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ABSTRACT 1 

Jiménez-Gasco, M. M., Malcolm, G. M., Berbegal, M., Armengol, J., and Jiménez-Díaz, R. 2 

M. 2013. Complex molecular relationship between Vegetative Compatibility Groups in 3 

Verticillium dahliae: VCGs do not always align with clonal lineages. Phytopathology 4 

XX:000. 5 

 6 

Verticillium wilts caused by the soilborne fungus Verticillium dahliae are amongst the 7 

most challenging diseases to control. Populations of this pathogen have been 8 

traditionally studied by means of vegetative compatibility groups (VCGs) under the 9 

assumption that VCGs comprise genetically related isolates that correlate with clonal 10 

lineages.  We aimed to resolve the phylogenetic relationships among VCGs and their 11 

subgroups based on sequences of the intergenic spacer region of the rDNA (IGS) and six 12 

anonymous polymorphic sequences (VdSNP) containing single nucleotide 13 

polymorphisms (SNPs). A collection of 68 V. dahliae isolates representing the main VCGs 14 

and subgroups (VCGs 1A, 1B, 2A, 2B, 3, 4A, 4B, and 6) from different geographic origins 15 

and hosts was analyzed using the seven DNA regions. Maximum parsimony (MP) 16 

phylogenies inferred from IGS and VdSNP sequences showed five and six distinct clades, 17 

respectively.  Phylogenetic analyses of individual and combined datasets indicated that 18 

certain VCG subgroups (e.g., VCGs 1A and 1B) are closely related and share a common 19 

ancestor; however, other subgroups (e.g., VCG 4B) are more closely related to members 20 

of a different VCG (e.g., VCG 2A) than to subgroups of the same VCG (VCG 4B). 21 

Furthermore, MP analyses indicate that VCG 2B is polyphyletic with isolates placed in at 22 
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least three distinct phylogenetic lineages based on IGS sequences, and two lineages 1 

based on VdSNP sequences. Results from our study suggest the existence of main VCG 2 

lineages that contain VCGs 1A and 1B; VCGs 2A and 4B; and VCG 4A, for which both 3 

phylogenies agree; and the existence of other VCG or VCG subgroups that seem to be 4 

genetically heterogeneous or show discrepancies in their phylogenetic placement: VCG 5 

2B, VCG 3 and VCG 6. These results raise important caveats regarding the interpretation 6 

of VCG analyses: genetic homogeneity and close evolutionary relationship between 7 

members of a VCG should not be assumed. 8 

 9 

Vegetative compatibility in fungi refers to the ability of hyphae to anastomose and form 10 

a stable heterokaryon. This allows organizing isolates that are vegetatively compatible 11 

into vegetative compatibility groups (VCGs).  Based on knowledge derived from model 12 

fungal systems, vegetative compatibility is controlled by heterokaryon incompatibility 13 

(het) or vegetative incompatibility (vic) loci (21,31). For hyphal anastomosis to occur 14 

between two fungal isolates, alleles at those het/vic loci must be identical, or 15 

compartmentalization and hyphal cell death will occur at the point of fusion (20,21,31). 16 

The apparent need of allele homozygosis at het/vic loci has led to the assumption that 17 

isolates within a VCG must be genetically related, and consequently VCGs are generally 18 

conceived as clonal lineages that comprise individuals related by common descent with 19 

variation within clonal lineages arising mainly through mutations (1,19).  20 

The VCG structure in fungal populations has been used to estimate genetic diversity in 21 

many fungi (38,47), including Verticillium dahliae, a soilborne anamorphic fungus in the 22 
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Phylum Ascomycota, that causes vascular wilt diseases in hundreds of important crops 1 

worldwide (10,23,29,42,48). Puhalla first identified VCGs in V. dahliae using UV-induced 2 

microsclerotial color mutants (44).  Based on this assay, four VCGs were initially 3 

identified (44) although this number increased to 16 VCGs when a diverse collection of 4 

86 isolates was analyzed (45).  Later, Joaquim and Rowe (26) reclassified 15 of the 16 5 

VCGs identified by Puhalla (44) into four main VCGs: VCG 1, VCG 2, VCG 3, and VCG 4, 6 

using an assay that relies on the use of nitrate-nonutilizing (nit) auxotrophic mutants 7 

that arise naturally in medium containing chlorate (26).  The use of nitrogen sources and 8 

the wild type growth are reestablished following positive complementation between 9 

different nit mutants of paired isolates, and those isolates are assigned to the same 10 

VCG. Since 1990, VCG groups based on complementation assays with nit mutants have 11 

been slightly updated. Several VCGs have been further subdivided into subgroups based 12 

on vigor and frequency of complementation (i.e., VCG1A and VCG1B, VCG2A and 13 

VCG2B, VCG4A and VCG4B) (6,24,26,51).  More recently, isolates causing disease on 14 

pepper in California were characterized as a new VCG 6 (9).  15 

The advancement of molecular tools and their increased availability in phytopathology 16 

has led to a steady replacement of VCG testing by molecular assays and protocols to 17 

resolve fungal population diversity. However, VCGs are still important markers for 18 

studies that focus on V. dahliae (24,41). Different VCGs can be linked to host adaptation 19 

shown by populations of V. dahliae and therefore these groups bear significant 20 

biological information (8,22,24,28,48). In some cases, virulence to a given symptomatic 21 

host plant (34) can be correlated to different VCGs.  For example, isolates of VCG 4A, 22 
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which has only been found in North America mainly associated to potato crops (41,48), 1 

are more virulent on potato than VCG 4B and 2B isolates, which occur in North America 2 

and elsewhere (27,51). In Israel, VCG 4B isolates are more virulent to potato, and VCG2A 3 

isolates are more virulent to tomato, than VCG 2B isolates (55). In Spain, V. dahliae 4 

isolates from artichoke in VCG2B were more virulent to this host plant compared with 5 

isolates in VCG1A and VCG2A (24). Another example regarding the phytopathogenic 6 

significance of VCGs concerns V. dahliae infecting cotton and olive in Spain. Isolates in 7 

