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Resumen

La tesis tiene como objetivo principal el estudio de la dualidad vectori-
al entre los espacios Lp(m) y Lq(m) de funciones integrables con respecto a
una medida vectorial con valores en un espacio de Banach X, con p, q > 1
exponentes reales conjugados. La clave de la dualidad es la definición de
una forma bilineal Φ : Lp(m) × Lq(m) → X dada por el operador inte-
gración, que a cada par ( f , g) en Lp(m) × Lq(m) le asocia

∫
Ω f gdm. Me-

diante esta forma bilineal se definen dos topologías intermedias para el
espacio Lp(m). La más débil es la topología m−débil, que corresponde a
la topología de la convergencia débil de la integrales. Además de estudiar
sus propiedades, se prueba que para p > 1 esta topología coincide con la
débil del espacio Lp(m). La importancia de este resultado radica en que, al
no conocerse una representación concreta del dual del espacio Lp(m), es
muy interesante describir la convergencia débil en términos de la conver-
gencia débil de las integrales en el espacio de Banach X. La m−topología
corresponde a la convergencia fuerte de las integrales en X, y puede coin-
cidir en casos extremos con la débil y con la fuerte de Lp(m). Se estudian
sus propiedades, en particular se dan condiciones para asegurar que un
subconjunto de Lp(m) sea m−compacto.

Estas topologías, en particular la m−débil, son útiles para la descrip-
ción del predual del espacio Lp(m) en términos de productos tensoriales.
Esta construcción se describe de forma detalla en el tercer capítulo de la
memoria de la tesis. Cabe destacar de éste un resultado que caracteriza
aquellos operadores definidos en Lp(m) con rango en X que se pueden
escribir como una integral. Aunque sin duda el resultado más relevante es
el que, bajo cierta hipótesis de compacidad de la bola unidad (equivalente
a la reflexividad del espacio Lp(m)) ofrece una representación de Lp(m)
como el dual del producto tensorial Lq(m) ⊗ X∗, dotado de una norma.
Este resultado es clave para obtener una generalización de los resultados
de dualidad para los espacios clásicos de funciones p−integrables.

La m−topología permite definir un concepto de sumabilidad en Lp(m)
basada en la dualidad vectorial, los llamados operadores m− r−sumantes
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definidos en espacios de funciones integrables con respecto a una medida
vectorial, que se estudian en el cuarto capítulo. Esta definición generaliza
la sumabilidad clásica. Se estudian las propiedades de estos operadores,
y se presentan ejemplos que ponen de manifiesto su interés. En la mis-
ma línea que en la teoría clásica, obtenemos teoremas de dominación y de
factorización. La última sección de este capítulo está dedicada a la descrip-
ción de estos espacios de operadores como el dual de un espacio vectorial,
extendiendo así la teoría clásica de Groethendieck, para el caso de oper-
adores definidos en espacios Lp(m).

En el último capítulo de la memoria, las técnicas de la dualidad vec-
torial se aplican a los espacios de Orlicz respecto a una medida vectorial,
LΦ(m), que generalizan a los Lp(m). Se estudian propiedades de los espa-
cios de Orlicz vectoriales y bajo la condición ∆2 para la función de Young,
se caracterizan el espacio de multiplicadores entre LΦ(m) y L1(m). Co-
mo una aplicación de estos resultados, se caracterizan aquellos operadores
que factorizan a través de un espacio de Orlicz vectorial.



Resum

Aquesta tesi té com a objetiu principal l’estudi de la dualitat vectori-
al entre els espais Lp(m) i Lq(m) de funcions integrables respecte a una
mesura vectorial amb valors en un espai de Banach X, amb p, q > 1 ex-
ponents reals conjugats. La clau de la dualitat és la definició d’una forma
bilineal Φ : Lp(m)× Lq(m) → X donada per l’operador integració, que a
cada parell ( f , g) en Lp(m)× Lq(m) li associa

∫
Ω f gdm. Mitjançant aques-

ta forma bilineal es defineixen dues topologies intermitges per a l’espai
Lp(m). La més dèbil és la topología m−dèbil, que correspon a la topolo-
gia de la convergència dèbil de les integrals. A banda d’estudiar les seues
propietats, provem que per a p > 1 aquesta topologia coincideix amb la
dèbil de l’espai Lp(m). La importància d’aquest resultat es basa en el fet
que, com que no es coneix una representació concreta del dual de l’espai
Lp(m), és molt interessant descriure la convergència dèbil en termes de la
convergència dèbil de les integrals en l’espai de Banach X. L’ m−topologia
correspon a la convergència forta de las integrals en X, i pot coincidir en
casos extrems amb la dèbil y amb la forta de Lp(m). Estudiem les seues
propietats i en particular, donem condicions suficients perquè un subcon-
junt de Lp(m) siga m−compacte.

Aquestes topologies, en particular l’ m−débil, són útils per a la des-
cripció de l’espai predual de l’espai Lp(m) en termes de productes tensori-
als. Aquesta construcció es descriu de forma detallada en el tercer capítol
d’ aquesta memòria. Hem de destacar d’aquest capítol un resultat que ca-
racteritza aquells operadors definits a Lp(m) amb rang en X que es poden
escriure com una integral. Tanmateix, el resultat més rellevant és el que,
sota certa hipòtesi de compacitat de la bola unitat (equivalent a la refle-
xivitat de l’espai Lp(m)), ens dóna una representació de Lp(m) com al dual
del producte tensorial Lq(m) ⊗ X∗ dotat de certa norma. Aquest resultat
és clau per a obtenir una generalització dels resultats de dualitat per als
espais clàssics de funcions p−integrables.

L’ m−topologia permet definir un concepte de sumabilitat a Lp(m)
basada en la dualitat vectorial. Als operadors corresponents els anome-
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nem operadors m− r−sumants definits en espais de funcions integrables
respecte a una mesura vectorial i els estudiem al quart capítol. Aquesta
definició generalitza la sumabilitat clàssica. Estudiem les propietats d’a-
quests operadors i presentem exemples que posen de manifest el seu in-
terés. En la mateixa línia que en la teoria clàssica, obtenem teoremes de
dominació i de factorizació. L’última secció d’aquest capítol està dedicada
a la descripció d’aquests espais d’operadors com al dual d’un espai vecto-
rial, extenent així la teoria clàssica de Groethendieck per al cas d’operadors
definits en espais Lp(m).

En l’últim capítol de la memòria, les tècniques de la dualitat vectori-
al s’apliquen als espais d’Orlicz respecte a una mesura vectorial, LΦ(m),
que generalitzaran als espais Lp(m). Estudiarem propietats dels espais
d’Orlicz vectorials i sota la condició ∆2 per a la funció de Young, carac-
teritzarem l’espai de multiplicadors entre LΦ(m) i L1(m). Com a aplicació
d’aquests resultats, caracteritzem aquells operadors que factorizen a través
d’un espai d’Orlicz vectorial.



Summary

The main objective of this memoir is the study of the vector valued
duality between the spaces Lp(m) and Lq(m) of integrable functions with
respect to a vector measure with values in a Banach space X, with p, q > 1
conjugated real numbers. The key of this duality relationship is the defini-
tion of a bilinear map. Let Φ : Lp(m)× Lq(m) → X defined as follows, for
( f , g) ∈ Lp(m)× Lq(m), Φ( f , g) :=

∫
Ω f gdm. Through this bilinear form

we define two intermediates topologies for the space Lp(m). The weakest
one, the m−weak topology, corresponds to the topology of weak conver-
gence of the integrals. We study the main properties and we show that, for
p > 1, it coincides with the weak topology of Lp(m). Since there is not a a
concrete representation of the dual of Lp(m), it is very interesting to des-
cribe the weak convergence in terms of the weak convergence of the inte-
grals in the Banach space X. The m−topology corresponds to the topology
of strong convergence of the integrals in X. It can coincide in extreme cases
with the weak topology and with the norm topology of Lp(m). We study
some properties, particularly we give sufficient conditions to ensure the
m−compactness of a subset of Lp(m).

These topologies, in particular the m−weak topology, are extremely
useful to describe the predual of Lp(m) in terms of a tensor product. This
construction is carefully described in Chapter 3 of this memoir. It is neces-
sary to stand out in this chapter a result that characterizes those operators
from Lp(m) into X that can be represented as an integral. In fact, it is the
key to prove the most relevant result in this chapter, where we represent
the space Lp(m) as the dual the tensor product Lq(m)⊗ X∗ endowed with
a particular norm. In order to prove this result we assume an hypothesis
of compactness of the unit ball of Lp(m); this will be equivalent to the re-
flexivity of this space. This is the clue to obtain a generalization of some
duality result for classical Lp−spaces.

The m−topology allows us to define a notion of summability for spaces
of p−integrable functions. It s based in the vector valued duality. The
so called m − r−summing operators, defined on spaces of p−integrable

XIII



functions with respect to a vector measure are studied in Chapter 4. This
definition generalize the classical summability. We also study the spaces
of sequences that are m − r−summable. We investigate the properties of
these operator spaces and we present some revealing examples. Following
the ideas of the classical theory of summing operators, we prove some
domination and factorization theorems. The last section of this chapter is
devoted to the description of this operator spaces as the dual of a tensor
product. In this way we extend the classical Grothendieck’s theory for o-
perators defined on Lp(m).

In the last chapter of the memoir, the vector duality techniques are
applied to the study of Orlicz spaces with respect to a vector measure, that
are the natural generalization of Lp spaces. We study fundamental pro-
perties of vector Orlicz spaces. Assuming the ∆2−property for the Young
function Φ, we characterize the space of multiplication operators between
LΦ(m) and L1(m). As an application of this result, we characterize those
operators that factorize through a vector Orlicz space.
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Introduction

The main objective of this work is to develop a “vector duality” theory
for the space Lp(m) of integrable functions with respect to a Banach space
valued measure m. When p, q > 1 are conjugated real numbers, the key for
constructing such a vector duality is a bilinear form Φ : Lp(m)× Lq(m) →
X, with X the Banach space where the measure m takes its values. For a
pair ( f , g) ∈ Lp(m)× Lq(m) it is defined by Φ( f , g) :=

∫
Ω f gdm.

In the last fifty years a lot of mathematicians have worked in the de-
velopment of a general theory of vector measures and particularly in the
study of the spaces of integrable functions with respect to a vector mea-
sure. Remarkable references in this topic are the book of J. Diestel and J. J.
Uhl, “Vector measures” and the seminal articles of R. G. Bartle, N. Dunford
and J. Schwartz ([2]) and D. R. Lewis ([46]).

In the early nineteens, G.P. Curbera analyzed the spaces of integrable
functions with respect to a vector measure from the point of view of the Ba-
nach lattices and the Banach function spaces. The natural duality in these
spaces is given by the elements of the Köthe dual and is represented by
an integral. The spaces of p−integrable functions were introduced by E.
A. Sánchez Pérez in [70], and the natural duality defined on them is given
by the bilinear form Φ defined above, that extends in a sense the integral
representation of the duality given by the Köthe dual and the integral.

These spaces turn out be a useful tool to represent a large class of Ba-
nach lattices. For p = 1, G. P. Curbera proved in [12, Theorem 8] that every
order continuous Banach lattice with weak order unit is lattice isometric to
a space of integrable functions with respect to a vector measure. The cor-
responding result for p > 1 occurs in [31, Proposition 2.4]. A. Fernández
et al. showed that every p−convex order continuous Banach lattice with
weak unit is lattice isomorphic to an Lp(m) of a vector measure.

Our work started with the objective of characterize the dual of the
space Lp(m) when p > 1. For p = 1 this study was first done by L. Egghe
in [30]. In [53], S. Okada adapts the ideas of [30] in order to obtain a con-
crete representation of the elements of the dual of L1(m). In Theorem 3.1.6

XVII



XVIII

we obtain a representation of the (pre)dual of the space Lp(m) in terms of
the dual of a normed tensor product.

G. Curbera in [13] and S. Okada in [53] studied independently a cha-
racterization of the weak convergence of nets on bounded subsets of Lp(m)
by the weak convergence of the integrals of the net elements in X. They
concluded that this characterization was not possible in general. The na-
tural question for p > 1 is answered in Theorem 2.1.7.

Our work is presented in five chapters. In the Preliminaries we es-
tablish the notation of the memoir and we recall the main definitions and
properties of the theory of vector measure and integration that we will use
later. We also introduce in this chapter the notion of weak p−integrability.

The second chapter is devoted to the study of two intermediate topolo-
gies defined for Lp(m) when p > 1. These topologies are naturally de-
fined when we consider the vector duality relationship between Lp(m)
and Lq(m) given by the bilinear map Φ.

The m−weak topology corresponds to the topology of pointwise con-
vergence on the norming subset of the unit ball of the dual of Lp(m) de-
fined by

Γ := {|γg,x∗ | : g ∈ Lq(m), x∗ ∈ X∗},
where γg,x∗( f ) :=

∫
Ω f gd〈m, x∗〉, f ∈ Lp(m). We study the metrizability

of the closed unit ball of Lp(m) when endowed with the m−weak topo-
logy and we give an explicit formula of the metric in Theorem 2.1.2. The
interest of this result matters in the following fact: for p > 1, the m−weak
topology coincides on bounded subsets of Lp(m) with the weak topology,
as shown in theorem 2.1.7. We also give in this section some conditions to
ensure that the set Γ is a James boundary for the unit ball of the dual of
Lp(m).

The m−topology, coarser than the weak topology and weaker than the
norm one, is generated by the family of seminorms

Λ := {ζg : g ∈ Lq(m)},

where ζg( f ) :=
∥∥∫

Ω f gdm
∥∥

X , f ∈ Lp(m). It corresponds to the topology
of strong convergence of the integral on X. We study the main properties
and we give conditions to ensure the compactness of a subset of Lp(m)
with respect to this topology in Proposition 2.2.5.

The m−weak topology is useful to describe the (pre)dual of Lp(m) in
terms of the dual of a tensor product. This construction is described in the
third chapter of this memoir. In [72] a representation of the (pre)dual of
the space of vector measure p−integrable functions was already obtained.
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However this result gives only a partial answer to the general representa-
tion theorem, since it is only valid under certain restriction for the measure
m –positivity– and the space Lp(m) that sometimes are not easy to check,
see for instance [70, Section 3].

So Chapter 3 of this memoir is presented as follows. In the first section
we prove a characterization theorem for those operators T : Lp(m) → X
that can be represented by an integral. This result is a consequence of
a Radon-Nikodým theorem for scalarly dominated vector measures that
was proved by Musial in [52]. In the second, and the main part of this
third chapter we give three approaches in order to obtain the tensor prod-
uct representation theorem of the (pre)dual of the space Lq(m). For this
aim we introduce some topologies for the tensor product of the space
Lp(m) and the dual of the Banach space X where the measure takes values.
The main result of this part, Theorem 3.1.6, ensures that under a certain
compactness condition for the unit ball of Lq(m), the space Lp(m) is iso-
metrically isomorphic to the dual of a particular normed tensor product.
We finish this part with a corollary of this theorem that gives us the na-
tural “vector measure” version of the classical result that ensures that the
dual of a Banach space with the norm topology coincides with the dual of
the space with the weak topology.

In the last section of this chapter we give two examples. The first one
deals with a measure with values in an Orlicz space; we provide an alter-
native formula to define the norm in the dual of the space of q−integrable
functions with respect such a measure. In the second one we provide a
characterization of the space of q−integrable functions with respect to a
vector measure that is induced by a kernel operator.

The fourth chapter is is devoted to the study of summability in the
spaces Lp(m). In order to apply the vector duality we give a definition
of summability related with the m−topology, that generalize the classical
summability for the class of spaces of p−integrable functions with respect
to a vector measure. In the first section we define the m − r−summing
operators, that are those (linear and continuous) operators T : Lp(m) → Y,
such that for every finite choice of functions f1, . . . , fn in Lp(m) there is a
constant C > 0 so that

(
n

∑
i=1

‖T( fi)‖r
Y

) 1
r

≤ C · sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X

) 1
r

.

This definition is clearly related with the m−topology for the space Lp(m),
the topology of convergence of the integrals, and coincides with the clas-
sical definition whenever m is a scalar measure. As for the classical r−
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summability, our notion is very close to the summability of Lp(m)−valued
sequences; that is why we introduce the definition and the properties
of the spaces of m − r−summable Lp(m)−valued sequences. The m −
r−summing operators are exactly those that transform m− r−summable
sequences into Lp(m) into strongly summable Y−valued sequences, as
proved in Theorem 4.2.2.

It is natural to consider those operators S : Z → Lp(m) that transform
weakly r−summable sequences into m− r−summable ones. We define
in section 4.2.2 the weak m− r−summing operators. In some sense, these
operator spaces complete the set of technical tools that are necessary for
the study of the summability associated to the m−topology of Lp(m). In
fact the composition of a weak m− r−summing operator S : Z → Lp(m)
with an m− r−summing operator T : Lp(m) → Y is r−summing in the
classical sense. For r = 1 we show that, under adequate assumptions, the
converse is also true. Theorem 4.2.8 ensures that 1−summing operators
can be factorized through a weak m− r−summing operator and an m−
r−summing one.

We finish this section with some examples of particular m − r−sum-
ming operators. The last one corresponds to a Hille-Tamarkin type opera-
tor which takes values in a space of Bochner integrable functions.

The third section of this chapter deals with the relationship between
the classes of summing operators that have been introduced in the pre-
vious one. We begin by proving two Pietsch type theorems for m −
r−summing operators. In the first one we assume a property on the space
Lp(m). The condition assumed is not very restrictive as shown in Exam-
ples 4.3.1 and 4.3.2. They represent in some sense two opposite extreme
situations regarding the measure m; one of them has a “small” range and
the other one “big” range. However, in both cases the associated space has
the property. We also prove a generalized version of a Pietsch type dom-
ination theorem (see Theorem 4.3.6). Our domination and factorization
theorems for m− r−summing operators are the key to find some relation-
ships between different spaces of summing operators.

In the classical theory of operator ideal there are several results con-
cerning the coincidence of the spaces of r−summing operators for differ-
ent values of r. In order to generalize these results into our framework of
operators defined on Lp(m) spaces we prove in Proposition 4.3.7 a gener-
alization of the classical inclusion theorem for m− r−summing operators.
Proposition 4.3.9 provides a new version of a classical result due to Mau-
rey (see [50]) that ensure the coincidence of the spaces of 2−summing and
r−summing operators between Banach spaces when 2 < r < ∞ and the
range of the operators has cotype 2.
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We finish this section with some applications. The first one is given
by the Maurey-Rosenthal factorization theory applied in this setting. We
prove in Theorem 4.4.1 that, under the assumption of r−concavity of the
Banach space where the measure m takes its values, if the identity is m−
r−summing therefore Lp(m) is isomorphic to an space of integrable func-
tions with respect to a scalar measure. The second application corresponds
to a generalization of the ideal of mixing operators. Our objective is to give
a definition for operators defined in Lp(m) in order to adapt the classical
operator ideal scheme. For this aim we define the (s, m− r)−mixing oper-
ators that are those (linear and continuous) operators T : Lp(m) → Y, such
that for each s−summing operator S from Y into another Banach space Z,
the composition S ◦ T is m− r−summing. In a similar way we define the
(m − s, r)−mixing operators, in this case for T ∈ L(Y, Lp(m)). We also
obtain a domination theorem for this kind of operators.

The last section of this chapter is devoted to the study of the space
of m − r−summing operators by means of a tensor product representa-
tion. The objective is to obtain a Grothendieck type representation of an
operator ideal as the dual of a normed tensor product. Although our op-
erator spaces Πm

r (Lp(m), Y) are not components of an operator ideal, we
intend, through the definition of a particular norm for the tensor product
Lp(m)⊗ Y inspired in the Chevet-Saphard norms, to obtain a representa-
tion of the space of m − r−summing operators as the dual of this tensor
product when we consider the trace duality.

The last chapter corresponds to an application of the vector duality
theory developed above in a more generalized context. As happens in the
classical case, Orlicz spaces provide an adequate setting for an extension
of the ideas that hold for the spaces of p−integrable functions. In [21],
O. Delgado define the Orlicz spaces with respect to a vector measure m,
LΦ(m), where φ is a Young’s function; she studied some properties of these
spaces in order to prove some results about the inclusion of them into the
space L1(m). Our aim here is to continue the work done by A. Fernández
et al. in [7] that deals with the study of multiplication operators between
spaces Lp(m).

We begin by recalling the basic notions about the construction of Orlicz
spaces, and the natural extension to Orlicz spaces with respect to a vector
measure. Lemma 5.2.2 provides a Hölder inequality for Orlicz spaces with
respect to a vector measure, and is the key to apply similar arguments as
those of the vector measure duality in a more general context. Theorems
5.2.7 and 5.2.9 correspond to the main results in this chapter, they char-
acterize the (weak) Orlicz spaces with respect to a vector measure as an
space of multiplication operators between (weak) Orlicz spaces.
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As an application of this theory we characterize those operators be-
tween Banach function spaces that factorizes through Orlicz spaces with
respect to a vector measure. In fact these spaces turns out to be optimal
domains for such operators.

As a final comment for this introductory section, we must say that we
have tried to present our analysis of the vector duality on spaces of inte-
grable functions with respect to a vector measure following the "topolog-
ical guide". We consider that this abstract presentation is useful also for
explaining the consequences on the theory of Banach function spaces and
operators on them as applications of the main results obtained in earlier
chapters; a direct exposition of these results, from a different point of view,
is also possible. Some of the papers on the results of this thesis have been
written using this second scheme.



Chapter 1

Preliminaries

In this first chapter our aim is to introduce the framework of the inte-
gration with respect to a vector measure by presenting the main proper-
ties of the spaces of vector measure integrable functions, and also to recall
some notions about operator theory.

The notation is standard. We deal with real Banach spaces. If X is
a Banach space, we denote by X∗ its dual space and by B(X) its unit
ball. Throughout this chapter we fix a positive finite measure space (Ω, Σ, µ),
where Ω is a set, Σ is a σ−algebra of subsets of Ω and µ is a finite posi-
tive measure. We denote by χA the characteristic function of a set A ∈ Σ,
and by S(Σ) the set of real simple functions. We say that a property P
happens in Ω µ−almost everywhere (briefly, µ−a.e.) if P holds in Ω \ A
where A ∈ Σ with µ(A) = 0.

By L0(µ) we denote the space of equivalence classes of µ−a.e. equal
real Σ−measurable functions defined on Ω. L0(µ) is a real vector lattice
when it is endowed with the natural µ−a.e. order.

A linear subspace X(µ) of L0(µ) is an order ideal if f ∈ X(µ) when-
ever f is a function in L0(µ) such that there is some g ∈ X(µ) satisfying
| f | ≤ |g| µ−a.e. A positive function e ∈ X(µ) is a weak order unit of X(µ)
whenever f ∧ (ne)n ↑ f for every f ∈ X(µ). A norm ‖ · ‖X(µ) in X(µ) is
a lattice norm if ‖ f ‖X(µ) ≤ ‖g‖X(µ) for f , g ∈ X(µ) such that | f | ≤ |g|. A
normed space that is complete when endowed with a lattice norm, is a
Banach lattice.

An order ideal X(µ) of L0(µ) is a Banach function space (briefly B.f.s.)
based on the measure space (Ω, Σ, µ) if it contains the set of simple func-
tions S(Σ) and if it is a complete space continuously included in the space
of µ−integrable functions, L1(µ), when endowed with a lattice norm ‖ ·
‖X(µ). A B.f.s. X(µ) is said to be order continuous whenever every down-
ward direct net ( fα)α in the positive cone X(µ)+ of X(µ) such that fα ↓ 0,

1
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satisfies limα ‖ fα‖X(µ) = 0. For the particular case of Banach function
spaces, order continuity is equivalent to σ−order continuity, for extended
details see Remark 2.5 in [58].

A Banach lattice (X, ‖ · ‖X) has the Fatou property if every norm bounded
increasing sequence (xn)n in X+ attempt his supremum x ∈ X. Moreover,
if ‖xn‖X ↑ ‖x‖X, we say that X has the σ−Fatou property.

The definition above of Banach function space is the one in [48, Def-
inition 1.b.17]. In [3, Definition I.1.3] a different one is given; although
coming by different approaches, the definitions only differ in the Fatou
property (assumed in [3, Definition I.1.3]), as shown in [3, Theorem I.1.7]
and in [48, p.30]. In this memoir we will use notion of B.f.s. without this
assumption. Nevertheless some properties of B.f.s. that appear in [3] will
be useful in our framework, and it can be prove that they hold even for
B.f.s. without the Fatou property. From [3] we have that a B.f.s. X(µ)
is order continuous if and only if all the functions f ∈ X(µ) have abso-
lutely continuous norm, that is ‖ f χA‖X(µ) → 0 when µ(A) → 0. When
the density of simple functions is assumed in X(µ), we have that the B.f.s.
X(µ) is order continuous if and only if the charateristic function χΩ has or-
der continuous norm. These assertions correspond to [3, Proposition I.3.5,
Theorem I.3.13] and their proofs hold for B.f.s without the Fatou property.
As a consequence we have the following lemma, its prove can be found in
[21, p.490], we give it for the aim of completeness.

Lemma 1.0.1. When X(µ) is an order continuous B.f.s. we have that

X(µ) = { f ∈ L0(µ) : ‖ f χA‖X(µ) → 0 when µ(A) → 0}. (1.1)

Proof. The direct inclusion is clear. Suppose that f ∈ L0(µ) satisfies that
‖ f χA‖X(µ) → 0 when µ(A) → 0 and define pointwise the sequence fn =
| f |χAn , where An := {w ∈ Ω : | f (w)| ≤ n}. Clearly | fn| ↑ f and for m > n

‖ fm − fn‖X(µ) = ‖ f χAm\An‖X(µ).

Since Am \ An = {w ∈ Ω : n < | f (w)| ≤ m}, when m > n → ∞ we have
that µ(Am \ An) → 0. So ‖ fn − fm‖X(µ) → 0, and order continuity of X(µ)
yields f ∈ X(µ).

The Köthe dual of a B.f.s. X(µ) is defined as

X(µ)′ := {h ∈ L0(µ) : f h ∈ L1(µ) ∀ f ∈ X(µ)}.

Notice that when the B.f.s. X(µ) is σ−order continuous, its Köthe dual
coincides with X(µ)∗.
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For 0 < p < ∞ we define the p−th power of a B.f.s. (X(µ), ‖ · ‖X(µ)) as
the space

X(µ)[p] := { f ∈ L0(µ) : | f | 1p ∈ X(µ)} (1.2)

when we endow it with the quasi norm defined by

‖ f ‖X(µ)[p]
:=

∥∥∥| f | 1p
∥∥∥

p

X(µ)
, f ∈ X(µ)[p]. (1.3)

X(µ)[p] becomes a quasi Banach function space, see for instance [58, Sec-
tion 2.2]. Remark that the name “p−th power” is derived by the following
fact

| f | ∈ X(µ) if and only if | f |p ∈ X(µ)[p] whenever f ∈ L0(µ).

