Document downloaded from:

http://hdl.handle.net/10251/62227

This paper must be cited as:

Pellicer Armiñana, TM.; Pellicer Armiñana, E.; Eaton, D. (2009). A macroeconomic regression analysis of the European construction industry. Engineering, Construction and Architectural Management. 16(6):573-597. doi:10.1108/09699980911002584.

The final publication is available at http://dx.doi.org/10.1108/09699980911002584

Copyright Emerald

Additional Information

A MACROECONOMIC REGRESSION ANALYSIS OF

THE EUROPEAN CONSTRUCTION INDUSTRY

Teresa M. Pellicer

Assistant Professor, M.Arch., Ph.D. School of Civil Engineering Universidad Politécnica de Valencia Camino de Vera, s/n, 46022 Valencia, Spain Phone:+34.963.877.562; Fax:+34.963.877.569; E-mail:<u>tpa@cst.upv.es</u>

Eugenio Pellicer¹

Associate Professor, M.Sc., Ph.D. School of Civil Engineering Universidad Politécnica de Valencia Camino de Vera, s/n, 46022 Valencia, Spain Phone:+34.963.879.562; Fax:+34.963.877.569; E-mail:<u>pellicer@cst.upv.es</u>

David Eaton

Professor, M.Sc., Ph.D. School of the Built Environment The Crescent, Salford, Greater Manchester, M5 4WT United Kingdom Phone:+44.161.295.5222; Fax:+44.161.295.5011; E-mail:<u>d.eaton@salford.ac.uk</u>

WORD COUNT (from this point on): 5375 words + 9 tables

¹ Corresponding author

PURPOSE:

This paper analyses the international construction sector from a macroeconomic point of view through production functions. The aim is to contribute additional knowledge on the European construction sector, highlighting differences in the industry among European countries

DESIGN/METHODOLOGY/APPROACH:

In order to analyse the sector panel data from 1996-2005 for nine European countries were used. Raw data was obtained from Eurostat (Bach Project). Variables for the production functions were chosen after a correlation analysis. Annual turnover was taken as the dependent variable, whereas total assets and personnel costs were the independent variables. The econometric regression models considered were linear (bivariate and multivariate) and logarithmic (Cobb-Douglas).

FINDINGS:

In spite of the limitations stated bellow, there are some factors that can explain the results obtained, such as the diverse preponderance of small and medium enterprises and the different roles played by informal economy, migration and subcontracting in each of the countries.

RESEARCH LIMITATIONS/IMPLICATIONS:

Data collected by Eurostat is provided by the enterprises voluntarily. This implies a bias in the representativeness of the data. Thus, the discrepancies and inconsistencies in the results obtained are a direct consequence of the data limitations. Furthermore, the regression models obtained should be tested using future data to predict the behaviour of the construction industry in each one of the countries.

ORIGINALITY/VALUE:

The use of production functions in the construction industry is a novel approach that should be further developed to gather more precise information on the behaviour of the sector.

KEYWORDS: Europe – Macroeconomics – Production Functions – Construction Sector - SMEs

CATEGORY OF PAPER: Research paper

A MACROECONOMIC REGRESSION ANALYSIS OF THE EUROPEAN CONSTRUCTION INDUSTRY

ABSTRACT

The construction industry is vital for economies as a whole, even though it is not as fully analysed as are other sectors. The lack of scholarly attention is more pronounced when international construction is examined from a macroeconomic point of view. In order to fill partially this gap, a macro-economic regression analysis approach to the international construction sector of Europe is described in this paper. It analyses the European construction industry from two dimensions: time and country. Data from 1996-2005 for nine countries were used. The analysis was performed using production functions. Regression models were constructed that could be tested using future data to predict the behaviour of the construction industry in each of the countries. The discrepancies and inconsistencies in the results obtained were a direct consequence of the limitations of the data. Nevertheless, among the significant factors which explain the results are the diverse preponderance of small and medium enterprises and the different contributions of the informal economy, migration and subcontracting in each of the countries.

KEYWORDS: Europe – Macroeconomics – Production Functions – Construction Companies

1. INTRODUCTION

Construction activity within the EU-27 in 2006 (FIEC, 2007) generated almost 1,200 Billion Euros (10.4% of the EU's Gross Domestic Product) and it engaged more than 15 million people (more than 7% of all employment), being the largest industrial employer in the EU-27. Furthermore, the sector is formed by more than 2.7 million companies, mostly small and medium enterprises or SMEs (FIEC, 2007).

During recent years, five countries have contributed more than threequarters of the total production of the EU (Eurostat, 2007; Seopan, 2007): Germany, the United Kingdom, France, Italy and Spain. In the construction industry, there is a clear north/south distinction; some countries (France or Spain, for instance) maintain rigid and inflexible systems based on Roman Law and Napoleonic Codes, whereas other countries (the United Kingdom mainly) rely more on liberal market values and Common Law, and the others remain somewhere in the middle (Winch, 2000). Nevertheless, even though the industry is crucial for economies as a whole, it has not been subjected to analysis as have other sectors. The lack of research is even more problematic when the focus is international construction and when macroeconomic data are needed.

On a European level, the lack of academic scrutiny is also pronounced. Janssen (2000) examined the competitiveness of the industry in the EU from three aspects: investment, production and the labour process. Winch (2000) highlighted differences among country members inside the Union. Druker and Croucher (2000) analysed working practices in Europe, specially the use of overtime and the type of contracts, including subcontracting. Clarke and Wall (2000) characterised the division of labour in the United Kingdom, Germany and The Netherlands. Several years later, Lillie and Greer (2007) evaluated European

policy making on labour in the United Kingdom, Germany and Finland, while Fellini et al. (2007) explored international migration flows affecting the European construction industry. Finally, innovation in the European construction industry has been addressed by several authors using different approaches (Pries and Janszen, 1995; Gann, 2000; Miozzo and Dewick, 2002; Eurostat, 2002).

On a larger scale, other researchers (Bon, 1988, Bon and Pietroforte, 1990, Bon, 2000, Pietroforte and Gregori, 2003) examined the macroeconomic indicators of the construction industries of several highly developed countries over a period of 20 years using input-output tables. They identified two important characteristics: the decreasing economic importance of the industry to a national economy and the transformation of its technologies. Bon and Crosthwaite (2001) extended this work to incorporate international activity of national industries, to identify market trends at the regional, national and metropolitan level.

Other authors (Ruddock, 2000 & 2002; Ruddock and Lopes, 2006) indicated the limitations of this approach and suggested that time series statistics of one country, rather than cross-sectional data across countries, was a more effective approach to permit the identification of trends. In a further study, Lopes et al. (2002) applied these recommendations to developing countries in sub-Saharan Africa.

Huan and Pin (2000) listed a number of successful examples of implementation of regression techniques to the construction industry in order to model relationships among variables, quantifying how a dependent variable is linked to a set of explanatory variables; these models were also used as forecasting tools. Wong et al. (2007) and Dikmen et al. (2009) examined the complexities of the Hong Kong and Turkish construction industries respectively, utilising time series data and causal relationship analysis. This paper takes the procedures developed by these authors and utilises a multi-variable production

function regression approach to analyse both cross-sectional and time series data for a selection of European construction industries to identify key variables and likely trends in macro-economic performance indicators.

2. PURPOSE AND STRUCTURE OF THE PAPER

The research described in this paper aims to answer three questions, asserted as objectives:

- To deepen the knowledge of the European construction industry.
- To highlights differences in the construction industry performance characteristics among European countries.
- To establish econometrics models that could be used to predict the behaviour of the European construction industry.

It is the intention of the authors that the results would enhance the corpus of Pan European Construction industry knowledge and could be utilised to predict future national Construction Industry behaviours based on Pan European macroeconomic input data.

Regarding the structure of the paper, production functions are proposed as mathematical models to explain differences among countries through time. As suggested by Ofori (2003), a panel of countries is considered in the research and both the cross-sectional and time series data from 1996 to 2005 are examined. The sources of data available are first enumerated; afterwards the variables are selected and justified for the proposed models. The econometric regression models are established and verified; the results are also analysed and then debated. Finally, the limitations of the research are discussed and conclusions are drawn.

3. DATA SOURCES

Generally, the success of any econometric analysis depends on the availability of the appropriate data (Gujarati, 2003). This is especially true in the construction sector, as several authors have asserted (Ofori, 2000; Ruddock, 2000; Lopes et al., 2002). The quantitative analysis of these real economic phenomena is based on the concurrent development of theory and observation, related by appropriate methods of inference. The types of data available for empirical analysis are time series, cross-section and pooled data (a combination of the former two); pooled data becomes a panel if the same cross-sectional unit is surveyed over time.

The Statistical Office of the European Communities (Eurostat) publishes harmonised data on Switzerland and each of the EU countries (Eurostat, 2007). Within Eurostat, the BACH Project (Bank for the Accounts of Companies Harmonised) contains information of accounts from most European countries, in addition to data from the United States and Japan. It is collected via official agencies in each country using information provided voluntarily by construction companies. The data available in the BACH Project corresponds to the period 1996-2005 (Eurostat, 2006). The nine countries studied are Austria (AUT), Belgium (BEL), Germany (DEU), Spain (ESP), Finland (FIN), France (FRA), Italy (ITA), The Netherlands (NLD) and Portugal (POR); these will be referred to as EU-9 from now on. For Finland, the series begins in 1999.