VCG 1A correlate to the highly virulent defoliating pathotype in olive and cotton crops, 8 

whereas isolates of VCGs 2A, 2B, or 4B cause the lesser virulent non-defoliating 9 

syndrome in these two symptomatic hosts (22,23). Those differences in virulence on 10 

cotton and olive between defoliating and non-defoliating isolates have been shown 11 

consistently (4,5,23,32,37).  12 

Previous work utilizing a suite of molecular tools suggests that VCGs in V. dahliae may 13 

not represent distinct clonal lineages and may be more diverse than previously expected 14 

(12,13,24). For instance, studies using amplified polymorphic fragment length 15 

polymorphic (AFLP) markers revealed that VCG subgroups are not necessarily closely 16 

related (12,13).  This finding was supported by analyses of mitochondrial sequences 17 

(35).  Similarly, studies on Verticillium wilt in artichoke crops at eastern-central Spain 18 

indicated that V. dahliae isolated from affected plants and typed as VCG 2B were 19 

genetically diverse since some Isolates complemented with international reference VCG 20 

2B tester isolates but others did not complement with these latter testers but did with 21 

local VCG 2B isolates (24).  PCR-based markers previously associated with cotton- and 22 
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olive-defoliating or non-defoliating V. dahliae pathotypes, as well as AFLP analysis also 1 

revealed this genetic heterogeneity (14,24,37).   2 

The objective of this study was to analyze phylogenetic relationships between VCGs in V. 3 

dahliae to better understand the population structure in this important pathogen. This 4 

has been attempted before using AFLPs (12,13), conserved, house-keeping genes (12) 5 

and mitochondrial DNA regions (35). However, results from those studies may be 6 

undermined by AFLP markers being potentially subjected to significant homoplasy (17), 7 

and by the little resolution within VCGs provided by other DNA regions tested (12,35). 8 

Also, not all known VCGs were included in previous studies (12,35). A region that has 9 

shown promising in V. dahliae is the nuclear ribosomal DNA gene cluster intergenic 10 

spacer (IGS).  Qin et al. (46) showed significant variability in IGS sequences in V. dahliae 11 

populations from numerous symptomatic hosts, but VCG information was not included 12 

in the analyses.  Other sequence-based regions of potential use for studying VCG 13 

phylogenetic relationships are those containing single nucleotide polymorphisms (SNPs) 14 

(15,54). In the present study we analyzed evolutionary relationships between VCGs 15 

using IGS sequences and six previously characterized anonymous polymorphic regions 16 

containing SNPs (7).  We hypothesized that clonality within VCGs of V. dahliae will be 17 

supported by topological concordance between the different regions analyzed; that is, if 18 

VCGs comprise clonal lineages, the topologies of phylogenetic trees inferred from the 19 

different datasets (IGS and the six polymorphic regions) should be congruent in the 20 

absence of recombination.  21 

 22 
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MATERIALS AND METHODS 1 

 2 

Fungal isolates, culture conditions, and DNA extraction. A collection of 68 isolates of V. 3 

dahliae and one of V. albo-atrum originally obtained from diverse hosts, geographic 4 

origins, and VCG groups were used in this study (Table 1). The collection included 5 

isolates from China, Greece, Israel, Italy, Japan, Spain, Swaziland, Syria, UK, and the USA. 6 

The host of origin of the isolates was also diverse, including artichoke, chickpea, cotton, 7 

eggplant, elm, green ash, muskmelon, olive, pepper, pistachio, potato, pumpkin, 8 

strawberry, tomato, watermelon, and yellowwood (Table 1). All V. dahliae isolates had 9 

been previously typed to VCG in earlier studies or by the supplier (Table 1). The 10 

collection studied includes all known VGCs and subgroups described, except for VCG 5. 11 

VCG 5 was only described once for a single isolate from Catalpa in Illinois (USA) 12 

(26,45,52), which is no longer available. Isolates are long-term stored in sterile soil at 13 

4
o
C in the dark, in the culture collection of M. M. Jiménez-Gasco, Department of Plant 14 

Pathology and Environmental Microbiology, The Pennsylvania State University, PA, USA.  15 

Active cultures were obtained by plating colonized soil onto potato dextrose agar (PDA, 16 

Difco Laboratories, Detroit, MI), followed by incubating at 26
o
C in the dark. Efforts were 17 

made to assure purity of isolates’ cultures. Mycelium was generated from 2- to 4-week-18 

old PDA cultures by gently scraping it off the media. This mycelium was used directly for 19 

DNA extraction using the Mo Bio Ultraclean Microbial DNA Isolation kit (Mo Bio 20 

Laboratories Inc., Carlsbad, CA) following the manufacturer’s protocol, with the addition 21 
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of 10 minutes at 65
o
C after step 4 to increase DNA yield through improved cell lysis.  1 

DNA solutions were stored at -20
o
C until used. 2 

 3 

Amplification and sequencing of IGS and VdSNP regions. All 69 Verticillium isolates 4 

were subjected to phylogenetic analyses using IGS sequences and six polymorphic 5 

regions containing SNPs (VdSNP sequences) (7).  Conditions used for DNA amplification 6 

of the complete IGS region were as described by Qin et al. (46) using primers VdIGSF1 7 

and VdIGSR1 (46). For amplification of the IGS region, the reaction mix (25 µl) consisted 8 

of 20 ng of DNA, 0.5 µM each primer, 0.2 mM dNTP, 2.5 µl 10x reaction buffer, and 0.65 9 

U DNA polymerase (Denville Scientific, Metuchen, NJ).  All PCR reactions were 10 

performed  in a Mastercycle©ep Thermocycler (Eppendorf North America, Hauppauge, 11 

NY), with an initial denaturation step at 95
o
C for 5 min followed by 35 cycles of 1 min at 12 

95
o
C, 50 sec at 65

o
C, and 1 min at 72

o
C, and a final step of 10 min at 72

o
C.  All 13 

polymorphic regions containing SNPs (VdSNP1, 2, 3, 4, 5, and 7) were amplified using 14 

primers and protocols described in Berbegal et al. (7).  Amplification products were 15 

visualized in agarose gels prior to sequencing. PCR products were cleaned using ExoSap 16 

(Affimetrix USB, Cleveland, OH), and sequenced at the Genomics Core Facility, The 17 

Pennsylvania State University, University Park, PA, USA.  Sequencing of the complete IGS 18 

region was achieved by using primers VdIGSF1 and VdIGSR1 (46), as well as primers 19 