The σ−order continuity is inherited by the p−th power, in fact if ‖ · ‖X(µ)
is an order continuous norm, the quasi norm ‖ · ‖X(µ)[p]

is σ−order con-
tinuous. We cannot ensure that ‖ · ‖X(µ)[p]

is a norm; take for instance

1 < p < ∞, the space L1(µ)[p] = L1/p(µ) is not normable. Nevertheless
under some requirements the normability of X(µ) is assured.

Let 0 < p < ∞, a Banach function space X(µ) is p−convex if there is a
constant c > 0 such that for every finite family f1, . . . , fn ∈ X(µ), n ∈ N,

∥∥∥∥∥∥

(
n

∑
i=1

| fi|p
) 1

p
∥∥∥∥∥∥

X(µ)

≤ c

(
n

∑
i=1

‖ fi‖p
X(µ)

) 1
p

. (1.4)

The smallest constant c satisfying (1.4) for every n ∈ N and every choice of
functions is the p−convexity constant of X(µ) and is denoted by M(p) [X(µ)].
The following proposition appears in [58, page 43] .

Proposition 1.0.2. Let X(µ) a B.f.s. with norm ‖ · ‖X(µ).

1. If 0 < p ≤ 1 then, ‖ · ‖X(µ)[p]
is a norm, hence (X(µ)[p], ‖ · ‖X(µ)[p]

) is a
B.f.s.

2. Assume that X(µ) is p−convex for some 0 < p < ∞. Then ‖ · ‖X(µ)[p]
is

a norm if and only if M(p) [X(µ)] = 1.

Vector measures. Let X be a real Banach space, Ω a set and Σ a σ−algebra
of subsets of Ω. A set function m : Σ → X is called a vector measure when-
ever it is σ−additive, that is, for every countable collection of disjoint sets
(Ai)i in Σ we have m(

⋃
i Ai) = ∑i m(Ai). The variation of the measure m
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is denoted by |m| and corresponds to the set function |m| : Σ → [0, +∞]
given by |m|(A) := supπ ∑E∈π ‖m(E)‖X for A ∈ Σ, where the supremum
is taken over all the finite (disjoint) partitions π of A. The variation corre-
sponds to the smallest [0, +∞]−valued measure dominating m, that is for
each A ∈ Σ one has ‖m(A)‖X ≤ |m|(A). For x∗ in the topological dual of
X, X∗, we denote by 〈m, x∗〉 : Σ → R the scalar measure given by

〈m, x∗〉(A) := 〈m(A), x∗〉, A ∈ Σ.

The semivariation of m is the set function ‖m‖ : Σ → [0, +∞[ defined by
‖m‖(A) := supx∗∈B(X∗) |〈m, x∗〉|(A).

A finite measure µ : Σ → [0, ∞[ is a control measure for the vector mea-
sure m when they are mutually absolutely continuous, that is µ(A) → 0
if and only if m(A) → 0 in X. There is a special class of control measures
for a vector measure m. Rybakov’s Theorem (see [26, Chapter IX, Theo-
rem 2.2]) ensures that there exists an element x∗0 ∈ X∗ so that |〈m, x∗0〉| is a
control measure for m. This particular class of scalar measures are called
Rybakov measures for m. Throughout this work λ will stand as a Rybakov
control measure for m.

A vector measure m is scalarly dominated by a measure m̃ : Σ → X if
there exists a positive constant K such that |〈m, x∗〉| (A) ≤ K |〈m̃, x∗〉| (A),
for each A ∈ Σ and each x∗ ∈ X∗.

Integrability. Following the definition of D. R. Lewis in [46], a func-
tion f ∈ L0(λ) is integrable with respect to a vector measure m, briefly
m−integrable, if

(I1) it is 〈m, x∗〉−integrable for every x∗ ∈ X∗ and,

(I2) for every set A ∈ Σ there is an element m f (A) ∈ X so that

〈m f (A), x∗〉 =
∫

A
f d〈m, x∗〉, x∗ ∈ X∗.

In fact the vector m f (A) corresponds to the integral of f with respect
to m over a set A,

∫
A f dm. We denote by L1(m) the space of integrable

functions with respect to m.
This definition of integrability is not the first that appeared in this set-

ting. In 1955, R. G. Bartle, N. Dunford and J. Schwartz introduced the
notion of integrability with respect to a vector measure in [2]. Their aim
was to extend the Riez Representation Theorem for weakly compact oper-
ators T : C(K) → X, defined on the space of real continuous functions on a
compact set K, with range in a Banach space X. For this kind of operators
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the authors proved that there is a measure m defined on the σ−algebra of
the Borel sets of K, B(K), with range in X so that T( f ) =

∫
K f dm for every

f ∈ C(K). To get this result, R. G. Bartle, N. Dunford and J. Schwartz had
to build an integration theory. They began by introducing the integral of a
simple function. For φ = ∑n

i=1 aiχAi , with ai ∈ R and Ai ∈ Σ, i = 1, . . . , n,
the integral of Φ with respect to m over a set A ∈ Σ is given by

∫

A
φdm =

n

∑
i=1

aim(Ai ∩ A).

In general, a real function f is integrable with respect to the vector mea-
sure m (in the sense of R. G. Bartle, N. Dunford and J. Schwartz) whenever
there is a sequence (φn)n ⊂ S(Σ) of simple functions so that φn → f point-
wise as n → +∞ and the sequence

(∫
A φndm

)
n converges in X for every

set A ∈ Σ. Moreover, if this holds, the integral of f with respect to m over
a set A ∈ Σ is given by

∫

A
f dm = lim

n→∞

∫

A
φndm.

D.R. Lewis proved in Theorem 2.4 in [46], that the definition of integrabil-
ity given by conditions (I1) and (I2) is equivalent to the one of R. G. Bartle,
N. Dunford and J. Schwartz. In [36] the authors provide another approach
to integrability of real valued functions with respect to a vector measure.
Their aim was to relate the m−integrability with the Birkhoff integrability
and S∗−integral. The notion of Birkhoff integrability for vector valued
functions with respect to a nonnegative finite measure was introduced in
[4]. As pointed by Lewis in [47, p.307], the adaptation of Birkhoff’s def-
inition for scalar function and vector measures is not trivial. The notion
of the S∗ integral was intensively studied by Dobrakov in [28] for vector
valued functions and operator-valued vector measures. This is known as
the Dobrakov integral, further researches on this subject can be found in
[65] and [66].

LetP(Ω) be the set of countable partitions of Ω. A partitionA ∈ P(Ω)
is finer that B ∈ P(Ω) (denoted A º B) whenever for every A ∈ A there
is a set B ∈ B so that A ⊂ B. For a function f : Ω → R, let P(Ω, f )
denote the set of partitions A := (An)n ∈ P(Ω) so that the X−valued
sequence ( f (wn)m(An))n is unconditionally summable for every choice
(wn)n ∈ Πn∈N An. A scalar function f (not necessarily measurable) is
S∗−integrable with integral S∗ ∫

Ω f dm ∈ X if for every ε > 0 there is a
partition A0 ∈ P(Ω) such that A = (An)n ∈ P(Ω, f ) for every A º A0,
and ∥∥∥∥∥

∞

∑
n=1

f (wn)m(An)− S∗
∫

Ω
f dm

∥∥∥∥∥
X

≤ ε
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for every choice of points (wn)n ∈ Πn∈NAn. In order to compare the
m−integrability with the S∗−integrability the authors introduced in [36,
Definition 3] the concept of B−integrability which is an adaptation of the
notion of Birkhoff integrability in the context of scalar functions and vec-
tor measures. A function f ∈ L0(λ) is B−integrable with respect to m if
there is a partition A0 ∈ P(Ω) so that A ∈ P(Ω, f ) for each A º A0.
As shown in [36, Theorem 6] the notion of B−integrability is stronger
than the S∗−integrability. For a Σ−measurable function, f : Ω → R is
B−integrable if and only if f is m−integrable, and in this case S∗ ∫

A f dm =∫
f dm for every set A ∈ Σ (see [36, Theorem 9]). Recall that a mea-

sure space (Ω, Σ, µ) is complete if it contains all the subsets of measure
zero. Theorem 13 in [36] ensures that under assumption of complete-
ness of the measure space (Ω, Σ, λ) (λ any control measure for m), the
S∗−integrability coincides with the m−integrability.

In the space of integrable functions with respect to m we can identify
the functions that are λ−a.e. equal, where λ is a Rybakov control measure
for m, these are the functions that differ in a λ−null set. Notice that they
coincide with functions that differ in a set of null semivariation of m; this
is the reason we use both the expressions λ−a.e. and m−a.e. for the same
notion. We denote by L1(m) the space of (classes of λ−a.e. equal) func-
tions that are integrable with respect to m, and we endow this space with
a norm given by

‖ f ‖L1(m) := sup
x∗∈B(X∗)

∫

Ω
| f |d|〈m, x∗〉|, f ∈ L1(m). (1.5)

We have that L1(m) is a vector lattice with respect to the natural m−a.e.
pointwise order and that ‖ · ‖L1(m) is a lattice norm on L1(m). The follow-
ing result, that can be found in [58, p.101], gives a version of the classical
Dominated Convergence Theorem for L1(m) and states the main proper-
ties of this space. Recall that a Banach space X is weakly compactly generated
(WCG for short) if X is the closed linear span of one of its weakly compact
subsets (see for instance [51, page 366]).

Theorem 1.0.3. For a vector measure m : Σ → X,

(i) Let g in the positive cone of L1(m). If ( fn)n is a sequence in L0(λ) so that

1. ( fn)n converges m−a.e. to a function f ∈ L0(λ) and

2. | fn| ≤ g, pointwise m−a.e. for every n ∈ N,

then, f ∈ L1(m) and it is the limit of ( fn)n in the norm ‖ · ‖L1(m).
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(ii) The normed space L1(m) is complete, moreover it is a WCG space in which
S(Σ) is dense.

(iii) For every Rybakov control measure λ for m, the space L1(m) ⊂ L0(λ) is
a Banach function space over the measure space (Ω, Σ, λ) and the norm is
order continuous. The constant function χΩ is a weak order unit.

The spaces of integrable functions with respect to a vector measure
are particularly interesting because they represent a large class of Banach
lattices. The following result is due to G. Curbera ( see [12, Theorem 8]).

Theorem 1.0.4. Let X be an order continuous Banach lattice with weak order
unit. There exists an X−valued positive measure m such that X and L1(m) are
lattice isomorphic and isometric.

As for the classical spaces of integrable functions, there is a natural
extension of the definition to the 1/p−th power integrable functions with
respect to a vector measure. This definition was given by E. A. Sánchez
Pérez in [70]. Let 1 < p < ∞. A real function f is p−integrable with respect
to m whenever | f |p is m−integrable. The space of (equivalence classes of
λ−a.e.) p−integrable functions with respect to m is denoted by Lp(m) and
a natural norm for this space is given by

‖ f ‖Lp(m) := sup
x∗∈B(X∗)

(∫

Ω
| f |pd|〈m, x∗〉|

) 1
p

, f ∈ Lp(m). (1.6)

Notice that Lp(m) is the (1/p)−th power of L1(m), with 0 < 1/p < 1; it
follows from Proposition 1.0.2 that Lp(m) is a Banach function space with
σ−order continuous norm included in L1(m). The definition of the norm
‖ · ‖Lp(m) implies directly that Lp(m) is a p−convex B.f.s. over the measure
space (Ω, Σ, λ) with p−convexity constant one. As for the case p = 1,
there is a Representation Theorem for a large class of Banach lattices as an
Lp(m). The following theorem occurs in [31, Proposition 2.4].

Theorem 1.0.5. Let 1 < p < ∞. If X is a p−convex Banach lattice with weak
order unit and order continuous norm, then there is an X valued positive vector
measure m such that Lp(m) and X are lattice and topologically isomorphic.

For p = ∞, the space L∞(m) consists of the real valued functions that
are Σ−measurable and m−essentially bounded. When equipped with the
essential supremum norm ‖ · ‖L∞(m), L∞(m) is a Banach function space
over (Ω, Σ, λ). Bounded Σ−measurable functions are integrable with re-
spect to m, in fact we have the following chain of inclusions for 1 ≤ p ≤
p∗ ≤ ∞:

L∞(m) ⊂ Lp∗(m) ⊂ Lp(m) ⊂ L1(m).
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For 1 ≤ p ≤ ∞, in the sequel q will denote its conjugated index, that is

q :=





∞ if p = 1,
p

p−1 if 1 < p < ∞,
1 if p = ∞.

(1.7)

In what follows we give the corresponding Hölder’s inequalities for
the spaces Lp(m). First when p = 1, clearly by the definition of the norm
(1.5) we have for f ∈ L1(m)

‖ f g‖L1(m) ≤ ‖ f ‖L1(m)‖g‖L∞(m), g ∈ L∞(m). (1.8)

For 1 < p < ∞, f g ∈ L1(m) for every f ∈ Lp(m) and g ∈ Lq(m) and
‖ f g‖L1(m) ≤ ‖ f ‖Lp(m)‖g‖Lq(m). Moreover we have, as proved in [7, Lemma
2],

Lp(m) · Lq(m) := { f g : f ∈ Lp(m), g ∈ Lq(m)} = L1(m). (1.9)

The space Lp(m) is not reflexive in general. Recall first that Lp(m) is
reflexive if (and only if) it does not contain subspaces isomorphic to c0

(combine [31, Corollary 3.10] and [51, Theorem 2.4.12]). For further char-
acterizations of the reflexivity of Lp(m), see [16] and [31]. We next present
a simple example of a non reflexive Lp(m) space.

Example 1.0.6. Construction of a non-reflexive Lp(m). Take Ω := N, let
Σ be the set of all subsets of N and consider the countably additive vector
measure m : Σ → c0 given by m(A) = ∑n∈A(1/n)en, where (en) is the
canonical basis of c0. It is not difficult to check that

Lp(m) =
{

f ∈ RN : (n−1/p f (n))n∈N ∈ c0

}

with ‖ f ‖Lp(m) = sup{n−1/p| f (n)| : n ∈ N} for all f ∈ Lp(m). Clearly, c0 is
isomorphic to Lp(m) and this space is not reflexive.

The next proposition is the key of what we call the vector duality be-
tween the spaces Lp(m) and Lq(m) for p and q conjugated real numbers.
It proves that the unit ball of Lq(m) is in some sense norming for Lp(m),
when the vector duality is used instead of the usual duality. A proof of
this result can be found in [58, page 123].

Proposition 1.0.7. Let m : Σ → X be a Banach space-valued vector measure
and let 1 ≤ p ≤ ∞. Then we have the identities

sup
g∈B(Lq(m))

∥∥∥∥
∫

Ω
f gdm

∥∥∥∥
X

= ‖ f ‖Lp(m) = sup
g∈B(Lq(m))

‖ f g‖L1(m), f ∈ Lp(m).
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Thus, the duality relationship between the spaces Lp(m) and Lq(m)
appears in a natural way through the X−valued bilinear map Φ : Lp(m)×
Lq(m) → X defined by Φ( f , g) =

∫
Ω f gdm, for f ∈ Lp(m) and g ∈ Lq(m).

Since Lp(m) is order continuous, its dual Lp(m)∗ coincides with the
Köthe dual of Lp(m) (cf. [51, Corollary 2.6.5]), that is, Lp(m)∗ = {ϕh : h ∈
H} where

H := {h : Ω → R, Σ−measurable : f h ∈ L1(λ) for all f ∈ Lp(m)}
and the continuous functionals ϕh are defined by 〈 f , ϕh〉 :=

∫
Ω f h dλ.

Let us continue by showing some results regarding the spaces Lp(m)
as WCG spaces.

Theorem 1.0.8. For 1 < p < ∞, Lp(m)∗ is order continuous and has weak
unit. In particular, Lp(m)∗ is WCG.

Proof. Since Lp(m) is p−convex and `1 is not p−convex, we can apply
[48, Proposition 1.d.9] to conclude that no sublattice of Lp(m) is order iso-
morphic to `1. Equivalently, Lp(m)∗ is order continuous, see [51, Theo-
rem 2.4.14]. On the other hand, since Lp(m) is an order continuous Banach
function space over λ, the space Lp(m)∗ has weak unit (namely, the func-
tional ϕχΩ ). Therefore, Lp(m)∗ is order isomorphic to the L1 space of some
vector measure and so it is WCG.

Subspaces of WCG Banach spaces are not WCG in general. The first
example showing this phenomenon was built by H.P. Rosenthal [68] ([25,
Chapter 5, §10]) over the L1 space of certain probability measure. How-
ever, the property of being WCG is always inherited by subspaces having
WCG dual, according to a result of W.B. Johnson and J. Lindenstrauss [41]
([25, Chapter 5, §8]). Since Lp(m) is WCG and the dual of any subspace
of Lp(m) is WCG (because it is a quotient of the WCG space Lp(m)∗), we
have the following corollary.

Corollary 1.0.9. For 1 < p < ∞, every subspace of Lp(m) is WCG.

A result of T. Kuo ([26, Corollary 7, p. 83]) states that every dual WCG
Banach space has the Radon-Nikodým property. On the other hand, it is
well known that a dual Banach space Y∗ has the Radon-Nikodým property
if and only if every separable subspace of Y has separable dual, see [26,
Corollary 8, p. 198]. Bearing in mind these facts and Theorem 1.0.8, we get
the following corollary. For further characterizations of the separability of
Lp(m), see [31].

Corollary 1.0.10. Let 1 < p < ∞. Every separable subspace of Lp(m) has sepa-
rable dual. In particular, Lp(m) is separable if and only if Lp(m)∗ is separable.
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We continue with the definition and properties related to the space of
scalarly integrable functions with respect to a Banach space valued mea-
sure. We say that a measurable real function f is scalarly m− integrable
whenever condition (I1) is satisfied; that is f is integrable with respect
each scalar measure 〈m, x∗〉, with x∗ ∈ X∗. We denote by L1

w(m) the space
of equivalence classes of λ−a.e. equal scalarly m−integrable functions.
Obviously L1(m) ⊆ L1

w(m), and equality holds when X does not contain
a copy of c0 (see for instance in [42, Ch. II Thm. 5.1]). The first system-
atic study of L1

w(m) was done by G. Stefansson in [75], he showed that
L1

w(m) endowed with the norm (1.5) is a B.f.s. containing L1(m) as a closed
subspace. The space L1

w(m) has the σ−Fatou property. Indeed, take an in-
creasing sequence in the positive cone L1

w(m)+ so that supn ‖ fn‖L1
w(m) < ∞,

and define f as the λ−a.e. pointwise supremum of ( fn)n, f := supn fn,
thus

‖ f ‖L1
w(m) = sup

x∗∈B(X∗)

∫

Ω
| f |d|〈m, x∗〉| = sup

x∗∈B(X∗)
sup
n∈N

∫

Ω
| fn|d|〈m, x∗〉|

= sup
n∈N

sup
x∗∈B(X∗)

∫

Ω
| fn|d|〈m, x∗〉| = sup

n
‖ fn‖L1

w(m) < ∞.

For 1 ≤ p < ∞, let Lp
w(m) denote the (1/p)−power of L1

w(m), then
Lp

w(m) := L1
w(m)[1/p] ⊆ L1

w(m). By Proposition 1.0.2, Lp
w(m) is a λ−B.f.s.

when endowed with the norm ‖ · ‖Lp
w(m) := ‖ · ‖L1

w(m)[1/p]
. The space Lp

w(m)
was firstly defined and studied by A. Fernández et al. in [31]. We clearly
have again that Lp(m) is a closed sublattice of Lp

w(m). An appel to Propo-
sition 1.0.2 yields the p−convexity of Lp

w(m) with p−convexity constant
equal to 1. For a general Banach lattice (X, ‖ · ‖X), its order continuous
part is defined in [79] as

Xa := {x ∈ X : |x| ≥ |xn| ↓ 0 for xn ∈ X then ‖xn‖X ↓ 0}.
Xa is a closed ideal of X, in fact it is the largest order ideal of X so that its
restriction has order continuous norm. In [16] the authors prove, for p = 1,
that the order continuous part of Lp

w(m) is exactly Lp(m). The same argu-
ments can be used to prove this for p > 1. This fact, and the p−convexity
of Lp

w(m), whose order unit χΩ belongs to its order continuous part, are
the key to prove the following representation theorem, see for instance
Theorem 4 in [17].

Theorem 1.0.11. Let 1 ≤ p < ∞ and Z be a p−convex Banach lattice which
has the σ−Fatou property and admits a weak order unit which belongs to its order
continuous part Za. Then there is a Za−valued measure m such that Lp(m) is
lattice isomorphic to Za and Lp

w(m) is lattice isomorphic to Z.
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Operator Theory. Let us finish this section by defining the notation and
some basic concepts regarding the operator theory. For X and Y Banach
spaces we will denote by L(X, Y) the collection of linear and continuous
maps between X and Y, the elements in L(X, Y) are bounded operators .
A linear map T : X → Y between Banach spaces is continuous if and only
if

‖T‖ := sup
x∈B(X)

‖T(x)‖Y < ∞. (1.10)

Notice that L(X, Y) is a Banach space when endowed with the norm given
by (1.10), for T ∈ L(X, Y). The topology induced by this norm is called
the uniform operator topology. The strong operator topology corresponds to
the topology of pointwise convergence; a net (Tα) ⊂ L(X, Y) converges to
T in the strong operator topology whenever ‖(Tα − T)(x)‖Y → 0 for every
x ∈ X.

A collection I of operators between Banach spaces is an operator ideal
whenever for every T ∈ I, the composition of T with S and U bounded
operators, S ◦ T ◦U belongs to I.

Let us recall some definitions about geometrical properties of opera-
tors between Banach lattices. Let X and Y be Banach lattices, and 0 < q <

∞. A linear operator T : X → Y is said to be q−convex if there exists a
constant c > 0 such that

∥∥∥∥∥∥

(
n

∑
i=1

|T(xi)|q
) 1

q
∥∥∥∥∥∥

Y

≤ c

(
n

∑
i=1

‖xi‖q
X

) 1
q

(1.11)

holds for every x1, . . . , xn ∈ X and n ∈ N. The smallest constant c satisfy-
ing (1.11) is called the q−convexity constant of T, and denoted by M(q)[T].
A linear operator S : X → Y is said to be q−concave if there exists a con-
stant c > 0 such that

(
n

∑
i=1

‖S(xi)‖q
Y

) 1
q

≤ c

∥∥∥∥∥∥

(
n

∑
i=1

|xi|q
) 1

q
∥∥∥∥∥∥

X

(1.12)

for every x1, . . . , xn ∈ X and n ∈ N. The smallest constant c satisfying
(1.12) is called the q−concavity constant of S and denoted by M(q)[S]. Re-
call that a Banach space X is q−convex (q−concave) whenever the identity
map IdX is a q−convex (q−concave) operator.





Chapter 2

Weak topologies in Lp(m)

This chapter is devoted to the study of two intermediates topologies
for the space Lp(m) when 1 < p < ∞. These topologies were introduced
by E. A. Sánchez Pérez in [70]. In the following 1 < p, q < ∞ are conju-
gated real numbers, as in (1.7).

The m−weak topology corresponds to the topology of the weak conver-
gence of integrals. It is defined by the family of seminorms

Γ := {|γg,x∗ | : g ∈ B(Lq(m)), x∗ ∈ B(X∗)}, (2.1)

where γg,x∗( f ) :=
∫

Ω f gd〈m, x∗〉, f ∈ Lp(m). The m−weak topology will
be denoted by σ(Lp(m), Γ).

Since each pair of elements x∗ ∈ X∗ and g ∈ Lq(m) defines a functional
γg,x∗ ∈ Lp(m)∗, in general the m−weak topology is coarser than the weak
topology of Lp(m). The main result in the first section deals with the co-
incidence of the m−weak topology with the weak topology in bounded
subsets of Lp(m), for 1 < p < ∞. We will also study some condition to en-
sure that Γ is a James boundary for the unit ball B(Lp(m)). Notice that for
f0 ∈ Lp(m) and ε > 0, the neighborhoods of radius ε of f0 for the m−weak
topology are finite intersection of sets Vg,x∗,ε( f0), with g ∈ B(Lq(m)) and
x∗ ∈ B(X∗) where

Vg,x∗,ε( f0) := { f ∈ Lp(m) : |γg,x∗( f − f0)| ≤ ε}. (2.2)

The m−topology for the space Lp(m) corresponds to the topology of
norm convergence of the integrals. It is generated by the family of semi-
norms

Λ := {ζg : g ∈ B(Lq(m))},
where ϕg( f ) :=

∥∥∫
Ω f gdm

∥∥
X, for f ∈ Lp(m). It is not difficult to see that

the m−topology is coarser than the norm topology and finer than the

13
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weak topology on bounded sets. Let us show two simple examples that
represent the extreme cases. When we consider a positive scalar measure,
the m−topology coincides with the weak topology of the space Lp(m) on
bounded sets. If we consider a vector measure m with range in Lr(µ) de-
fined by m(A) := χA for A ∈ Σ, we get that the m−topology coincides
with the norm topology of the space Lp(m). For more details about the
Lp(m) space of this particular vector measure we refer the reader to Ex-
ample 3.1.4.

As for the m−weak topology, the neighborhoods of f0 ∈ Lp(m) of ra-
dius ε > 0 are finite intersections of sets Vg,ε( f0) with g ∈ B(Lq(m)) and

Vg,ε( f0) := { f ∈ Lp(m) : ζg( f − f0) ≤ ε}. (2.3)

In the following σ(Lp(m), Λ) denotes the m−topology.

2.1. m−weak topology

In the first part of this section we will give sufficient conditions to en-
sure that the unit ball of Lp(m) endowed with the m−weak topology is
metrizable. These conditions are related with the separability of Lp(m). In
the second part we show that, for p > 1 the weak convergence of bounded
nets in Lp(m) is characterized by the weak convergence of the integrals in
the Banach space X. That means that the topology σ(Lp(m), Γ) coincide
with the weak topology on the bounded subsets of Lp(m). For f ∈ Lp(m),
we can define the integration operator

I f : Lq(m) → X, I f (g) :=
∫

Ω
f g dm,

with ‖I f ‖ = ‖ f ‖Lp(m), see Proposition 1.0.7. Notice that, as a consequence
of the previous equality, the set Γ ⊂ B(Lp(m)∗) defined in the introduction
is norming.