As can be inferred, the United Kingdom is the only major country in terms of construction output, which is not analysed herein given the lack of accurate data. Furthermore, even for the chosen nine, the additional problem of the multiple sources of data persists, even though it is channelled through the Eurostat office.

According to the European Commission (2003), three criteria can be considered to define a SME: number of employees, annual turnover, or annual balance sheet. Even though the most frequently used criterion is the number of employees, this research will utilise the annual turnover to avoid any distortions resulting from the subcontracting of manpower in the sector. Small companies (SM) are those with a business turnover less than 10 million Euros; medium companies (MD) are those whose business output is between 10 and 50 million Euros; finally, large companies (LG) are those that have a business volume over 50 million Euros. Significant data related to the number of workers and companies per size of company and per country are given in table 1.

INSERT TABLE 1 HERE

The construction industry replicates a similar business structure in each of the countries. This sector is characterised by a small number of large organisations and, to the contrary, a large number of small companies. The average number of workers per company (of any size) is 49; this figure is within the range of a medium enterprise, according to the definition of the European Commission (2003). Nevertheless, this means that 96% of the companies employ an average of 18 workers, and only 1% employs an average of 1,043 employees, as observed from the data in table 1 for EU-9.

Differences between the average number of workers for the EU-9 and each individual country can be summarised as follows. More smaller companies are located in Finland, Belgium and The Netherlands, whereas the larger ones are found in Germany, Italy and Spain, possibly because the importance of the industry in the overall economies of these countries prompted a concentration of

enterprises, in the case of Germany at the beginning of the 1990s and in the case of Spain at the end of that decade.

4. PRODUCTION FUNCTION AND VARIABLES

A production function is a mathematical model that describes all the possible outputs or products that can be obtained from all the combinations of inputs that are efficient in a managerial activity. The production function supposes a given state of technology; each technological change modifies the production function. In general, the production function could be expressed, simply speaking, as a relationship between outputs (products) and inputs (capital and labour): Q=f(K, L).

This research utilises a linear model with one independent variable and with two independent variables. The linear model expresses the dependent variable as a linear function of one or more independent variables. A bivariate or two-variable model relates the dependent variable to a single independent variable, whereas multivariate or multiple models relates the dependent variable to two or more independent variables. In this research, the linear model with one independent variable and with two independent variables, is used. They may be expressed as:

- Q = a+b*K (two-variable linear model);
- Q = a+c*L (two-variable linear model);
- Q = a+b*K+c*L (three-variable linear model).

Finally, the classic Cobb-Douglas production function (logarithmic-linear with two independent variables) of economic analysis is used as well:

• $Q = e^{d*}K^{\alpha*}L^{\beta}$.

In this expression, the relationship between the output and the inputs (labour and capital) is non-linear, but can be linearised into a three-variable linear model by logarithmic transformation:

• $\ln Q = d + \alpha^* \ln K + \beta^* \ln L$.

The main property of the Cobb-Douglas function is that the sum α + β gives information about the returns to scale. If the sum is equal to 1, there is constant return to scale. If the sum is less than 1, there is decreasing return to scale. Finally, if the sum is greater than 1, there is increasing return to scale.

Three types of variables are needed for the most generalised expression of the production function. For each type of variable, several series of data are available, as follows:

- Production (Q): i.e. number of companies or annual turnover.
- Capital (K): i.e. owner's equity, total assets or fixed assets.
- Labour (L): i.e. personnel costs or number of workers.

After preliminary analysis of the data, certain variables (number of companies, number of workers, owner's equity and fixed assets) must be discarded given the lack of consistency of the complete series. Thus, two variables are considered in this study:

- Dependent or explained variable: annual turnover (PR).
- Independent or explanatory variables: total assets (AC) and personnel costs (GP).

All variables are measured in thousands of Euros. They are homogenised by dividing the global magnitudes by the number of enterprises and obtaining the average per company for each country and year from 1996 to 2005 (except Finland, whose series is three years shorter); the average for the EU-9 per year

is also included (EUTM). These panel data are presented in table 2, where logarithmic values of the three variables were also computed.

INSERT TABLE 2 HERE

Annual turnover for some countries is not as high as expected, according to the global data per country published officially (Eurostat, 2006; Seopan, 2006). This problem appears mainly in France and in Germany, the reason being that these countries obtain a lower voluntarily participation rate of companies in providing the information stored in the BACH Project. The evolution of annual turnover throughout the 1996-2005 period reflects three different scenarios that concur with reports from European organisations (Eurostat, 2006; Seopan, 2006):

- The turnover is almost constant, varying slightly through the years for Belgium, Finland and The Netherlands; this is noteworthy because it rose considerably in 2005, and was confirmed in 2006 as well (Seopan, 2007);
- The turnover increases for Portugal, and quite a lot for Spain, from 1996 onwards; the Spanish real estate boom is well reflected in the data;
- The turnover decreases at the start of the series and increases at the end for Austria, Germany, France and Italy; for the first two countries, the low period is considerable in magnitude and time, the recovery beginning in 2003, whereas, for France and Italy, it is light and short, with recovery starting in 1998.

The profile for the entire EU-9 is similar to that just described, with a decreased drop in 1999. It is clear that the influence of the German crisis is reflected in the global data, delaying the recovery year from 1998 to 1999.

Regarding personnel costs, they do not increase in the same proportion as does the annual turnover. From the perspective of the construction industry, inconsistency can be found in the four major members:

- Germany: comparing 1998 to 2005 (the latter with a slightly higher turnover), the personnel costs dropped by 10%;
- Spain: comparing 1996 to 2004 (similar personnel costs), the turnover in 2004 was up by 40%;
- France: comparing 1996 to 2002 (similar personnel costs), the turnover during 2002 increased by 15%;
- Italy: comparing 1996 to 2004 (similar turnover), the personnel costs decreased by 30%.

For the entire EU-9, comparing 1997 to 2003 (similar turnover), personnel costs fell by 20%. As discussed later, company size, informal economy, migration, and subcontracting may explain these differences.

As presented in table 3, the statistics were calculated per country and per variable: mean (or average), standard deviation, minimum and maximum, using the statistical software SPSS for Windows.

INSERT TABLE 3 HERE

A correlation matrix per country was calculated and is presented in table 4. The coefficient of correlation (r) measures the degree of association between two variables (or the sample co-variation between them). If the two variables are statistically independent, then the coefficient of correlation is zero; however, the opposite is not always true. The degree of correlation varies among the countries. It is very high for Austria, Germany and Portugal; fairly good for Finland, France

and The Netherlands; and low for Italy. For the EUTR, it is better than for the EUTM.

INSERT TABLE 4 HERE

5. REGRESSION MODELS

Applying regression analysis to the econometric model yields the estimation of the production function. The regressions are estimated by means of the ordinary least squares method of the linear (or linearised) model. This regression analysis is set out as a linear function of k-1 explanatory variables and an independent term plus a random disturbance: $y = \alpha_0 + \alpha_1 \cdot x_1 + \alpha_2 \cdot x_2 + ... + u$, where: y is the dependent variable (or regressand); x_n are the explanatory variables (or regressors); α_n are the parameters specified by the model; and u is the error term.

Having established the general econometric model, and previously selected the available data, the production function is estimated using the previous equation applied to each of the established models. The time series analysis (1996-2005) was performed for countries and sizes of company, considering annual turnover (PR) as the dependent variable, and the following models and independent variables:

- Bivariate linear model, using total assets (AC) or personnel costs (GP) as independent variables;
- Multivariate linear model, using total assets (AC) and personnel costs (GP) as independent variables;

 Cobb-Douglas model, using total assets (AC) and personnel costs (GP) as independent variables.

Table 5 offers the number and type of regressions carried out, adding a total of 176: 160 for temporal series and 16 for transversal series.

INSERT TABLE 5 HERE

Table 6 shows the results from the analysis per country for the bivariate linear model. The determination coefficient (r^2) in the two-variable case measures the adequacy of fit of the regression equation. In the multiple-variable case, this quantity is the multiple coefficient of determination (R²). The adjusted determination coefficient is another summary statistic obtained from R². It penalizes the model for adding more regressors; for comparative purposes, the adjusted R² (or R2C as in the tables) is a better measure than R² only if the regressand is the same. The penalty for adding more regressors is carried further by the AIC (Akaike's Information Criterion); in comparing models, the one with the lowest value is preferred. Autocorrelation measures the degree of correlation between members of series of ordered data; it should be zero for a good fit of the regression model. The Durbin-Watson statistic (d) is very useful for detecting serial correlations; if d is found to be 2 in an application, one may assume that there is no first-order autocorrelation, either positive or negative. Using this criterion, Austria and Finland should be discarded because this statistic is far from the theoretically optimum (2). Anyway, table 6 shows that there is a better adjustment for personnel costs, but not for every country.