VdIGSInt1F (5'-3', CTTTCGGCTGCAGCGGCGTGCC), VdIGSInt1R (5'-3', 20 

GGCACGCCGCTGCAGCCGAAAG), and VdIGSInt2R (5'-3', AATTCCCGGGTAGCTTTCCACC ), 21 

which were designed in this study based on sequences internal to the IGS region. Both 22 
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strands were sequenced for all VdSNP regions using the same primers used for PCR 1 

amplifications and consensus sequences for IGS and VdSNP regions were generated 2 

using Sequencher v.4.7 (Gene Codes, Ann Arbor, MI). 3 

 4 

DNA sequence analysis. For each region, sequences were aligned using Sequencher 5 

v.4.7 followed by careful and extensive manual alignment, especially for the IGS region. 6 

Manual alignment was advisable because the IGS region contains numerous large indels 7 

as described by Pramateftaki et al. (43).  Congruence between all datasets was 8 

estimated with the incongruence length difference (ILD) test implemented as the 9 

partition homogeneity test in PAUP v.4.0.b10 (53), with 1,000 replicate partitions 10 

subjected to heuristic parsimony searches.- Phylogenetic analyses were conducted on  11 

each dataset individually, all VdSNP sequences combined, and on the combined dataset. 12 

Maximum parsimony (MP) analyses were conducted using the parsimony ratchet (39) in 13 

PAUPRat (50) as implemented in PAUP v.4.0.b10 with the following settings: set seed = 14 

0, nreps = 200, pct = 15, set wtmode = uniform, with simple sequence addition and 15 

heuristic searches. Maximum likelihood (ML) analyses were done in PAUP using the 16 

HKY85 model and the heuristic search option with 1,000 random addition sequences 17 

and the subtree-punning-regrafting (SPR) algorithm.  An isolate of V. albo-atrum was 18 

used as outgroup. MP and ML bootstrapping were conducted using 1,000 replicates. The 19 

Shimodaira-Hasewaga test (49) was used to evaluate the alternative phylogenetic 20 

hypothesis of monophyly for VCG 2B under ML. This test was implemented in PAUP with 21 

1,000 replicates.  22 
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RESULTS 1 

 2 

Amplification and sequencing of IGS and VdSNP regions. Amplification of the complete 3 

IGS region of the nuclear rDNA resulted in single amplicons ranging 1,700 to 2,200 bp in 4 

size, depending on the isolate. After editing sequences and alignments the IGS region 5 

ranged from 1,743 to 2,328 bp for all Verticillium isolates tested, including gaps and 6 

indels. The length of the VdSNP sequences did not vary among isolates and coincided 7 

with the values described in Berbegal et al. (7). After editing of sequences and 8 

completion of alignments the length for each polymorphic sequence dataset including 9 

gaps was as follows: VdSNP1, 244 bp; VdSNP2, 411 bp; VdSNP3, 262 bp; VdSNP4, 298 10 

bp; VdSNP5, 417 bp; and VdSNP, 209 bp. All sequences generated in this study were 11 

submitted to NCBI GenBank and have been deposited under accession numbers 12 

KF295831-KF296313. 13 

 14 

Phylogenetic analyses. Partition homogeneity tests between all pair wise combinations 15 

of datasets were conducted to assess concordance between the different regions 16 

(Supplemental Table 1). ILD tests showed that certain datasets were congruent, but 17 

incongruence was statistically significantly for the following dataset combinations: 18 

VdSNP1/VdSNP2, VdSNP1/VdSNP5, VdSNP1/VdSNP7, IGS/VdSNP1, IGS/VdSNP5, 19 

IGS/VdSNP7, VdSNP5/VdSNP7 (P < 0.05). Phylogenetic analyses were done on: a) the IGS 20 

dataset alone; b) each of the VdSNP polymorphic regions individually, c) all the VdSNP 21 

regions combined, and d) all regions (IGS and VdSNP) combined. For all datasets both 22 
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MP and ML analyses were performed; however, since trees generated with both types 1 

of analyses were nearly identical (data not shown), only MP phylogenetic trees are 2 

shown (Figs. 1 and 2). MP analysis of the IGS region yielded five distinct clades (clades 1-3 

5, Figure 1A). Clade 1 included exclusively all isolates of VCG 4A (74% bootstrap 4 

support). Clade 2, grouped seven of the 13 VCG 2B isolates included in the analysis 5 

(isolates were named 2B-I in Fig. 1A) (61% bootstrap support). Clade 3 comprised all 6 

isolates typed as VCG 1 (including VCG 1A and VCG 1B), as well as three VCG 2B isolates 7 

from artichoke in Spain, named 2B-II in Fig. 1A (85% bootstrap support). Clade 4 was the 8 

most complex one including all isolates typed as VCG 2A and VCG 4B, the three isolates 9 

of VCG 3, and one isolate of VCG 2B (isolate CS1) (79% bootstrap support). Finally, clade 10 

5 comprised isolates of VCG 6 originating from pepper in California, and three VCG 2B 11 

isolates from artichoke in Spain, named 2B-III in Fig. 1A (69% bootstrap support). There 12 

were two isolates included in the analyses that failed to self-anastomose and were 13 

typed as heterokayon self-incompatible (HSI). Those two isolates were placed in 14 

different clades in the IGS MP tree, one (V547) was placed within clade 3, closely related 15 

to VCGs 1A and 1B, and the second one (PU) was placed within clade 5, together with 16 

VCG 6 and VCG 2B-III isolates (Fig. 1A). 17 

Results of analyses of individual VdSNP polymorphic sequences are shown in 18 

Supplemental Figure 1. Since for individual regions clade resolution was poor due to the 19 

limited number of polymorphic sites (2-10 parsimony-informative characters), all VdSNP 20 

regions were combined into one dataset, even though some regions were incongruent. 21 

A MP tree of all six VdSNP polymorphic sequences combined is shown in Figure 1B and 22 
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yielded six main clades, namely I through VI. Clade I included all isolates of VCG 4A (63% 1 

bootstrap support) and it was closely related to clade II that comprised the two isolates 2 

of VCG 6 analyzed (75% bootstrap support). Clade III was closely related to clades I and II 3 

and included eight of the 13 isolates of VCG 2B and the HSI isolate PU (bootstrap 4 

support of 85%). Clade IV comprised all isolates of VCGs 2A and 4B (70% bootstrap). 5 