2.1.1. Metrizability of the unit ball

Metrizability of B(Lp(m)) can be directly deduced from the following
arguments assuming some conditions of separability. First notice that the
map

Φ : B(X∗)× B(Lq(m)) −→ Lp(m)∗

defined by Φ(x∗, g)( f ) :=
∫

Ω f gd〈m, x∗〉 = γg,x∗( f ) for f ∈ Lp(m) is bi-
linear. Moreover we have ‖Φ(x∗, g)‖Lp(m)∗ ≤ ‖x∗‖X∗‖g‖Lq(m) for every
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x∗ ∈ B(X∗) and g ∈ B(Lq(m)), since

‖Φ(x∗, g)‖Lp(m)∗ = sup
f∈B(Lp(m))

|Φ(x∗, g)( f )|

≤ ‖x∗‖X∗ sup
f∈B(Lp(m))

∥∥∥∥
∫

Ω
f gdm

∥∥∥∥
X

≤ 1.

Let E := span{Φ(B(X∗) × B(Lq(m)))}. Notice that E, when endowed
with the topology induced by Lp(m)∗, can be identified with a subspace
of Lp(m)∗. The (non injective) mapping given by Φ, yields that E is a
normed separable space assuming that Lq(m) and X∗ are separable. More-
over B(Lp(m)) can be considered as a subset of B(E∗) , therefore B(Lp(m))
endowed with the weak∗ topology induced by (Lp(m), E) is metrizable.
The following proposition is a consequence of these arguments and of [43,
(1) page 163].

Proposition 2.1.1. Assuming that X∗ and Lq(m) are separable, B(Lp(m)) is
metrizable when endowed with the topology σ(Lp(m), Γ).

In the appendix at the end of this chapter we give a proof of the fol-
lowing result in which an explicit definition for the metric of the space is
given. Nevertheless the proof can be directly obtained as a consequence
of the following fact. Let S = {x∗i : i ∈ N} a sequence in B(X∗) that sepa-
rates points of X, then the topology in X of pointwise convergence in S̄ is
metrizable with the following distance

d(x, y) := ∑
i∈N

1
2i |〈x, x∗i 〉 − 〈y, x∗i 〉|,

for x and y in X. When this argument is applied to the set Γ assuming
the separability of B(Lq(m)) and B(X∗), the following proposition is di-
rectly proved. Since in the following section we will prove the coincidence
on bounded sets of the weak topology with the topology σ(Lp(m), Γ),
this proposition gives us a metric for the weak topology in the unit ball
B(Lp(m)).

Proposition 2.1.2. If X∗ and Lq(m) are separable, then the unit ball B(Lp(m))
endowed with the topology σ(Lp(m), Γ) is metrizable, and the metric is given by
the following formula:

ρ( f1, f2) :=
∞

∑
n=1

2−n

(
∞

∑
k=1

2−k
∣∣∣∣
∫

Ω
( f1 − f2)gkd〈m, x∗n〉

∣∣∣∣
)

,

for f1, f2 ∈ B(Lp(m)), where S1 = (gk)∞
k=1 and S2 = (x∗n)∞

n=1 are dense subsets
of B(Lq(m)) and B(X∗), respectively.
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The main property assumed in the previous results is the separability
of the space Lp(m). For p = 1 separability of Lp(m) is studied in [63], for
p > 1 the corresponding results can be found in [60]. We say that the σ-
algebra Σ is m−essentially countably generated (see definition in [42, Section
II.6]) if there exists a countably generated sub−σ−algebra Σ0 so that for
each A ∈ Σ there is B ∈ Σ0 with A − B and B − A m−null sets. The
following characterization of separability occurs in [31].

Proposition 2.1.3. For 1 ≤ p < ∞, the following assertions are equivalent

(i) Lp(m) is separable,

(ii) L1(m) is separable,

(iii) Σ is m−essentially countably generated,

(iv) Σ is |〈m, x∗〉|−essentially countably generated for every Rybakov’s mea-
sure for m.

(iv) Σ is |〈m, x∗〉|−essentially countably generated for some Rybakov’s mea-
sure for m.

As a consequence we get the following corollary.

Corollary 2.1.4. Let 1 < p < ∞. If the σ−algebra Σ is |〈m, x∗〉|−essentially
countably generated for some Rybakov’s measure |〈m, x∗〉| and X∗ is separable,
then (B(Lp(m)), σ(Lp(m), Γ)) is metrizable.

We say that a subset A of a metric space X is totally bounded if for each
ε > 0 there exists a finite subset {x1, . . . , xn} ⊂ X that is ε−dense in A. That
is, the collection of balls centered in xi with radius ε, for i = 1, . . . , n, covers
A. Obviously, every compact subset is totally bounded. The following
result that holds for metric spaces can be found in [1].

Theorem 2.1.5. For a metric space the following assertions are equivalent:

(i) the space is compact,

(ii) the space is complete and totally bounded,

(iii) the space is sequentially compact, i.e. every sequence has a convergent sub-
sequence.

Therefore, under the hypothesis of separability ensuring that the unit
ball B(Lp(m)) is metrizable when endowed with topology σ(Lp(m), Γ), we
can establish the following equivalences.
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(i) (B(Lp(m)), σ(Lp(m), Γ)) is compact.

(ii) (B(Lp(m)), σ(Lp(m), Γ)) is complete and totally bounded.

(iii) (B(Lp(m)), σ(Lp(m), Γ)) is sequentially compact.

Notice that, since we will prove that the m− weak topology coincides
with the weak topology on bounded sets, the equivalences above hold
without the assumption of metrizability as a consequence of Eberlein-
Smulyan Theorem.

2.1.2. Weak convergence in bounded sets of Lp(m)

Let µ be a probability measure and 1 < p < ∞. In the classical space
of µ−integrable functions Lp(µ), the duality Lp(µ)∗ ∼= Lq(µ) and the den-
sity of simple functions in Lq(µ) implies that a bounded net ( fα) is weakly
convergent to f ∈ Lp(µ) if and only if

∫
A fα dµ → ∫

A f dµ for every mea-
surable set A. For p = 1 and m a vector measure, G. P. Curbera in [13] and
independently S. Okada in [53] showed that, assuming that L1(m) con-
tains no complemented subspace isomorphic to `1, the weak convergence
of bounded nets in L1(m) is characterized by the weak convergence in X
of the integrals over arbitrary measurable sets. For bounded sequences
in L1(m) such characterization of weak convergence holds whenever the
range of m is norm relatively compact (see for instance [53]). Nevertheless
this is not true in general, as showed in [14].

Our aim in this section is to obtain a positive result about the coin-
cidence of the weak topology of Lp(m) and the topology σ(Lp(m), Γ) on
bounded sets. In order to prove it we need the following lemma which
might be well known, the proof is included for the aim of completeness.

Lemma 2.1.6. Let Y be a Banach lattice such that both Y and Y∗ are order con-
tinuous. Let C ⊂ Y∗ be a set which separates the points of Y. Then the ideal
I ⊂ Y∗ generated by C is norm dense in Y∗.

Proof. The norm closure I ′ of I in Y∗ is an ideal, cf. [51, Proposition 1.2.3].
Since Y∗ is order continuous, every closed ideal of Y∗ is a band, [51, Corol-
lary 2.4.4]. On the other hand, the order continuity of Y ensures that any
band of Y∗ is w∗−closed, cf. [51, Corollary 2.4.7]. It follows that I ′ is
w∗−closed. Finally, since I ′ is a linear subspace of Y∗ which separates the
points of Y, Hahn-Banach theorem yields that I ′ = Y∗.

The proof of the next result is inspired by some of the ideas in [13,
Theorem 4].
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Theorem 2.1.7. Let 1 < p < ∞. The weak topology and σ(Lp(m), Γ) coincide
on any bounded subset of Lp(m). Consequently, a bounded net ( fα) in Lp(m)
converges weakly to f ∈ Lp(m) if and only if

∫
A fα dm → ∫

A f dm weakly in X
for every A ∈ Σ.

Proof. Fix a bounded net ( fα) in Lp(m) converging to f ∈ Lp(m) in the
topology σ(Lp(m), Γ). We will show that fα → f weakly. Let I ⊂ Lp(m)∗

be the ideal generated by Γ. Since Lp(m) and Lp(m)∗ are order continuous
(the latter by Theorem 1.0.8), we can apply Lemma 2.1.6 to conclude that
I is norm dense in Lp(m)∗. Bearing in mind that ( fα) is bounded, it is
clear that in order to prove that fα → f weakly it suffices to check that
〈 fα, ϕ〉 → 〈 f , ϕ〉 for every ϕ ∈ I .

To this end, fix ϕ ∈ I . There exist g1, . . . , gn ∈ Lq(m) and x∗1, . . . , x∗n ∈
X∗ such that |ϕ| ≤ ∑n

i=1 |γgi,x∗i |. An easy computation shows that γgi,x∗i =
ϕhi , where

hi := gi
d〈m, x∗i 〉

dλ
∈ H for all 1 ≤ i ≤ n.

As usual, d〈m, x∗i 〉/dλ denotes the Radon-Nikodým derivative of 〈m, x∗i 〉
with respect to λ. Take g ∈ H satisfying ϕ = ϕg. Then ϕ|g| = |ϕ| ≤
∑n

i=1 ϕ|hi | = ϕ∑n
i=1 |hi | and therefore

|g| ≤
n

∑
i=1

|hi| λ-a.e. (2.4)

Let us consider the non-negative finite measures defined on Σ by µ(A) :=∫
A |g| dλ and µi(A) :=

∫
A |hi| dλ for all 1 ≤ i ≤ n. Taking µ̃ := ∑n

i=1 µi,
inequality (2.4) ensures that µ ≤ µ̃ and so we can define an operator T :
L1(µ̃) → L1(µ) by T(h) = h. Notice that fα, f ∈ L1(µ̃) because fα, f ∈
L1(µi) for all 1 ≤ i ≤ n.

Claim.- fα → f weakly in L1(µi) for every 1 ≤ i ≤ n. Indeed, since
( fα) is bounded in L1(µi) (because it is bounded in Lp(m)), we only have
to check that

∫
A fα dµi →

∫
A f dµi for every A ∈ Σ. To this end, let us

consider a Hahn decomposition {G, Ω \ G} of 〈m, x∗i 〉, that is, G ∈ Σ and

|〈m, x∗i 〉|(E) = 〈m, x∗i 〉(E ∩ G)− 〈m, x∗i 〉(E \ G) for all E ∈ Σ.

We have
∫

A
fαdµi =

∫

A
fα|gi| d|〈m, x∗i 〉|

=
∫

Ω
fα(|gi|χA∩G−|gi|χA\G) d〈m, x∗i 〉 →

∫

Ω
f (|gi|χA∩G−|gi|χA\G) d〈m, x∗i 〉

=
∫

A
f |gi| d|〈m, x∗i 〉| =

∫

A
f dµi,
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because |gi|χA∩G−|gi|χA\G ∈ Lq(m) and fα → f in the topology σ(Lp(m), Γ).
This proves the Claim.

From the previous Claim it follows that fα → f weakly in L1(µ̃). Since
T is weak-weak continuous, we infer that fα → f weakly in L1(µ).

Set A := {ω ∈ Ω : g(ω) ≥ 0} ∈ Σ. Then

〈 fα, ϕ〉 =
∫

Ω
fαg dλ =

∫

A
fα|g| dλ−

∫

Ω\A
fα|g| dλ

=
∫

A
fα dµ−

∫

Ω\A
fα dµ →

∫

A
f dµ−

∫

Ω\A
f dµ =

∫

Ω
f g dλ = 〈 f , ϕ〉.

This finishes the proof of the first assertion of the theorem. The last part
follows immediately bearing in mind that simple functions are dense in
Lq(m).

Let F ⊂ Lp(m), the following lemma is a direct consequence of the
Uniform Boundedness Principle applied to the family {I f : f ∈ F} of
operators from Lq(m) to X.

Lemma 2.1.8. A set F ⊂ Lp(m) is bounded if and only if the set of integrals
{∫Ω f g dm : f ∈ F} ⊂ X is bounded for every g ∈ Lq(m).

Corollary 2.1.9. A sequence ( fn)n in Lp(m) converges weakly to f ∈ Lp(m) if
and only if fn → f in the topology σ(Lp(m), Γ).

James boundaries of B(Lp(m)). Let K a set in a linear space E, we say
that a subset S ⊂ K is an extremal set of K, denoted S = Ext(K), when the
following condition is satisfied

if x, y ∈ K, 0 < t < 1, and tx + (1− t)y ∈ S, then x, y ∈ S.

Let X be a Banach space, a subset B ⊂ B(X∗) is a James boundary for B(X∗)
if for x ∈ X we have ‖x‖X = max{|〈x, x∗〉| : x∗ ∈ B}, i.e. for each x ∈ X
there is some b∗ ∈ B so that ‖x‖X = |〈x, b∗〉|.

G. Manjabacas [49, Section 4.7] studied weak compactness in L1(m)
with the help of the weaker topology σ(L1(m), B) of pointwise conver-
gence on the norming set B ⊂ B(L1(m)∗) made up of all functionals of
the form f 7→ ∫

Ω f h d〈m, x∗〉, where h ∈ B(L∞(m)) and x∗ ∈ B(X∗). The
key point is that bounded σ(L1(m), B)−compact sets are weakly compact
whenever B is a James boundary for B(L1(m)∗), and this is the case, for
instance, provided that m has norm relatively compact range.

A result of G. Godefroy (see [39, Theorem III.3]) ensures that if a dual
Banach space Y∗ is WCG, then

B(Y∗) = co(C)
norm

(2.5)
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for every James boundary C ⊂ B(Y∗). Other cases where the previous
equality holds can be found in [11]. Note that (2.5) implies that σ(Y, C)
coincides with the weak topology on any bounded subset of Y.

Bearing in mind that Lp(m)∗ is WCG when 1 < p < ∞ (Theorem 1.0.8),
we get the following corollary which, in particular, provides a different
proof of Theorem 2.1.7 when Γ is a James boundary for B(Lp(m)∗).

Corollary 2.1.10. Let C be a James boundary for B(Lp(m)∗). Then σ(Lp(m), C)
and the weak topology coincide on any bounded subset of Lp(m).

The rest of the section is essentially devoted to presenting a couple of
sufficient conditions ensuring that Γ is a James boundary for B(Lp(m)∗).
We do not know whether this is always the case. In order to prove the
first theorem regarding a condition to ensure that Γ is a James boundary
of B(Lp(m)), we need the following technical lemma.

Lemma 2.1.11. Suppose m has norm relatively compact range and let 1 < p <

∞. Let f ∈ Lp(m). Then the operator I f : Lq(m) → X defined by I f (g) :=∫
Ω f gdm, is compact.

Proof. The norm relative compactness of m(Σ) ensures that IχΩ is com-
pact, see [31, Theorem 3.6]. Clearly, this implies that IχA is compact for
every A ∈ Σ and, consequently, I f is compact whenever f is a simple
function. For the general case, let ( fn)n be a sequence of simple functions
converging to f in the norm topology of Lp(m). Then (I fn)n is a sequence
of compact operators converging to I f in the operator norm and, therefore,
I f is compact too.

Theorem 2.1.12. Suppose m has norm relatively compact range and Lp(m) is
reflexive. Then:

(i) Γ is w∗−closed in Lp(m)∗,

(ii) Ext(B(Lp(m)∗)) ⊂ Γ. In particular, Γ is a James boundary for B(Lp(m)∗).

Proof. Since Γ is norming and symmetric, the Hahn-Banach theorem en-

sures that B(Lp(m)∗) = co(Γ)
w∗

. This equality and the so-called “con-
verse” of the Krein-Milman theorem (cf. [29, Lemma 5, p. 440]) yield
Ext(B(Lp(m)∗)) ⊂ Γw∗ .

Since Ext(B(Lp(m)∗)) is a James boundary for B(Lp(m)∗), it only re-
mains to prove that Γ is w∗−closed. To this end, let (γgα,x∗α) be a net in Γ
which converges to some ϕ ∈ B(Lp(m)∗) in the w∗−topology. We will
check that ϕ ∈ Γ. By the reflexivity of Lp(m), the space Lq(m) is reflex-
ive as well, see [31, Corollary 3.10]. Since B(Lq(m)) is weakly compact
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and B(X∗) is w∗−compact, we can assume without loss of generality that
gα → g ∈ B(Lq(m)) weakly and x∗α → x∗ ∈ B(X∗) in the w∗−topology.
We claim that ϕ = γg,x∗ .

To this end, fix f ∈ Lp(m) and set xα :=
∫

Ω gα f dm ∈ X for every α.
Since gα → g weakly in Lq(m), we have

〈xα, x∗〉 =
∫

Ω
gα f d〈m, x∗〉 →

∫

Ω
g f d〈m, x∗〉 = γg,x∗( f ).

On the other hand, the set {xα} is norm relatively compact (by Lemma
2.1.11), x∗α → x∗ in the w∗−topology and (x∗α) is bounded, so we have

|〈xα, x∗α〉 − 〈xα, x∗〉| → 0.

Since |〈xα, x∗α〉 − γg,x∗( f )| ≤ |〈xα, x∗α〉 − 〈xα, x∗〉|+ |〈xα, x∗〉 − γg,x∗( f )| for
every α, we conclude that

ϕ( f ) = lim
α

γgα,x∗α( f ) = lim
α
〈xα, x∗α〉 = γg,x∗( f ).

As f ∈ Lp(m) is arbitrary, ϕ = γg,x∗ and the proof is over.

Remark 2.1.13. Under the assumptions of the previous theorem, the fact
that Γ is a James boundary for B(Lp(m)∗) can be deduced in a more direct
way. Let f ∈ Lp(m), the operator I f : Lq(m) → X is weak–weak continu-
ous, hence the convex set I f (B(Lq(m))) is weakly compact and, in partic-
ular, norm closed. The compactness of I f now ensures that I f (B(Lq(m)))
is norm relatively compact, thus there is g ∈ B(Lq(m)) such that ‖I f (g)‖X

= ‖I f ‖ = ‖ f ‖Lp(m). Clearly, we have ‖I f (g)‖ = γg,x∗( f ) for some x∗ ∈
B(X∗), and the conclusion follows.

Recall that a vector measure ϑ taking values in a Banach lattice Y is
said to be positive if ϑ(·) ≥ 0. In this case, we have |〈ϑ, y∗〉| ≤ 〈ϑ, |y∗|〉
for every y∗ ∈ Y∗ and the semivariation of ϑ can be computed in a simple
way. In fact, for A ∈ Σ, ‖ϑ‖(A) = ‖ϑ(A)‖X. This observation will be
needed in the proof of the following theorem.

Theorem 2.1.14. Suppose X is a Banach lattice and m is positive. Then Γ is a
James boundary for B(Lp(m)∗).

Proof. Fix f ∈ Lp(m) \ {0}. Since m is positive, the vector measure ϑ :
Σ → X given by ϑ(A) :=

∫
A | f |p dm is positive as well. The comments

preceding the theorem can be applied to ϑ ensuring that

‖ f ‖p
Lp(m) = ‖ϑ‖(Ω) = ‖ϑ(Ω)‖ =

∥∥∥∥
∫

Ω
| f |p dm

∥∥∥∥
X

.
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Take x∗ ∈ B(X∗) such that ‖ f ‖p
Lp(m) =

〈∫
Ω | f |p dm, x∗

〉
=

∫
Ω | f |p d〈m, x∗〉.

Set h := sign( f )| f |p−1 and note that h ∈ Lq(m) and ‖h‖q
Lq(m) = ‖ f ‖p

Lp(m).
Define g := (1/‖h‖Lq(m))h ∈ B(Lq(m)). We claim that γg,x∗( f ) = ‖ f ‖Lp(m).
Indeed:

∫

Ω
f g d〈m, x∗〉 =

(∫

Ω
f h d〈m, x∗〉

)
· ‖h‖−1

Lq(m)

=
(∫

Ω
| f |p d〈m, x∗〉

)
· ‖ f ‖−(p/q)

Lp(m) = ‖ f ‖p
Lp(m) · ‖ f ‖−(p/q)

Lp(m) = ‖ f ‖Lp(m).

This finishes the proof.

2.2. m−topology

In this section we will introduce the m−topology of the space Lp(m),
also denoted by σ(Lp(m), Λ). First, we will give the conditions to ensure
that the unit ball B(Lp(m)) is metrizable when endowed with this topol-
ogy. This topology will be extremely useful in Chapter 4, devoted to the
study of a new class of r−summing operators. In order to prove some the-
orems regarding these new classes of operators, we will work with subsets
of Lp(m) that are compact with respect to the m−topology (in the follow-
ing, m−compact). We will finish the section with a characterization of
m−compact sets.

2.2.1. Metrizability of the unit ball

Notice that we can identify isometrically a subset K of Lp(m) with a
subset of L(Lq(m), X). Each function f in K is associated to the linear
and continuous operator I f ∈ L(Lq(m), X), this identification is an isom-
etry as a consequence of Proposition 1.0.7. Under this identification the
m−topology can be considered exactly as the strong operator topology for
the space L(Lq(m), X).

The metrizability of the unit ball of Lp(m) endowed with m−topology
is a direct consequence of the previous comments and following classical
argument. If X and Y are Banach spaces, with Y separable, let {yi : i ∈ N}
be a dense subset in B(Y); the strong operator topology of L(Y, X) can be
metrized with the distance

d(S, T) := ∑
i∈N

1
2i ‖T(yi)− S(yi)‖X,

where S and T belong to L(Lq(m), X).
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Proposition 2.2.1. If Lq(m) is separable, then (B(Lp(m)), σ(Lp(m), Λ)) is
metrizable.

Let ρ a metric for the space Lp(m), ε > 0 and f0 ∈ Lp(m), we denote by
Bρ,g( f0) the ball (with respect to the metric ρ) centered in f0 with radius
ε, that is

Bρ,ε( f0) := { f ∈ Lp(m) : ρ( f0, f ) < ε}.
The following theorem can be directly proved with the arguments above,
nevertheless in the appendix of this chapter we give an alternative prove,
with the explicit construction of the metric.

Theorem 2.2.2. Assuming the separability of Lq(m), we have that B(Lp(m))
is metrizable when endowed with the m−topology, and the metric is given by

ρ( f1, f2) :=
∞

∑
n=1

2−n
∥∥∥∥
∫

Ω
( f1 − f2)gndm

∥∥∥∥ , f1, f2 ∈ B(Lq(m)).

where S = (gn)∞
n=1 is a dense subset of B(Lq(m)).

As for the m−weak topology, we can apply the results regarding the
separability of the space Lp(m). The following corollary is consequence of
Proposition 2.1.3.

Corollary 2.2.3. Let 〈m, x∗〉 be a Rybakov’s measure for m. If the σ−algebra Σ is
|〈m, x∗〉|−essentially countably generated and p > 1 then unit ball (B(Lp(m))
is metrizable when endowed with the topology σ(Lp(m), Λ)).

We finish the study of metrizability of the unit ball endowed with the
m−topology with a sort of converse of Theorem 2.2.2. In order to prove
it, we must assume that the space Lq(m) has a separation condition.We
say that the space Lq(m) has the m−separation property whenever for every
proper closed subspace S of Lq(m) there is some f ∈ Lp(m), non null
function λ−a.e. such that

∥∥∥∥
∫

Ω
hgdm

∥∥∥∥
X

= 0

for every h ∈ S.

Proposition 2.2.4. If B(Lp(m)) is metrizable when endowed with the m−topolo-
gy and Lq(m) has the separation property, then Lq(m) is separable.

Proof. Metrizability of the unit ball B(Lp(m)) guaranties the existence of
a sequence of neighborhoods of 0 (with respect to the metric ρ), (B1

n
(0))n.

Clearly
⋂

n∈N B1
n
(0) = {0}. The coincidence of the m−topology with the
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topology induced by the metric ρ implies the following. For each n ∈ N

there is some neighborhood of 0 for the m−topology Vgn
1,...,gn

mn ,εn(0), so that

B(Lp(m)) ∩Vgn
1,...,gn

mn ,εn(0) = ∩mn
i=1(B(Lp(m)) ∩Vgi

n,εn(0)) ⊂ B1
n
(0).

Notice that, for every g ∈ Lq(m) and each ε > 0

B(Lp(m)) ∩Vg,ε(0) =
{

f ∈ B(Lp(m)) :
∥∥∥∥
∫

Ω
f gdm

∥∥∥∥ < ε

}

=
{

f ∈ B(Lp(m)) :
∥∥∥∥
∫

Ω

g
ε

f dm
∥∥∥∥ < 1

}

= B(Lp(m)) ∩Vg
ε ,1(0).

Let gn
i = gn

i
εn

, for every i = 1, . . . , nm and take {g1, . . .} =
{

g1
1, . . .

}
. We

have
{0} =

⋂

n∈N

B1
n
(0) ⊃ ⋂

n∈N

B(Lp(m)) ∩Vgn,1(0) =
⋂

n∈N

Vn. (2.6)

Denote by Y the closure of the linear subspace generated by {g1, g2, . . .}.
We will show that Y = Lq(m) by contradiction. Suppose that Y 6= Lq(m).
Separation property of Lq(m) yields the existence of a non null function
f ∈ Lp(m) so that

∥∥∫
Ω f gdm

∥∥
X = 0 for every g ∈ Y. We can assume

without loss of generality that ‖ f ‖Lp(m) = 1. Then we get that f ∈ Vn

for every n ∈ N. By equality (2.6) we conclude f = 0, a contradiction.
Therefore Y = Lq(m). To obtain the separability of Lq(m) it suffices to
notice that the set of finite linear combinations of {g1, g2, . . .}with rational
coefficients is countable and dense in Lq(m).

2.2.2. m-compactness in Lp(m)

Our aim in this section is to characterize those subsets of Lp(m) that
are compact with respect to the m−topology (m−compact sets). The point
is that each subset K of Lp(m) can be identified isometrically with a subset
of L(Lq(m), X) as follows. Each f ∈ Lp(m) is associated to the integra-
tion operator I f : Lq(m) → X, isometry is a consequence of Proposition
1.0.7. In fact the m−topology coincides with the strong operator topology
of L(Lq(m), X) when restricted to those operators that are defined by an
integral with respect to m, I f with f ∈ Lq(m).

We say that a subset K ⊂ Lp(m) is m−complete if every Cauchy net with
respect to the m−topology (m−Cauchy) contained in K is σ(Lp(m), Λ)−
convergent (m−convergent) in K.
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Proposition 2.2.5. Let K ⊆ Lp(m). The following statements are equivalent.

(i) K is m−compact.

(ii) The set K is closed in L(Lq(m), X) for the strong operator topology and for
every g ∈ Lq(m), the set

Kg :=
{∫

Ω
f gdm ∈ X : f ∈ K

}

is (norm) compact.

(iii) K is m−complete and for every g ∈ Lq(m), the set

Kg :=
{∫

Ω
f gdm ∈ X : f ∈ K

}

is (norm) compact.

Proof. The proof of (i) ⇒ (ii) is obvious, having in mind that Lp(m) en-
dowed with the m−topology is a Hausdorff space. For the converse, con-
sider the Cartesian Product Πg∈Lq(m)X. Notice that L(Lq(m), X) with the
strong operator topology is isomorphic to the set

{
(T(g))g∈Lq(m) : T ∈ L(Lq(m), X)

} ⊆ Πg∈Lq(m)X

with the product topology. Let i : K → Πg∈Lq(m)X be the map defined by
i( f ) := (

∫
Ω f gdm)g∈Lq(m), f ∈ K. Clearly, the m−topology in K coincides

with the restriction of the product topology to the set

i(K) =

{(∫

Ω
f gdm

)

g∈Lq(m)
: f ∈ K

}
⊆ Πg∈Lq(m)X.

