determined within 

each diameter class.  

100%
dob

dub-dobba 2

22

⋅=
  (Equation 2) 

Where 
ba = bark (%) 
dob= diameter over bark (mm) 
dub= diameter under bark (mm) 
 
 
 



3. Results and discussion 

 

Table 2 presents the values of elemental composition and gross calorific value of the studied 

biomass dried in stove and wet up to 10%. 

 

Table 2. Characterization of examined biomass. 
 Species Drying 

process Average Standard 
deviation 

Standard 
skewness 

Standard 
kurtosis Maximum Minimum 

GCV 

Mulberry W10 17127.62 157.02 -1.04 0.04 17301.26 16834.74 
Mulberry Dry 18192.89 554.09 0.37 -0.60 19099.12 17396.23 
Hybrid plane  W10 17513.76 356.56 -0.01 -1.10 17972.79 17084.95 
Hybrid plane  Dry 18952.47 556.93 -0.08 -0.84 19707.48 18195.80 
Pagoda tree W10 17970.49 198.41 1.16 -0.03 18317.13 17746.44 
Pagoda tree Dry 19615.68 100.75 -1.20 1.66 19754.34 19418.78 

 
C 

Mulberry W10 44.54 0.38 -0.15 -0.88 45.0 44.0 
Mulberry Dry 48.22 0.67 -0.11 -0.37 49.3 47.2 
Hybrid plane  W10 44.1 0.58 0.41 -0.47 45.0 43.3 
Hybrid plane  Dry 48.48 0.64 0.41 -1.22 49.3 47.8 
Pagoda tree W10 45.66 0.53 -0.10 1.15 46.6 44.7 
Pagoda tree Dry 49.15 0.63 -0.23 -0.16 50.1 48.1 

H 

Mulberry W10 6.36 0.07 0.48 -0.94 6.45 6.26 
Mulberry Dry 5.92 0.03 -0.28 -0.73 5.97 5.87 
Hybrid plane  W10 5.83 0.08 0.89 0.72 5.99 5.73 
Hybrid plane  Dry 5.77 0.00 -0.51 -0.27 5.87 5.69 
Pagoda tree W10 6.54 0.06 0.28 0.39 6.67 6.44 
Pagoda tree Dry 6.17 0.10 -1.37 1.35 6.3 5.97 

 
N 

Mulberry W10 0.60 0.14 0.64 -0.88 0.83 0.45 
Mulberry Dry 0.86 0.13 -1.04 -0.60 1.01 0.62 
Hybrid plane  W10 0.67 0.12 0.15 -1.08 0.85 0.51 
Hybrid plane  Dry 0.78 0.13 -0.16 -1.02 0.94 0.61 
Pagoda tree W10 0.90 0.21 1.69 0.78 1.34 0.72 
Pagoda tree Dry 1.16 0.17 0.76 -0.64 1.42 0.98 

S 

Mulberry W10 0.04 0.00 -1.67 1.54 0.05 0.04 
Mulberry Dry 0.05 0.00 0.42 -0.57 0.05 0.04 
Hybrid plane  W10 0.05 0.00 -0.82 -0.74 0.05 0.04 
Hybrid plane  Dry 0.05 0.00 0.63 -0.11 0.06 0.04 
Pagoda tree W10 0.05 0.00 -1.92 1.85 0.05 0.03 
Pagoda tree Dry 0.05 0.00 -0.51 -0.45 0.05 0.04 

% bark Mulberry  9.49 3.83 1.20 -0.17 17.82 3.13 
Hybrid plane   13.05 4.80 1.74 0.92 25.43 6.57 
Pagoda tree  5.29 3.53 1.49 -0.18 13.46 0.14 

W10:  sample up to 10% moisture content in wet basis; GCV: gross calorific value (kJ kg-1); C: 
carbon (%); H: hydrogen (%); N: nitrogen (%); S: sulfur (%). 