Clade V contained all isolates of VCGs 1A, 1B, and 3 (68% bootstrap). A last clade, VI, 6 

included three isolates of VCG 2B and the HSI isolate V547 (72% bootstrap). Two isolates 7 

from VCG 2B, isolates 115 and V652 remained unresolved (Fig. 1B). 8 

With the exception of VCG 2B, isolates within a VCG subgroup were closely related to 9 

each other. For most VCGs (i.e., VCGs 4A, 2A, 4B, 1A, and 1B), the IGS and VdSNP 10 

phylogenies were congruent. For these phylogenies, isolates within a VCG subgroup 11 

were indeed closely related to each other sharing a common ancestor. For example, all 12 

isolates of VCG 4A were placed in the same clade for both phylogenies (clades 1 and I 13 

for IGS and VdSNP, respectively) (Fig. 1). Regarding relationships between subgroups of 14 

a VCG, results showed that VCGs 1A and 1B are closely related and isolates from both 15 

subgroups are indistinguishable based on either phylogeny. However, this was not the 16 

case for other VCG subgroups. VCGs 4A and 4B were not phylogenetically related, and 17 

isolates of VCG 4B were indistinguishable phylogenetically from isolates of VCG 2A. For 18 

other groups (i.e., VCGs 3, 6 and 2B) the IGS and VdSNP phylogenies were not 19 

concordant and these isolates were placed in different clades. VCG 3 isolates were 20 

nested within clade 4 based on IGS, and indistinguishable from isolates of VCGs 2A and 21 

4B (Fig. 1A). However, isolates of VCG 3 were grouped together with isolates of VCG 1A 22 
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and 1B in clade V based on VdSNP sequences (Fig. 1B). A similar situation occurred for 1 

VCG 6, which grouped with VCG 2B-III isolates in IGS clade 5 (Fig. 1A), but they were 2 

placed in clade II, closely related to VCG 4A (clade I) based on VdSNP sequences (Fig. 3 

1B). IGS and VdSNP phylogenies showed the most complex relationships for isolates of 4 

VCG 2B. These were divided into three groups, named 2B-I, 2B-II, and 2B-III in the IGS 5 

phylogeny (clades 2, 3 and 5), and into two groups in the VdSNP one (in clades III and VI) 6 

(Figs. 1 and 3). Isolates of VCG 2B-I, placed in clade 2 based on IGS, were included in 7 

VdSNP clade III together with isolates of VCG 2B-III (IGS clade 5). All isolates of 2B-II 8 

were indistinguishable from VCG 1A and 1B isolates and placed in IGS clade 3.  However, 9 

2B-II isolates were grouped in VdSNP clade VI, distinct from VCGs 1A and 1B (Fig. 1). 10 

Also, isolate 2B-I V652 was closely related to VdSNP clade VI.  A comparison of both IGS 11 

and VdSNP phylogenies is shown in Figure 3, indicating the lack of congruence in the 12 

placement of VCGs 2B, 3 and 6 in both phylogenies. 13 

Finally, a MP tree was inferred from the combined dataset including IGS and the six 14 

VdSNP polymorphic sequences (Fig. 2), although IGS was not congruent with the 15 

combined VdSNP dataset (P < 0.001). Overall, the MP tree inferred from the combined 16 

data (Fig. 2) was very similar to the IGS tree (Fig. 1A), which was not unexpected since 17 

the IGS region contributed 94 parsimony-informative characters to the analysis, 18 

whereas the combined VdSNP dataset only contributed 30 parsimony-informative 19 

characters of a total of 123. Three main well-supported clades were resolved in the 20 

combined phylogenetic tree: one comprised all VCG 4A isolates (97% bootstrap 21 

support), a second included all isolates of VCGs 1A, 1B, and some isolates of VCG 2B 22 
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(termed earlier VCG 2B-II isolates) (93% bootstrap support), and a third clade included 1 

isolates of VCGs 2A, 2B-III, 3, 4B and 6 (79% bootstrap support). The rest of VCG 2B 2 

isolates (called earlier VCG 2B-I) remained unresolved in a poorly-supported clade 3 

closely related to VCG 4A. One important observation is that bootstrap values were 4 

higher in the combined analysis (Fig. 2) compared to the IGS tree (Fig. 1A) or the 5 

combined VdSNP tree (Fig. 1B), but only for those clades with a concordant phylogenetic 6 

placement in both individual phylogenies (i.e., VCG 4A or VCGs 1A and 1B). However, 7 

bootstrap values dropped for the analysis of combined datasets in the rest of the clades 8 

(Figs. 1 and 2). As indicated by the IGS and VdSNP trees, isolates of VCG 2B were present 9 

in different well-supported clades of the combined dataset indicating polyphyly of this 10 

group. The alternative hypothesis of monophyly for VCG 2B was tested using the 11 

Shimodaira-Hasewaga test by comparing a tree in which isolates of VCG 2B were 12 

constrained to be monophyletic, to the unconstrained tree. The analysis showed that 13 

the constrained tree was significantly less likely (ln L = -8821.399) than the 14 

unconstrained tree (ln L = -9339.372) (P = 0.000), strongly supporting polyphyly for VCG 15 

2B. 16 

 17 

DISCUSSION 18 

 19 

For the last two decades, VCG analysis has been used to estimate genetic variation in V. 20 

dahliae populations (6,9,16,18,24,26,27,28,30,51), under the assumption that isolates 21 

within a given VCG comprise genetically related isolates that descend from a common 22 
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ancestor; that is, VCGs align with clonal lineages. This has been shown to be true for 1 

many fungi (3,25,36,47). However, results from this and other studies indicate that for 2 

some VCGs in V. dahliae this assumption is not necessarily true, and a VCG may 3 

comprise a genetically heterogeneous group of isolates that are phylogenetically 4 

distant, as shown herein for VCG 2B based on IGS and VdSNP analyses.  5 

Another clear indication from the present study is that, with the exception of VCGs 1A 6 

and 1B that are closely related, all other subgroups for a given VCG are not 7 

phylogenetically related, do not share a common ancestor, and are indeed closer to 8 

subgroups of other VCGs than to each other. For example, VCG 4A isolates are distinct 9 

from VCG 4B isolates, and VCG 4B isolates are phylogenetically indistinguishable from 10 