Thus, i is an isomorphism. By the compactness of the sets Kg and Ty-
chonov theorem, the set

{(∫

Ω
fggdm

)

g∈Lq(m)
: fg ∈ K

}
= Πg∈Lq(m)Kg =: W

is a compact subset of Πg∈Lq(m)X for the product topology. Consequently,
i(K) is relatively compact, and its closure is compact in the product. Since
i(K) endowed with the product topology restricted to W is isomorphic to
K endowed with the m−topology, to show the m−compactness of K it is
enough to prove that i(K) is closed in W.

For this aim take a convergent net ((
∫

Ω fτg)g)τ∈T in i(K). Consider
two elements g1, g2 ∈ Lq(m). Then the linearity of the integral and the fact
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that the topology in the product is given by the pointwise convergence
give

lim
τ

∫

Ω
fτ(g1 + g2)dm = lim

τ

∫

Ω
fτg1dm + lim

τ

∫

Ω
fτg2dm.

Therefore, limτ(
∫

Ω fτgdm)g can be identified with the range of a linear
map R : Lq(m) → X. Since the sets Kg are compact and the operators
I fτ

: Lq(m) → X are continuous, the set { fτ|τ ∈ T } is pointwise bounded
and the pointwise limit of the net is also a continuous map (see [29, The-
orem II, 1.18]). Moreover, since the net converges in L(Lq(m), X) for the
strong operator topology and K is closed for this topology, we obtain that
there is a function f ∈ K such that R(g) =

∫
Ω f gdm for every g ∈ Lq(m).

Therefore, the set i(K) is closed in W, and thus it is m−compact. This gives
(i).

The proof of the fact that (iii) and (i) are equivalent follows the same
lines. To prove (iii) ⇒ (i), take an m−Cauchy net ( fτ)τ∈T in K. Obviously,
for every g ∈ Lq(m), the net

(∫
Ω fτgdm

)
τ∈T converges in X. So the limit

of the net is pointwise defined by the compactness of the sets Kg. The
m−completeness of the set K gives a function f such that m− limτ fτ = f .
Since this element can be identified with the element (

∫
Ω f gdm)g∈Lq(m) of

the product, we obtain that i(K) is a closed subset of the product, and
thus it is compact –see the argument given in the proof of (ii) =⇒ (i)–.
Therefore, as a consequence of the fact that i is an isomorphism, we obtain
that K is an m−compact set.

Let m be a positive vector measure with range in a Banach lattice and
E a finite dimensional subspace of Lp(m). In the following example we
show the construction of an m−compact m−norming set KE ⊂ B(Lq(m))
for E. That is, an m−compact set KE so that for every f ∈ E, ‖ f ‖Lp(m) =
supg∈KE

∥∥∫
Ω f gdm

∥∥. Recall that when the vector measure m is positive,
that is m(Σ) ⊂ X+, the norm of f ∈ Lp(m) is given by

‖ f ‖Lp(m) =
∥∥∥∥
∫

Ω
| f |pdm

∥∥∥∥
1
p

X
.

Example 2.2.6. Define Φ : δB(Lp(m)) → B(Lq(m)) by Φ( f ) = | f |
p
q sig{ f },

where δB(Lp(m)) = { f ∈ Lp(m) : ‖ f ‖Lp(m) = 1}. The map Φ is well
defined since for f ∈ δB(Lp(m)) we have by the positivity of m,

‖Φ( f )‖Lq(m) =
∥∥∥∥
∫

Ω
| f |pdm

∥∥∥∥
1
q

X
= 1.
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Moreover, for each f ∈ δB(Lp(m)) we have
∥∥∥∥
∫

Ω
f Φ( f )dm

∥∥∥∥
X

=
∥∥∥∥
∫

Ω
| f |pdm

∥∥∥∥
X

= ‖ f ‖p
Lp(m) = 1.

Let E be a finite dimensional subspace of Lp(m), by the equality above we
have that Φ(δB(E)) is m−norming for E. We will prove that Φ is contin-
uous in order to show that the m−norming set for E, Φ(δ(B(E))) is norm
compact, then m−compact. For this aim, let ( fn)n ∈ δB(Lp(m)) such that
limn→∞ fn = f ∈ δB(Lp(m)), that is limn→∞

∥∥∫
Ω | fn − f |pdm

∥∥
X = 0. We

must show that limn→∞
∥∥∫ |Φ( fn)−Φ( f )|qdm

∥∥
X = 0. For each n ∈ N,

we define

An := {w ∈ Ω : sig{ fn(w)} = sig{ f (w)}},
Bn := {w ∈ Ω : sig{ fn(w)} 6= sig{ f (w)}},

then
∥∥∥∥
∫

Ω

∣∣∣| fn|
p
q sig{ fn} − | f |

p
q sig{ f }

∣∣∣
q

dm
∥∥∥∥

X
≤

∥∥∥∥
∫

An

∣∣∣| fn|
p
q − | f |

p
q

∣∣∣
q

dm
∥∥∥∥

X︸ ︷︷ ︸
(I)

+
∥∥∥∥
∫

Bn

∣∣∣| fn|
p
q + | f |

p
q

∣∣∣
q

dm
∥∥∥∥

X︸ ︷︷ ︸
(I I)

.

In order to work with (I) and (I I), the following inequalities for positive
real numbers a and b will be used:

(a + b)r ≤ ar + br, r ≤ 1, (2.7)

and
(a + b)r ≤ 2r−1(ar + br), r ≥ 1. (2.8)

We will distinguish two cases.
Case 1. Suppose that p ≤ q. We can assume without lost of generality

that | fn|(w) > | f |(w) for w ∈ An. Having in mind inequality (2.7) above,
we get

| fn|(w) = (| fn|(w)− | f |(w)) + | f |(w)

=
(
((| fn|(w)− | f |(w)) + | f |(w))

p
q
) q

p

≤
(
(| fn|(w)− | f |(w))

p
q + | f |(w)

p
q
) q

p
,
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thus
∣∣∣| fn|(w)

p
q − | f |(w)

p
q

∣∣∣ ≤ || fn|(w)− | f |(w)|
p
q , therefore, when n → ∞

∥∥∥∥
∫

An

∣∣∣| fn|
p
q − | f |

p
q

∣∣∣
q

dm
∥∥∥∥

X
≤

∥∥∥∥
∫

Ω
|| fn| − | f ||p dm

∥∥∥∥
X
→ 0.

In order to study part (I I), an application of (2.8) yields

(
| fn|(w)

p
q + | f |(w)

p
q
) q

p ≤ 2
q
p−1(| fn|(w) + | f |(w)).

Since for w ∈ Bn we have that sig{ fn(w)} 6= sig{ f (w)}, the norms of the
integrals in (I I) are bounded by

∥∥∫
Ω | fn − f |pdm

∥∥
X = ‖ fn − f ‖Lp(m), that

tends to 0, and the conclusion follows.
Case 2. Suppose now that p > q we have, for w ∈ An,

∣∣∣| fn|(w)
p
q − | f |(w)

p
q

∣∣∣
q ≤

(
p
q

)q ∣∣∣| fn|(w)
p
q−1 + | f |(w)

p
q−1

∣∣∣
q
|| fn|(w)− | f |(w)|q ,

thus, Hölder’s inequality with k the conjugated exponent of p
q (we obtain

it by solving q
p + 1

k = 1, we get k = p
p−q , and p

q − 1 = p/q
k ), yields

∥∥∥∥
∫

An

(
| fn|(w)

p
q − | f |(w)

p
q
)q

dm
∥∥∥∥

X
≤

(
p
q

)q
∥∥∥∥∥
∫

An

(
| fn|(w)

p
q
k + | f |(w)

p
q
k

)qk

dm

∥∥∥∥∥

1
k

X︸ ︷︷ ︸
(I I I)

∥∥∥∥
∫

An

(| fn|(w)− | f |(w))p dm
∥∥∥∥

q
p

X︸ ︷︷ ︸
↓0

In order to find a bound for (I I I) we distinguish two cases. If 1
kq ≥ 1 by

(2.7) we get
(
| fn|(w)p 1

kq + | f |(w)p 1
kq

)qk ≤ | fn|(w)p + | f |(w)p. For 1
kq ≤ 1,

then qk ≥ 1 and we can apply inequality (2.8) and we get
(
| fn|(w)

p
kq + | f |(w)

p
kq

)qk ≤ 2qk−1(| fn|(w)p + | f |(w)p).

Thus we have that (I I I) is bounded therefore, the limit of (I) when n tends
to ∞ is 0.

Let us study now the part (I I). An application of (2.7), yields
(
| fn|(w)

p
q + | f |(w)

p
q
)q ≤

(
(| fn|(w) + | f |(w))

p
q
)q

.

So, again, the norms of the integrals in (I I) are bounded by
∥∥∥∥
∫

Ω
| fn − f |pdm

∥∥∥∥
X

= ‖ fn − f ‖Lp(m),
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that tends to 0, and the conclusion follows also in this case.
We have obtained that Φ is continuous with respect to the norm topol-

ogy. Then for any finite dimensional subspace E ⊂ Lp(m), Φ(δB(E)) is an
m−norming norm compact (then m−compact) subset of B(Lq(m)).

For a general vector measure it is not possible to construct a norm-
ing m−compact set. Nevertheless, for every vector measure m (not nec-
essarily with range in a Banach lattice), for E a finite dimensional sub-
space of Lp(m) and for every 0 < ε < 1

2 we can obtain an m−compact
m− ε−norming set KE,ε ⊂ Lq(m). That is an m−compact set KE,ε so that

(1− ε)‖ f ‖Lp(m) ≤ sup
g∈KE,ε

∥∥∥∥
∫

Ω
f gdm

∥∥∥∥
X
≤ ‖ f ‖Lp(m),

for each f ∈ E. ,In the following example, we show the details of the
construction of a finite (then compact) subset in B(Lq(m)) that is m −
ε−norming for E.

Example 2.2.7. Denote by δB(E) = { f ∈ E : ‖ f ‖Lp(m) = 1} the boundary
of the unit ball of E. For each natural number n we can cover δB(E) with
a finite number of balls of radius 1

n , with centers { f n
1 , . . . , f n

mn
}. Moreover,

for each center f n
i , i = 1, . . . , mn and each ε0 > 0 , there is some gn

i,ε0 ∈
B(Lq(m)) so that ‖ f n

i ‖Lp(m) ≤ ε0 +
∥∥∥
∫

Ω f n
i gn

i,ε0dm
∥∥∥

X
. Thus for f ∈ δB(E),

we have

‖ f ‖Lp(m) = 1 ≤ 1
n

+ ε0 +
∥∥∥∥
∫

Ω
f n
i gn

i,ε0dm
∥∥∥∥

X

≤ 1
n

+ ε0 +
∥∥∥∥
∫

Ω
( f n

i − f )gn
i,ε0dm

∥∥∥∥
X

+
∥∥∥∥
∫

Ω
f gn

i,ε0dm
∥∥∥∥

X

≤ 2
n

+ ε0 + sup
g∈KE,ε

∥∥∥∥
∫

Ω
f gdm

∥∥∥∥
X

where KE,ε is the set of functions gn
i,ε0 , i = 1, . . . , mn for 2/n ≤ ε/4 and

ε0 = ε
2 . Then we get for f ∈ δB(E),

1− ε ≤ sup
g∈KE,ε

∥∥∥∥
∫

f gdm
∥∥∥∥

X
,

so for any f ∈ E we have that

(1− ε)‖ f ‖Lp(m) ≤ sup
g∈KE,ε

∥∥∥∥
∫

f gdm
∥∥∥∥

X
≤ ‖ f ‖Lp(m).

Obviously the set KE,ε is norm compact (because it is finite), therefore it is
m-compact.
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2.3. Appendix

The following corresponds to the proof of Proposition 2.1.1.

Proof. Notice that ρ defines a metric, indeed for f1, f2 ∈ Lp(m), we have

ρ( f1, f2) ≤
∞

∑
n=1

2−n

(
∞

∑
k=1

2−k
∥∥∥∥
∫

Ω
( f1 − f2)gkdm

∥∥∥∥
X
‖x∗n‖

)

≤
∞

∑
n=1

2−n

(
∞

∑
k=1

2−k‖ f1 − f2‖Lp(m)‖gk‖Lq(m)

)

≤ ‖ f1 − f2‖Lp(m) ≤ ‖ f1‖Lp(m) + ‖ f2‖Lp(m).

In order to prove the continuity of ρ with respect to the m−topology, let
( fα)α ⊂ B(Lp(m)) be a net converging to f with respect to the m−weak
topology. We claim that this net also converges to f in the topology in-
duced by the metric ρ. Let ε > 0. By the convergence of the serie ∑∞

n=1 2−n,
there is N ∈ N so that ∑∞

n=N 2−n < ε
4 . Therefore

∞

∑
n=N

2−n

(
∞

∑
k=1

2−k
∣∣∣∣
〈∫

Ω
( fα − f )gkdm, x∗n

〉∣∣∣∣
)
≤ ε

2
.

Let M in N such that 2 ∑∞
k=M

1
2k < ε

4 , we have

N−1

∑
n=1

1
2n

(
∞

∑
k=1

∣∣∣∣
〈∫

Ω
( fα − f )gkdm, x∗n

〉∣∣∣∣
)
≤

≤
N−1

∑
n=1

1
2n

(
M−1

∑
k=1

1
2k

∣∣∣∣
〈∫

Ω
( fα − f )gkdm, x∗n

〉∣∣∣∣
)

+
ε

4
.

Therefore,

ρ( fα, f ) <
ε

2
+

ε

4
+

N−1

∑
n=1

1
2n

(
M−1

∑
k=1

1
2k

∣∣∣∣
〈∫

Ω
( fα − f )gkdm, x∗n

〉∣∣∣∣
)

.

The convergence of the net implies that for n ≤ N− 1 and k ≤ M− 1 there
is an index αn,k such that |〈∫Ω ( fαn,k − f )gkdm, x∗n〉| < ε

4 . Let α0 be an index
so that α0 ≥ αn,k for every n ≤ N − 1 and k ≤ M− 1; we have

N−1

∑
n=1

1
2n

(
M−1

∑
k=1

1
2k

∣∣∣∣
〈∫

Ω
( fα − f )gkdm, x∗n

〉∣∣∣∣
)

<
ε

4
.

Therefore, for α ≥ α0, we get ρ( f , fα) < ε. The metric ρ is continuous with
respect to the m−weak topology. In order to show that they coincide, fix
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f0 ∈ B(Lp(m)), g0 ∈ B(Lq(m)), x∗0 ∈ B(X∗) and ε > 0 and consider the
neighborhood of f0

Vg0,x∗0,ε( f0) =
{

f ∈ Lp(m) :
∣∣∣∣
〈∫

Ω
( f0 − f )g0dm, x∗0

〉∣∣∣∣ < ε

}
.

We claim that this set contains a ball (with respect to ρ) centered in f0. We
prove it in two steps.

First, we search g0 ∈ S1, x∗0 ∈ S2, so that inclusion

U := Vg0,x∗0, ε
3
( f0) ∩ B(Lp(m)) ⊂ Vg0,x∗0,ε( f0) ∩ B(Lp(m)) =: W. (2.9)

holds, where

U =
{

f ∈ B(Lp(m)) :
∣∣∣∣
〈∫

Ω
( f0 − f )g0dm, x∗0

〉∣∣∣∣ <
ε

3

}
.

and

W =
{

f ∈ B(Lp(m)) :
∣∣∣∣
〈∫

Ω
( f0 − f )g0dm, x∗0

〉∣∣∣∣ < ε

}
,

Since S1 and S2 are dense subsets in B(Lq(m)) and B(X∗) respectively,
there are g0 := gk0

∈ S1 and x∗0 := x∗n0
∈ S2 so that

‖g0 − g0‖Lq(m) <
ε

6‖x∗0‖
, and ‖x∗0 − x∗0‖X∗ <

ε

6‖g0‖Lq(m)
.

Let f ∈ U, we have
∣∣∣∣
〈∫

Ω
( f0 − f )g0dm, x∗0

〉∣∣∣∣ ≤

≤
∣∣∣∣
〈∫

Ω
( f0 − f )(g0 − g0)dm, x∗0

〉∣∣∣∣ +
∣∣∣∣
〈∫

Ω
( f0 − f )g0dm, x∗0

〉∣∣∣∣

≤
∣∣∣∣
〈∫

Ω
( f0 − f )(g0 − g0)dm,

x∗0
‖x∗0‖

〉∣∣∣∣ ‖x∗0‖+
∣∣∣∣
〈∫

Ω
( f0 − f )g0dm, x∗0

〉∣∣∣∣
≤ ‖ f0 − f ‖Lp(m)‖g0 − g0‖Lq(m)‖x∗0‖

+
∣∣∣∣
〈∫

Ω
( f0 − f )g0dm, x∗0 − x∗0

〉∣∣∣∣ +
∣∣∣∣
〈∫

Ω
( f0 − f )g0dm, x∗0

〉∣∣∣∣

< 2
ε

6‖x∗0‖
‖x∗0‖+

∣∣∣∣
〈∫

Ω
( f0 − f )g0dm, x∗0 − x∗0

〉∣∣∣∣ +
ε

3

≤ ε

3
+

∣∣∣∣
〈∫

Ω
( f0 − f )g0dm,

x∗0 − x∗0
‖x∗0 − x∗0‖

〉∣∣∣∣ ‖x∗0 − x∗0‖+
ε

3

≤ ε

3
+ ‖ f0 − f ‖Lp(m)‖g0‖Lq(m)‖x∗0 − x∗0‖+

ε

3

<
ε

3
+ 2‖g0‖Lq(m).

ε

6.‖g0‖Lq(m)
+

ε

3
= ε,
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then f ∈ W. We finish by proving Bρ, ε

3·2n0+k0
( f0) ∩ B(Lp(m)) ⊂ U. Let

f ∈ Bρ, ε

3·2n0+k0
( f0) ∩ B(Lp(m)), therefore

ρ( f0, f ) =
∞

∑
n=1

2−n
∞

∑
k=1

2−k
∣∣∣∣
∫

( f0 − f )hkd〈m, x∗n〉
∣∣∣∣ <

ε

3 · 2n0+k0
.

That means, for every pair of indexes k, n, in particular for k0 and n0 we
have

2−(k+n)
∣∣∣∣
〈∫

( f0 − f )hkdm, x∗n

〉∣∣∣∣ <
ε

3 · 2n0+k0
,

thus, f ∈ U, and therefore f ∈ Vg0,x∗0,ε( f0) ∩ B(Lp(m)) by inclusion (2.9).

We finish this chapter with the proof of Theorem 2.2.2.

Proof. Since each gn ∈ B(Lq(m)) for n ∈ N, we have that ρ( f1, f2) ≤
‖ f1‖+ ‖ f2‖. The metric is consistent.

In order to show that ρ is continuous with respect to the m−topology
let ( fα)α ⊂ B(Lp(m)) so that fα −→ f in (B(Lp(m)), σ(Lp(m), Λ)) and take
ε > 0.

Let k ∈ N such that ∑∞
n=k+1 2−n < ε/4. There is an index α0 so that for

every α ≥ α0 we get
∥∥∥∥
∫

Ω
( fα − f )gndm

∥∥∥∥
X

<
ε

2
, for each 1 ≤ n ≤ k

Such an index α0 can be found following the same arguments as those in
the proof of Proposition 2.1.1 (see appendix at the end of this chapter).
Therefore,

ρ( fα, f ) <
ε

2
+

∞

∑
n=k+1

2−n
∥∥∥∥
∫

Ω
( fα − f )gndm

∥∥∥∥
X

< ε.

In order to prove the coincidence of the topologies, let f0 ∈ B(Lp(m)),
ε > 0 and g ∈ B(Lq(m)) and consider the neighborhood

Vg,ε( f0) :=
{

f ∈ Lp(m) :
∥∥∥∥
∫

Ω
( f − f0)gdm

∥∥∥∥
X
≤ ε

}
.

We must find some g0 ∈ S so that

U := Vg0, ε
2
( f0) ∩ B(Lp(m)) ⊂ Vg,ε( f0) ∩ B(Lp(m)) =: W.
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Since S is a dense subset in B(Lq(m)), there is an element g0 := gn0 ∈ S so
that ‖g− g0‖Lq(m) < ε/4. Let f ∈ U, in fact we have f ∈ W, indeed
∥∥∥∥
∫

Ω
( f0 − f )g dm

∥∥∥∥
X

<

∥∥∥∥
∫

Ω
( f0 − f )(g− g0)

∥∥∥∥
X

+
∥∥∥∥
∫

Ω
( f0 − f )g0 dm

∥∥∥∥
X

< ‖ f0 − f ‖Lp(m)‖g− g0‖Lq(m) +
ε

2
< ε.

We claim that Bρ, ε

2n0+1
( f0) ⊂ Vg0, ε

2
( f0) ∩ B(Lp(m)); in fact we have

ρ( f0, f ) =
∞

∑
n=1

2−n
∥∥∥∥
∫

Ω
( f0 − f )gndm

∥∥∥∥
X

<
ε

2n0+1
,

therefore 2−n
∥∥∫

Ω ( f0 − f )gndm
∥∥

X < ε/2n0+1 for every n ∈ N; particu-
larly for n = n0 we get

∥∥∫
Ω ( f0 − f )gndm

∥∥
X < ε

2 and f ∈ Vg0, ε
2
( f0) ∩

B(Lp(m)) as claimed. This directly yields the conclusion, since each basic
neighborhood for the m−topology corresponds to the finite intersection of
those appearing in the definition of W.





Chapter 3

Tensor product representation
of the (pre)dual of Lp(m)

It seems natural to represent the dual space of Lp(m) in terms of the
space Lq(m), as in the case of classical Lp−spaces. However, two facts
suggest that this representation cannot be direct. The first one is that it is
well-known that the dual of Lp(m) coincides with Lq(m) only in the trivial
cases (i.e. when Lp(m) is isomorphic to Lp(µ) of a scalar measure µ). The
second one is that Lp(m) can be a weighted c0−space as in Example 1.0.6,
and then reflexivity cannot be expected in general for these spaces. From
the technical point of view, the natural weak topology associated with the
integration map –the so called m−weak topology– is the keystone of our
arguments. We have proved in Chapter 2 that it coincides with the weak
topology of Lp(m) on bounded sets. However, for the aim of this chapter
–and also for a lot of applications– it is better to use this description. For
the case p = 1, a representation of the elements of the dual space of L1(m)
has been given in [53].

Integration operators. Our aim in this section is to characterize those
operators G : Lp(m) → X that can be written as an integral. The following
Radon-Nikodým theorem for scalarly dominated measures is proved in
[52, Theorem 1] and provides an important tool for our work. We write an
adapted version in the following lemma.

Lemma 3.0.1. Let m and m̃ be vector measures defined in the same measurable
space and with range in a Banach space X. The following assertions are equiva-
lent:

35
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(i) There exists a bounded measurable function θ such that

m(E) =
∫

E
θdm̃, E ∈ Σ.

(ii) m is scalarly dominated by m̃, that is, there exists a positive constant K such
that |〈m, x∗〉| (A) ≤ K |〈m̃, x∗〉| (A), for each A ∈ Σ and each x∗ ∈ X∗.

Theorem 3.0.2. The following assertions are equivalent for an operator G :
Lp(m) → X.

(i) There is a function g ∈ Lq(m) such that G( f ) =
∫

Ω f gdm for every
f ∈ Lp(m).

(ii) There are g1, . . . , gn in Lq(m) such that for all x∗ ∈ X∗:

|〈G( f ), x∗〉| ≤
n

∑
i=1

∣∣∣∣
〈∫

Ω
f gidm, x∗

〉∣∣∣∣ , f ∈ Lp(m).

(iii) There is a function g0 in Lq(m) such that for all x∗ ∈ X∗:

|〈G( f ), x∗〉| ≤
∫

Ω
| f g0|d|〈m, x∗〉|, f ∈ Lp(m). (3.1)

Moreover, the subspace of all the operators G of L(Lp(m), X) that satisfy (i), (ii)
or (iii) is isometrically isomorphic to Lq(m).

Proof. By the representation of the operator G of L(Lp(m), X) as an inte-
gral, it is obvious that (i) implies (ii).

The proof of (ii) ⇒ (iii) is a direct consequence of the following in-
equalities. Let G : Lp(m) → X be an operator satisfying (ii). For all x∗ in
X∗ and f in Lp(m),

|〈G( f ), x∗〉| ≤
n

∑
i=1

∣∣∣∣
〈∫

Ω
f gidm, x∗

〉∣∣∣∣

≤
n

∑
i=1

∫

Ω
| f gi|d|〈m, x∗〉| =

∫

Ω

(
n

∑
i=1

|gi|
)
| f |d|〈m, x∗〉|.

Since ∑n
i=1 |gi| ∈ Lq(m), we obtain (iii).

For the proof of (iii) ⇒ (i), suppose that there is a function g0 ∈ Lq(m)
so that (3.1) holds and define the set function mG : Σ → X by

mG(A) := G(χA), A ∈ Σ. (3.2)
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It is easy to see that mG is a countably additive vector measure, since Lp(m)
is order continuous. Let us define the measure m1 : Σ → X by m1(A) :=∫

A g0 dm, A ∈ Σ. For each f ∈ Lp(m) the following inequality holds

|〈G( f ), x∗〉| ≤
∫

Ω
| f |d|〈m1, x∗〉|

for all x∗ in X∗. Therefore, for each set A ∈ Σ and every x∗ ∈ X∗ we have

|〈mG(A), x∗〉| = |〈G(χA), x∗〉| ≤
∫

Ω
χAd|〈m1, x∗〉| = |〈m1, x∗〉|(A).

Hence, mG is scalarly dominated by m1. By Lemma 3.0.1, there is a bounded
measurable function θ such that

mG(A) = G(χA) =
∫

A
θdm1 =

∫

A
θg0dm

for each A ∈ Σ. Note that the product θg0 is also in Lq(m). If Iθg0
is the

integration operator from Lp(m) into X defined by Iθg0
( f ) =

∫
Ω f θg0dm,

we have that Iθg0
and G coincides in the set of simple functions. Since this

set is dense in Lp(m) we obtain G( f ) = Iθg0
( f ) for all f in Lp(m) which

gives (i) for g = θg0. Finally, the isometry is a consequence of Proposition
1.0.7.

In order to prove a characterization theorem for those operators de-
fined in Lp

w(m) that can be represented as an integral, recall that, for p, q
conjugated real numbers (as in 1.7) we have

Lp
w(m) · Lq(m) = Lp(m) · Lq(m) = L1(m),

as proved in Lemma 1 in [7].