 

As it can be observed, all variables show standard kurtosis and standard skewness between 

 -2 and +2. This fact means that all of them follow a normal distribution, which is essential for 

the analysis. The average GCV of analyzed species ranges between 17-20 MJ kg-1 depending 

on the moisture content what gives similar results to those published by Gillon et al. [27] on 

residuals from landscape maintenance of broad-leaved species (18.80-21.10 MJ kg-1) and by 

Yin [6] for biomass (14-23 MJ kg-1). These results are also approximated to those found by 



FAO [28] on net calorific value of road side green 14.1MJ kg-1 and Castells [29] for park 

residuals and wood slightly above 0.95 MJ kg-1. The GCV found in this thesis are similar to 

those for agricultural residuals (15-17 MJ kg-1) and to woody materials (18-19 MJ kg-1) [9]. 

To compare the GCV of different species, the analysis of variance was carried out. The LSD 

intervals at 95% are shown in Figure 1. It is observed, that the GCV is significantly different 

among the studied species.  

 

 

 

Figure 1. LSD intervals for GCV of species: Mulberry (Morus alba L.); Hybrid plane 
(Platanus hispanica L. Münchh); Pagoda tree (Sophora japonica L.) 

 

The concentration of C and H in the studied biomass was approximately 44-50% and 5.7-

6.5% what has been found in the range of published data (C=42-71%, H= 3-11%) [30]. The N 

and S concentration in the examined residuals estimated at the level of 0.6-1.1% and 0.04-

0.05% are low in comparison to those found in literature for biomass (N=0.1-12%, S=0.01-

2.3%) [30-31]. This result is an advantage, as high concentration of N and S produces 

negative impact on the environment due to the emission of nitrogen oxides, sulfur dioxide and 

sulfur trioxide during combustion [31-33]. In the Table 2 can be seen that the stove-dried 

samples present higher mean concentration of carbon and calorific value while the %H 

generally decreases in dried environment. This is explained by the additional energy that must 

be used for H2O evaporation in samples with moisture contents above 0%.  Sulfur can be 

dependent from high concentration in soil and air environment. The results also indicate that 

Pagoda Tree is the species with highest values within most studied parameters (excluding 

%S). 

 



The species with highest mean GCV was Pagoda tree (19615.68 kJ kg-1-dry sample). The 

lowest mean GCV was observed with Mulberry (18192.87 kJ kg-1-dry sample). Elemental 

analysis showed that carbon content varied from 48.22% in Pagoda tree to 49.15% in 

Mulberry, hydrogen content ranged from 5.77% in Hybrid plane to 6.17% in Pagoda tree 

nitrogen from 0.78% in Hybrid plane to 1.16% in Pagoda tree and sulfur was at the level 0.04-

0.05 for all analyzed species. The results indicate that Pagoda Tree. is the species with highest 

values within most studied parameters. 

 

The dependence of the studied variables is shown in Table 3. It can be observed that 

moisture content, percentage of C, and H have a high influence on the Gross Calorific Value 

(GCV) when those are considered separately what has been proved in other studies [7-8, 32-

33]. What is more, it is important to point out that the high %H is related with the moisture 

content of the material, provided that the water has as formula H2O. Therefore, the water 

content in the pores of the biomass modifies the weight of the material and the ratio of other 

elements in the sample composition. 

 

Table 3.  Pearson correlation coefficients of studied elemental composition. 

 Moisture content  C H N S GCV 

Mulberry       
Moisture content  -0.9672* 0.9789* -0.7399* -0.4512 -0.7750* 
C -0.9672*  -0.9248* 0.8505* 0.4747 0.6495* 
H 0.9789* -0.9248*  -0.6855* -0.4823 -0.8530* 
N -0.7399* 0.8505* -0.6855*  0.6278* 0.4730 
S -0.4512 0.4747 -0.4823 0.6278*  0.5724 
GCV -0.7750* 0.6495* -0.8530* 0.4730 0.5724  
Hybrid plane        
Moisture content  -0.9619* 0.4550 -0.3955 -0.3119 -0.8210* 
C -0.9619*  -0.2451 0.5867* 0.3198 -0.9221* 
H 0.4550 -0.2451  0.3346 -0.3913 -0.0822 
N -0.3955 0.5867* 0.3346  -0.0111 0.7832* 
S -0.3119 0.3198 -0.3913 -0.0111  0.2210 
GCV -0.8210* 0.9221* -0.0822 0.7832* 0.2210  
Pagoda Tree       
Moisture content  -0.9823* 0.9714* -0.6481 -0.5947 -0.9825* 
C -0.9823*  -0.9427* 0.7122* 0.5295 0.9834* 
H 0.9714* -0.9427*  -0.4907 -0.5908 -0.9327* 
N -0.6481 0.7122* -0.4907  0.0520 0.7522* 
S -0.5947 0.5295 -0.5908 0.0520  0.4682 
GCV -0.9825* 0.9834* -0.9327* 0.7522* 0.4682  