VCG 2A isolates, regardless of the genomic region analyzed (Figs. 1 and 2). This is 11 

consistent with analyses based on mitochondrial sequences (34), but not with results 12 

from AFLP analyses that clearly distinguished between VCG 2A and VCG 4B (12). Isolates 13 

of VCG 2A and 4B have been shown to establish weak complementation and some of 14 

these isolates have been said to be “bridge isolates” (6,28). Whether this is an artifact of 15 

the nit-mutant VCG assay itself (6), or some “transitory” heterokaryosis (27) is unknown, 16 

and more research targeting het/vic genes and mechanisms of incompatibility in V. 17 

dahliae is needed.  18 

We had hypothesized that clonality within VCGs of V. dahliae would be supported by 19 

topological concordance between the different regions analyzed. Although for several 20 

VCGs the phylogenies for IGS and VdSNP were congruent, this was not the case for all 21 

groups since there was significant disagreement in their phylogenetic placement. For 22 
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example, VCGs 4A, 2A, 4B, 1A, and 1B were grouped similarly based on IGS and VdSNP 1 

sequences (Fig. 2). However, VCG 3 isolates were nested within the clade containing 2 

isolates of VCGs 2A and 4B based on IGS (Fig. 1A, clade 4), whereas VCG 3 was closely 3 

related to VCG 1A and 1B according to the VdSNP phylogeny (Fig. 1B, clade V). Similarly, 4 

VCG 6 isolates grouped with some VCG 2B isolates in IGS clade 5, but they were closely 5 

related to VCG 4A according to VdSNP sequences (Fig. 1B). The most striking differences 6 

in both phylogenies involved VCG 2B isolates. While isolates of VCG 2B were placed in 7 

three different clades based on IGS, there were only two VdSNP clades containing VCG 8 

2B isolates. Isolates 2B-I were placed in IGS clade 2, and within clade III in the VdSNP 9 

tree. This VdSNP clade also contained 2B-III isolates, placed in a separate distant clade 10 

(clade 5) in the IGS phylogeny. All 2B-II isolates were in clade VI (Fig. 2).  Isolates named 11 

2-II in this study contained isolate V574, characterized as VCG 2Ba by Jiménez-Díaz et al. 12 

(24).  VCG 2Ba isolates infected artichoke in eastern-central Spain and were unable to 13 

complement with international VCG 2B testers but produced positive complementation 14 

with local VCG 2B testers. Those VCG 2Ba isolates were thus genetically different from 15 

other VCG 2B isolates [called VCG 2Br in Jiménez-Díaz et al. (24)] that did complement 16 

with international reference VCG 2B testers (24,30). There was also diversity in PCR-17 

based amplicons of 334 and 824 bp, markers previously associated with cotton and olive 18 

defoliating and non-defoliating V. dahliae pathotypes, respectively (14,24,37). Some 19 

VCG 2B isolates from artichoke amplified the defoliating-associated marker of 334bp, 20 

whereas others amplified the non-defoliating marker of 824 bp (7,24). All 2B-II isolates, 21 

including the HSI isolate V547, grouped in IGS clade 3 and VdSNP clade VI, amplified the 22 
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334-bp marker, which is consistent with these isolates being closely related to cotton 1 

and olive defoliating VCG 1A isolates. All other VCG 2B isolates analyzed amplified the 2 

824-bp marker (7,12,24). An earlier study that included some of the VCG 2B isolates that 3 

amplified the 824-bp marker showed identical haplotypes for five microsatellites (7), 4 

which was different from the haplotypes displayed by VCG 2B isolates that amplified the 5 

334-bp marker. The discrepancies between phylogenies generated by IGS and VdSNP 6 

sequences could also be explained by the fast-evolving nature of the IGS region. Similar 7 

incongruencies between IGS and other regions have been reported for the Fusarium 8 

oxysporum complex (19,40). 9 

Overall, comparisons of results from the present study with those from AFLP analysis 10 

(12) indicate that some of the groups generated with AFLP phylogenies coincide with 11 

the VCG relationships determined by the IGS phylogeny, but some others are closer to 12 

the clades displayed by the VdSNP phlylogeny. Since AFLP markers are widespread 13 

throughout the whole genome, it would be logical to expect that the AFLP tree would 14 

look like a combination of the phylogenies inferred from IGS and VdSNP polymorphic 15 

regions in the present study. Although Collado-Romero et al. (12) included a sequence 16 

analysis of various other regions (housekeeping genes actin, β-tubulin, calmodulin, 17 

histone 3, as well as the ITS2 region of the rDNA), these regions resolved very little 18 

diversity and most of the phylogenetic signal in the analysis combining AFLPs and other 19 

regions was contributed by the AFLP markers. Thus, in the AFLP study (12) there were 20 

two main evolutionary groups identified: lineage I that corresponds to IGS clade 3 and a 21 

second lineage II that includes the rest of IGS clades identified in the present research. 22 
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In the AFLP dendrogram, VCG 6 isolates grouped with the only isolate of VCG 4A 1 

included in that study, which coincides with the close placement of these two VCGs 2 

using VdSNP sequences (Fig. 1B).   3 

Our results indicate that VCG 2B is clearly polyphyletic, which was also noted by Collado-4 

Romero et al. (12) using AFLP markers, although only two VCG 2B groups were identified 5 

by that study. Dung et al. (18) also identified two genetically distinct groups within VCG 6 

2B isolates using microsatellite analysis: one group contained isolates from tomato and 7 

pistachio, and the other comprised isolates from potato, watermelon and mint. There 8 

are several possible explanations for polyphyly in VCGs.  One is that convergent 9 

mutations in het/vic loci may have resulted in the same functional alleles that allow 10 

anastomosis and the establishment of stable heterokaryons between isolates of 11 

otherwise distinct genetic background. A second potential scenario is the exchange of 12 

genetic material between different VCGs due to parasexuality, especially during 13 

transitory heterokaryosis between different VCGs as it has been shown to be possible 14 

experimentally in Verticillium (56) and other fungi (33). In the latter case, the resulting 15 

genotypes would share genomic regions with both parental isolates. Finally, these 16 

isolates of conflicting phylogenetic placement may represent remnants of ancient, or 17 

current but rare, recombination events. V. dahliae populations have been shown to 18 

harbor MAT1-1 and MAT1-2 idiomorphs similar to the genetic mating system of other 19 