Lemma 3.0.3. Let G ∈ L(Lp
w(m), X) so that G is null at Lp(m), and there is

some g0 ∈ Lq(m) such that

|〈G(h), x∗〉| ≤
∫

Ω
|hg0|d|〈m, x∗〉|, (3.3)

for every h ∈ Lp(m) and x∗ ∈ X∗. Then, the operator G = 0.

Proof. Let f ∈ Lp
w(m) and x∗ ∈ X∗. We define a functional T of Lp

w(m)∗

as T(·) := 〈G(·), x∗〉. Let ( fn)n be a sequence of simple functions that
converges to f in Lp(|〈m, x∗〉|). Therefore

∫

Ω
|( fn − f )g0|d|〈m, x∗〉| → 0,

and condition (3.3) ensures that |T( fn − f )| → 0. Since each simple func-
tion fn belongs to Lp(m), we have that T( fn) = 0 for every n ∈ N, then
T( f ) = 0. Since the element x∗ ∈ X∗ is arbitrary, we have G( f ) = 0.
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The following theorem gives a similar result for operators on Lp
w(m).

We write it separately because for its proof it is necessary to use a slightly
different argument, due to the fact that the set of simple functions is not in
general dense in Lp

w(m).

Theorem 3.0.4. The following assertions are equivalent for an operator G :
Lp

w(m) → X.

(i) There is a function g ∈ Lq(m) such that G( f ) =
∫

Ω f gdm for every
f ∈ Lp

w(m).

(ii) There are g1, . . . , gn in Lq(m) such that for all x∗ in X∗:

|〈G( f ), x∗〉| ≤
n

∑
i=1

∣∣∣∣
〈∫

Ω
f gidm, x∗

〉∣∣∣∣ , f ∈ Lp
w(m).

(iii) There is a function g0 in Lq(m) such that for all x∗:

|〈G( f ), x∗〉| ≤
∫

Ω
| f g0|d|〈m, x∗〉|, f ∈ Lp

w(m).

Moreover, the subspace of L(Lp
w(m), X) of all the operators G satisfying (i), (ii)

or (iii) is isometrically isomorphic to Lq(m).

Proof. We only show the proof of (iii) ⇒ (i), which is different that the
one in the previous theorem. First note that the restriction of G to Lp(m) is
well defined and continuous.

By the previous theorem, we have that G|Lp(m) can be represented as
an integration operator with some g ∈ Lq(m). We consider the operator
Ig associated to these function g, Ig ∈ L(Lp

w(m), X) defined by Ig( f ) :=∫
Ω f gdm. Both G and Ig are ’scalarly dominated by a function in Lq(m)’ in

the sense of inequality (3.3), therefore the operator defined by the differ-
ence G− Ig, also follows this boundedness condition. A direct application
of the previous lemma yields the conclusion.

The isometry is a consequence of Proposition 1.0.7.

Even for the finite dimensional case, the domination requirement given
in (iii) Theorem 3.0.4 cannot be replaced by a domination in norm, i.e. the
condition given there for G is not equivalent to the existence of a function
g ∈ Lq(m) such that for every f ∈ Lp

w(m), ‖G(g)‖X ≤ ∥∥∫
Ω f g dm

∥∥
X. Let

us show this with a simple example of a vector measure with values in R2.
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Example 3.0.5. Define the vector measure m on the σ-algebra of Borel sub-
set of [0, 1], B([0, 1]) over R2 endowed with the euclidean norm

m(A) :=
(

µ

(
A ∩

[
0,

1
2

])
, µ

(
A ∩

[
1
2
, 1

]))

for A ∈ B([0, 1]) with µ the Lebesgue measure on [0, 1]. Since the dual
of R2 endowed with the euclidean norm is itself, we have that the spaces
Lp(m) and Lp

w(m) will necessarily coincide for 1 < p < ∞. Notice that a
function f is integrable with respect to m whenever the restrictions of f to
[0, 1/2] and to [1/2, 1] are Lebesgue integrable. That means that, for 1 <

p < ∞, Lp(m) is the direct sum of the spaces Lp(µ|[0, 12 ]) and Lp(µ|[ 12 ,1]).
Clearly, the norm of a function f ∈ Lp(m) is given by

‖ f ‖Lp(m) =




(∫ 1
2

0
| f |pdµ

)2

+
(∫ 1

1
2

| f |pdµ

)2



1/2p

.

Let Φ : Lp(m) → R2 be the operator defined by Φ( f ) =
(∫ 1

1/2 f dµ,
∫ 1/2
0 f dµ

)
.

Note that, for g0 = χΩ ∈ Lq(m) we have, for all f ∈ Lp(m)

‖Φ( f )‖ =
∥∥∥∥
∫

f g0dm
∥∥∥∥ =

∥∥∥∥
∫

f dm
∥∥∥∥ .

But clearly Φ is not an integral operator: there is no function g such that
Φ( f ) =

∫
f gdm for all f ∈ Lp(m). Take for example f0 = χ[0,1/2], that

gives Φ( f0) = (0, 1/2); but for every g ∈ Lq(m),
∫

f0gdm = (k, 0) for
some k ∈ R depending on g.

Remark 3.0.6. Notice that an operator G : Lp
w(m) → X satisfying the re-

quirements of Theorem 3.0.4 factorizes through the space L1(m). Indeed,
in this case there is a function g ∈ Lq(m) such that

Lp
w(m) G //

Mg

²²

X

L1(m)
I

==zzzzzzzzz

where Mg( f ) = f g for all f ∈ Lp
w(m) and I(h) =

∫
hdm for all h ∈ L1(m).

This leads us to apply the results of [7] concerning some properties of
the multiplication operator Mg from Lp

w(m) into L1(m). An operator T
between a Banach lattice E and a Banach space F is said to be M–weakly
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compact whenever ‖T( fn)‖F → 0 for all disjoint sequences ( fn)n in B(E).
This space of operators is denoted by M (E, F). Notice that the composi-
tion S ◦ T of an M–weakly compact operator T : E → G with a bounded
operator S : G → F belongs to M (E, F). We denote by W (E, F) the ideal
of weakly compact operators. It is known (see [51, Proposition 3.6.12]) that
M (E, F) ⊆ W (E, F).

A. Fernández et al. proved in [7, Theorem 7] that for g ∈ Lq(m), the
multiplication operator Mg : Lp

w(m) → L1(m) is M–weakly compact (and
then weakly compact). The following corollary is a direct consequence of
this result and of the factorization given in Remark 3.0.6.

Corollary 3.0.7. Let T : Lp
w(m) → X satisfy the requirements of Theorem 3.0.4.

Then T ∈ M (
Lp

w(m), X
)
. In particular T is weakly compact and its norm

coincides with the norm of the function g that is given by Theorem 3.0.4.

3.1. Tensor product representation

In this section we develop a representation technique for spaces Lq(m)
based on topological tensor products. A first approximation to this mat-
ter has been done in [72]. In this paper this kind of identification is done,
although under strong restrictions on the spaces Lq(m); the topologies in-
troduced there are different that the ones that we consider here, which
lead to a general representation for any Lq(m). We will prove that in fact
Lq(m) can be always written as a dual space of a particular topological
tensor product. The main tool that we use for this representation is given
by Theorem 3.0.2. From the technical point of view, it is necessary to de-
fine several tensor product topologies. We will introduce these topologies
in three approaches in order to get, in the last one, the representation of
Lp(m) as the dual of a normed space.

First approach. We establish the topological framework regarding the
tensor product Lp(m)⊗ X∗. If g ∈ Lq(m), we define the seminorm pg by

pg(z) :=

∣∣∣∣∣
n

∑
i=1

〈∫

Ω
fig dm, x∗i

〉∣∣∣∣∣ , z =
n

∑
i=1

fi ⊗ x∗i ∈ Lp(m)⊗ X∗.

The definition does not depend on the particular representation of z. Us-
ing this family of seminorms we can provide a topology (in general not
Hausdorff) on the tensor product Lp(m)⊗ X∗. We will denote it by τ and
it corresponds to the one generated by the family of seminorms {pg : g ∈
Lq(m)}.
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Let g ∈ Lq(m) and consider its associated integration map Ig : Lp(m) →
X given by Ig( f ) :=

∫
Ω f g dm for all f in Lp(m). Define the functional

ϕg : Lp(m)⊗ X∗ −→ R

by ϕg(z) := ∑n
i=1〈Ig( fi), x∗i 〉, where z = ∑n

i=1 fi ⊗ x∗i is any representation
of the tensor z in Lp(m)⊗ X∗; again note that the definition does not de-
pend on the particular representation of z. The following result shows that
this relation provides a procedure to identify the set of q−integrable func-
tions with respect to m with the dual space (Lp(m)⊗τ X∗)∗. As usual, we
denote by τweak∗ the weak topology generated on a dual space by the ele-
ments of the original space. Recall that the m−weak topology, σ(Lq(m), Γ)
is generated by the family of seminorms Γ, defined by

Γ := {|γ f ,x∗ | : f ∈ B(Lp(m)), x∗ ∈ B(X∗)}, (3.4)

with γ f ,x∗(g) :=
∫

Ω f gd〈m, x∗〉, g ∈ Lp(m).

Proposition 3.1.1. The map

Υ : (Lq(m), σ(Lq(m), Γ)) → ((Lp(m)⊗τ X∗)∗, τweak∗)

given by Υ(g) := ϕg, is a linear isomorphism.

Proof. We start by proving that Υ is well defined and injective. Clearly, if
g ∈ Lq(m),

|ϕg(z)| =
∣∣∣∣∣

n

∑
i=1

〈
Ig( fi), x∗i

〉
∣∣∣∣∣ = pg(z)

for any tensor z = ∑n
i=1 fi ⊗ x∗i , and then ϕg belongs to (Lp(m) ⊗τ X∗)∗.

Since the set Γ is norming in Lq(m), for h ∈ Lq(m) and h 6= g, there are
f ∈ Lp(m) and x∗ ∈ X∗ such that 〈∫Ω f h dm, x∗〉 6= 〈∫Ω f g dm, x∗〉 , and
then the identification g 7→ ϕg given by Υ is injective. Note that Υ is also
linear.

To prove that the map is also surjective, consider a functional φ in
(Lp(m) ⊗τ X∗)∗. Since it is continuous with respect to τ, there are func-
tions g1, . . . gn ∈ Lq(m) such that |φ(z)| ≤ ∑n

i=1 pgi(z) for any tensor
z ∈ Lp(m)⊗τ X∗. In particular, for a simple tensor z = f ⊗ x∗,

|φ(z)| ≤
n

∑
i=1

pgi( f ⊗ x∗) =
n

∑
i=1

∣∣∣∣
〈∫

Ω
f gi dm, x∗

〉∣∣∣∣ . (3.5)

Now fix a p−integrable function f and define the map Ff : X∗ −→ R by
Ff (x∗) := φ( f ⊗ x∗). Note that Ff is well defined and linear; by (3.5), we
also have

|Ff (x∗)| = |φ( f ⊗ x∗)| ≤
n

∑
i=1

∣∣∣∣
〈∫

Ω
f gi dm, x∗

〉∣∣∣∣
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for every x∗ ∈ X∗; since for all i = 1, ..., n,
∫

Ω f gidm ∈ X, it follows that Ff
is continuous with respect to the weak* topology of X∗. Therefore Ff is an
element of the dual space (X∗, τweak∗)∗ that coincides with X.

Thus, we can define the operator Tφ : Lp(m) → X by Tφ( f ) := Ff . Note
that Tφ is linear and 〈Tφ( f ), x∗〉 = φ( f ⊗ x∗) for all f in Lp(m), and then

|〈Tφ( f ), x∗〉| = |φ( f ⊗ x∗)| ≤
n

∑
i=1

∣∣∣∣
〈∫

Ω
f gi dm, x∗

〉∣∣∣∣ .

Therefore, the operator Tφ satisfies the inequalities in (ii) of Theorem 3.0.2.
Thus, there is a function g0 in Lq(m) such that Tφ( f ) =

∫
Ω g0 f dm for all f

in Lp(m). Hence, ϕg0( f ⊗ x∗) = 〈∫Ω g0 f dm, x∗〉 = φ( f ⊗ x∗) for every sim-
ple tensor in Lp(m)⊗ X∗, which implies ϕg0 = φ, and then Υ is surjective.
The topological isomorphism is obvious because of the definitions of the
topologies σ(Lq(m), Γ) and τweak∗ ; the action of the tensors of Lp(m)⊗τ X∗

on the functionals of its dual space is given by evaluations of a finite set of
the functionals that define the topology σ(Lq(m), Γ).

Although Proposition 3.1.1 provides a representation of the space Lp(m)
as the dual of a certain topological linear space, this space is not in gen-
eral Hausdorff. The following trivial example shows this. Consider the
Lebesgue measure space (Ω, Σ, µ) and the vector measure m0 : Σ → `2

given by m0(A) := µ(A)e1, A ∈ Σ, where e1 is the first element of {ei :
i ∈ N}, the canonical basis of `2. Clearly, if we consider a simple tensor
f ⊗ ei, f ∈ Lp(m), i > 1, we obtain pg( f ⊗ ei) = 0 for every g ∈ Lq(m).
The same argument can be used for any vector measure m to show that
for every x∗ ∈ X∗ that satisfies 〈∫Ω h dm, x∗〉 = 0 for each h ∈ L1(m) and
every f ∈ Lp(m), the equality pg( f ⊗ x∗) = 0 is obtained, and then the
induced topology cannot be Hausdorff.

Second approach. The following approaches are devoted to improve the
representation of Lq(m) as a dual of a Hausdorff topological vector space.
The first step is to construct a (Hausdorff) quotient space preserving the
duality properties with respect to Lq(m). As usual, if g ∈ Lq(m), we define
the kernel of pg as

ker pg = {z ∈ Lp(m)⊗ X∗ : pg(z) = 0}.

The set ∩ ker pg, where the intersection is defined by the set of functions g
in Lq(m), is a linear subspace of the tensor product. Consider the quotient
space (defined algebraically) (Lp(m)⊗ X∗)/(∩ ker pg), for g ∈ Lq(m). We
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define in this space the topology τ̃ generated by the family of quotient
seminorms { p̃g : g ∈ Lq(m)}, that are given by

p̃g([z]) =

∣∣∣∣∣
n

∑
i=1

〈∫

Ω
fig dm, x∗i

〉∣∣∣∣∣

for any ∑n
i=1 fi ⊗ x∗i ∈ [z], since the quotient is defined using the family of

seminorms {pg : g ∈ Lq(m)}. The next result, together with Proposition
3.1.1, provides a representation of the space Lq(m) as the dual space of a
Hausdorff topological vector space.

Proposition 3.1.2. The map

Q : ((Lp(m)⊗τ X∗)∗, τweak∗) →
((

Lp(m)⊗ X∗

∩ ker pg
, τ̃

)∗
, τweak∗

)

given by Q(φ) = φ̃, where φ̃([z]) = φ(z) for each tensor z in Lp(m)⊗ X∗, is a
linear isomorphism.

Proof. Let φ be a functional in the dual space (Lp(m)⊗τ X∗)∗. By the con-
tinuity of φ with respect to τ there are n q−integrable functions g1, . . . , gn

such that

|φ(z)| ≤
n

∑
i=1

pgi(z) for every tensor z in Lp(m)⊗ X∗. (3.6)

Let φ̃ be the linear map from (Lp(m)⊗ X∗)/(∩ ker pg) into R given by
φ̃([z]) := φ(z), for z ∈ [z] ∈ (Lp(m) ⊗ X∗)/(∩ ker pg). Since [z1] = [z2]
implies pg(z1 − z2) = 0 for each g ∈ Lq(m), then φ(z1 − z2) = 0 by (3.6).
Thus by the linearity of φ, φ̃([z1]) = φ̃([z2]). Obviously φ̃ is continuous
with respect to the topology τ̃, since we obtain |φ̃([z])| ≤ ∑n

i=1 p̃gi([z]) for
every [z] by (3.6). Therefore Q(φ) := φ̃ is well-defined, linear and injec-
tive. To see that it is also a surjection, consider a (τ̃-continuous) functional
φ̃ : Lp(m)⊗X∗

∩ ker pg
→ R and define φ : Lp(m) ⊗ X∗ → R by φ(z) := φ̃([z]).

Direct computations as those in the previous part of the proof show that φ

belongs to the space (Lp(m)⊗ X∗, τ)∗; clearly Q(φ) = φ̃. The equivalence
between the weak* topologies of both spaces is also clear.

Notice that the previous proposition repeats a general argument about
locally convex spaces, in the particular case of the tensor product (Lp(m)⊗
X∗, τ).
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Third approach. In what follows we introduce the uniform topology as-
sociated to τ in the tensor product Lp(m) ⊗ X∗ in order to find a repre-
sentation of Lq(m) as the dual space of a normed space. We denote this
topology by τu; it is the one generated by the seminorm

u(z) = sup
‖g‖Lq(m)≤1

∣∣∣∣∣
n

∑
i=1

〈∫

Ω
figdm, x∗i

〉∣∣∣∣∣ ,

being z = ∑n
i=1 fi ⊗ x∗i an element of Lp(m) ⊗ X∗. If φ is a functional in

(Lp(m)⊗ X∗, τu)∗, we define

‖φ‖u := sup
u(z)≤1

|φ(z)|,

where the supremum is computed over all tensors z ∈ Lp(m)⊗ X∗ satis-
fying u(z) ≤ 1.

Clearly ker u = ∩ ker pg, where the intersection is defined for the whole
set of integrable functions in Lq(m); as in the previous case we will work
with the quotient space Lp(m) ⊗ X∗/ ker u. We define also in this case
the quotient topology τũ generated by the seminorm ũ([z]) := u(z), for
z ∈ Lp(m)⊗ X∗, respectively. The corresponding norm on the dual of the
quotient space is given by

‖φ̃‖ũ := sup
ũ([z])≤1

|φ̃([z])|, φ̃ ∈
(

Lp(m)⊗ X∗

ker u
, τũ

)∗
,

where the elements [z] belong to Lp(m)⊗X∗
ker u .

We omit the proof of the next proposition, that follows the lines of the
one of Proposition 3.1.2.

Proposition 3.1.3. The function

Qu :
(
(Lp(m)⊗τu X∗)∗ , ‖ · ‖u

) −→
((

Lp(m)⊗ X∗

ker u
, τũ

)∗
, ‖ · ‖ũ

)

defined by Qu(φ) = φ̃, where φ̃([z]) = φ(z) for each tensor z in Lp(m)⊗ X∗, is
an isometric isomorphism.

Let us now show with an easy example the representation procedure
developed in this section

Example 3.1.4. Let 1 < r < ∞, 1 < p < ∞ and s, q their corresponding
conjugated exponents, and let ([0, 1], Σ, µ) be Lebesgue measure space. We
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define the vector measure m : Σ → Lr(µ) as m(A) := χA, A ∈ Σ. It is easy
to see that Lp(m) = Lpr(µ), Lq(m) = Lqr(µ), and (Lr(µ))∗ = Ls(µ). Take
z ∈ Lp(m)⊗ (Lr(µ))∗ = Lpr(µ)⊗ Ls(µ), z = ∑n

i=1 fi ⊗ hi. Then

u(z) = sup
g∈B(Lq(m))

∣∣∣∣∣
n

∑
i=1

〈∫ 1

0
figdm, hi

〉∣∣∣∣∣

= sup
g∈B(Lqr(µ))

∣∣∣∣∣
n

∑
i=1

∫ 1

0

(∫ 1

0
figdm

)
hidµ

∣∣∣∣∣

= sup
g∈B(Lqr(µ))

∣∣∣∣∣
∫ 1

0
g

n

∑
i=1

fihidµ

∣∣∣∣∣ .

Since 1
pr + 1

s = (1 − 1
q ) 1

r + 1
s = 1 − 1

qr , then ∑n
i=1 fihi ∈ (Lqr(µ))∗ and

u(z) = ‖∑n
i=1 fihi‖(Lqr(µ))∗ . Remark that

ker u = {z =
n

∑
i=1

fi ⊗ hi ∈ Lp(m)⊗ Ls(µ) :
n

∑
i=1

fihi = 0 µ− a.e.}.

Therefore, the space
(

Lp(m)⊗Ls(µ)
ker u , τu

)
can be identified isometrically with

(Lq(m))∗ = Lt(µ), where 1
qr + 1

t = 1, and the formulae for u provides an
equivalent representation of the norm of Lt(µ).

The following theorem constitutes the main result of this section. It
shows that a certain compactness assumption for the unit ball of Lq(m)
gives the key for obtaining a satisfactory generalization of the duality re-
sults that hold for the case of Lp−spaces (scalar measure). Actually, it
provides a description of a suitable normed predual of the space Lq(m),
and consequently of the dual space (Lq(m))∗. Notice that the compactness
condition is equivalent to the assumption of reflexivity of the space Lq(m),
by the coincidence of the m− weak topology with the weak topology on
bounded sets of Lq(m).

The proof of the main result uses Ky Fan’s Lemma, see for instance [61,
E.4.].

Lemma 3.1.5. (Ky Fan) Let W a compact convex subset of a Hausdorff topolog-
ical vector space and let Ψ be a concave family of lower semicontinuous, convex
real functions on W. Let C ∈ R. Suppose that, for every ψ ∈ Ψ there exists
xψ ∈ W such that ψ(xψ) ≤ C. Then there exists x ∈ W such that ψ(x) ≤ C for
every ψ ∈ Ψ.

Theorem 3.1.6. The space
((

Lp(m)⊗X∗
ker u , τũ

)∗
, ‖ · ‖ũ

)
and (Lq(m), ‖ · ‖Lq(m))

are isometrically isomorphic if and only if the unit ball of Lq(m) is m−weakly
compact.
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Proof. We start by showing the direct implication. If Lq(m) is the topo-
logical dual of

(
Lp(m)⊗X∗

ker u , τũ

)
then this space defines the weak* topol-

ogy on bounded sets of Lq(m). By Alaoglu’s Theorem the unit ball of
Lq(m) is weakly* compact; but in fact the weak* topology coincides with
the m−weak topology of Lq(m) on its unit ball. Therefore, B(Lq(m)) is
m−weakly compact.

To prove the converse, first note that the function space Lq(m) can be

identified with a subspace of
(

Lp(m)⊗X∗
ker u , τũ

)∗
, that by Proposition 3.1.3 co-

incides with (Lp(m)⊗X∗, τu)∗. The inclusion is given by the identification
explained before Proposition 3.1.1, i.e. by the map

i : Lq(m) → (Lp(m)⊗ X∗, τũ)∗,

where i(g) := ϕg for g in Lq(m) with

ϕg

(
n

∑
i=1

fi ⊗ x∗i

)
:=

n

∑
i=1

〈∫

Ω
figdm, x∗i

〉
.

Clearly, i is well defined, and direct computations show that it is con-
tinuous. To prove that it is an isomorphism, we choose an element φ̃ ∈(

Lp(m)⊗X∗
ker u , τũ

)∗
and we must prove that in fact φ̃ belongs to

(
Lp(m)⊗X∗

ker u , τ̃
)∗

,
which by Proposition 3.1.1 and proposition 3.1.2 can be identified with
Lq(m); our aim is to show that every functional φ̃ : Lp(m)⊗X∗

ker u → R that is
continuous with respect to τũ is also continuous with respect to the topol-
ogy τ̃. Thus, we search for a function g0 in Lq(m) such that

|φ̃([z])| ≤ ‖φ̃‖ũ · p̃g0 ([z])

for every [z] ∈ Lp(m)⊗X∗
ker u . In order to find this element it is necessary to

use a separation argument; we choose one based on Ky Fan’s Lemma (see
Lemma 3.1.5). For a fixed z = ∑n

i=1 fi ⊗ x∗i in Lp(m) ⊗ X∗ we define the
function Φz over the unit ball of Lq(m) with range in R as follows:

Φz(g) := φ̃([z])−‖φ̃‖ũ ϕg(z) =
n

∑
i=1

φ( fi⊗ x∗i )−‖φ̃‖ũ

(
n

∑
i=1

〈∫

Ω
figdm, x∗i

〉)
,

where φ is a functional satisfying Q(φ) = φ̃ given by proposition 3.1.2,
and ∑n

i=1 fi ⊗ x∗i is any representation of z (note that the definition of the
function Φz do not depend neither on the particular representation of [z]
nor on the one of φ̃). Thus let F be the family of functions Φz for z in
Lp(m) ⊗ X∗. We need to prove that F satisfies all the hypothesis of Ky
Fan’s Lemma.
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All the functions Φz are defined on the unit ball of Lq(m) that is by
assumption a compact set with respect to the m-weak topology. Remark
that the space Lq(m) with the m-weak topology is a Hausdorff space.

The family of functions F is concave; if z1 and z2 are in Lp(m) ⊗ X∗

then for a real number α, 0 ≤ α ≤ 1, there is an element z0 in Lp(m)⊗ X∗

such that
αΦz1 + (1− α)Φz2 = Φz0 ;

take z0 = αz1 + (1− α)z2.
Let us show now that for every tensor z in Lp(m)⊗X∗, the function Φz

is convex. By the linearity of Φ it is enough to prove that this is true for a
simple tensor z = f ⊗ x∗. Let g1 and g2 be in B(Lq(m)) and α a positive
real number, 0 ≤ α ≤ 1. Then

Φz(αg1 + (1− α)g2) = φ( f ⊗ x∗)− ‖φ̃‖ũ

〈∫

Ω
f (αg1 + (1− α)g2)dm, x∗

〉

= αΦz(g1) + (1− α)Φz(g2).

Moreover, by the construction, for all z in Lp(m)⊗X∗, Φz is continuous
with respect to the m−weak topology of Lp(m).

Finally, we must prove that for all z in the tensor product Lp(m)⊗ X∗,
there is a function gz in the unit ball of Lq(m) such that Φz(gz) ≤ 0; this
is a consequence of the fact that Φz is a continuous function defined on a
compact set. In fact,

φ(z) := φ̃([z]) ≤ |φ̃([z])| ≤ ‖φ̃‖ũ · ũ([z]) = ‖φ̃‖ũ · sup
‖g‖Lq(m)≤1

(〈
n

∑
i=1

fig dm, x∗i

〉)

and this supremum is attained for some gz of the unit ball of Lq(m). Then
for all z in Lp(m)⊗ X∗ there is some gz in B(Lq(m)) such that

φ

(
n

∑
i=1

fi ⊗ x∗i

)
≤ ‖φ̃‖ũ

(
n

∑
i=1

〈∫

Ω
figz dm, x∗i

〉)
.