*pares of variables with P-values lover then 0.05; GCV: gross calorific value (kJ kg-1); C: carbon (%); H: 
hydrogen (%); N: nitrogen (%); S: sulfur (%) 
  



 

For indirect GCV calculation, prediction models from ratios of C, H, N, and S were 

developed. These models have high importance in the industry because the GCV of material 

is used in boilers and is usually unknown due to the influences of moisture content as 

demonstrated (Tables 2 and 3). The GCV determination with adiabatic calorimeter AC-500 

takes 20 min sample-1, and moisture content measurement takes 24 h using the norm UNE. 

The reagent used to calibrate the adiabatic calorimeter is the benzoic acid, which is dosed 5 g 

for 30 analyses, and 0.0117 Nm3 oxygen. Each analysis uses a wire to ignite the sample and 

generate 586.14 watts of electricity. The estimated cost is 7.87 Euros per sample. 

According to experience with leco CHN Truspec analyzer, the average time of the elemental 

analysis is 5.2 min sample-1 at 1172.28 watts. It uses 0.025 Nm3 of helium, and 0.01 Nm3 of 

oxygen. Spent reagents used for this are 300 g of anhydrone (Magnesium Perchlorate) and 60 

g of lecosorb (Sodium Hydroxide) for every 800 samples of biomass; 140 g copper sticks, 

10.5 g N-catalyst, and 6 g copper turnings in the reduction heater tube every six month. Other 

maintenance consumables are needed each 200 samples. The estimated reagent cost is 8.04 

Euros per sample. Although the cost of direct assay reagents is slightly smaller than the 

elemental analysis, the last one is less time-consuming and therefore it is more favorable. 

 

Therefore, the indirect measurement using regression equation from the ratios C, H, N and S 

leads to faster and consequently cheaper determinations (Table 4). 

 

Table 4. Prediction models for indirect calculation of gross calorific value 

Species Function R2 sd MAE 

Mulberry GCV = 3674.57 + 302.93 ⋅C 0.66 421.97 328.48 
Hybrid plane  GCV= 4189.23 + 269.63 ⋅C + 2138.94 ⋅N 0.95* 201.20 158.40 
Pagoda tree GCV= -2080.66 + 439.47 ⋅C 0.96 174.26 132.758 

GCV: gross calorific value (kJ kg-1); C: carbon (%); N: nitrogen (%); MAE: mean absolute error; sd: standard 
deviation; R2: coefficient of determination;*: R2 adjusted. 

 

All prediction models present high R2 (0.66-0.96) and can be used to calculate the gross 

calorific value without the need of a calorimeter. This allows shortening the measurement 

process when necessary. The P-value in all explicative variables was lower than 0.05. 

 

Figures 2, 3 and 4 show the variation of moisture content during the evaluation of the 

drying process carried out in both open-air drying and stove drying conditions. It is observed 



that the minimum moisture content in open-air was obtained within 25-30 days and in stove 

drying conditions after 24 hours. 

 

Figure 2. Drying curve for Mulberry (Morus alba L.) 
 

 

Figure 3. Drying curve for Pagoda tree (Sophora japonica L.) 
 

 

Figure 4. Drying curve for Hybrid Plane (Platanus hispanica Münchh.) 
 
 

Table 5 shows that the species with the highest mean density value is the Sophora japonica 

L.. 
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Table 5. Density of analyzed species 
 

Species Mean  (g cm-3) sd 

Mulberry 0.60 0.04 
Hybrid plane  0.50 0.14 
Pagoda tree 0.86 0.19 

sd: standard deviation 
 

According to published data on Mulberry yields a medium-weight hardwood with density 

670-850 kg m-3 while Hybrid plane 625 kg m-3 [34]. Wood density varies depending on 

growth conditions and the measured part of the tree. The main stem is characterized by higher 

density than the branches what may explain the lower results obtained in this study. 