Ascomycota (2,57). Also, a departure from clonality shown by microsatellite analysis of 20 

V. dahliae populations was attributed to potential sexual recombination (2); although a 21 

major predominance of MAT1-2 was found in populations of V. dahliae, with only one 22 
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isolate carrying the MAT1-1 idiomorph in 286 isolates tested (18). In any case and 1 

regardless of the evolutionary mechanism that resulted in polyphyly of VCGs, results 2 

from this and other studies advice for an important caveat regarding the interpretation 3 

of VCG analyses: genetic homogeneity or close evolutionary relationships between 4 

members of a VCG should not be assumed. 5 

In our study, we included some of Puhalla’s original isolates (44,45) that were  used to 6 

perform early VCG testing (6,27,45,51,52). One of those isolates, isolate PCW, was first 7 

typed as VCG 16 by Puhalla and Hummel (45), it was later reclassified as VCG 3 by 8 

Joaquim and Rowe (26), and finally was identified as VCG 4 by Bell (6) and Strausbaugh 9 

et al. (52). Interestingly, in our study this PCW isolate as well as others typed as VCG 3 10 

sensu Joaquim and Rowe (26) were placed with VCGs 2A and 4B within IGS clade 4, and 11 

together with VCG 1A and 1B in clade V, based on VdSNP sequences. VCG 3 was 12 

reported as being an interspecific hybrid between V. dahliae VCG1B and an unidentified 13 

non-Verticillium parent (11). This was due to the presence of two different sequences 14 

for actin, calmodulin and histone 3 genes in the VCG tester isolate 70.21; one sequence 15 

that matched other V. dahliae sequences and another sequence that matched an 16 

unidentified non-Verticillium member of the Ascomycota (11). Isolate 70.21 was also 17 

included in our analyses together with two other VCG 3 isolates. However, in contrast 18 

with Collado-Romero et al. (11), in our study all sequences associated with the three 19 

VCG 3 isolates were clean and there was no indication of multiple sequences contained 20 

in one amplicon. Based on our analysis there is no indication of a hybrid origin for VCG 21 

3. 22 

Page 19 of 42
Ph

yt
op

at
ho

lo
gy

 "
Fi

rs
t L

oo
k"

 p
ap

er
 •

 h
ttp

://
dx

.d
oi

.o
rg

/1
0.

10
94

/P
H

Y
T

O
-0

7-
13

-0
18

0-
R

 •
 p

os
te

d 
12

/1
1/

20
13

T
hi

s 
pa

pe
r 

ha
s 

be
en

 p
ee

r 
re

vi
ew

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n 

bu
t h

as
 n

ot
 y

et
 b

ee
n 

co
py

ed
ite

d 
or

 p
ro

of
re

ad
. T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r.



 Jiménez-Gasco et al., Phytopathology, Page 20 

Our study suggests the existence of main VCG clonal lineages that contain the isolates of 1 

VCGs 1A and 1B; VCGs 2A and 4B; and VCG 4A; and the existence of other VCG or VCG 2 

subgroups that have been found scarcely and seem to be genetically different: VCG 2B 3 

(2B-I, 2B-II and 2B-III), VCG 3 and VCG 6. This is consistent with a population structure 4 

consisting of some recombination events (maybe extant or rare) with a clonal expansion 5 

of certain successful individuals, possibly associated with agriculture. It is possible that 6 

these latter groups have emerged through the evolutionary mechanisms described 7 

above, but the one question arising is:  where are these variants originating from? We 8 

believe that there are aspects of V. dahliae biology that have not yet been explored 9 

appropriately, and it is possible that there is a more complex diversity in V. dahliae that 10 

has not been targeted. For example, the diversity of soil V. dahliae populations has not 11 

been properly studied, and the fungus has been found in endophytic associations with 12 

asymptomatic hosts (34). Bell (6) suggested that the early VCG work done by Puhalla 13 

(44) using melanin-deficient mutants probably overestimated VCG diversity since the 14 

following studies based on nit mutant assays lumped the 16 early VCGs into four VCGs 15 

(26,27,51,52). However, the increasing use of molecular tools is resolving more finely 16 

the diversity in V. dahliae populations and identifying complex associations between 17 

VCGs.  Although we are closer to understanding these relationships, and the impact they 18 

have in V. dahliae biology, there is a clear need for more powerful molecular markers 19 

used in an ecologically broad context to resolve the origin and evolution of diversity in 20 

V. dahliae and its impact on the biology of this important fungus. 21 

 22 
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Table  1. Isolates used in this study with reference number(s), geographic origin, host source, vegetative compatibility group (VCG) 1 

and referenced study were the VCG testing was reported. 2 

Isolate
a
 

Geographic 

origin Host/substrate of origin VCG
b
 Reference

e
 

Verticillium dahliae    

DX2
 
 USA (AZ) Cotton (Gossypium hirsutum) 1  

V-EMS USA (OH) Elm (Ulmus sp.) 1  

V403 (V-017) Spain Artichoke (Cynara cardunculus var. scolymus) 1A 14 

V138 Spain Cotton (G. hirsutum) 1A 30 

V610 Spain Cotton (G. hirsutum) 1A 13 

T9* USA (CA) Cotton (G. hirsutum) 1A 26 

V44* USA (TX) Cotton (G. hirsutum) 1A 26 

V661 Greece Cotton (G. hirsutum) 1B 13 

V666 Greece Cotton (G. hirsutum) 1B 13 

V517 (9-6) USA (IL) Yellowwood (Cladrastis kentukea) 1B 14 

V607 (R04) USA (MN) Green Ash (Fraxinus pennsylvanica) 1B  

V488 (pt71) Israel Potato (Solanum tuberosum) 2A 14 

V720 (V39) Italy Olive (Olea europaea) 2A 13 

492  Japan Tomato (Solanum lycopersicum) 2A  

V542 Spain Artichoke (C. cardunculus var. scolymus) 2A 24 

V185 Spain Cotton (G. hirsutum) 2A 30 

V20 Spain Muskmelon (Cucumis melo) 2A 8 

A11 Spain Potato (S. tuberosum) 2A 7 
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A2 Spain Potato (S. tuberosum) 2A 7 