INSERT TABLE 6 HERE

Table 7 displays the analysis per country for the linear multivariate model. As inferred from Table 6, personnel costs ("c" in table 7) account for a larger part of the production than the total assets ("b" in table 7). For the whole EU-9 this ratio is approximately 6.

INSERT TABLE 7 HERE

From table 8, $\alpha + \beta$ can be inferred. This sum gives information on the economies of scale. Most of the results indicate that economies of scales do not exist, because this addition is less than 1.

INSERT TABLE 8 HERE

Table 9 provides the best adjusted models. Only regressions with R2C better than 0.9 are presented. After this process of selection, only Austria and Portugal obtain positive results, whereas Germany, Finland, The Netherlands and the European Union as a whole obtain negative economies of scale.

INSERT TABLE 9 HERE

6. ANALYSIS AND DISCUSSION OF RESULTS

The construction industry in each nation is affected by problems that distort the data and provide a slightly different analysis per country. Many authors have stated the problems that influence the international, and naturally, the European construction industry (Winch, 2000; Ofori, 2003). Some of these problems must be considered in order to understand the results obtained in previous sections: unreliable data; predominance of the SME companies (DTI, 1998; Sorrell, 2003; Pearce, 2003; Eurostat, 2007); the informal economy undeclared work, shadow economy or black market - (Schneider and Enste, 2000; Schneider, 2002; Pearce, 2003; European Commission, 2004); the legal or illegal migration (Wells, 1996; Winch, 1998; Janssen, 2000; Fellini et al., 2007; Lillie and Greer, 2007); and the high degree of subcontracting (Winch, 1998; Druker and Croucher, 2000; Clarke and Wall, 2000; Fellini et al., 2007). These issues are discussed in the following paragraphs.

Even though the Eurostat Office, through the BACH Project, intends to give harmonised information on each of the countries and the EU as a whole, it is still far from achieving this ambitious purpose. This opinion has also been stated by some European organisations that also use Eurostat data as their source (Pearce, 2003; Seopan, 2007; Banco de España, 2007). They recognised not only the additional difficulty in obtaining data from the construction industry enterprises, but also the importance of obtaining accurate data that allows for a better analysis of the industry. According to Pearce (2003: p. ix): "Data are not always consistent or reliable and there are special problems of gathering a detailed picture of the broad industry beyond on-site construction". Nevertheless, the countries in the Euro zone have the advantage of a common currency; this becomes a weakness when comparing countries with different exchanges.

Furthermore, more countries have been joining the EU in recent years, some of them coming from socialist economic patterns of government. Every country has its own peculiarities, not only regarding economic, financial or fiscal issues but also cultural factors and weather conditions. Some of them agree easily to comply with the directives and give current and valuable data, whereas others see compliance from an intrusive point of view. This being said, the first

step of the research was to identify clearly inconsistent data and, moreover, the countries that provided those data. Thus, the study ended up with only 9 countries.

Eurostat collects data from official agencies of the European Union Member States. However, as mentioned earlier, the data provided by the enterprises is voluntary. In fact, this implies a bias in the representativeness of the data, mainly in the SME companies, because their atomised and low qualified hierarchies make it difficult to provide the data voluntarily. The data in table 1 replicate a similar business structure in each one of the EU-9 members, characterised by a low number of large companies and a huge percentage of SME companies. Official data for the whole EU-27 (Eurostat, 2006) indicates that in 2005 there were 13,153,000 workers and 2,695,000 companies; noteworthy differences appear. The average number of workers is 49 for the EU-9, whereas it is 5 for the EU-27; the disparity is not only that more members are in the Union, but also that Eurostat obtains information from the companies on a voluntary basis, whereas the global data come from the official census. Regarding the number of enterprises and employees, only 3% and 12%, respectively, of the official data for the EU-27 (Eurostat, 2007) are represented in the Bach Project (table 1). Whatever the case may be, it is more difficult to identify economies of scale and cost reductions in SME companies (Pearce, 2003).

Informal economies exist, even though sometimes governments do not like to discuss its existence, especially inside the EU. Four main kinds of undeclared work are generally considered: multiple job holders; the inactive population; the unemployed; and illegal migrant labour (Eurofound, 2008). It is difficult to compile information on this issue (Pearce, 2003). Padraig Flynn, former EU Commissioner for Social Affairs, issued a communication on the informal economy in the EU-15 (Eurofound, 2008), affecting construction, among other

sectors; values fluctuate between 4% of the GDP in Finland to 21% in Belgium, 23% in Spain, 26% in Italy, and 35% in Greece. The informal economy is growing, being approximately 18% in European OECD countries (Schneider, 2002), with values varying from 29% in Greece, 27% in Italy and 22% in Spain, Belgium and Portugal, to 12% in the United Kingdom and 10% in Austria. Schneider (2002) showed that informal employment totalled some 48% in Italy, and half that value in Germany. Finally, the European Commission issued a report (European Commission, 2004) on undeclared work for the EU-15 and the candidate countries, citing figures ranging from 20% in Greece and 17% in Italy to 1% in Austria.

Subcontracting has also been increasing in the construction industry since the economic crisis of the 1970s (Winch, 1998). It is also interrelated with migration flows (Wells, 1996; Drewer, 2001). Some studies have approached the international mobility of workers and the employment policies by companies. Fellini et al. (2007) claimed that the hiring of foreign workers in the formal market has an indirect effect which escalated the informal migrant flows; this issue is especially important where SME subcontractors engage them, or in some countries like Italy and Portugal. In the construction industry, the hiring of migrant workers affects subcontractors, mainly; most of them are SME companies that are engaged by large companies, and also influence the market (Fellini et al., 2007). This idea concurs with the results displayed in table 2, where personnel costs did not increase significantly until 2005 for the whole EU-9, whereas turnover showed a constant raise since 1999. The growth of subcontracting and hiring of migrant workers slowed the rise of personnel costs in the industry, till a point (2005) where the escalating demand was so important that personnel costs had to boost up too.

7. LIMITATIONS OF RESEARCH AND CONCLUSIONS

This research analyses the European construction industry using panel data from 1996 to 2005 for each of the selected nine countries. The study contributes to expand somewhat the knowledge of the construction industry, from a European perspective, considering the outstanding importance of the industry for the whole economy. The paper also highlights differences among the countries under analysis.

In the previous section, some factors that could explain the results were suggested, in agreement with other referenced authors, such as the diverse preponderance of SMEs and the different roles played by informal economy, migration and subcontracting in each of the countries. Discrepancies and inconsistencies in some of the results were a direct consequence of the data limitations. The main difficulty was accessing relevant information, not only for the whole European Union, but also for each of the member states. The findings are incomplete because of data constraints, and future studies are certainly needed so as to contribute to the global knowledge of the construction industry.

The macroeconomic analysis was performed using production functions. Regression models were proposed that could be tested using future data to predict the behaviour of the construction industry in each of the countries. The use of production functions in the construction industry is an approach that should be further developed and applied to gather more precise information on the behaviour of the sector in each of the countries, not only in the EU but also worldwide.

ACKNOWLEDGMENTS

The research described in this paper is partially funded by the Spanish Ministry of Infrastructures (project 2004-36). The authors wish to thank Dr. Debra Westall for revising the text. Finally, the valuable suggestions of the anonymous reviewers are also acknowledged.

REFERENCES

- Banco de España (2007) Annual Report 2006. Banco de España, Madrid.
- Bon, R. (1988) Direct and indirect resource utilisation by the construction sector.
 The case of the USA since World War II. Habitat International, 12(1), 49-74
- Bon, R. (2000) Economic structure and maturity. Ashgate Publishing Ltd., Aldershot.
- Bon, R., Crosthwaite, D. (2001) The future of international construction: some results of 1992-1999 surveys, Building Research & Information, 29(3), 242-247.
- Bon, R., Pietroforte, R. (1990) Historical comparison of construction sectors in the United States, Japan, Italy and Finland using input-output tables.
 Construction Management and Economics, 8, 233-247
- Clarke, L., Wall, C. (2000) Craft versus industry: the division of labour in European housing construction. Construction Management and Economics, 18, 689-698.
- Dikmen, I., Birgonul, M.T., Budayan, C. (2009) Strategic group analysis in the construction industry. Journal of Construction Engineering and

Management, 135(4), 288-297

- Drewer, S. (2001) A perspective of the international construction system. Habitat International, 25, 69-79.
- Druker, J., Croucher, R. (2000) National collective bargaining and employment flexibility in the European building and civil engineering industries.Construction Management and Economics, 18, 699-709.
- DTI (1998) Rethinking construction (the 'Egan Report'). DTI (Department of Trade and Industry), London.
- Eurofound (2008) Commission targets undeclared work. Retrieved the 28th of March from http://www.eurofound.europa.eu/eiro/1998/04/feature/eu9804197f.htm.
- European Commission (2003) The new SME definition. User guide and model declaration. Office for Official Publications of the European Communities, Luxembourg.
- European Commission (2004) Undeclared work in an enlarged Union. Office for Official Publications of the European Communities, Luxembourg.
- Eurostat (2002) SMEs in Europe: Competitiveness, innovation and the knowledge-driven society (data 1996-2001). Office for Official Publications of the European Communities, Luxembourg.
- Eurostat (2006) Europe in figures. Eurostat yearbook 2005-06. Office for Official Publications of the European Communities, Luxembourg.
- Eurostat (2007) Europe in figures. Eurostat yearbook 2006-07. Office for Official Publications of the European Communities, Luxembourg.
- Fellini, I., Ferro, A., Fullin, G. (2007) Recruitment processes and labour mobility: the construction industry in Europe. Work, employment and society, 21(2), 277-298.
- Gann, D.M. (2000) Building innovation. Complex constructs in a changing world. Thomas Telford, London.