 

4. Conclusions 

 

The evaluation of drying process has been studied. The Mulberry, Hybrid plane and Pagoda 

tree. species had around 45% moisture content in wet basis. The highest density of all species 

was presented by Pagoda Tree (0.86g cm-3). 

C, H, N, S determination allows developing indirect methods to calculate the gross calorific 

value of the materials at different moisture content with fairly high precision. The 

applicability of these indirect methods is justified by its advantage over long time taking 

direct analyses by means of an adiabatic calorimeter.  

 

On the other hand, the C, H, N, S determination also allows evaluating environmental 

benefits by the reduction of carbon dioxide emissions when these materials are used as a 

biofuel. From an environmental point of view, the increased recycling of recovered urban 

wood residual biomass can be seen as a positive evolution because it leads to incensement of 

the total volume of CO2 stored as wood-based products, enlarging the life-cycle of the fixed 

carbon in the new recycled products.  

 

References  

[1] Buckley TJ. Calculation of higher heating values of biomass materials and waste 

components from elementals analyses. Resour Conserv Recy 1991;5:329-341. 

doi:10.1016/0921-3449(91)90011-C 



[2] Parikh J, Channiwala SA, Ghosal GK. A correlation for calculating elemental composition 

from proximate analysis of biomass materials. Fuel 2007;86:1710-1719. 

doi:10.1016/j.fuel.2006.12.029 

[3] Friedl A, Padouvas E, Rotter H, Varmuza K. Prediction of heating values of biomass fuel 

from elemental composition. Anal Chim Acta 2005;544:191-198. 

doi:10.1016/j.aca.2005.01.041 

[4] Demirbas A. Mathematical modeling the relations of biomass fuels based on proximate 

analysis. Energ Source Part A 2007;29:1017-1023. doi:10.1080/00908310500433855 

[5] Erol M, Haykiri-Acma H, Kücükbayrak S. Calorific value estimation of biomass from 

their proximate analyses data. Renew Energ 2010;35:170-173. 

doi:10.1016/j.renene.2009.05.008 

[6] Yin CY. Prediction of higher heating values of biomass from proximate and ultimate 

analysis. Fuel 2011;90:1128-1132. 

[7] Callejón Ferre AJ, Velázquez-Martí B, López-Martinez JA, Manzano-Agugliaro F. 

Greenhouse crop residues: Energy potential and models for prediction of their higher 

heating value. Renew Sust Energ Rev 2011;15(2):948-955. 

doi:10.1016/j.rser.2010.11.012 

[8] Callejón Ferre AJ, Velázquez-Martí B, López-Martinez JA, Manzano-Agugliaro F. 

Erratun to: Greenhouse crop residues: Energy potential and models for prediction of their 

higher heating value. Renew Sust Energ Rev 2011;15:5224. 

doi:10.1016/j.rser.2011.04.005 

[9] Vargas-Moreno JM, Callejón-Ferre AJ, Pérez-Alonso J, Velázquez-Martí B. A review of 

the mathematical models for predicting the heating value of biomass materials. Renew 

Sust Energ Rev 2012:16:3065-3083. doi:10.1016/j.rser.2012.02.054 

[10] UNE 164001:2005 EX. Biocombustibles sólidos. Método para la determinación del 

HHV. AENOR, Madrid, Spain, 2005. 

[11] Jenkins BM, Baxter LL, Miles JrTR, Miles TR. Combustion properties of biomass. Fuel 

Process Technol 1998;54:17-46. doi:10.1016/S0378-3820(97)00059-3 

[12] Velázquez-Martí B, Fernández-González E, López-Cortes I, Salazar-Hernández DM. 

Quantification of the residual biomass obtained from pruning of trees in Mediterranean 

almond groves. Renew Energ 2011;36:621-626. doi:10.1016/j.renene.2010.08.008 

[13] Velázquez-Martí B, Fernández-González E, López-Cortes I, Salazar-Hernández DM. 