A38 Spain Potato (S. tuberosum) 2A 7 

V161 Spain Potato (S. tuberosum) 2A 12 

V10 Spain Pumpkin Cucurbita pepo 2A 8 

V25 Spain Tomato (S. lycopersicum) 2A 8 

V2 Spain Watermelon (Citrullus lanatus) 2A 8 

CS1* Swaziland Cotton (G. hirsutum) 2B 26 

SS4 USA (CA) Cotton (G. hirsutum) 2A 26 

PH* USA (CA) Pistachio (Pistacia vera) 2A 26 

442 USA (OH) Tomato (S. lycopersicum) 2A  

443 USA (OH) Tomato (S. lycopersicum) 2A  

V357 (JY) China Cotton (G. hirsutum) 2B 13 

V652 Greece Cotton (G. hirsutum) 2B 13 

V285 (cot 72) Israel Cotton (G. hirsutum) 2B 30 

V258 (CECE) Italy Chickpea (Cicer arietinum) 2B 12 

V534 Spain Artichoke (C. cardunculus var. scolymus) 2B 24 

V549 Spain Artichoke (C. cardunculus var. scolymus) 2B 24 

V574 Spain Artichoke (C. cardunculus var. scolymus) 2B
c
  24 

V593 Spain Artichoke (C. cardunculus var. scolymus) 2B 24 

V613 Spain Artichoke (C. cardunculus var. scolymus) 2B 24 

115* Syria Cotton (G. hirsutum) 2B 26 

V552 (332) UK Strawberry (Fragaria × ananassa) 2B 12 

P19 USA (OH) Potato (S. tuberosum) 2B 26 

S92 USA (OH) Potato Soil 2B 26 
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70.21 USA (AZ) Bell Pepper (Capsicum annuum) 3 26 

PCW* USA (CA) Pepper (Capsicum annuum) 3 26 

VMD9 USA (OR) Peppermint (Mentha × piperita) 3  

V25R USA (ID) Potato (S. tuberosum) 4A  

V27 USA (ID) Potato (S. tuberosum) 4A  

318 USA (ND) Potato (S. tuberosum) 4A 27 

319 USA (ND) Potato (S. tuberosum) 4A 27 

320 USA (ND) Potato (S. tuberosum) 4A 27 

321d USA (ND) Potato (S. tuberosum) 4A  

VA102 USA (ND) Potato (S. tuberosum) 4A  

VA49 USA (ND) Potato (S. tuberosum) 4A  

V304 (cot 120) Israel Cotton (G. hirsutum) 4B 30 

V683 Spain Artichoke (C. cardunculus var. scolymus) 4B 24 

V684 Spain Artichoke (C. cardunculus var. scolymus) 4B 24 

V158 Spain Eggplant (Solanum melongena) 4B 8 

V789 Spain Olive (O. europaea) 4B 13 

A54 Spain Potato (S. tuberosum) 4B 7 

V61 Spain Potato (S. tuberosum) 4B 7 

V551 (330) UK Strawberry (F. ananassa) 4B 12 

V553 (1875) UK Strawberry (F.ananassa) 4B 12 

S39 USA (OH) Potato soil 4B 26 

WS4 USA (WI) Potato (S. tuberosum) 4B  

V560 (VdCa.83a) USA (CA) Pepper (Capsicum annuum) 6 9 

V561 (VdCa147a) USA (CA) Pepper (Capsicum annuum) 6 9 
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V547 Spain Artichoke (C. cardunculus var. scolymus) HSI 24 

PU* UK Potato (S. tuberosum) HSI 26 

V. albo-atrum     

462 USA (MN) Potato (S. tuberosum) n/a
d
  

     
 1 

a
  Isolate reference. In parenthesis, codes given by supplier or by previous studies. An asterisk indicates that this isolate was used in 2 

the original VCG classification by Puhalla and Hummel (45). Isolates from Greece were provided by E. Paplomatas, Agricultural 3 

University of Athens, Athens, Greece; isolates from Israel and the USA (CA) were provided by T. Katan, The Volcani Center, Bet 4 

Dagan, Israel; isolates from UK, California, and Brazil provided by D. Barbara, Warwick HRI, England; isolates from the USA and 5 

Japan were provided by R. Rowe, OARDC, The Ohio State University, Wooster, Ohio; isolates from Italy provided by F. Nigro, 6 

Università degli Studi di Bari, Bari, Italy, or A. Zazzerini, Università degli Studi di Perugia, Perugia, Italy.  7 

b
  Vegetative compatibility group was determined in the study referenced in the next column or by the supplier of the isolate. HSI, 8 

heterokaryon self-incompatible.  9 

c  
VCG 2Ba, artichoke isolate able to complement with other artichoke isolates assigned to VCG2B but not with international VCG 2B 10 

testers. 11 

d
  n/a, not applicable. 12 

e
  References of studies where isolates were assigned to VCG. For isolates with no reference, VCG typing was performed by the 13 

supplier.  14 
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FIGURE LEGENDS 1 

Figure 1.  Phylogenetic relationships between Verticillium dahliae vegetative 2 

compatibility groups (VCG).  A, One of 200 most parsimonious phylogenetic trees 3 

inferred from sequences of the intergenic spacer region of the rDNA (IGS) (93 4 

parsimony-informative characters; 327 steps; consistency index, CI = 0.930; retention 5 

index, RI = 0.966; rescaled consistency index, RC = 0.898). B, One of 200 most 6 

parsimonious phylogenetic trees inferred from the combined VdSNP polymorphic 7 

sequences (30 parsimony-informative characters; 163 steps; CI = 0.791; RI = 0.901; RC = 8 

0.713). Numbers above branches are bootstrap values (>50%) based on 1,000 replicates. 9 

Each taxon label indicates isolate reference, VCG, geographical origin, and host source. 10 

Trees are rooted with V. albo-atrum 462. VCG 2B isolates are further subdivided into 11 