Gujarati, D.N. (2003) Basic econometrics. McGraw-Hill, New York.

- Hua, G.B., Pin, T.H. (2000) Forecasting construction industry demand, price and productivity in Singapore: the Box–Jenkins approach. Construction
 Management and Economics, 18, 607–618
- Janssen, J. (2000) The European construction industry and its competitiveness: a construct of the European Commission. Construction Management and Economics, 18, 711-720.
- Lillie, N., Greer, I. (2007) Industrial relations, migration, and neoliberal politics: The case of the European construction sector. Politics & Society, 35, 551-581.
- Lopes, J., Ruddock, L., Ribeiro, F.L. (2002) Investment in construction and economic growth in developing countries. Building Research & Information, 30(3), 152–159
- Miozzo, M., Dewick, P. (2002) Building competitive advantage: innovation and corporate governance in European construction. Research Policy, 31, 989-1008.
- Ngowi, A.B., Pienaar, E., Talukhaba, A., Mbachu, J. (2005) The globalisation of the construction industry – a review. Building and Environment, 40, 135-141.
- Ofori, G. (2000) Globalization and construction industry development: research opportunities. Construction Management and Economics, 18, 257-262.

Ofori, G. (2003) Frameworks for analysing international construction. Construction Management and Economics, 21, 379-391.

Pearce, D. (2003) The social and economic value of construction. The Construction Industry's Contribution to Sustainable Development. nCRISP Management Support Unit, London.

Pietroforte, R., Gregori, T. (2003) An input-output analisis of the construction

sector in highly developed countries. Construction Management and Economics, 21, 319-327

- Pries, F., Janszen, F. (1995) Innovation in the construction industry: the dominant role of the environment. Construction Management and Economics, 13, 43-51.
- Ruddock, L. (2000) An international survey of macroeconomic and market information on the construction sector: issues of availability and reliability. RICS Foundation, Research Papers, 3(11)
- Ruddock, L. (2002) Measuring the global construction industry: improving the quality of data. Construction Management and Economics, 20, 553–556
- Ruddock, L., Lopes, J. (2006) The construction sector and economic development: the 'Bon curve'. Construction Management and Economics, 24, 717–723
- Schneider, F. (2002) The size and development of the shadow economies of 22 transition and 21 OECD countries. Institute for the Study of Labor, IZA DP No. 514, Bonn.
- Schneider, F., Enste, D. (2000) Informal economies: size, causes and consequences. Journal of Economic Literature, 38(1), 77-114.
- Seopan (2006) Spanish Construction Activity Report 2005, Seopan, Madrid.
- Seopan (2007) Spanish Construction Activity Report 2006, Seopan, Madrid.
- Sorrell, S. (2003) Making the link: climate policy and the reform of the UK construction industry. Energy Policy, 31, 865–878.
- Wells, J. (1996) Labour migration and international construction. Habitat International, 20(2), 295-306.
- Winch, G.M. (1998) The growth of self-employment in British construction. Construction Management and Economics, 16(5), 531 – 542.
- Winch, G.M. (2000) Construction business systems in the European Union.

Building Research & Information, 28(2), 88-97.

Wong, J.M.W., Chiang, Y.H., Ng, T.S. (2008) Construction and economic development: the case of Hong Kong. Construction Management and Economics, 26(8), 815-826.

COUNTRY	SIZE OF COMPANY	NUMBER OF WORKERS (in thousands)	NUMBER OF COMPANIES (in thousands)	WORKERS PER COMPANY
	TOTAL	67,880	2,570	32
AUT (Austria)	SM	45,314	2,530	19
AUT (Austria)	MD	5,185	26	195
	LG	17,381	14	1,252
	TOTAL	157,999	23,973	7
BEL (Belgium)	SM	110,525	23,667	5
DEL (Delgiuili)	MD	31,514	268	119
	LG	15,960	39	419
	TOTAL	201,040	2,918	72
DEU (Germany)	SM	57,059	2,462	23
DEU (Germany)	MD	49,799	384	131
	LG	94,183	73	1,261
	TOTAL	122,532	749	166
ESP (Spain)	SM	22,504	572	39
ESP (Spain)	MD	15,057	124	125
	LG	84,970	53	1,634
	TOTAL	99,736	17,917	5
FINI (Finland)	SM	61,166	17,779	3
FIN (Finland)	MD	11,212	106	107
	LG	27,358	32	858
	TOTAL	626,448	18,657	34
	SM	383,582	17,625	22
FRA (France)	MD	112,965	886	132
	LG	129,901	146	924
	TOTAL	139,631	1,772	82
ITA (Hab.)	SM	33,113	1,006	33
ITA (Italy)	MD	53,712	671	84
	LG	52,806	94	578
	TOTAL	99,261	10,179	10
NLD (The	SM	n,a,	9,854	n.a.
Netherlands)	MD	n,a,	265	n.a.
	LG	99,261	60	1,679
	TOTAL	78,897	2,304	38
	SM	36,936	2,173	18
POR (Portugal)	MD	18,076	97	197
	LG	23,884	34	781
	TOTAL	1,593,425	81,039	49
	SM	750,200	77,669	18
UE9 (9 countries)	MD	297,521	2,826	121
	LG	545,704	544	1,043

TABLE 1: BACH PROJECT DATA: TIME SERIES FROM 1996 TO 2005 PER COUNTRY

COUNTRY	YEAR	PR	AC	GP	LnPR	LnAC	LnG
	1996	6,285.831	6,219.137	2,340.215	8.746	8.735	7.758
	1997	3,674.233	3,163.676	1,327.868	8.209	8.059	7.19
	1998 1999	3,707.474	3,011.960	1,296.874	8.218	8.010	7.16
	2000	3,191.379 2,179.295	2,511.649 1,828.257	1,145.067 775.611	8.068 7.687	7.829 7.511	7.04 6.65
AUT	2000	1,977.623	1,828.257	699.090	7.687	7.316	6.55
	2001	2,139.813	1,732.274	754.070	7.668	7.457	6.62
	2002	2,240.065	1,589.339	784.023	7.714	7.371	6.66
	2003	3,760.821	2,896.032	1,287.705	8.232	7.971	7.16
	2005	5,353.429	4,001.787	1,720.592	8.585	8.294	7.450
	1996	936.817	854.038	238.233	6.842	6.750	5.47
	1997	940.957	806.827	224.324	6.847	6.693	5.41
	1998	938.968	780.542	221.502	6.845	6.660	5.40
	1999	959.971	821.904	225.497	6.867	6.712	5.41
BEL	2000	1,006.812	849.454	228.949	6.915	6.745	5.43
DEL	2001	1,028.932	870.352	233.568	6.936	6.769	5.453
	2002	1,005.542	855.506	231.978	6.913	6.752	5.44
	2003	1,012.512	823.473	226.499	6.920	6.714	5.42
	2004	992.543	752.449	218.459	6.900	6.623	5.38
	2005	1,060.777	944.771	213.534	6.967	6.851	5.36
	1996	15,653.215	18,476.848	4,692.834	9.658	9.824	8.45
	1997	16,948.554	19,188.669	4,623.566	9.738	9.862	8.43
	1998	10,394.167	10,268.102	2,956.101	9.249	9.237	7.992
	1999	10,313.110	10,352.632	2,917.579	9.241	9.245	7.97
DEU	2000	10,666.074	10,218.169	2,847.842	9.275	9.232	7.95
	2001	9,483.441	8,228.783	2,623.120	9.157	9.015	7.872
	2002	9,885.695	8,416.254	2,694.840	9.199	9.038	7.89
	2003	8,966.486 9,222.346	9,075.359 7,966.276	2,524.962 2,357.232	9.101	9.113	7.83
	2004 2005	9,222.346 10,584.239	9,279.192	2,357.232 2,654.527	9.129 9.267	8.983 9.136	7.76 7.88
	1996	23,224.674	27,521.890	5,285.936	10.053	10.223	8.57
	1990	23,806.248	27,143.933	4,923.132	10.053	10.223	8.50
	1998	26,572.715	32,707.129	5,359.717	10.188	10.209	8.58
	1999	25,638.451	32,967.730	5,061.030	10.152	10.403	8.529
	2000	26,122.404	37,319.792	5,031.175	10.132	10.527	8.52
ESP	2000	28,592.453	38,159.366	4,997.961	10.261	10.550	8.51
	2002	29,068.367	42,064.876	4,924.181	10.277	10.647	8.50
	2003	29,948.189	43,328.888	4,791.710	10.307	10.677	8.47
	2004	32,634.919	37,420.100	5,459.822	10.393	10.530	8.60
	2005	38,841.435	48,853.568	6,144.715	10.567	10.797	8.723
	1999	685.130	371.269	156.141	6.530	5.917	5.05
	2000	783.624	464.470	178.118	6.664	6.141	5.182
	2001	855.431	506.333	200.171	6.752	6.227	5.29
FIN	2002	788.920	483.111	183.187	6.671	6.180	5.21
	2003	778.398	510.550	179.109	6.657	6.235	5.18
	2004	811.803	521.080	184.442	6.699	6.256	5.21
	2005	821.488	504.544	185.081	6.711	6.224	5.22
	1996	3,656.986	3,041.997	1,158.533	8.204	8.020	7.05
	1997	3,851.713	3,056.516	1,162.062	8.256	8.025	7.05
	1998	3,711.556	2,814.242	1,110.126	8.219	7.942	7.01
	1999	3,926.613	2,867.208	1,128.116	8.276	7.961	7.02
FRA	2000	4,258.150	3,027.679	1,184.192	8.357	8.016	7.07
	2001 2002	4,232.390 4,182.666	3,131.446 3,072.529	1,168.140 1,176.166	8.351 8.339	8.049 8.030	7.06 7.07
	2002	4,182.000	3,184.665		8.363	8.066	7.07
	2003	4,285.151	3,262.329	1,200.271 1,240.833	8.399	8.000	7.12
	2004	4,713.342	3,645.924	1,296.169	8.458	8.201	7.12
	1996	18,147.471	28,776.420	3,598.643	9.806	10.267	8.18
	1990	13,773.324	20,018.198	2,610.045	9.530	9.904	7.86
	1998	13,862.237	19,929.615	2,369.056	9.537	9.904	7.77
	1999	15,218.489	23,923.846	2,489.745	9.630	10.083	7.820
T A	2000	16,348.572	25,888.205	2,651.738	9.702	10.162	7.88
ITA	2000	19,199.338	30,057.064	2,833.822	9.863	10.311	7.94
	2002	18,921.953	31,707.636	2,717.193	9.848	10.364	7.90
	2003	19,497.003	24,678.422	2,659.391	9.878	10.114	7.88
	2004	17,836.622	20,859.681	2,432.915	9.789	9.946	7.79
	2005	21,214.826	35,055.257	2,647.610	9.962	10.465	7.88