We can conclude by Ky Fan’s Lemma that there is some g0 in the unit
ball of Lq(m) such that for all z = ∑n

i=1 fi ⊗ x∗i ∈ Lp(m)⊗ X∗

φ

(
n

∑
i=1

fi ⊗ x∗i

)
≤ ‖φ̃‖ũ

(
n

∑
i=1

〈∫

Ω
fig0 dm, x∗i

〉)
. (3.7)

Thus φ̃ is continuous with respect to τ̃ and we have that φ̃ is in
(

Lp(m)⊗X∗
ker u , τ̃

)∗
;

the identification is clearly bijective, since this space is isomorphic to Lq(m)
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by proposition 3.1.1 and proposition 3.1.2. Moreover, a direct computation
using inequality (3.7) shows that actually the function g∗0 := g0‖φ̃‖ũ ∈
Lq(m) can be identified with φ̃; clearly ‖g∗0‖Lq(m) ≤ ‖φ̃‖ũ. The converse in-
equality follows by a simple calculation: if φ̃g∗0 and φg∗0 are the functionals
defined by g∗0 and z = ∑n

i=1 fi ⊗ x∗i ∈ Lp(m)⊗ X∗,

|φ̃ ([z])| = ∣∣φ̃g∗0([z])
∣∣ = |φg∗0(z)| =

∣∣∣∣∣
n

∑
i=1

〈
∫

Ω
fi‖g∗0‖Lq(m)

g∗0
‖g∗0‖Lq(m)

dm, x∗i 〉
∣∣∣∣∣

≤ ‖g∗0‖Lq(m) · sup
‖h‖Lq(m)≤1

∣∣∣∣∣
n

∑
i=1

〈
∫

Ω
fih dm, x∗i 〉

∣∣∣∣∣
= ‖g∗0‖Lq(m) · u(z) = ‖g∗0‖Lq(m) · ũ([z]).

This proves the isometry and finishes the proof.

After the results of Chapter 2, it is known that the m−weak topol-
ogy coincides with the weak topology of the space on bounded subsets
of Lp(m). Thus the compactness property required in Theorem 3.1.6 is sat-
isfied if and only if the space Lq(m) is reflexive; the reader can find some
results regarding reflexivity of this space in [31].

We isolate in the following corollary a relevant result concerning du-
ality of the space Lq(m) that has been implicitly shown in the proof of
theorem 3.1.6; in particular, this theorem gives a sufficient and necessary
condition to assure that the topological dual of the space Lp(m)⊗X∗

ker u with
the topologies τ̃ and τũ coincide. This assertion is the natural “vector mea-
sures” version of one of the main results of the duality theory of Banach
spaces: the dual of a Banach space with the norm topology coincides with
the dual of the space with the weak topology.

Corollary 3.1.7. The following assertions are equivalent.

(i) Lq(m) is reflexive.

(ii) The unit ball of Lq(m) is compact with respect to the m-weak topology.

(iii)
(

Lp(m)⊗X∗
ker u , τ̃

)∗
=

(
Lp(m)⊗X∗

ker u , τũ

)∗
.

(iv) (Lp(m)⊗ X∗, τ)∗ = (Lp(m)⊗ X∗, τu)∗.

Let us finish this chapter by illustrating our procedure with two exam-
ples. In the first one we obtain an alternative formula to define the norm
in the dual of Lq(m) of a vector measure over an Orlicz space. In the sec-
ond one we provide a characterization of the dual of Lq(m) of the measure
induced by a kernel operator.
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3.2. Examples

Orlicz spaces. Let (Ω, Σ, µ) be a measure space. Take a Young function
Φ with the ∆2−property (see Section 5.1. for basic definitions about Orlicz
spaces). We define the vector measure m : Σ → LΦ(µ) by m(A) = χA.
Since LΦ(µ) is order continuous, equality L1(m) = LΦ(µ) holds, and then

Lp(m) = { f ∈ L0(µ) : | f |p ∈ L1(m)}
= { f ∈ L0(µ) : | f |p ∈ LΦ(µ)}
= { f ∈ L0(µ) : Φ(| f |p) ∈ L1(µ)}.

Notice that the function Φ ◦ p : R+ → R+ given by Φ ◦ p(t) = Φ(tp) is
a Young function, and that ∆2−property for Φ implies ∆2−property for
Φ ◦ p since for all t > 0 there is some b such that

Φ ◦ p(2t) = Φ(2ptp) ≤ b[p]+1Φ(2p−[p]−1tp) ≤ b[p]+1Φ ◦ p(t),

where [p] = max{n ∈ Z : n ≤ p}. Therefore we have that Lp(m) =
LΦ◦p(µ). Let Ψ be the conjugated Young function of Φ. Since LΦ(µ) is
order continuous we have (LΦ(µ))′ = LΨ(µ). Take z = ∑n

i=1 fi ⊗ hi ∈
Lp(m)⊗ LΨ(µ). Then

u(z) = sup
g∈B(Lq(m))

∣∣∣∣∣
n

∑
i=1

〈∫
fig dm, hi

〉∣∣∣∣∣

= sup
g∈B(Lq(m))

∣∣∣∣∣
∫

g(
n

∑
i=1

∫
fihi)dµ

∣∣∣∣∣

=

∥∥∥∥∥
n

∑
i=1

fihi

∥∥∥∥∥
o

(Lq(m))∗
,

where (Lq(m))∗ is again an Orlicz space and ‖ · ‖o
(Lq(m))∗ is the correspond-

ing Orlicz norm. Assume now that Lq(m) is reflexive. Since a Banach
space Z is reflexive if and only if Z∗ is reflexive (see [77, II.A.14]), we have,
as a consequence of theorem 3.1.6, that there is an isometric isomorphism
between the spaces (Lq(m), ‖ · ‖o)∗ and

(
Lp(m)⊗LΨ(µ)

ker u , τũ

)
. Thus we can

represent a dense subset of elements of the dual space of Lq(m) as equiva-
lence classes of elements ∑n

i=1 fi ⊗ hi ∈ Lp(m)⊗ LΨ(m).

Kernel operators. Fix 1 < p < ∞ and 1 < r < ∞ and let q and v be
their respective conjugated exponents. Let ([0, 1], Σ, µ) be the Lebesgue
measure space and V : Lr(µ) → Lr(µ) the kernel operator defined by

V( f )(t) :=
∫ t

0
f (s)K(s, t)ds,
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where K : [0, 1]× [0, 1] → R+ is a bounded integrable function. We define
the vector measure mV : Σ → Lr(µ) by mV(A) := V(χA). Notice that for
φ = ∑n

i=1 aiχAi ,

∫
φ dmV =

n

∑
i=1

aimV(Ai) = V(φ).

For 0 ≤ f ∈ L1(m), there is a sequence (φn) ∈ S(Σ) such that φn ↑ f .
By order continuity of L1(mV), φn → f in L1(mV), and then

∫
φn dmV →∫

f dmV in Lr(µ). There is a subsequence (Φnk)k such that 0 ≤ φnk ↑ f and

∫
f dmV = lim

k

∫
φnk dmV = lim

k
V(φnk)

= lim
k

∫ t

0
φnk(s)K(s, t)ds.

Fix t ∈ [0, 1]. Since the kernel K(s, t) is positive in its first variable, 0 ≤
φnk(s)K(s, t) ↑ f (s)K(s, t). A direct application of the Monotone Conver-
gence Theorem yields

∫ t

0
f (s)K(s, t)ds = lim

k

∫ t

0
φnk(s)K(s, t)ds.

Since every function f ∈ L1(mV) can be written as a difference of positive
functions, we obtain

∫
f dmV = V( f ) for every f ∈ L1(mV). We get, for

each representation of z = ∑n
i=1 fi ⊗ hi in Lp(m) ⊗ Lr(µ)∗ = Lp(mV) ⊗
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Lv(µ), as a consequence of Fubini’s theorem

u(z) = sup
g∈B(Lq(mV))

∣∣∣∣∣
n

∑
i=1

〈∫ 1

0
fig dmV , hi

〉∣∣∣∣∣

= sup
g∈B(Lq(mV))

∣∣∣∣∣
n

∑
i=1

∫ 1

0

(∫ 1

0
fig dmV

)
hidµ

∣∣∣∣∣

= sup
g∈B(Lq(mV))

∣∣∣∣∣
n

∑
i=1

∫ 1

0
V( fig)hidµ

∣∣∣∣∣

= sup
g∈B(Lq(mV))

∣∣∣∣∣
n

∑
i=1

∫ 1

0

(∫ t

0
fi(s)g(s)K(s, t)dµ(s)

)
hi(t)dµ(t)

∣∣∣∣∣

= sup
g∈B(Lq(mV))

∣∣∣∣∣
n

∑
i=1

∫ 1

0

(∫ 1

0
fi(s)g(s)K(s, t)χ[0,t](s)dµ(s)

)
hi(t)dµ(t)

∣∣∣∣∣

= sup
g∈B(Lq(mV))

∣∣∣∣∣
n

∑
i=1

∫ 1

0
g(s) fi(s)

(∫ 1

s
K(s, t)hi(t)dµ(t)

)
dµ(s)

∣∣∣∣∣

= sup
g∈B(Lq(mV))

∣∣∣∣∣
∫ 1

0
g(s)

n

∑
i=1

φidµ(s)

∣∣∣∣∣

= ‖
n

∑
i=1

φi‖Lq(mV)∗

where φi(s) = fi(s)
∫ 1

s K(s, t)hi(t)dµ(t). Then, we obtain a representation
of a dense subset of the elements of the predual space Lq(mV) as equiv-
alence classes of functions defined by means of elements of Lp(mV) and
Lv(µ).





Chapter 4

Summability in Lp(m):
m− r−summing operators

Our aim in this chapter is to study the summability properties of series
with respect to the m−topology, i.e. the convergence of series of functions
in Lp(m) associated to the norm convergence of the integrals

∫
Ω(·)gdm,

for g ∈ Lq(m). In order to do this we use an operator ideal type approach.
We define and study the operators that transform m − r−summable se-
quences into strongly r−summable ones. We also define those that send
r−summable sequences into m − r−summable ones. We will extend in
this way the class of classical r−summing operators for operators defined
on Lp(m) with the aim of developing the theory of summing operators in
general p−convex Banach lattices. We will show that these extensions pre-
serves some properties of the classical operator ideal of r−summing oper-
ators. We begin by introducing the basic definitions and results about clas-
sical r−summing operators. The references we have used are the books
[27], [69] and [22]. The monograph by A. Pietsch about Operators Ideals
[61] is also a complete guide for this subject.

4.1. Preliminaries

Let 1 ≤ r < ∞. An operator T : X → Y between Banach spaces is
r−summing whenever there is a positive constant C such that for every
finite choice of elements x1, . . . , xn ∈ X, the following inequality holds,

(
n

∑
i=1

‖T(xi)‖r
Y

) 1
r

≤ C · sup
x∗∈B(X∗)

(
n

∑
i=1

|〈xi, x∗〉|r
) 1

r

. (4.1)

53
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The set of r−summing operators between the Banach spaces X and Y is
denoted by Πr(X, Y), and by πr(T) the least of the positive constants C so
that (4.1) holds. Clearly Πr(X, Y) is a linear subspace of L(X, Y), and πr

defines a norm in Πr(X, Y). Moreover the space Πr(X, Y) is an operator
ideal and a Banach space when endowed with the πr norm.

In order to study the behavior of r−summing operators, several spaces
of vector valued sequences are introduced. An X−valued sequence (xn)n

is strongly r−summable whenever the scalar sequence (‖xn‖)n is r−summable.
Let `r(X) be the vector space of X−valued strongly r−summable sequences.
When it is endowed with the natural norm

‖(xn)n‖`r(X) := ‖(‖xn‖X)n‖`r
=

(
∞

∑
n=1

‖xn‖r

) 1
r

, (4.2)

`r(X) is a Banach space. Clearly, strong r−summability is related with the
norm topology of the space X. The following definition corresponds to the
analogue for the weak topology of X. A vector valued sequence (xn)n is
weakly−r−summable if the scalar sequence (〈xn, x∗〉)n is r−summable for
every x∗ ∈ X∗. Let `w

r (X) be to the vector space of all weakly−r−summable
X−valued sequences. It is a Banach space when endowed with a norm de-
fined by

‖(xn)n‖`w
r (X) := sup





(
∞

∑
n=1

|〈xn, x∗〉|r
) 1

r

: x∗ ∈ B(X∗)



 . (4.3)

Notice that the case p = ∞ has been excluded. In fact for a bounded
X−valued sequence (xn)n we have

sup
n∈N

‖xn‖X = ‖(‖xn‖X)n‖`∞
= sup

x∗∈B(X∗)
sup
n∈N

|〈xn, x∗〉|,

then the spaces `∞(X) and `w
∞(X) coincide and ‖(xn)n‖`∞(X) = ‖(xn)n‖`w

∞(X)
for (xn)n ∈ `∞(X).

These spaces of vector valued sequences are intimately related with
summability of operators between Banach spaces. First notice that `r(X)
is a linear subspace of `w

r (X). A linear and continuous operator T : X → Y
between Banach spaces, induces a bounded linear operator T̂ : `w

r (X) →
`w

r (Y) by the correspondence

T̂((xn)n) := (T(xn))n

and also a bounded linear operator from `r(X) into `r(Y). The following
proposition characterizes the summability of an operator T through the
behavior of T̂.
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Proposition 4.1.1. A bounded linear operator T : X → Y is r−summing if and
only if T̂(`w

r (X)) ⊂ `r(Y). In this case πr(T) = ‖T̂ : `w
r (X) → `r(Y)‖.

There is an inclusion relationship between the ideals of r−summing
operators. In fact once we know that a map is 1−summing we can con-
clude that it is r−summing for every 1 < r < ∞. This occurs in the fol-
lowing inclusion theorem when different values of r are considered.

Theorem 4.1.2. If 1 ≤ r < s < ∞, then Πr(X, Y) ⊂ Πs(X, Y). Moreover,
πs(T) ≤ πr(T) for every T ∈ Πr(X, Y).

The following basic result about r−summing operators is due to A.
Pietsch, and it characterizes the r−summability by means of a domination
property.

Theorem 4.1.3. Let 1 ≤ r < ∞, T : X → Y a bounded operator between
Banach spaces and K a weak∗−compact norming subset of B(X∗). Then T is
r−summing if and only if there is a positive constant C and a probability Borel
measure µ in K so that

‖T(x)‖Y ≤ C
(∫

K
|〈x, x∗〉|rdµ(x∗)

) 1
r

, x ∈ X. (4.4)

In this case, πr(T) is the least of all the constants C such that (4.4) holds.

In order to adapt the previous result into a factorization theorem, we
present a basic example of an r−summing operator. Let K be a compact
set, and µ a probability measure defined on the Borel subsets of K. Then
the canonical map Ir : C(K) → Lr(µ) is r−summing. Indeed, for every
finite choice f1, . . . , fn ∈ C(K) we have

n

∑
i=1

‖Ir( fi)‖r
Lr(µ) ≤

n

∑
i=1

∫

K
| fi(x)|rdµ(x)

=
∫

K

n

∑
i=1

| fi(x)|rdµ(x)

=
∫

K

n

∑
i=1

|〈 fi, δx〉|rdµ(x)

≤ µ(K)‖( fi)n
i=1‖r

`w
r (C(K)).

Theorem 4.1.3 can be rewritten as a factorization theorem, it is some-
times called Grothendieck-Pietsch Factorization Theorem. If K is a weak∗

compact norming subset of X, let iX : X → C(K), defined by iX(x)(ϕ) :=
〈x, ϕ〉 for x ∈ X and ϕ ∈ K.
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Corollary 4.1.4. Let 1 ≤ r < ∞ and T ∈ L(X, Y), the following assertions are
equivalent for K weak∗−compact norming subset K ⊂ B(X∗)

(i) T is r−summing.

(ii) There are a probability measure µ defined on the Borel subsets of K, a
(closed) subspace Xr ⊂ Lr(µ), and an operator T̃ : Xr → Y

(a) IriX(X) ⊂ Xr and

(b) T̃IriX(x) = T(x) for every x ∈ X.

That is, the following diagram conmutes:

X T //

iX
²²

Y

iX(X)
IX
r // Xr

T̃

OO

⋂ ⋂

C(K)
Ir // Lp(µ)

We may choose µ and T̃ so that ‖T̃‖ = πr(T).

A Banach space Z is injective if whenever W0 is a subspace of some Ba-
nach space W, any operator T ∈ L(W0, Z) has an extension T̃ ∈ L(W, Z)
preserving its norm, ‖T‖ = ‖T̃‖. The canonical example of injective space
is `K

∞ (bounded sequences indexed in K) where K is a weak∗-dense norm-
ing subset of B(X∗). Notice that the Banach space Y can be embedded in
`

B(Y∗)
∞ as follows, y ∈ Y 7→ iY(y) := (ϕ(y))ϕ∈B(Y∗) ∈ `

B(Y∗)
∞ . This directly

proves the corollary below.

Corollary 4.1.5. Let 1 ≤ r < ∞, T ∈ L(X, Y), the following assertions are
equivalent for K weak∗−compact norming subset K ⊂ B(X∗)

(i) T is r−summing.

(ii) There exist a probability measure µ defined on K and an operator T̃ :
Lr(µ) → `

B(Y∗)
∞ such that the following diagram conmutes:

X T //

iX

²²

Y
iY

##HHHHHHHHH

`
B(Y∗)
∞

C(K)
Ir // Lr(µ)

T̃

;;wwwwwwww
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(iii) Assuming that the Banach space Y is injective, there is a regular probabil-
ity measure µ on K and T̃ ∈ L(Lr(µ), Y) so that the following diagram
conmutes

X T //

iX
²²

Y

C(K)
Ir // Lr(µ)

T̃

OO .

We may choose µ and T̃ so that ‖T̃‖ = πr(T).

4.2. Main definitions and properties of m− r−summing
operators

Let m : Σ → X be a vector measure and p, q > 1 so that 1/p + 1/q =
1. Suppose 1 ≤ r < ∞, and T : Lp(m) → Y is a bounded operator.
We will adapt the definition of summability for operators defined on the
space Lp(m). This definition is related with the m−topology of the space
Lp(m). In [74] the author provides a similar definition in order to study
the summability of operators defined on the space of bounded operators
between Banach spaces X and Y, L(X, Y), when it is endowed with the
strong operator topology.

We say that T is m− r−summing if there is some constant C ≥ 0 such
that for every natural number n and regardless the choice of functions
f1, . . . , fn in Lp(m) we have

(
n

∑
i=1

‖T( fi)‖r
Y

) 1
r

≤ C · sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X

) 1
r

. (4.5)

The least C for which the inequality (4.5) always holds is denoted by
πm

r (T). We shall write Πm
r (Lp(m), Y) for the set of m− r−summing oper-

ators in L(Lp(m), Y). We clearly have that Πm
r (Lp(m), Y) is a linear sub-

space of L(Lp(m), Y) and that πm
r defines a norm in Πm

r (Lp(m), Y) with

‖T‖ ≤ πm
r (T), T ∈ Πm

r (Lp(m)).

Notice that if m is a scalar measure, the notion of m− r−summability co-
incides with classical r−summability; for a general vector measure m the
inclusion Πr(Lp(m), Y) ⊂ Πm

r (Lp(m), Y) always holds.
As in the classical study of summing operators, it is necessary to de-

velop, for Lp(m)−valued sequences, a summability theory with respect to
the m−topology.
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4.2.1. Summability of sequences in Lp(m)

In order to adapt the classical results that relate summability of se-
quences with summing operators, we introduce a space of summable Lp(m)−
valued sequences.

A sequence ( fn)n ⊂ Lp(m) is m− r−summable whenever for each g ∈
Lq(m), the X−valued sequence

(∫
Ω fngdm

)
n is strongly r−summable in

X. That is, the sequence
(∥∥∫

Ω fngdm
∥∥

X

)
n is r−summable for each g ∈

Lq(m). In what follows we denote by `m
r (Lp(m)) the space of m− r−summable

sequences in Lp(m). As we will prove a suitable norm is given by

‖( fn)‖`m
r (Lp(m)) := sup





(
∑
n

∥∥∥∥
∫

Ω
fngdm

∥∥∥∥
r

X

) 1
r

: g ∈ B(Lq(m))



 . (4.6)

The first step is to show that this quantity is finite. For this aim we use the
Closed Graph Theorem. Let ( fn)n be a sequence in `m

r (Lp(m)) and define
the associated map u : Lq(m) → `r(X) given by u(g) :=

(∫
Ω fngdm

)
n.

Obviously, u is well defined and linear. Take a sequence (gk)k convergent
to g0 in Lq(m). For a fixed n ∈ N we have

∥∥∥∥
∫

Ω
fngkdm−

∫

Ω
fng0dm

∥∥∥∥
X

=
∥∥∥∥
∫

Ω
fn(gk − g0)dm

∥∥∥∥
X

≤ ‖ fn‖Lp(m)‖gk − g0‖Lq(m) → 0

then u has a closed graph, that means

‖u‖ = sup





(
∑
n

∥∥∥∥
∫

Ω
fngdm

∥∥∥∥
r

X

) 1
r

: g ∈ B(Lq(m))



 < ∞,

as wanted.

Proposition 4.2.1. The space (`m
r (Lp(m)), ‖ · ‖`m

r (Lp(m))) is a Banach space.

Proof. To prove the completeness of the norm take a Cauchy sequence(
f (k)

)
k

=
((

f (k)
n

)
n

)
k

of elements in `m
r (Lp(m)), we search for a candi-

date for the limit of ( f (k))k. For a fixed ε > 0, there is some positive index
k0 such that if k, k∗ ≥ k0

∥∥∥ f (k) − f (k∗)
∥∥∥

`m
r (Lp(m))

= sup
g∈B(Lq(m))

(
∑
n

∥∥∥∥
∫

Ω
g

(
f (k)
n − f (k∗)

n

)
dm

∥∥∥∥
r

X

) 1
r

≤ ε.
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That means, for g ∈ B(Lq(m)) and k, k∗ ≥ k0

∑
n

∥∥∥∥
∫

Ω
g
(

f (k)
n − f (k∗)

n )dm‖r
X ≤ εr. (4.7)

Each term in this series is dominated by εr, so for every n ∈ N and g ∈
B(Lq(m)) ∥∥∥∥

∫

Ω
g

(
f (k)
n − f (k∗)

n

)
dm

∥∥∥∥
X
≤ ε,

for all k, k∗ ≥ k0. Thus
∥∥∥ f (k)

n − f (k∗)
n

∥∥∥
Lp(m)

≤ ε for k, k∗ ≥ k0, and every n ∈
N. Then, for every n ∈ N the sequences

(
f (k)
n

)
k

are Cauchy sequences in

Lp(m) and so convergent to a function fn in Lp(m). We have a candidate
( fn)n for the limit of

(
f (k)

)
k
, we must show that ( fn)n is really a limit in

`m
r (Lp(m)).

Since all the terms in the sum (4.7), we have, for every N ∈ N, g ∈
B(Lq(m)) and k, k∗ ≥ k0

N

∑
n=1

∥∥∥∥
∫

Ω
g

(
f (k)
n − f (k∗)

n

)
dm

∥∥∥∥
r

X
≤ εr. (4.8)

Now, let k∗ tend to infinity in (4.8). We get, for all g ∈ B(Lp(m)),
N ∈ N and k ≥ k0

(
N

∑
n=1

∥∥∥∥
∫

Ω
g

(
f (k)
n − fn

)
dm

∥∥∥∥
r

X

) 1
r

≤ ε.

Clearly, this implies, that the infinite sum is also bounded as follows, for
every g ∈ B(Lq(m)) and k ≥ k0,

(
∑
n

∥∥∥∥
∫

Ω
g

(
f (k)
n − fn

)
dm

∥∥∥∥
r

X

) 1
r

≤ ε.

That means that
(

f (k)
n

)
n
− ( fn)n ∈ `m

r (Lp(m)) for each k ≥ k0, and hence

f = ( fn)n belongs to `m
r (Lp(m)), with

∥∥∥
(

f (k)
n

)
n
− ( fn)n

∥∥∥
`m

r (Lp(m))
≤ ε for

all k ≥ k0. Since this happens for an arbitrary ε > 0 we conclude that(
f (k)
n

)
n
→ ( fn)n in `m

r (Lp(m)).

Let T : Lp(m) → Y be a bounded linear operator into a Banach space
Y. It induces a bounded linear map T̂ : ( fn)n 7→ (T( fn))n between the
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spaces `m
r (Lp(m)) and `w

r (Y). Indeed, for a sequence ( fn)n ⊂ `m
r (Lp(m)),

we have that
(∥∥∫

Ω fngdm
∥∥

X

)
n ∈ `r for all g ∈ Lq(m). Fix y∗ ∈ Y∗. Recall

that Γ ⊂ Lp(m)∗ is norming (by Proposition 1.0.7) and that the weak norm
of a sequence can be computed by norming subsets (see for instance [27]
page 36). Since y∗◦T

‖y∗◦T‖ ∈ B((Lp(m))∗) we get the following

(
∑
n
|〈T( fn), y∗〉|r

) 1
r

= ‖y∗ ◦ T‖
(

∑
n

∣∣∣∣
(

y∗ ◦ T
‖y∗ ◦ T‖

)
( fn)

∣∣∣∣
r
) 1

r

≤ ‖y∗ ◦ T‖ sup
ϕ∈B(Lp(m)∗)

(
∑
n
|〈 fn, ϕ〉|r

) 1
r

≤ ‖y∗ ◦ T‖ sup
g∈B(Lq(m)),x∗∈B(X∗)

(
∑
n

∣∣∣∣
〈∫

Ω
fngdm, x∗

〉∣∣∣∣
r
) 1

r

≤ ‖y∗ ◦ T‖ sup
g∈B(Lq(m))

(
∑
n

∥∥∥∥
∫

Ω
fngdm

∥∥∥∥
r

X

) 1
r

,

that is finite because
(∥∥∫

fngdm
∥∥

X

)
n is r−summable.

Basic arguments and inequalities above (taking T the identity map in
Lp(m)) yield the following chain of containments:

`r(Lp(m)) ⊂ `m
r (Lp(m)) ⊂ `w

r (Lp(m)).

As happens in Proposition 4.1.1 for r−summing operators, m − r−
summing operators are characterized by their behavior over summable
sequences. The following result shows that m − r−summing operators
are exactly those that transform m− r−summable sequences in Lp(m) into
strongly r−summable ones in the range Y.

Theorem 4.2.2. An operator T ∈ L(Lp(m), Y) is m− r−summing if and only
if T̂(`m

r (Lp(m))) ⊂ `r(Y). Moreover ‖T̂‖ = πm
r (T).

Proof. Suppose first that T is m− r−summing, then for each finite collec-
tion f1, . . . , fk ∈ Lp(m) we have

(
k

∑
i=1

‖T( fi)‖r
Y

) 1
r

≤ πm
r (T) sup

g∈B(Lq(m))

(
k

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X

) 1
r

.