VCG 2B-I, VCG 2B-II, and VCG 2B-III according to their phylogenetic placement in the IGS 12 

tree (A). 13 

 14 

Figure 2. Phylogenetic relationships between Verticillium dahliae vegetative 15 

compatibility groups (VCG).  One of 200 most parsimonious phylogenetic trees inferred 16 

from the combined dataset of the intergenic spacer region of the rDNA (IGS) and six 17 

polymorphic sequences (VdSNP) (123 parsimony-informative characters, 504 steps, 18 

consistency index, CI = 0.859; retention index, RI = 0.931; rescaled consistency index, RC 19 

= 0.8). Numbers above branches are bootstrap values (>50%) based on 1,000 replicates. 20 

Each taxon label indicates isolate reference, VCG, geographical origin, and host source. 21 

Trees are rooted with V. albo-atrum 462. Arrows indicate VCG 2B isolates. 22 
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Figure 3.  Comparative analysis between maximum parsimony phylogenetic trees 1 

derived from intergenic spacer region of the rDNA (IGS) sequences (A), and six 2 

anonymous polymorphic sequences VdSNP combined (B). Lines indicate discrepancies 3 

between the phylogenetic placement of vegetative compatibility groups (VCG) in both 4 

inferred phylogenies. Dotted lines correspond to discrepancies regarding isolates of VCG 5 

2B; the black line corresponds to discrepancies regarding isolates of VCG 3; and the 6 

double line indicates discrepancies regarding isolates of VCG 6. VCG 2B isolates are 7 

further subdivided into VCG 2B-I, VCG 2B-II, and VCG 2B-III according to their 8 

phylogenetic placement in the IGS tree (Figure 1A). 9 

 10 

Supplemental Table 1.  Analysis of congruence between all datasets estimated with the 11 

incongruence length difference (ILD) test implemented as the partition homogeneity 12 

test in PAUP v.4.0.b10 with 1,000 replicate partitions subjected to heuristic parsimony 13 

searches. 14 

 IGS VdSNP1 VdSNP2 VdSNP3 VdSNP4 VdSNP5 VdSNP7 

IGS — 0.01* 0.08 0.055 0.607 0.001* 0.001* 

VdSNP1 — — 0.08 0.02* 0.14 0.01* 0.01* 

VdSNP2 — — — 0.32 0.871 0.552 0.239 

VdSNP3 — — — — 1.00 0.769 0.136 

VdSNP4 — — — — — 0.258 0.230 

VdSNP5 — — — — — — 0.001* 

VdSNP7 — — — — — — — 

* indicates statistically significant incongruence between datasets at P < 0.05. 15 

 16 

 17 
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Supplemental Figure 1.  Maximum parsimony phylogenies inferred from individual 1 

anonymous polymorphic sequences VdSNP.  A, One of 200 most parsimonious 2 

phylogenetic trees inferred from VdSNP1 sequences (7 parsimony-informative 3 

characters, 23 steps; consistency index, CI = 0.522; retention index, RI = 0.911; rescaled 4 

consistency index, RC = 0.475). B, One of 200 most parsimonious phylogenetic trees 5 

inferred from VdSNP2 sequences (5 parsimony-informative characters, 32 steps; CI = 6 

0.938; RI = 0.959; RC = 0.899).  C, One of 200 most parsimonious phylogenetic trees 7 

inferred from VdSNP3 sequences (2 parsimony-informative characters, 2 steps; CI = 1; RI 8 

= 1; RC = 1).  D, One of 200 most parsimonious phylogenetic trees inferred from VdSNP4 9 

sequences (2 parsimony-informative characters, 34 steps; CI = 1; RI = 1; RC = 1). E, One 10 

of 200 most parsimonious phylogenetic trees inferred from VdSNP5 sequences (10 11 

parsimony-informative characters, 18 steps; CI = 0.415; RI = 0.899; RC = 0.410). F, One of 12 

200 most parsimonious phylogenetic trees inferred from VdSNP7 sequences (3 13 

parsimony-informative character, 6 steps; CI = 1; RI = 1; RC = 1). Numbers above 14 

branches are bootstrap values (>50%) based on 1,000 replicates. Each taxon label 15 

indicates isolate reference, VCG, geographical origin, and host source. Trees are rooted 16 

with V. albo-atrum 462. 17 

 18 

 19 

 20 
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Figure 1 
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Figure 2 
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Figure 3 
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Supplemental Figure 1 

 

  

Page 40 of 42
Ph

yt
op

at
ho

lo
gy

 "
Fi

rs
t L

oo
k"

 p
ap

er
 •

 h
ttp

://
dx

.d
oi

.o
rg

/1
0.

10
94

/P
H

Y
T

O
-0

7-
13

-0
18

0-
R

 •
 p

os
te

d 
12

/1
1/

20
13

T
hi

s 
pa

pe
r 

ha
s 

be
en

 p
ee

r 
re

vi
ew

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n 

bu
t h

as
 n

ot
 y

et
 b

ee
n 

co
py

ed
ite

d 
or

 p
ro

of
re

ad
. T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r.



Jiménez-Gasco et al., Phytopathology, Page 41 

 

 

 

 

Page 41 of 42
Ph

yt
op

at
ho

lo
gy

 "
Fi

rs
t L

oo
k"

 p
ap

er
 •

 h
ttp

://
dx

.d
oi

.o
rg

/1
0.

10
94

/P
H

Y
T

O
-0

7-
13

-0
18

0-
R

 •
 p

os
te

d 
12

/1
1/

20
13

T
hi

s 
pa

pe
r 

ha
s 

be
en

 p
ee

r 
re

vi
ew

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n 

bu
t h

as
 n

ot
 y

et
 b

ee
n 

co
py

ed
ite

d 
or

 p
ro

of
re

ad
. T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r.



Jiménez-Gasco et al., Phytopathology, Page 42 

 

 

Page 42 of 42
Ph

yt
op

at
ho

lo
gy

 "
Fi

rs
t L

oo
k"

 p
ap

er
 •

 h
ttp

://
dx

.d
oi

.o
rg

/1
0.

10
94

/P
H

Y
T

O
-0

7-
13

-0
18

0-
R

 •
 p

os
te

d 
12

/1
1/

20
13

T
hi

s 
pa

pe
r 

ha
s 

be
en

 p
ee

r 
re

vi
ew

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n 

bu
t h

as
 n

ot
 y

et
 b

ee
n 

co
py

ed
ite

d 
or

 p
ro

of
re

ad
. T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r.