TABLE 2: VARIABLES: TIME SERIES FROM 1996 TO 2005 PER COUNTRY

COUNTRY	YEAR	PR	AC	GP	LnPR	LnAC	LnGP
	1996	3,235.803	1,857.558	816.070	8.082	7.527	6.704
	1997	3,375.888	2,003.769	845.998	8.124	7.603	6.741
	1998	3,402.837	1,995.302	862.960	8.132	7.599	6.760
	1999	3,732.972	2,515.962	916.445	8.225	7.830	6.821
NLD	2000	3,978.877	3,080.954	931.057	8.289	8.033	6.836
NLD	2001	4,300.989	3,108.622	1,037.829	8.367	8.042	6.945
	2002	4,219.327	3,374.677	1,051.456	8.347	8.124	6.958
	2003	3,777.151	2,663.310	993.391	8.237	7.887	6.901
	2004	3,633.125	2,642.622	969.318	8.198	7.880	6.877
	2005	4,735.789	3,211.657	1,154.585	8.463	8.075	7.051
	1996	1,880.344	2,147.443	334.513	7.539	7.672	5.813
	1997	2,132.658	2,224.169	340.799	7.665	7.707	5.831
	1998	2,196.129	2,402.425	340.620	7.694	7.784	5.831
	1999	2,237.677	2,722.683	367.650	7.713	7.909	5.907
POR	2000	4,323.583	4,841.711	686.153	8.372	8.485	6.531
FUR	2001	5,622.666	6,710.621	858.019	8.635	8.811	6.755
	2002	6,132.358	7,734.823	941.930	8.721	8.953	6.848
	2003	6,569.060	9,210.240	985.359	8.790	9.128	6.893
	2004	7,735.813	9,861.332	1,021.901	8.954	9.196	6.929
	2005	8,228.466	11,269.036	1,141.288	9.015	9.330	7.040
	1996	9,127.643	11,111.916	2,308.122	8.616	8.627	7.252
	1997	8,562.947	9,700.720	2,007.224	8.556	8.508	7.130
	1998	8,098.260	9,238.665	1,814.620	8.510	8.441	7.065
	1999	7,322.643	8,783.876	1,600.808	8.300	8.210	6.844
EUTM	2000	7,740.821	9,724.299	1,612.759	8.381	8.317	6.897
LUTIVI	2001	8,365.918	10,252.949	1,627.969	8.434	8.343	6.934
	2002	8,482.738	11,049.076	1,630.556	8.443	8.394	6.941
	2003	8,563.780	10,562.694	1,593.857	8.441	8.367	6.928
	2004	9,007.673	9,575.767	1,685.847	8.522	8.386	6.985
	2005	10,617.088	12,973.971	1,906.456	8.666	8.597	7.087

TABLE 3. STATISTICS PER VARIABLE AND PER COUNTRY

STATISTICS	PR	AC	GP	LnPR	LnAC	LnGP
AUT						
Mean	3,450.996	2,845.807	1,213.111	8.072	7.855	7.026
St. Desviación	1,449.450	1,438.097	517.337	0.402	0.453	0.400
Minimum	1,977.623	1,503.957	699.090	7.590	7.316	6.550
Maximum	6,285.831	6,219.137	2,340.215	8.746	8.735	7.758
BEL		., .	,			
Mean	988.383	835.932	226.254	6.895	6.727	5.421
St. Desviación	42.526	52.874	7.352	0.043	0.063	0.033
Minimum	936.817	752.449	213.534	6.842	6.623	5.364
Maximum	1,060.777	944.771	238.233	6.967	6.851	5.473
DEU	1,000.777	744.771	230.233	0.707	0.031	3.473
Mean	11.211.733	11,147.028	3.089.260	9.302	9.269	8.007
St. Desviación	2,759.820	4,143.693	846.376	0.218	0.317	0.241
	,	7.966.276			8.983	7.765
Minimum	8,966.486	,	2,357.232	9.101		
Maximum	16,948.554	19,188.669	4,692.834	9.738	9.862	8.454
ESP						
Mean	28,444.985	36,748.727	5,197.938	10.245	10.496	8.554
St. Desviación	4,641.092	6,903.067	394.534	0.154	0.190	0.073
Minimum	23,224.674	27,143.933	4,791.710	10.053	10.209	8.475
Maximum	38,841.435	48,853.568	6,144.715	10.567	10.797	8.723
FIN						
Mean	789.256	480.194	180.893	6.669	6.169	5.196
St. Desviación	53.101	51.623	13.106	0.070	0.117	0.074
Minimum	685.130	371.269	156.141	6.530	5.917	5.051
Maximum	855.431	521.080	200.171	6.752	6.256	5.299
FRA						
Mean	4,125.963	3,110.453	1,182,461	8.322	8.040	7.074
St. Desviación	334.711	230.588	53.827	0.081	0.072	0.045
Minimum	3,656.986	2,814.242	1,110.126	8.204	7.942	7.012
Maximum	4,713.342	3,645.924	1,296.169	8.458	8.201	7.167
ITA	1,7 10:012	0,010.721	1,270.107	0.100	0.201	7.107
Mean	17,401.983	26,089.434	2,701.016	9.755	10.151	7.895
St. Desviación	2,511.897	5,204.560	344.098	0.149	0.199	0.116
Minimum	13,773.324	19,929.615	2,369.056	9.530	9.900	7.770
Maximum	21,214.826	35,055.257	3,598.643	9.962	10.465	8.188
NLD	21,214.020	50,000.207	3,390.043	9.902	10.400	0.100
	2 020 274	2 4 AE 4 4 2	057.011	0.244	7.860	6.050
Mean St. Desuissión	3,839.276	2,645.443	957.911	8.246		6.859
St. Desviación	472.333	550.643	105.044	0.121	0.218	0.108
Minimum	3,235.803	1,857.558	816.070	8.082	7.527	6.704
Maximum	4,735.789	3,374.677	1,154.585	8.463	8.124	7.051
POR						
Mean	4,705.875	5,912.449	701.823	8.310	8.498	6.438
St. Desviación	2,473.819	3,504.605	327.560	0.593	0.671	0.527
Minimum	1,880.344	2,147.443	334.513	7.539	7.672	5.813
Maximum	8,228.466	11,269.036	1,141.288	9.015	9.330	7.040
EUTM						
Mean	8,588.95	10,297.39	1,778.82	8.49	8.42	7.01
St. Desviación	894.73	1,205.62	234.94	0.11	0.13	0.12
Minimum	7,322.64	8,783.88	1,593.86	8.30	8.21	6.84
Maximum	10,617.09	12,973.97	2,308.12	8.67	8.63	7.25
EUTR						
Mean	10,617.088	12,973.971	1,906.456	8.666	8.597	7.087
St. Desviación	12,242.647	17,155.504	1,818.607	1.254	1.515	1.148
Minimum	821.488	504.544	185.081	6.711	6.224	5.221
Maximum	38,841.435	48,853.568	6,144.715	10.567	10.797	8.723
	00,011100	.0,000.000	51			5.725