Take a sequence ( fn)n ∈ `m
r (Lp(m)). We claim that T̂(( fn)n) ∈ `r(Y),
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hence

‖T̂(( fn)n)‖`r(Y) = ‖(T( fn))n‖`r(Y) = sup
k∈N

(
∑
n≤k

‖T( fn)‖r
Y

) 1
r

≤ πm
r (T) sup

k∈N

sup
g∈B(Lq(m))

(
∑
n≤k

∥∥∥∥
∫

Ω
fngdm

∥∥∥∥
r

X

) 1
r

= πm
r (T) sup

g∈B(Lq(m))

(
∞

∑
n=1

∥∥∥∥
∫

Ω
fngdm

∥∥∥∥
r

X

) 1
r

= πm
r (T)‖( fn)n‖`m

r (Lp(m)),

therefore ‖T̂‖ ≤ πm
r (T).

We prove the converse implication by a closed graph argument. Sup-
pose T̂(`m

r (Lp(m))) ⊂ `r(Y). Since T̂ : `w
r (Lp(m)) → `r(Y) is contin-

uos and the `r(Y) norm dominates the `w
r (Y) norm we have that the cor-

responding operator T̂ : `m
r (Lp(m)) → `r(Y) has closed graph and is

bounded. Thus for a finite sequence ( fi)k
i=1 ⊂ Lp(m) we get

‖(T( fi))k
i=1‖`r(Y) ≤ ‖T̂‖‖( fi)n

i=1‖`m
r (Lp(m)).

Therefore T is m− r−summing and πm
r (T) ≤ ‖T̂‖.

As a consequence of the previous characterization we prove that the
space of m− r−summing operators endowed with their respective norms
are Banach spaces.

Theorem 4.2.3. Let Y be a Banach space, and 1 ≤ r < ∞. The space of m −
r−summing operators, Πm

r (Lp(m), Y), endowed with the norm πm
r is a Banach

space,

Proof. Let (Tn)n be a πm
r −Cauchy sequence in Πm

r (Lp(m), Y). Since the op-
erator norm is dominated by πm

r , we have that (Tn)n is a Cauchy sequence
in L(Lp(m), Y), thus convergent to an operator T ∈ L(Lp(m), Y).

We claim that T is in fact m− r−summing and πm
r (Tn − T) → 0 when

n → ∞, these facts are consequences of Theorem 4.2.2. Since each Tn is m−
r–summing we have that (T̂n)n is a Cauchy sequence inL(`m

r (Lp(m)), `r(Y))
and therefore, convergent to T̂ ∈ L(`m

r (Lp(m)), `r(Y)). We directly get
that T is m− r−summing and πm

r (Tn − T) → 0.
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4.2.2. Operators with range in Lp(m)

In order to continue the analysis of the summability properties as-
sociated to the m−topology on Lp(m), it is natural to investigate the o-
perators satisfying that transform weakly r−summable sequences in m−
r−summable ones. As in the previous section, we define and characterize
the corresponding class of operators, that we call weak m− r−summing
operators. In this section we prove that these operators, together with the
m − r−summing ones, complete in a sense the tools for the study of the
summability associated to the m−topology. Moreover this study provides
information about those vector measures that satisfy that the identity map
in Lp(m) is m − r−summing. Finiteness of the dimension of subspaces
where its restriction satisfy this property is proved. Also, for finishing this
section, we analyze operators between Banach spaces that can be factor-
ized through an Lp(m) space in such a way that one of the factors is a
weak m− r−summing operator and the other one is m− p−summing. In
fact, we show that under the adequate assumptions 1−summing opera-
tors can always be factorized through a weak m − 1−summing operator
and a m − 1−summing one. As a consequence, we prove a Dvoretsky-
Rogers type result regarding finiteness of the dimension of the Banach
spaces in which the identity map factorizes in such a way.

We say that an operator T : Y → Lp(m) is weak m− r−summing if there
is a constant C > 0 such that for every finite set of elements y1, ..., yn ∈ Y,

sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
T(yi)g dm

∥∥∥∥
r
)1/r

≤ C sup
y∗∈B(Y∗)

(
n

∑
i=1

|〈yi, y∗〉|r
)1/r

.

(4.9)
We write πw−m

r (T) for the least constant so that the inequality above holds.
Examples of such kind of operators are easy to find. More interesting

for the aim of this section are such Lp(m) spaces in which the identity map
satisfies this property. The canonical one is given for the case where m is
a scalar positive finite measure µ. Obviously, the identity Id : Lp(µ) →
Lp(µ) satisfies this property since in this case the integrals in the left hand
side term of inequality (4.9) give exactly the usual duality, the one that
appears in the right hand side term.

For a linear and continuous operator T between spaces of integrable
functions with respect to a vector measure, T : Lp1(m1) → Lp2(m2), with
p1, p2 > 1, we have that T is weak m − r−summing whenever it is m −
r−summing.

Cleary every r−summing operator T : Y → Lp(m) is weak m − r−
summing, and πw−m

r (T) ≤ πr(T). The characterization of weak m −
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r−summing operators in terms of a Pietsch type domination theorem is
in this case also easy to prove. As the following result shows, it is re-
quired that the composition of T with the integration map for every g ∈
Lq(m) is r−summing, with some sort of uniform behavior of the associ-
ated r−summing norms.

Proposition 4.2.4. Let T : Y → Lp(m) with Y a Banach space. The following
statements are equivalent.

(i) T is weak m− r−summing.

(ii) There is a constant C > 0 such that for every g ∈ B(Lq(m)), the operator
Ig ◦ T : Y → X is r−summing, and

πr(Ig ◦ T) ≤ C.

(iii) There is a constant C > 0 such that for every g ∈ B(Lq(m)), there is a
probability measure ηg defined on the σ−algebra of Borel subsets of B(Y∗)
(endowed with the weak∗−topology) such that, for every y ∈ Y,

∥∥∥∥
∫

Ω
T(y)g dm

∥∥∥∥
X
≤ C

(∫

B(Y∗)
|〈y, y∗〉|r dηg(y∗)

)1/r

. (4.10)

Moreover, the least C appearing in (i), (ii) and (iii) coincides with

sup
g∈B(Lq(m))

πr(Ig ◦ T) = πw−m
r (T).

Proof. For the implication (i) ⇒ (ii) it is enough to use the definition of
p−summing operator. The converse is also obvious. The equivalence be-
tween (iii) and (ii) is obtained just by applying Pietsch Domination The-
orem to each one of the maps Ig ◦ T. The formula for the norm is also a
direct consequence of the definitions.

Remark 4.2.5. The lattice properties of the sets of Pietsch measures ap-
pearing in (iii) of Proposition 4.2.4 provide a criterion for an operator
to be weak m − r−summing. Let T ∈ Πw−m

r (Y, Lp(m)). Let M(B(Y∗))
be the usual space of Radon measures over the σ−algebra of Borel sub-
sets of B(Y∗), where Y∗ is endowed with the weak∗−topology. Then
M(B(Y∗)) = C(B(Y∗))∗. As a consequence of Proposition 4.2.4 there is
a set of Pietsch measures {ηg : g ∈ B(Lq(m))} associated to the opera-
tor T so that for each g ∈ Lq(m) inequality (4.10) holds. Assuming that
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{ηg : g ∈ B(Lq(m))} is order bounded in M(B(Y∗)) by an element η, we
obtain that for every y ∈ Y,

‖T(y)‖ ≤ K
(∫

BY∗
|〈y, y∗〉|r dη

)1/r

.

Consequently, T is r−summing. The converse is also obvious, since every
r−summing operator T : Y → Lp(m) is weak m− r−summing. When this
argument is applied to the case of the identity map Id : Lp(m) → Lp(m),
we obtain that it is weak m− r−summing with a set of Pietsch measures
that is uniformly order bounded if and only if Lp(m) is finite dimensional,
as a consequence of Dvoretsky-Rogers Theorem and the following calcu-
lations. If η is the required order bound, for every f ∈ Lp(m),

‖ f ‖Lp(m) = sup
g∈B(Lq(m))

∥∥∥∥
∫

f g dm
∥∥∥∥

X

≤ K sup
g∈B(Lq(m))

(∫

B((Lp(m))∗)
|〈 f , h〉|rdηg

)1/r

≤ K
(∫

B((Lp(m))∗)
|〈 f , h〉|rdη

)1/r

.

The previous remark shows that uniform boundedness of the inte-
grals

∥∥∫
Ω(·)g dm

∥∥
X by an integral

( ∫
B((Lp(m))∗) |〈 f , h〉|rdη

)1/r only holds
for finite dimensional Lp(m) spaces. In the same direction, the follow-
ing result shows that Lp(m) spaces where m − r−summable sequences
and weak r−summable sequences coincide (i.e. the identity map is weak
m − r−summing) for some 1 ≤ r < ∞, have strong restrictions on the
properties of the integration maps

∫
Ω(·)g dm, g ∈ Lq(m).

Proposition 4.2.6. If Id : Lp(m) → Lp(m) is weak m− r−summing for some
1 ≤ r < ∞, then there is no function g ∈ Lq(m) such that there is an infinite
dimensional subspace S ⊆ Lp(m) satisfying that the restriction Ig|S : S → X is
an isomorphism onto the range.

Proof. Suppose that there is a subspace S such that the restriction Ig|S :
S → X is an isomorphism onto the range. Let us write i for the inclusion
map i : S → Lp(m) and R : Ig|S(S) → S for the inverse map (Ig|S)−1 :
Ig|S(S) → S. Since Id is weak m− r−summing, each Ig is r−summing as
a consequence of (ii) in Proposition 4.2.4. Therefore, Ig|S = Ig ◦ i : S →
Lp(m) → X is a r-summing isomorphism onto the range, and since the
identity in S can be factorized as

R ◦ Ig|S : S → Ig(i(S)) → S,
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therefore the ideal property of r-summing operators and Dvoretsky-Rogers
Theorem yields that S is finite dimensional.

In the following result we show that the compositions of weak m −
r−summing maps and m − r−summing maps give r−summing opera-
tors; this motivates the definitions of this section. Notice that the definition
of m− r−summing operator can be extended to those operators defined
on closed subspaces of Lp(m) in a natural way.

Proposition 4.2.7. The composition T = R ◦ U of a weak m − r−summing
operator U : Y → Lp(m) and an m− r−summing one R : S → Z, where S is a
subspace of Lp(m) such that U(Y) ⊆ S, is r-summing.

Proof. Let y1, ..., yn ∈ Y, then

(
n

∑
i=1

‖T(yi)‖r
Z

)1/r

=

(
n

∑
i=1

‖R(U(yi))‖r
Z

)1/r

≤ K sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
U(yi)g dm

∥∥∥∥
r

X

)1/r

≤ KQ sup
y∗∈B(Y∗)

(
n

∑
i=1

|〈U(yi), y∗〉|r
)1/r

.

and the conclusion follows.

The following result gives a sort of converse of the previous one and
provides a new factorization theorem for summing operators. It shows
that in a sense, regarding the structure properties of L1(m) spaces and
factorizations through them, 1−summability can be decomposed in m −
1−summability and weak m− 1−summability. Notice that the definitions
of (weak) m − r−summability for operators defined (or with range) in
L1(m) have sense when we take q = ∞, the conjugated index. Recall that
L∞(m) = L∞(λ).

Theorem 4.2.8. Let T : Y → Z be an operator between Banach spaces. The
following statements are equivalent.

(i) T is 1−summing.

(ii) There is a vector measure m such that T factorizes through a subspace of
L1(m) as T = R ◦U, where U is weak m − 1−summing and R is m −
1−summing.
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Proof. For the proof of (i)⇒ (ii), consider the factorization of T as 1− sum-
ming operator through the map i : C(B(Y∗)) → L1(B(Y∗), η) given by the
classical Piesth domination theorem. Recall that we consider B(Y∗) en-
dowed with the weak∗−topology. Here η is a Radon probability measure
and i( f ) = f is the identification map of continuous functions as inte-
grable functions. Take the vector measure defined on B, the σ−algebra of
the Borel subsets of B(Y∗), with range in L1(B(Y∗), η) given by m(A) =
χA, A ∈ B. Then L1(m) = L1(B(Y∗), η) isometrically (see Example 3.1.4).
Consider the map U : Y → F ⊂ L1(m) given by U(y) = 〈y, ·〉, where F
is the closure of the functions 〈y, ·〉 in L1(η). Recall that L∞(m) = L∞(η).
The following calculations show that U is weak m − 1−summing. For a
finite set y1, ..., yn ∈ Y,

sup
g∈B(L∞(m))

(
n

∑
i=1

∥∥∥∥
∫

U(yi)g dm
∥∥∥∥

L1(η)

)

= sup
g∈B(L∞(m))

(
n

∑
i=1

∥∥∥∥
∫
〈yi, ·〉g dm

∥∥∥∥
L1(η)

)

= sup
g∈B(L∞(η))

(
n

∑
i=1

(∫

B(Y∗)
|〈yi, ·〉g| dη

))

=

(
n

∑
i=1

∫

B(Y∗)
|〈yi, ·〉| dη

)

≤ sup
y∗∈B(Y∗)

(
n

∑
i=1

|〈yi, y∗〉|
)

.

Now take the map R : F → Z given by R(〈x, ·〉) = T(x) and extended
by density to the elements of the closure of the range of U. Let us show
that it is m− 1−summing. It is enough to prove it for elements of the range
of U. Take 〈y1, ·〉, ..., 〈yn, ·〉. Then, having in mind that there is a constant
K such that for every y ∈ Y, ‖T(y)‖Z ≤ K‖〈y, ·〉‖L1(η), we obtain

(
n

∑
i=1

‖R(〈yi, ·〉)‖Z

)
=

(
n

∑
i=1

‖T(yi)‖
)
≤ K

(
n

∑
i=1

‖〈yi, ·〉‖L1(η)

)

≤ K sup
g∈B(L∞(m))

(
n

∑
i=1

‖〈yi, ·〉g‖L1(η)

)
.

Consequently, the map is m− 1−summing.
Implication (ii) ⇒ (i) follows directly by Proposition 4.2.7.



4.2 Definitions and properties 67

4.2.3. Examples

We finish this section with some examples of m− r−summing opera-
tors.

Example 4.2.9. The canonical m− r−summing operator is the integration
map Ig : Lp(m) → X, defined by Ig( f ) :=

∫
Ω f gdm where g is a fixed

q−integrable function with respect to m. Indeed we have, for n ∈ N and
f1, . . . , fn ∈ Lp(m),

n

∑
i=1

∥∥Ig( fi)
∥∥r =

n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X

= ‖g‖r
Lq(m)

n

∑
i=1

∥∥∥∥∥
∫

Ω
fi

g
‖g‖Lq(m)

dm

∥∥∥∥∥
r

X

≤ ‖g‖r
Lq(m) sup

h∈B(Lq(m))

n

∑
i=1

∥∥∥∥
∫

Ω
fihdm

∥∥∥∥
r

X
,

therefore Ig is m − r−summing and πm
r (Ig) ≤ ‖g‖Lq(m). Note that for

g ∈ Lq(m) and ε > 0, there is always a function fε ∈ B(Lp(m)) such
that ‖g‖Lq(m) ≤ (1 + ε)‖Ig( fε)‖X. We obtain that, taking into account the
inequality for m− r−summing operators for the single function fε, we get

‖g‖Lq(m) ≤ (1 + ε)‖Ig( fε)‖

≤ (1 + ε)πm
r (Ig) sup

h∈B(Lq(m))

∥∥∥∥
∫

Ω
fεhdm

∥∥∥∥
X

≤ (1 + ε)πm
r (Ig).

Thus ‖g‖Lq(m) ≤ πm
r (Ig).

The following example follows the lines of [27, Example 2.11]. Re-
call that a Banach space valued strongly measurable function f : Ω → X
is Bochner r−integrable whenever

∫
Ω ‖ f (w)‖r

Xdµ(w) < ∞. We denote by
Lr(µ, X) the space of equivalence classes of µ−a.e. X−valued functions
that are Bochner r−integrable. Clearly, for each x∗ ∈ X∗, the function
w 7→ 〈 f (w), x∗〉 is in Lr(µ).

Example 4.2.10. Let m : Σ → X be a vector measure and λ a Rybakov’s
control measure for m. Fix (Ω̄, Σ̄, µ̄) a finite positive measure space and f0 :
Ω̄ → Lp(m) a Bochner r-integrable function with respect to the measure
µ̄.

Let us show the operator u f0 : Lq(m) → Lr(µ̄, X) defined by u f0(g) :
Ω̄ → X with u f0(g)(w̄) :=

∫
Ω g f0(w̄)dm µ̄−a.e., is m− r−summing.
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In order to show that the definition of u f0 is consistent, we prove the
following claim.

Claim.Let f : Ω → X be a Bochner µ−integrable function, and T :
X → Y a linear and continuous operator. The composition T f is Bochner
integrable. Since f is strongly measurable, there is a sequence of simple
functions (sn)nS(Σ) converging to f µ−a.e. The sequence (Tsn)n ⊂ S(Σ)
and converges pointwise to T f µ−a.e. Since ‖T f ‖r ≤ ‖T‖r‖ f ‖r, and f is
Bochner integrable, we have

∫ ‖T f ‖rdµ ≤ +∞. This proves the claim.
Since u f0(g) = Ig( f0), and f0 ∈ Lr(µ̄, X), a direct application of the

previous claim yields u f0(g) ∈ Lr(µ̄, X).
It remains to prove the m− r−summability of the operator u f0 . Take a

finite collection of functions g1, . . . , gn ∈ Lq(m). Then we have
(

n

∑
i=1

‖u f0(gi)‖r
Lr(µ̄,X)

) 1
r

=

(
n

∑
i=1

∫

Ω̄
‖u f0(gi)(w̄)‖r

Xdµ̄(w̄)

) 1
r

=

(
n

∑
i=1

∫

Ω̄

∥∥∥∥
∫

Ω
gi f0(w̄)dm

∥∥∥∥
r

X
dµ̄(w̄)

) 1
r

=

(∫

Ω̄

n

∑
i=1

∥∥∥∥∥
∫

Ω
gi

f0(w̄)
‖ f0(w̄)‖Lp(m)

‖ f0(w̄)‖Lp(m)dm

∥∥∥∥∥
r

X

dµ̄(w̄)

) 1
r

=

(∫

Ω̄
‖ f0(w̄)‖r

Lp(m)

n

∑
i=1

∥∥∥∥∥
∫

Ω
gi

f0(w̄)
‖ f0(w̄)‖Lp(m)

dm

∥∥∥∥∥
r

X

dµ̄(w̄)

) 1
r

≤
(

sup
w̄∈Ω̄

n

∑
i=1

∥∥∥∥∥
∫

Ω
gi

f0(w̄)
‖ f0(w̄)‖Lp(m)

dm

∥∥∥∥∥
r

X

∫

Ω̄
‖ f0(w̄)‖r

Lp(m)dµ̄(w̄)

) 1
r

= ‖(gi)n
i=1‖`m

r (Lq(m))‖ f0‖Lr(µ̄,Lp(m)).

We conclude that u f0 is m− r−summing with πm
r (u f0) ≤ ‖ f0‖Lr(µ,Lp(m)).

A particular case of this example is given when the operator u f0 is de-
fined by a kernel. Kernel operators have been largely studied in this set-
ting, see for instance the articles by G. Curbera, O. Delgado and W. Ricker
([16, 20]). Take a function k : Ω̄×Ω → R, µ̄× λ− measurable, so that

cp,r =

(∫

Ω̄

(∫

Ω
|k(w̄, w)|pdm(w)

) r
p

dµ̄(w̄)

) 1
r

(4.11)

is finite. Then we have that the kernel operator defined by

K : Lq(m) → Lr(µ̄, X) with g 7→ K(g) :=
∫

Ω
k(., w)g(w)dm(w)
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for g ∈ Lq(m) is m− r−summing. Indeed if we consider a strongly mea-
surable function f0 : Ω̄ → Lp(m) given by f0(w̄) := k(w̄, ·), we have by
condition (4.11) that f0 ∈ Lr(µ̄, Lp(m)), and K(g) = u f0(g) µ̄−a.e. in Ω̄.

4.3. Comparing spaces of summing operators

4.3.1. Pietsch type theorems

In order to prove a a Pietsch type theorem for m− r−summing opera-
tor we need to assume a condition on the space Lp(m) that will be called
property (r− ?). In the following we give two examples that are in some
sense extreme cases in which the spaces Lp(m) have property (r− ?). But
firstly let us introduce this property.

A family S := {Si : i ∈ I} of finite dimensional subspaces of Lp(m) is
a dense family of subspaces if it satisfies that for every f1, ..., fn ∈ Lp(m) and
every ε > 0 there is an i0 ∈ I such that there are functions f 0

1 , ..., f 0
n ∈ Si0

satisfying that
‖ fi − f 0

i ‖Lp(m) < ε, i = 1, . . . , n.

Let 1 ≤ r < ∞. We say the space Lp(m) has the property (r− ?) over S if
there is a dense family of subspaces S so that for each subspace S ∈ S and
for each 0 < ε < 1

2 there exists an m−compact set K ⊂ B(Lq(m)) so that
for every finite choice of functions f1, . . . , fn ∈ S the following inequality
holds:

(1− ε) sup
g∈B(Lq(m))

n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X
≤ sup

g∈K

n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X
. (4.12)

In this case we say that the set K is r− ε−norming for the subspace S.
In the following we give two examples of vector measures so that the

associated Lp(m) space satisfies the property (r − ?). In the first one, the
span of the range of the vector measure is one dimensional. In the second
example, we find what is in a sense the canonical case of the opposite
situation, which also satisfies the property (r− ?).

Example 4.3.1. When the vector measure is a positive finite scalar mea-
sure, the m−topology coincides with the weak topology. So for 1 < q < ∞
the unit ball of Lq(m) is compact with respect to this topology, that gives
an easy example of m−compact norming subset. Moreover, the equality

sup
h∈B(Lq(m))

(
n

∑
i=1

|〈 fi, h〉|r
)1/r

= sup
(λi)∈B(`r′ )

∥∥∥∥∥
n

∑
i=1

λi fi

∥∥∥∥∥
Lp(m)
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holds for every finite sequence f1, ..., fn ∈ Lp(m). Consequently, the weak
r−norm expression is evaluated by computing norms of elements that be-
long to the finite dimensional subspace generated by f1, ..., fn. Therefore,
a finite (and then m−compact) set of elements of the unit ball of B(Lq(m))
is enough to approximate the weak r−norm “up to an ε”.

Example 4.3.2. Let us give now an example of a vector measure for which
this property is also satisfied but has a large range. Let 1 ≤ r < ∞ and
consider a finite measure space (Ω, Σ, µ) and the vector measure m : Σ →
Lr(µ) given by m(A) := χA, that has been used in several examples before.
Notice that the linear span of the range of this vector measure is dense in
Lr(µ) and

∫
Ω hdm = h for every h ∈ L1(m) = Lr(µ). In this case, for every

finite set f1, ..., fn ∈ Lp(m),

sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

Lr(µ)

) 1
r

= sup
g∈B(Lq(m))

(
n

∑
i=1

‖ fig‖r
Lr(µ)

) 1
r

= sup
g∈B(Lq(m))

∥∥∥∥∥∥

(
n

∑
i=1

| fi|r
) 1

r

|g|
∥∥∥∥∥∥

Lr(µ)

=

∥∥∥∥∥∥

(
n

∑
i=1

| fi|r
) 1

r
∥∥∥∥∥∥

Lp(m)

Now assume that the elements f1, ..., fn are simple functions. Then a sim-
ple calculation shows that there is a finite partition {Ak : k = 1, ..., t} of
Ω such that the expression (∑n

i=1 | fi|r)1/r can be written as ∑t
k=1 τkχAk for

some non-negative τk. Take S = {χAk : k = 1, ..., t}. Since the measure
m is positive, we can obtain a compact (and then m−compact) subset of
B(Lq(m)) that is r − ε−norming for S, as showed in example 2.2.6. Since
the subspaces generated by finite sets of characteristic functions of dis-
joint sets define a dense family for Lp(m), we obtain the result. Notice
that for this particular measure m and every Banach space Y, the operator
T : Lp(m) → Y is m− r−summing if and only if it is r−concave. Indeed,
for f1, . . . , fn ∈ Lp(m) we have, by the computations above

(
n

∑
i=1

‖T( fi)‖r
Y

) 1
r

≤ K

∥∥∥∥∥∥

(
n

∑
i=1

| fi|r
) 1

r
∥∥∥∥∥∥

Lp(m)

.

A classical result (see [48, Theorem 1.d.10]) ensures that every r−summing
operator is r−concave. In this example we give a sort of converse; we
reproduce this geometrical property of the operator T (r−concavity) in
terms of a summability property.
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Notice that disjoint sums of scalar measures and measures as in exam-
ple 4.3.2 provides more non trivial examples of spaces having property
(r− ?).

The following result is obtained by means of straightforward calcula-
tions, we give the proof for the aim of completeness.

Lemma 4.3.3. Let S := {Si : i ∈ I} be a dense family of subspaces of Lp(m),
and T : Lp(m) → Y a linear and continuous operator. T is m− r−summing if
and only if all the restrictions T|Si are uniformly m− r−summing.

Proof. The direct implication is trivial, in order to prove the converse, let
f1, . . . , fn ∈ Lp(m) and ε > 0. There is an index i0 ∈ I such that there are
f 0
1 , . . . , f 0

n in Si0 such that ‖ f 0
i − fi‖Lp(m) ≤ ε/(n

1
r max{C, ‖T‖}), where

C > 0 is the uniform bound that appears by the the summability of T|Si ,
for i = 1, . . . , n. We get
(

n

∑
i=1

‖T( fi)‖r
Y

) 1
r

≤
(

n

∑
i=1

∥∥T( fi − f 0
i )

∥∥r
Y

) 1
r

+

(
n

∑
i=1

∥∥T( f 0
i )

∥∥r
Y

) 1
r

≤ ‖T‖
(

n

∑
i=1

‖ fi − f 0
i ‖r

Lp(m)

) 1
r

+

(
n

∑
i=1

‖T( f 0
i )‖r

Y

) 1
r

≤ ‖T‖
(

n

∑
i=1

‖ fi − f 0
i ‖r

Lp(m)

) 1
r

+ C sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
f 0
i gdm

∥∥∥∥
r

X

) 1
r

≤ ε + C sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
( f 0

i − fi)gdm
∥∥∥∥

r

X

) 1
r

+ C sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X

) 1
r

≤ ε + C

(
n

∑
i=1

‖ fi − f 0
i ‖r

Lp(m)

) 1
r

+ C sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X

) 1
r

≤ 2ε + C sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X

) 1
r

for every ε > 0. Therefore T is m− r−summing.