Quantification of the residual biomass obtained from pruning of vineyards in 



Mediterranean area. Biomass Bioenerg 2011;35(3):3453-3464. 

doi:10.1016/j.biombioe.2011.04.009 

[14] Velázquez-Martí B, Fernández-González E, López-Cortes I, Salazar-Hernández DM. 

Quantification of the residual biomass obtained from pruning of trees in mediterranean 

olive groves. Biomass Bioenerg 2011;35(2):3208-3217.  

doi:10.1016/j.biombioe.2011.04.042 

[15] Sajdak M, Velázquez-Martí B. Estimation of pruned biomass through the adaptation of 

classic dendrometry on urban forests: case study of Sophora japonica. Renew Energ 

2012;47: 188-193. doi:10.1016/j.renene.2012.04.002  

[16] Velázquez-Martí B., Sajdak M., López-Cortés I. 2013. Available residual biomass 

obtained from pruning of Morus alba L. trees cultivated in urban forest. Renewable 

Energy 60: 27-33 

[17] De La Torre JR. Árboles y arbustos de la España peninsular. Madrid,  Ediciones Mundi-

Prensa, 2001. 

[18] López-González GA. Guía de los árboles y arbustos de la Península Ibérica y Baleares. 

Ediciones Mundi-Prensa, 2007.  

[19] UNE-EN 14961-1. Solid biofuels. Fuel specification and clases. Part 1: General 

requirements, 2011.  

[20] UNE-EN 14774-2. Solid biofuels. Determination of moisture content. Oven dry method. 

Part 2: Total moisture. Simplified method, 2010.  

[21] UNE-EN 14918. Solid biofuels.Determination of calorific value, 2011. 

[22] UNE-EN 15104. Solid biofuels. Determination of total content of carbon, hydrogen and 

nitrogen. Instrumental methods, 2011. 

[23] LECO. AC500 Automatic Calorimeter. Instruction Manual, 2009. 

[24] LECO. TruSpec CHN/CHNS Carbon/Hydrogen/ Nitrogen/ Sulfur Determinators. 

Instruction Manual. Version 2.4x., 2009.  

[25] LECO. TruSpec Add-On Module. Instruction Manual. Version 2.4x., 2009. 

[26] Husch B, Beers TW, Kershaw JAJr. Forest Mensuration. John Wiley & Sons, INC, 2003. 

[27] Gillon D, Hernando C, Valette JC, Joffre R. Fast estimation of the calorific value of 

forest fuels by near infrared-reflectance spectroscopy. Can J Forest Res 1997;27(5):760-

765. doi:10.1139/cjfr-27-5-760 

[28] FAO. UBET, Unified Bioenergy Terminology. 2004, 

http://www.fao.org/docrep/007/j4504E/j4504e08.htm, Avaible 20/12/2012. 

[29] Castells XE. Tratamiento y valoracion energetic de residues. Ed. Diaz de Santos, 2005. 

http://www.fao.org/docrep/007/j4504E/j4504e08.htm


[30] Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical 

composition of biomass. Fuel 2010;89:913-933. doi:10.1016/j.fuel.2009.10.022 

[31] Khan AA, Jonga WD, Jansens PJ, Spliethoff H. Biomass combustion in fluidized bed 

boilers: potential problems and remedies. Fuel Process Technol 2009;90:21-50. 

doi:10.1016/j.fuproc.2008.07.012 

[32] Telmo C, Lousada J, Moreira N. Proximate analysis, backwards stepwise regression 

between gross calorific value, ultimate and chemichal analysis of wood. Bioresource 

Technol 2010;101:3808-3815. doi:10.1016/j.biortech.2010.01.021 

[33] Telmo C, Lousada J, Moreira N. Corrigendum to “Proximate analysis, backwards 

stepwise regression between gross calorific value, ultimate and chemichal analysis of 

wood”. [Bioresource Technol 2010;101:3808-3815]. Bioresource Technol 

2010;101(18):7189. doi:10.1016/j.biortech.2010.01.021 

[34] World agroforesty centre. http://www.worldagroforestrycentre.org/about_us/careers, 

Avaible 20/12/2012. 

http://www.worldagroforestrycentre.org/about_us/careers