	PR	AC	GP	LnPR	LnAC	LnGP
AUT						
PR	1	0.971772	0.990367	0.985287	0.980635	0.983916
AC	0.971772	1 0.993278	0.993278	0.937985	0.972743	0.957671
GP LnPR	0.990367 0.985287	0.93278	1 0.969631	0.969631 1	0.985448 0.984011	0.981450 0.995375
LINAC	0.980635	0.972743	0.985448	0.984011	0.964011	0.993833
LnGP	0.983916	0.957671	0.981450	0.995375	0.993833	0.775055
BEL	0.703710	0.737071	0.701430	0.773373	0.775055	1
PR	1	0.632244	-0.274616	0.999830	0.618280	-0.279262
AC	0.632244	1	0.060136	0.622344	0.999138	0.049431
GP	-0.274616	0.060136	1	-0.268994	0.095021	0.999843
LnPR	0.999830	0.622344	-0.268994	1	0.608678	-0.273425
LnAC	0.618280	0.999138	0.095021	0.608678	1	0.084625
LnGP	-0.279262	0.049431	0.999843	-0.273425	0.084625	1
DEU						
PR	1	0.985633	0.981984	0.997791	0.975747	0.977028
AC	0.985633	1	0.992163	0.981193	0.995808	0.987298
GP	0.981984	0.992163	1	0.980596	0.986475	0.997525
LnPR	0.997791	0.981193	0.980596	1	0.975508	0.979013
LnAC LnGP	0.975747 0.977028	0.995808 0.987298	0.986475 0.997525	0.975508 0.979013	1 0.986865	0.986865 1
ESP	0.977020	0.907290	0.997020	0.979013	0.900000	I
PR	1.000000	0.872744	0.692592	0.996317	0.851497	0.673481
AC	0.872744	1.000000	0.359914	0.891202	0.995534	0.333899
GP	0.692592	0.359914	1.000000	0.643016	0.316588	0.999224
LnPR	0.996317	0.891202	0.643016	1.000000	0.876906	0.624304
LnAC	0.851497	0.995534	0.316588	0.876906	1.000000	0.292380
LnGP	0.673481	0.333899	0.999224	0.624304	0.292380	1.000000
FIN						
PR	1	0.883803	0.982437	0.999280	0.888416	0.985908
AC	0.883803	1	0.848223	0.896088	0.999134	0.867422
GP	0.982437	0.848223	1	0.979568	0.853425	0.998882
LnPR	0.999280	0.896088	0.979568	1	0.901401	0.984773
LnAC	0.888416	0.999134	0.853425	0.901401	1	0.873324
LnGP	0.985908	0.867422	0.998882	0.984773	0.873324	1
PR	1	0.837108	0.888021	0.999226	0.839221	0.889029
AC	0.837108	0.037100	0.969082	0.819731	0.998884	0.869029
GP	0.888021	0.969082	1	0.873790	0.970606	0.999663
LnPR	0.999226	0.819731	0.873790	1	0.822977	0.875497
LnAC	0.839221	0.998884	0.970606	0.822977	1	0.969597
LnGP	0.889029	0.966878	0.999663	0.875497	0.969597	1
ITA						
PR	1	0.810856	0.326964	0.998148	0.812370	0.358692
AC	0.810856	1	0.439032	0.802553	0.996634	0.474781
GP	0.326964	0.439032	1	0.344159	0.469185	0.997777
LnPR	0.998148	0.802553	0.344159	1	0.808125	0.375430
LnAC	0.812370	0.996634	0.469185	0.808125	1	0.505587
LnGP	0.358692	0.474781	0.997777	0.375430	0.505587	1
NLD PR	1	0.909615	0.949015	0.998346	0.899965	0.944711
AC	0.909615	0.909015	0.876277	0.998346	0.899905	0.944711
GP	0.949015	0.876277	1	0.948906	0.875206	0.998543
LnPR	0.998346	0.927841	0.948906	1	0.920744	0.947657
LnAC	0.899965	0.997099	0.875206	0.920744	1	0.891704
LnGP	0.944711	0.890169	0.998543	0.947657	0.891704	1
POR						
PR	1	0.993622	0.992198	0.987933	0.989749	0.977015
AC	0.993622	1	0.985343	0.972405	0.983286	0.961891
GP	0.992198	0.985343	1	0.994218	0.996470	0.993394
LnPR	0.987933	0.972405	0.994218	1	0.995911	0.995909
LnAC	0.989749	0.983286	0.996470	0.995911	1	0.993296
LnGP	0.977015	0.961891	0.993394	0.995909	0.993296	1
EUTM	1	0.047000	0 47/710	0.001101	0 700007	0 575000
PR AC	0 967020	0.867929	0.476713 0.343809	0.881101 0.667551	0.793327	0.575220
ac GP	0.867929 0.476713	1 0.343809	0.343809	0.667551	0.675597 0.871310	0.396650 0.966414
LnPR	0.881101	0.667551	0.770065	0.770005	0.962160	0.900414
	0.001101	0.007001	0.110000	I	0.702100	0.070040

TABLE 4. CORRELATION MATRIX PER COUNTRY

	PR	AC	GP	LnPR	LnAC	LnGP
LnAC	0.793327	0.675597	0.871310	0.962160	1	0.937262
LnGP	0.575220	0.396650	0.966414	0.873540	0.937262	1
UETR						
PR	1	0.980637	0.961859	0.853172	0.856325	0.776278
AC	0.980637	1	0.895469	0.833767	0.861146	0.721988
GP	0.961859	0.895469	1	0.862643	0.829505	0.850173
LnPR	0.853172	0.833767	0.862643	1	0.987303	0.967687
LnAC	0.856325	0.861146	0.829505	0.987303	1	0.919789
LnGP	0.776278	0.721988	0.850173	0.967687	0.919789	1

TABLE 5. NUMBER OF REGRESSIONS

TYPE	Time series	Transversal series (2005 data)	TOTAL
Bivariates	80	8	88
Multivariates	40	4	44
Logarithmics	40	4	44
TOTAL	160	16	176

COUNTRY	SIZE	REGRESSOR	а	b	С	R2C		Prob>F		AUTO
AUT	LG	GP	9,731.016		2.946		21.819	0.000		0.37
		AC	24,038.122	0.913			22.947	0.005		0.39
	MD	GP	21,499.021		0.141	-0.114		0.785		-0.02
		AC	21,665.229	0.039			16.642	0.295		0.29
	SM	GP	-244.155		3.085		10.883	0.000		0.63
	TOTAL	AC	12.611	1.461	0 775		12.842	0.000		0.43
	TOTAL	GP	84.896	0.070	2.775		13.736	0.000		0.68
		AC	663.689	0.979			14.802	0.000		0.67
BEL	LG	GP	65,462.357		1.757	-0.089	22.111	0.619		0.80
		AC	79,936.386	0.149			22.065	0.441		0.90
	MD	GP	21,464.745		0.419	-0.093		0.641		0.44
		AC	21,608.945	-0.122	0 (54		14.165	0.067		0.16
	SM	GP	716.197	0 450	-0.651	0.025	7.630	0.300		0.44
	TOTAL	AC	412.216	0.450	1 500	0.755	6.248	0.001		0.11
	TOTAL	GP	1,347.581	0 500	-1.588	-0.040		0.443		0.66
DELL		AC	563.304	0.509	0 / / 7		10.122	0.050		0.79
DEU	LG	GP	75,783.222	0.405	2.667		21.894	0.000		-0.10
		AC	91,440.487	0.485			21.558	0.000		-0.25
	MD	GP	22,036.022	0.000	-0.328	-0.104		0.707		0.18
	C 14	AC	20,804.077	-0.039	1 00 4		15.596	0.827		0.22
	SM	GP	1,121.630	0 770	1.834		11.472	0.000		0.44
	TOTAL	AC	1,460.448	0.773			11.984	0.001		0.20
	TOTAL	AC	3,894.162	0.656	2 202		15.422	0.000		-0.15
500		GP	1,319.926		3.202		15.646	0.000		-0.08
ESP	LG	GP	193,457.939	0 404	2.284		24.545	0.687		0.89
		AC	139,798.455	0.424	2 2 2 2		23.484	0.004		0.57
	MD	GP	10,230.037	0.000	3.223		15.628	0.001		-0.06
	CM	AC	19,401.699	0.083	2 704		17.074	0.407		0.11
	SM	GP	-129.334	0.745	3.784		12.893	0.001		0.23
	τοται	AC	801.707	0.765	0 1 4 7		12.864	0.001		0.57
	TOTAL	GP	-13,904.012	0 507	8.147		19.365	0.026		0.82
	10	AC	6,882.083	0.587	4.075		18.584	0.001		0.44
FIN	LG	GP	20,432.760	2 022	4.875	0.840		0.002		0.31
	MD	AC	-35,550.896	2.032	1 0 2 0		21.146	0.003		0.46
	MD	GP AC	11,616.529 20,087.352	0.061	1.930		15.296 15.738	0.140 0.678		0.20 0.22
	SM	GP	67.899	-0.001	2.908	0.889	6.325	0.078		0.22
	SIVI	AC	287.329	0.307	2.900	0.669	0.325 7.978	0.001		0.13
	TOTAL	GP	69.208	0.307	3.981	0.421	7.842	0.000		0.23
	TOTAL	AC	352.706	0.909	J.701	0.737	9.680	0.000		0.40
FRA	LG	GP	52,763.219	0.707	2.434		19.129	0.000		-0.27
	10	AC	84,019.818	0.384	2.434		20.095	0.000		-0.26
	MD	GP	16,720.119	0.304	0.395		12.760	0.000		-0.20
	IVID	AC	18,211.464	0.029	0.375		13.386	0.691		0.4
	SM	GP	-2,432.736	0.027	6.599		11.363	0.000		0.72
	5101	AC	643.447	1.204	0.077		10.061	0.000		-0.48
	TOTAL	GP	-2,403.727	1.201	5.522		13.205	0.001		0.79
		AC	346.423	1.215	0.0LL		13.553	0.003		0.73
ITA	LG	GP	75.271.075		3 4 2 2	-0.067		0.527		0.85
	20	AC	83,035.859	0.282	5.122		22.201	0.002		0.48
	MD	GP	17,959.341		-0.265	-0.114		0.788		0.25
		AC	12,351.013	0.225	0.200		17.083	0.377		0.48
	SM	GP	4,311.761		1,420	-0.083		0.592		0.85
	0.01	AC	5,181.142	0.050			15.356	0.145		0.77
	TOTAL	GP	10,955.096		2.387	-0.005		0.356		0.78
	=	AC	7,191.977	0.391			17.719	0.004		0.50
NLD	LG	GP	97,595.428		3.417		22.585	0.000		0.28
	20	AC	195,950.101	0.616			23.824	0.005		0.24
	MD	GP	4,979.907		3.268		14.658	0.000		0.33
		5.	12,045.181	0.644			15.250	0.003		0.21
		AC	12,043.101		3.720	0.820	9.726	0.000		0.29
	SM	AC GP			J./ZU			0.000	1.410	
	SM	GP	-264.991	0.797	3.720					
		GP AC	-264.991 602.563	0.797		0.483	10.782	0.015	0.820	0.59
	SM TOTAL	GP AC GP	-264.991 602.563 -248.375		4.267	0.483 0.888	10.782 13.139	0.015 0.000	0.820 1.105	0.59 0.44
POR	TOTAL	GP AC GP AC	-264.991 602.563 -248.375 1,775.154	0.797 0.780	4.267	0.483 0.888 0.806	10.782 13.139 13.691	0.015 0.000 0.000	0.820 1.105 1.969	0.59 0.44 0.01
POR		GP AC GP AC GP	-264.991 602.563 -248.375 1,775.154 103,787.031	0.780		0.483 0.888 0.806 0.141	10.782 13.139 13.691 21.359	0.015 0.000 0.000 0.154	0.820 1.105 1.969 1.043	0.59 0.44 0.01 0.47
POR	TOTAL	GP AC GP AC	-264.991 602.563 -248.375 1,775.154		4.267	0.483 0.888 0.806 0.141 -0.097	10.782 13.139 13.691	0.015 0.000 0.000	0.820 1.105 1.969 1.043 0.909	0.59 0.44 0.01 0.47 0.54 -0.06

TABLE 6. SERIES ANALYSIS PER COUNTRY FOR THE BIVARIATE LINEAR MODEL

COUNTRY	SIZE	REGRESSOR	а	b	С	R2C	AIC	Prob>F	D-W	AUTOC
	SM	GP	134.764		4.425	0.908	12.018	0.000	0.855	0.573
		AC	595.515	0.237		0.928	11.770	0.000	0.626	0.687
	TOTAL	GP	-553.114		7.493	0.983	14.595	0.000	1.341	0.329
		AC	559.035	0.701		0.986	14.395	0.000	2.265	-0.133
EUTM	LG	GP	129,354.119		1.667	-0.006	22.135	0.358	0.403	0.798
		AC	52,986.890	0.691		0.387	21.640	0.032	1.322	0.339
	MD	GP	19,692.594		-0.003		14.327	0.994	1.581	0.209
		AC	17,312.115	0.131			14.060	0.156		0.366
	SM	GP	1,631.770		0.961		12.040	0.449		0.691
		AC	2,125.732	0.026			12.095	0.684		0.568
	TOTAL	GP	5,359.443		1.816		6.468	0.164		0.798
		AC	1,956.243	0.644				0.001		0.350
EUTR	LG	GP	58,567.716		4.010		25.056		2.500	-0.250
		AC	96,163.026	0.532		0.367	25.834	0.049		-0.033
	MD	GP	16,369.656		0.798		16.457		1.620	0.190
		AC	20,291.593	-0.022			17.865	0.826		0.197
	SM	GP	-145.144		4.208		16.779	0.003		-0.153
		AC	869.879	0.599			16.820	0.003		0.229
	TOTAL	GP	-1,727.445		6.475				1.637	0.181
		AC	1,537.776	0.700		0.956	18.729	0.000	1.814	0.093

COUNTRY	SIZE	REGRESSOR	а	b	С	R2C		Prob>F	D-W	AUTOC
AUT	LG	AC;GP			3.590	0.864		0.000		0.247
	MD	AC;GP	16,316.711	0.063	0.609	0.055	16.679	0.340		0.523
	SM	AC;GP	-247.338	-0.100	3.274		11.060	0.000		0.554
	TOTAL	AC;GP			5.254		13.127	0.000		0.132
BEL	LG	AC;GP	46,011.661	0.151	1.825		22.227	0.663		0.883
	MD	AC;GP	17,733.723	-0.181	1.064		14.194	0.116		0.180
	SM	AC;GP	240.145	0.590	0.730	0.839	5.894	0.001		-0.191
	TOTAL	AC;GP	961.004		-1.814		10.144	0.090		0.74
DEU	LG	AC;GP	89,557.542	0.447	0.219	0.857	21.755	0.001	2.503	-0.252
	MD	AC;GP	24,600.219	0.236	-1.438	-0.231	15.759	0.858		0.17
	SM	AC;GP	1,058.635		2.421	0.827	11.626	0.001		0.42
	TOTAL	AC;GP	3,187.424	0.484	0.851	0.965	15.584	0.000		-0.138
ESP	LG	AC;GP	-35,623.730	0.431	3.074	0.614	23.563	0.015		0.507
	MD	AC;GP	9,957.113	0.023	3.149		15.797	0.004		-0.12
	SM	AC;GP	19.437	0.433	2.084		12.492	0.001		0.144
	TOTAL	AC;GP	-15,837.858	0.482	5.115	0.905	17.611	0.000		-0.157
FIN	LG	AC;GP	-16,755.878	0.982	2.831	0.867	20.873	0.008		0.436
	MD	AC;GP	2,224.890	0.224	3.640		15.188	0.174		0.198
	SM	AC;GP	69.529	0.005	2.879	0.862	6.610	0.009		0.13
	TOTAL	AC;GP	92.196	0.185	3.362	0.961	7.826	0.001		0.448
FRA	LG	AC;GP	51,602.647		2.543	0.936	19.325	0.000		-0.268
	MD	AC;GP	16,980.028	-0.030	0.427		12.925	0.092		-0.11
	SM	AC;GP	73.615	1.027	1.136	0.951	10.155	0.000		-0.202
	TOTAL	AC;GP	-3,410.249	-0.560	7.845	0.740	13.361	0.004		0.69
ITA	LG	AC;GP	72,013.746	0.279	0.599	0.649	22.395	0.011	0.946	0.52
	MD	AC;GP	6,306.856	0.923	-3.169		16.653	0.077		-0.30
	SM	AC;GP	5,686.841	0.053	-0.530		15.551	0.366		0.744
	TOTAL	AC;GP	7,702.164		-0.262		17.916	0.023		0.47
NLD	LG	AC;GP	95,976.988	0.207	2.732	0.915	22.344	0.000		-0.00
	MD	AC;GP	6,157.024	0.236	2.415		14.627	0.001		0.378
	SM	AC;GP	-307.686		4.031	0.798	9.910	0.002		0.264
	TOTAL	AC;GP	257.458	0.288	2.943	0.906	13.033	0.000		0.300
POR	LG	AC;GP	91,974.595	0.086	1.942		21.541	0.365		0.473
	MD	AC;GP	9,957.113	0.023	3.149		15.797	0.004		-0.12
	SM	AC;GP	342.749	0.135	2.154		10.762	0.000		0.448
	TOTAL	AC;GP	22.553	0.387	3.410		13.966	0.000		-0.40
EUTM	LG	AC;GP	19,616.987	0.650	1.007	0.347	21.770		1.033	0.484
	MD	AC;GP	17,755.701	0.136	-0.199		14.247	0.375		0.33
	SM	AC;GP	1,443.147	0.037	1.115		12.193	0.649		0.71
	TOTAL	AC;GP	1,117.656	0.593	0.770		15.368	0.004		0.33
EUTR	LG	AC;GP	-119.455	0.354	3.376	0.900		0.000		0.38
	MD	AC;GP	14,494.983	0.078	0.911		16.275	0.004		0.38
	SM	AC;GP	-257.220	0.387	2.764		15.103	0.000		-0.06
	TOTAL	AC;GP	-382.142	0.430	2.845	0.996	16.392	0.000	0.974	0.51

TABLE 7. SERIES ANALYSIS PER COUNTRY FOR THE MULTIVARIATE LINEAR MODEL

COUNTRY	SIZE	REGRESSOR	а	α	β	R2C		Prob>F		AUTO
AUT	LG	LnAC,LnGP	3.003	-0.213	1.064	0.841	-2.271		1.367	0.31
	MD	LnAC,LnGP	7.326	0.076	0.216	0.121	-3.474	0.264	0.773	0.61
	SM	LnAC,LnGP	0.246	-0.035	1.154	0.966	-3.679	0.000	0.819	0.59
	TOTAL	LnAC,LnGP	1.012	-0.377	1.426	0.991	-3.450	0.000	1.324	0.33
BEL	LG	LnAC,LnGP	6.294	0.113	0.394	-0.181	-0.854	0.744	0.263	0.86
	MD	LnAC,LnGP	9.432	-0.148	0.224	0.269	-5.515	0.139	1.585	0.20
	SM	LnAC,LnGP	2.955	0.430	0.167	0.832	-6.925	0.001	2.373	-0.18
	TOTAL	LnAC,LnGP	6.302	0.436	-0.432	0.327	-3.610	0.104	0.510	0.74
DEU	LG	LnAC,LnGP	5.019	0.412	0.196	0.842	-2.814	0.001	2.545	-0.27
	MD	LnAC,LnGP	11.706	0.205	-0.437	-0.220	-4.083	0.833	1.663	0.16
	SM	LnAC,LnGP	3.673	-0.172	0.813	0.836	-4.330	0.001	1.187	0.40
	TOTAL	LnAC,LnGP	2.495	0.246	0.565	0.951	-2.981	0.000	2.051	-0.02
ESP	LG	LnAC,LnGP	0.425	0.574	0.440	0.678	-1.943	0.008	1.016	0.49
	MD	LnAC,LnGP	5.546	0.017	0.522	0.723	-4.097	0.005	2.221	-0.11
	SM	LnAC,LnGP	0.656	0.427	0.587	0.851	-3.514	0.001	1.796	0.10
	TOTAL	LnAC,LnGP	-3.497	0.614	0.854	0.893	-2.898	0.000	2.192	-0.09
FIN	LG	LnAC,LnGP	0.386	0.565	0.498	0.880	-3.423	0.006	1.118	0.44
	MD	LnAC,LnGP	2.244	0.145	0.756	0.441	-4.678	0.139	1.814	0.09
	SM	LnAC,LnGP	2.211	0.003	0.794	0.872	-5.176	0.007		0.13
	TOTAL	LnAC,LnGP	1.985	0.103	0.779	0.966	-5.560	0.001		0.46
FRA	LG	LnAC,LnGP	5.059	-0.008	0.656	0.946	-4.650	0.000	2.491	-0.24
	MD	LnAC,LnGP	9.078	-0.020	0.111	0.345	-6.733	0.094	2.197	-0.09
	SM	LnAC,LnGP	1.002	0.612	0.352	0.955	-5.358	0.000	2.477	-0.23
	TOTAL	LnAC,LnGP	-4.337	-0.489	2.345	0.714	-3.194	0.005	0.621	0.68
ITA	LG	LnAC,LnGP	4.872	0.513	0.072	0.621	-1.371	0.014	0.991	0.50
	MD	LnAC,LnGP	2.213	1.183	-0.536	0.396	-2.820	0.071		-0.29
	SM	LnAC,LnGP	8.267	0.115	-0.098	-0.008	-1.700	0.426	0.404	0.79
	TOTAL	LnAC,LnGP	3.900	0.621	-0.057	0.556	-1.544	0.024	0.995	0.50
NLD	LG	LnAC,LnGP	4.382	0.130	0.604	0.924	-3.324		1.920	0.04
	MD	LnAC,LnGP	4.112	0.123	0.550	0.823	-4.991	0.001	1.240	0.38
	SM	LnAC,LnGP	-0.225	-0.054	1.284	0.808	-4.489	0.001	1.478	0.26
	TOTAL	LnAC,LnGP	1.918	0.205	0.688	0.905	-3.500	0.000		0.27
POR	LG	LnAC,LnGP	8.105	0.109	0.249	0.017	-2.138	0.391	1.000	0.50
	MD	LnAC,LnGP	5.546	0.017	0.522	0.723	-4.097	0.005		-0.11
	SM	LnAC,LnGP	2.870	0.334	0.297	0.970	-3.037	0.000		0.44
	TOTAL	LnAC,LnGP	0.933	0.442	0.562	0.994	-3.046	0.000		-0.22
EUTM	LG	LnAC,LnGP	5.784	0.635	-0.132	0.075	-2.387	0.316		0.57
	MD	LnAC,LnGP	8.871	0.182	-0.090	0.093	-5.518	0.295		0.17
	SM	LnAC,LnGP	1.799	0.442	0.393	0.818	-4.492	0.001		0.36
	TOTAL	LnAC,LnGP	1.409		-0.204	0.913	-3.780	0.000		0.11
EUTR	LG	LnAC,LnGP	2.105	0.412	0.484	0.808	-0.179	0.003		0.37
	MD	LnAC,LnGP	7.205	0.091	0.217	0.690	-3.255	0.013		0.52
	SM	LnAC,LnGP	1.109	0.322	0.653	0.980	-1.102	0.000		-0.20
	TOTAL	LnAC,LnGP	1.107	0.522	0.423	0.997	-2.287	0.000		-0.26
	TOTAL		1.177	0.020	J.TZJ	0.777	2.201	0.000	2.120	-0.00

TABLE 8. SERIES ANALYSIS PER COUNTRY FOR THE COBB-DOUGLAS MODEL

TABLE 9. SELECTED MODELS

MODEL	COUNTRY	REGRESSOR	а	α	β	R2C	AIC	Prob>F	D-W	AUTOC
	AUT	AC	663.689	0.979		0.937	14.802	0.000	0.655	0.673
	AUT	GP	84.896		2.775	0.978	13.736	0.000	0.638	0.681
	DEU	AC	3,894.162	0.656		0.968	15.422	0.000	2.314	-0.157
	DEU	GP	1,319.926		3.202	0.960	15.646	0.000	2.163	-0.081
LINEAL BIVARIATE	FIN	GP	69.208		3.981	0.958	7.842	0.000	1.034	0.483
	POR	AC	559.035	0.701		0.986	14.395	0.000	2.265	-0.133
	POR	GP	-553.114		7.493	0.983	14.595	0.000	1.341	0.329
	EUTR	AC	1,537.776	0.700		0.956	18.729	0.000	1.814	0.093
	EUTR	GP	-1,727.445		6.475	0.915	19.397	0.000	1.637	0.181
	AUT	AC;GP	-367.413	-0.898	5.254	0.989	13.127	0.000	1.737	0.132
	DEU	AC;GP	3,187.424	0.484	0.851	0.965	15.584	0.000	2.275	-0.138
	ESP	AC;GP	-15,837.858	0.482	5.115	0.905	17.611	0.000	2.314	-0.157
LINEAL MULTIVARIATE	FIN	AC;GP	92.196	0.185	3.362	0.961	7.826	0.001	1.103	0.448
	NLD	AC;GP	257.458	0.288	2.943	0.906	13.033	0.000	1.400	0.300
	POR	AC;GP	22.553	0.387	3.410	0.991	13.966	0.000	2.807	-0.403
	EUTR	AC;GP	-382.142	0.430	2.845	0.996	16.392	0.000	0.974	0.513
	AUT	LnAC,LnGP	1.012	-0.377	1.426	0.991	-3.450	0.000	1.324	0.338
	DEU	LnAC,LnGP	2.495	0.246	0.565	0.951	-2.981	0.000	2.051	-0.026
COBB-DOUGLAS	FIN	LnAC,LnGP	1.985	0.103	0.779	0.966	-5.560	0.001	1.077	0.462
COBB-DOUGLAS	NLD	LnAC,LnGP	1.918	0.205	0.688	0.905	-3.500	0.000	1.457	0.272
	POR	LnAC,LnGP	0.933	0.442	0.562	0.994	-3.046	0.000	2.449	-0.224
	EUTR	LnAC,LnGP	1.177	0.523	0.423	0.997	-2.287	0.000	2.128	-0.064