Theorem 4.3.4. Fix 1 ≤ r < ∞ and 1 < p < ∞. Let T : Lp(m) → Y be a
linear and continuous operator taking values in a Banach space Y, and suppose
that Lp(m) has property (r− ?) over a dense family of subspaces S . The following
assertions are equivalent,
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(i) T is m − r−summing, that is, there is Q > 0 such that for every finite
choice of functions f1, . . . , fn

(
n

∑
i=1

‖T( fi)‖r
Y

) 1
r

≤ Q sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X

) 1
r

. (4.13)

(ii) There is a positive constant Q so that for every m−compact set K ⊂
B(Lq(m)) and for each subspace S ∈ S of Lp(m), that is r − ε−normed
by K for some 0 < ε < 1

2 , there is a probability measure δK,ε defined on the
Borel subsets of K such that the following holds for every f ∈ S

‖T( f )‖r
Y ≤

Qr

1− ε

∫

K

∥∥∥∥
∫

Ω
f gdm

∥∥∥∥
r

X
dδK,ε(g). (4.14)

Proof. We begin by proving (i) ⇒ (ii). We fix an m−compact set K in
B(Lq(m)) and 0 < ε < 1

2 , now let S be a subspace belonging to a dense
family S of subspaces of Lp(m) and r − ε−normed by K. We will apply
Ky Fan’s Lemma 3.1.5 to obtain a probability measure so that (4.14) holds
in S, we will prove that the constant Q is given by the m− r−summability
of the operator T and that it is independent of K.

We define a family of functions Ψ defined on the space of probability
measures over the Borel subsets of K, P(K). Notice that P(K) is a sub-
set of the unit ball of the Radon measures over K, denoted by B(M(K)).
Since B(M(K)) = B(C(K)∗), P(K) is w∗−compact and convex. Each fi-
nite family { f1, . . . , fn} in S defines a function of Ψ in the following way:
φ f1,..., fn : P(K) → R is given by

φ f1,..., fn(η) :=
n

∑
i=1

‖T( fi)‖r
Y −

Qr

1− ε

∫

K

n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X
dη(g).

We will show that the family Ψ = {φ f1,..., fn : f1, . . . , fn ∈ S} satisfies the
requirements of Ky Fan’s Lemma. For every f ∈ S the function ψ f : g 7→∥∥∫

f gdm
∥∥ is continuous, therefore φ f1,..., fn is lower semi continuous in the

weak∗-topology of P(K). Each φ f1,..., fn is clearly convex, and the convex
combination of two functions of Ψ stays in Ψ.

Since K is compact and the function g 7→ ∑n
i=1

∥∥∫
Ω figdm

∥∥r
X is contin-

uous, there is some g0 ∈ K so that

sup
g∈K

n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X
=

n

∑
i=1

∥∥∥∥
∫

Ω
fig0dm

∥∥∥∥
r

X
,



4.3 Comparing spaces of summing operators 73

therefore, for δg0 ∈ P(K) the Dirac measure associated to g0 we have, as a
consequence of (4.12) and (4.13)

φ f1,..., fn(δg0) =
n

∑
i=1

‖T( fi)‖r
Y −

Qr

1− ε

∫

K

n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X
dδg0(g)

=
n

∑
i=1

‖T( fi)‖r
Y −

Qr

1− ε
sup
g∈K

n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X

≤
n

∑
i=1

‖T( fi)‖r
Y −Qr sup

g∈B(Lq(m))

n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X
≤ 0.

An application of Ky Fan’s lemma gives a probability measure ηK,ε so that
φ f1,..., fn(ηK,ε) ≤ 0 for every finite choice f1, . . . , fn in S, therefore (4.14)
holds.

In order to prove (ii) ⇒ (i), let S be a dense family of subspaces of
Lp(m). We will show that all the restrictions of T to the subspaces of the
family S are uniformly m− r−summing. Take a subspace S in S and 0 <

ε < 1
2 . Property (r − ?) of Lp(m) ensures the existence of an m−compact

set KS,ε that is r− ε−norming for S. Take now a finite sequence of functions
f1, . . . , fn in S, by (ii) there is a probability measure δKS,ε

(
n

∑
i=1

‖T( fi)‖r
Y

) 1
r

≤ Q

(1− ε)
1
r

(
n

∑
i=1

∫

KS,ε

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

dδKS,ε(g)

) 1
r

=
Q

(1− ε)
1
r

(∫

KS,ε

n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

dδKS,ε(g)

) 1
r

≤ Q

(1− ε)
1
r

(
sup

g∈B(Lq(m))

n

∑
i=1

∥∥∥∥
∫

figdm
∥∥∥∥

r

X

) 1
r

,

where the constant Q is clearly uniform for every subspace S. Since this
holds for every ε > 0 we obtain that T is uniformly m− r−summing. An
appel to Lemma 4.3.3 gives us the conclusion.

The following result corresponds to the Factorization Theorem for m−
r−summing operators when property (r − ?) is assumed for the space
Lp(m).

Theorem 4.3.5. Let T ∈ L(Lp(m), Y) with Y Banach space and Lp(m) with
property (r− ?) over a dense family of subspaces S . For 1 ≤ r < ∞ the following
assertions are equivalent,
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(i) T ∈ Πm
r (Lp(m), Y),

(ii) There is a constant Q > 0 so that for every K ⊂ B(Lq(m)) that is compact
with respect to the m−topology and for every subspace of Lp(m), S ∈ S ,
that is r − ε−normed by K for some 0 < ε < 1, there exists a probability
measure δK,ε defined on the Borel subsets of K so that

S

iK,ε

²²

T|S // Y

C(K, X) ⊃ E
jK,ε // jK,ε(E)

RK,ε

OO

⊂ Lr(K, δK,ε, X)

where (1− ε)‖ f ‖Lp(m) ≤ ‖iK,ε( f )‖C(K,X) ≤ ‖ f ‖Lp(m) for every f ∈ S
and ‖RK,ε‖ ≤ Q uniformly in K, S and ε.

Proof. The domination property given in (4.14) directly implies the factor-
ization. In fact the map iK,ε : S → C(K, X) given by iK,ε( f ) =

∫
Ω f (·)dm is

continuous and satisfies the inequalities

(1− ε)‖ f ‖Lp(m) ≤ ‖iK,ε( f )‖C(K,X) ≤ ‖ f ‖Lp(m).

The map jK,ε corresponds to the natural inclusion of the space C(K, X) into
the space of Bochner δK,ε-integrable functions with values in X, Lr(K, δK,ε, X).
Take RK,ε( f ) = T( f ) for every f ∈ jK,ε(E). RK,ε is well defined and con-
tinuous by the definition of iK,ε and jK,ε, and by the boundedness property
for T|S we get

‖T|S( f )‖r
Y ≤

Qr

1− ε

∫

K

∥∥∥∥
∫

Ω
f gdm

∥∥∥∥
r

X
dδK,ε(g).

We finish this section with a generalized version of Theorem 4.3.4.
Here no conditions on the space Lp(m) are needed, the theorem holds even
for finite sequences or for finite dimensional subspaces of Lp(m). We begin
with the description of the construction.

1. Take a family {Ai}n
i=1 of subsets of Lp(m), so that each set Ai is posi-

tively balanced, that is, for every θ ∈ [0, 1], we have θAi ⊂ Ai, for each
i = 1, . . . , n.
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2. We define A to be the family of n−tuples

A :=








f1
f2
...
fn


 : fi ∈ Ai, i = 1, . . . , n





(4.15)

3. Associated toA, let ΛA be the set of formal matrices α defined in the
following way,

α :=




f 1
1 λ

1
r
1 f 2

1 λ
1
r
2 . . . f m

1 λ
1
r
m

...
...

...

f 1
n λ

1
r
1 f 2

n λ
1
r
2 . . . f m

n λ
1
r
m


 (4.16)

for m ∈ N, where f j
i ∈ Ai, i = 1, . . . , n, λj ∈ [0, 1] and ∑m

j=1 λj = 1.

For 0 ≤ ε ≤ 1, we say that A is m− r − ε−normed by an m−compact
set K ⊂ B(Lq(m)) if

sup
g∈B(Lq(m))

n

∑
i=1

m

∑
j=1

∥∥∥∥
∫

Ω
λ

1
r
j f j

i gdm
∥∥∥∥

r

X
≤ εr + (1 + ε)r sup

g∈K

n

∑
i=1

m

∑
j=1

∥∥∥∥
∫

Ω
λ

1
r
j f j

i gdm
∥∥∥∥

r

X

for every α ∈ ΛA defined as in (4.16).

Theorem 4.3.6. Let T : Lp(m) → Y be a linear and continuous operator, the
following assertions are equivalent.

(i) T is m− r−summing,

(ii) there is Q > 0 so that for every 0 < ε < 1 and each family A as in (4.15),
there is an m−compact subset K ⊂ B(Lq(m)) that is m− r− ε−norming
forA, and there exists a probability measure ηK defined on the Borel subsets
of K such that

‖T( f )‖r
Y ≤ Qrεr + (1 + ε)rQr

∫

K

∥∥∥∥
∫

Ω
f gdm

∥∥∥∥
r

X
dηK(g). (4.17)

for every f ∈ ⋃n
i=1 Ai.

Proof. We begin by proving (i) ⇒ (ii). We fix 0 < ε < 1, and a family A
of n−tuples of positively balanced subsets of {A1, . . . , An} of Lp(m). First
we must find an m−compact K ⊂ B(Lq(m)) that is an m− r− ε−norming
subset for A. We define in the n−cube [0, 1]n ⊂ Rn a pseudo-distance (a



76 Summability in Lp(m): m− r−summing operators

distance without the separation condition, that is, the pseudo-distance of
two different points can be zero) as follows

d̄((λ1, . . . , λn), (λ′1, . . . , λ′n)) := sup
g∈B(Lq(m))

n

∑
i=1

|λi − λ′i|
∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X
.

The topology induced by the usual distance d in [0, 1]n is finer than the
one induced by the pseudo-distance d̄, τd̄. Then [0, 1]n is compact when
endowed with the topology τd̄. Let (λ1, . . . , λn) ∈ [0, 1]n and 0 < ε < 1,
there is (τ1, . . . , τn) ∈ [0, 1]n so that d((λi)n

i=1− (τi)n
i=1) < εr.We can choose

τi ≤ λi for every i = 1, . . . , n. We get

sup
g∈B(Lq(m))

n

∑
i=1

∥∥∥∥
∫

Ω
λ

1
r
i figdm

∥∥∥∥
r

X
= sup

g∈B(Lq(m))

n

∑
i=1

λi

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X

≤ sup
g∈B(Lq(m))

n

∑
i=1

(λi − τi)
∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X
+ sup

g∈B(Lq(m))

n

∑
i=1

τi

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X

≤ εr + sup
g∈B(Lq(m))

n

∑
i=1

λi

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X

≤ εr + (1 + ε)r

(
n

∑
i=1

λi

∥∥∥∥
∫

Ω
fig0dm

∥∥∥∥
r

X

)

where g0 ∈ B(Lq(m)). Since [0, 1]n is compact, a finite number of functions
g0 ∈ Lq(m) is enough to obtain inequalities above for every (λi)n

i=1 ∈
[0, 1]n. This finite set of q−integrable functions is the compact set we
search for.

We apply Ky Fan’s Lemma in order to obtain a probability measure so
that (4.17) holds in

⋃n
i=1 Ai. We define a family Ψ = {Φα : α ∈ ΛA}, where

each Φα is defined as follows over a probability measure η ∈ P(K):

Φα(η) :=
n

∑
i=1

m

∑
j=1

‖T(λ
1
r
j f j

i )‖r
Y −Qrεr

− Qr(1 + ε)r
n

∑
i=1

m

∑
j=1

∫

K

∥∥∥∥
∫

Ω
λ

1
r
j f j

i gdm
∥∥∥∥

r

X
dη(g).

We will show that the family Ψ satisfies the requirements of Ky Fan’s
Lemma. For every f ∈ ⋃n

i=1 Ai, the function ψ f : g 7→ ‖ ∫
Ω f gdm‖ is

continuous, therefore Φα is lower semi continuous in the w∗−topology of
P(K), each Φα is clearly convex. In what follows we show that the convex
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combination of two functions in Ψ stays in Ψ, for this aim, take 0 ≤ θ ≤ 1,
α and β in ΛA as follows

α :=




f 1
1 λ

1
r
1 . . . f m

1 λ
1
r
m

...
...

f 1
n λ

1
r
1 . . . f m

n λ
1
r
m


 , β :=




f̃ 1
1 λ̃1

1
r . . . f̃ m̄

1 λ̃m̄

1
r

...
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f̃ 1
n λ̃1

1
r . . . f̃ m̄

n λ̃m̄

1
r


 .

Take η ∈ P(K), we have that

θΦα(η) + (1− θ)Φβ(η) =

n

∑
i=1

(
m

∑
j=1

∥∥∥T((θλj)
1
r f j

i )
∥∥∥

r
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∥∥∥∥T((θλ̃j)
1
r f̃ j

i )
∥∥∥∥

r
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−Qrεr

−Qr(1+ ε)r
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∥∥∥∥
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1
r gdm

∥∥∥∥
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(
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∑
j=1

∥∥∥∥
∫

Ω
f̃ j
i (θλ̃j)

1
r gdm

∥∥∥∥
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dη(g)

]
.

That is θΦα(η) + (1− θ)Φβ(η) = Φλ(η) for λ given by:




f 1
1 (θλ1)

1
r . . . f m

1 (θλm)
1
r f̃ 1

1 ((1− θ)λ̃1)
1
r . . . f̃ m̄

1 ((1− θ)λ̃m̄)
1
r

...
...

...
...

f 1
n (θλ1)

1
r . . . f m

n (θλm)
1
r f̃ 1

n ((1− θ)λ̃1)
1
r . . . f̃ m̄

n ((1− θ)λ̃m̄)
1
r




clearly, λ ∈ ΛA, therefore Ψ is a concave family of functions. We must
find, for each α ∈ ΛA, a probability measure ηα so that Φα(ηα) ≤ 0.

Since K is compact, for α ∈ ΛA there is some gα ∈ K so that

sup
g∈K

n

∑
i=1

m

∑
j=1

∥∥∥∥
∫

Ω
λ

1
r
j f j

i gdm
∥∥∥∥

r

X
=

n

∑
i=1

m

∑
j=1

∥∥∥∥
∫

Ω
λ

1
r
j f j

i gαdm
∥∥∥∥

r

X
(4.18)

Let δgα the Dirac measure associated to gα, inequality (4.18) and m − r−
summability of T implies that Φα(δgα) ≤ 0. Direct application of Ky Fan’s
Lemma ensures that there is a probability measure defined on K so that
(4.17) holds.

For the proof of (ii) ⇒ (i) take a finite quantity of functions f1, . . . , fn

in Lp(m). Fix ε > 0 and take Ai = {λ fi : 0 ≤ λ ≤ 1}. A direct appli-
cation of (ii) to the family A = [A1, . . . , An] implies the existence of an
m−compact set and a probability measure ηK so that

‖T( fi)‖r
Y ≤ Qrεr + (1 + ε)rQr

∫

K

∥∥∥∥
∫

figdm
∥∥∥∥

r

X
dηK(g),
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therefore
n

∑
i=1

‖T( fi)‖r
Y ≤ Qrεrn + (1 + ε)rQr sup

g∈B(Lq(m))

n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X
,

since this happens for every ε > 0, we get that T is m− r−summing.

4.3.2. Consequences

The last part of this section is devoted to the study of the relation-
ship between different spaces of summing operators defined on spaces of
p−integrable functions with respect to a vector measure. The first result
is the adaptation of Theorem 4.1.2, we prove that once we know that an
operator T ∈ L(Lp(m), Y) is m− 1−summing we can conclude that it is
m− r−summing for every 1 < r < ∞.

Proposition 4.3.7. If 1 ≤ r < s < ∞, we have for every Banach space Y and
each vector measure m : Σ → X, Πm

r (Lp(m), Y) ⊂ Πm
s (Lp(m), Y). Moreover,

for each operator T ∈ Πm
r (Lp(m), Y) we have πm

s (T) ≤ πm
r (T).

Proof. Let T : Lp(m) → Y be an m− r−summing operator. Take f1, . . . , fn ∈
Lp(m). Define, for i = 1, . . . , n, λi = ‖T( fi)‖

s
r−1

Y , clearly, for each i we have
‖T( fi)‖s = ‖T(λi fi)‖r. Since T is an m− r−summing operator, we have

(
n

∑
i=1

‖T( fi)‖s
Y

) 1
r

=

(
n

∑
i=1

‖T(λi fi)‖r
Y

) 1
r

≤ πm
r (T) sup

g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
λi fig

∥∥∥∥
r

X

) 1
r

.

Since s > r, then s
r and s

s−r are conjugated indexes, therefore applying
Hölder’s inequality we get
(

n

∑
i=1

‖T( fi)‖s
Y

) 1
r

≤ πm
r (T)

(
n

∑
i=1

λ
sr

s−r
i

) s−r
sr

sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
s

X

) 1
s

= πm
r (T)

(
n

∑
i=1

‖T( fi)‖s
Y

) 1
r − 1

s

sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
s

X

) 1
s

,

thus rearranging we get
(

n

∑
i=1

‖T( fi)‖s
Y

) 1
s

≤ πm
r (T) sup

g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
s

X

) 1
s

.

Then T is m− s−summing with norm πm
s (T) ≤ πm

r (T).
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In the classical theory of summing operators there are several results
concerning the coincidence of the spaces Πr for different values of r. For
example a result due to Maurey (see [50]) ensures that when the Banach
space Y has cotype 2, then for each Banach space X, Πr(X, Y) = Π2(X, Y),
for every 2 < r < ∞. In the following we recall some definitions about
geometrical properties of general Banach spaces.

Definition 4.3.8. A Banach space X has type p, for 1 ≤ p ≤ 2 when-
ever there is a constant C ≥ 0 so that for every finite choice of elements
x1, . . . , xn ∈ X

∫ 1

0

∥∥∥∥∥
n

∑
i=1

ri(t)xi

∥∥∥∥∥
X

dt ≤ C

(
n

∑
i=1

‖xi‖p
X

) 1
p

, (4.19)

holds, where ri are the Rademacher functions, defined by

ri(t) = sign(sin(2iπt)),

for i = 1, . . . , n and 0 ≤ t ≤ 1. The infimum of the constant C so that (4.19)
holds for every finite choice of elements in X is denoted by Tp(X).

A Banach space X has cotype q, with 2 ≤ q < ∞ whenever there is
C ≥ 0 so that

(
n

∑
i=1

‖xi‖q
X

) 1
q

≤ C
∫ 1

0

∥∥∥∥∥
n

∑
i=1

ri(t)xi

∥∥∥∥∥
X

dt, (4.20)

for every n ∈ N and x1, . . . , xn ∈ X. The infimum of C so that 4.20 holds
is denoted by Cq(X).

Some types and cotypes only have sense for trivial spaces, as a con-
sequence od Kinchin’s inequality (see [27, 1.10]) only X = {0} can have
type > 2 and cotype < 2. For X a Banach space, and x1, . . . , xn ∈ X and
0 < p ≤ 1 we have




∫ 1

0

∥∥∥∥∥
n

∑
i=1

ri(t)xi

∥∥∥∥∥
2

dt




1
2

≤
n

∑
i=1

‖xi‖ ≤
(

n

∑
i=1

‖xi‖p

) 1
p

.

Thus, every Banach space has type p for every 0 < p ≤ 1. Also, every
Banach space has cotype ∞, see for instance [27, Remark 11.5, (d)].

The following proposition extends the result of Maurey for m − r−
summing operators. The proof uses Kahane’s Inequality (see [27], 11.1). If
0 < r < s < ∞, then there is a constant Kr,s > 0 so that regardless the
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choice of a Banach space X and of finitely many vectors x1, . . . , xn ∈ X the
following inequality holds

(∫ 1

0

∥∥∥∥∥∑
k≤n

rk(t)xk

∥∥∥∥∥
s

X

dt

) 1
s

≤ Kr,s ·
(∫ 1

0

∥∥∥∥∥∑
k≤n

rk(t)xk

∥∥∥∥∥
r

X

dt

) 1
r

. (4.21)

Proposition 4.3.9. Let m : Σ → X a vector measure with X a Banach space with
type 2 and Lp(m) with property (r− ?). For each Banach space Y with cotype 2
and each 2 < r < ∞, we have Πm

r (Lp(m), Y) = Πm
2 (Lp(m), Y).

Proof. Since 2 < r, Theorem 4.3.7 yields Πm
2 (Lp(m), Y) ⊂ Πm

r (Lp(m), Y).
Let T ∈ Πm

r (Lp(m), Y). In order to prove that T ∈ Πm
2 (Lp(m), Y), take a

finite number of functions f1, . . . , fn ∈ Lp(m). Let S := {Si : i ∈ I} a
dense family of subspaces of Lp(m), therefore for ε̄ > 0, there is i0 ∈ I and
f 0
1 , . . . , f 0

n ∈ Si0 such that ‖ fi − f 0
i ‖Lp(m) ≤ ε̄/(n‖T‖C2(Y)) for i = 1, . . . , n.

Since Lp(m) has property (r− ?), for 0 < ε < 1/2, there is a m−compact
subset K in B(Lq(m)) that is r− ε−norming for Si0 .

Since T is m− r−summing, by (ii) in Theorem 4.3.4, for each 0 < ε <

1/2, there is Q > 0 and a probability measure δK,ε defined on the Borel
subsets of K so that

‖T( f )‖r
Y ≤

Qr

1− ε

∫

K

∥∥∥∥
∫

Ω
f gdm

∥∥∥∥
r

X
dδK,ε(g), f ∈ Si0 . (4.22)

Therefore

(
n

∑
i=1

‖T( fi)‖2
Y

) 1
2

≤ C2(Y)
∫ 1

0

∥∥∥∥∥
n

∑
i=1

ri(t)T( fi)

∥∥∥∥∥
Y

dt

(4.23)
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≤ C2(Y)

(∫ 1

0

∥∥∥∥∥
n

∑
i=1

ri(t)T( fi − f 0
i ) +

n

∑
i=1

ri(t)T( f 0
i )

∥∥∥∥∥
r

Y

) 1
r

≤ C2(Y)

(∫ 1

0

∥∥∥∥∥
n

∑
i=1

ri(t)T( fi − f 0
i )

∥∥∥∥∥
r

Y

dt

) 1
r

(4.24)

+ C2(Y)

(∫ 1

0

∥∥∥∥∥
n

∑
i=1

ri(t)T( f 0
i )

∥∥∥∥∥
r

Y

dt

) 1
r

≤ C2(Y)‖T‖
n

∑
i=1

‖ fi − f 0
i ‖Lp(m) + C2(Y)

(∫ 1

0

∥∥∥∥∥
n

∑
i=1

ri(t)T( f 0
i )

∥∥∥∥∥
r

Y

dt

) 1
r

≤ ε̄ + C2(Y)

(∫ 1

0

Qr

1− ε

∫

K

∥∥∥∥∥
∫

Ω

(
n

∑
i=1

ri(t) f 0
i

)
gdm

∥∥∥∥∥
r

X

dδK,ε(g)dt

) 1
r

(4.25)

≤ ε̄ + C2(Y)
Q

(1− ε)
1
r

sup
g∈K

(∫ 1

0

∥∥∥∥∥
n

∑
i=1

ri(t)
∫

f 0
i gdm

∥∥∥∥∥
r

X

dt

) 1
r

≤ ε̄ + C2(Y)
Q

(1− ε)
1
r

K1,r sup
g∈K

(∫ 1

0

∥∥∥∥∥
n

∑
i=1

ri(t)
∫

Ω
f 0
i gdm

∥∥∥∥∥
X

dt

)
(4.26)

≤ ε̄ + C2(Y)
Q

(1− ε)
1
r

K1,rT2(X) sup
g∈K

(
n

∑
i=1

∥∥∥∥
∫

Ω
f 0
i gdm

∥∥∥∥
2

X

) 1
2

(4.27)

≤ ε̄ + C2(Y)
Q

(1− ε)
1
r

K1,rT2(X) sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
f 0
i gdm

∥∥∥∥
2

X

) 1
2

,

where in (4.23) and in (4.27) we use the cotype 2 of Y and the type 2 of
X respectively. Since r ≥ 1 inequality (4.24) yields from inequality (2.7).
The inequality (4.25) is a consequence of (4.22) and (4.26) yields from of
Kahane’s inequality. Since we have

sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
f 0
i gdm

∥∥∥∥
2

X

) 1
2

≤

≤ sup
g∈B(Lq(m))





(
n

∑
i=1

∥∥∥∥
∫

Ω
( f 0

i − fi)gdm
∥∥∥∥

2

X

) 1
2

+

(
n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
2

X

) 1
2





≤ ε̄

n
1
2 ‖T‖C2(Y)

+ sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
2

X

) 1
2

the conclusion follows.
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In the following we extend the Extrapolation Theorem (see [27], 3.17)
for the particular case of m− r−summing operators. It is a consequence
of the Theorem 4.3.4.

Theorem 4.3.10. Let 1 < r < s < ∞, m : Σ → X a vector measure and
1 < p < ∞ so that Lp(m) has condition (r− ?). If for every probability measure
µ there is a uniform constant C so that for every operator T : Lp(m) → Ls(µ, X),

πm
r (T) ≤ Cπm

s (T), (4.28)

then for every Banach space Y,

Πm
s (Lp(m), Y) = Πm

1 (Lp(m), Y). (4.29)

Proof. Let Y be a Banach space and T : Lp(m) → Y an m − s−summing
operator, we have to prove that T is m− 1−summing. For this aim we will
apply Theorem 4.3.4. Since Lp(m) has condition (r − ?), there is a dense
family of subspaces S := {Si : i ∈ I} such that for each S ∈ S there is
an m−compact set K ⊂ B(Lq(m)) that is r − ε−norming for S for some
0 < ε < 1/2. Theorem 4.3.4 ensures the existence of a probability measure
δ1 (depending on K and ε) defined on the Borel subsets of K so that

‖T( f )‖Y ≤ πm
s

(1− ε)
1
s
(T)

(∫

K

∥∥∥∥
∫

Ω
f gdm

∥∥∥∥
s

X
dδ1(g)

) 1
s

(4.30)

for every f ∈ S.
We consider the operator Tδ1 : Lp(m) → Ls(δ1, X) given by Tδ1( f )(g) =∫

Ω f gdm for each f ∈ Lp(m) and each g ∈ K. Tδ1 is well defined, indeed,
for f ∈ Lp(m)

‖Tδ1( f )‖Ls(δ1,X) =
(∫

K
‖Tδ1( f )(g)‖s

Xdδ1(g)
) 1

s

=
(∫

K

∥∥∥∥
∫

Ω
f gdm

∥∥∥∥
s

X
dδ1(g)

) 1
s

≤ ‖ f ‖Lp(m).

Moreover since for every finite choice f1, . . . , fn ∈ Lp(m) we have

n

∑
i=1

‖Tδ1( fi)‖s
Ls(δ1,X) =

n

∑
i=1

∫

K

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
s

X
dδ1(g)

≤ sup
g∈B(Lq(m))

n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
s

X
,
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then Tδ1 ∈ Πm
s (Lp(m), Y) and by (4.28), Tδ1 is also m− r−summing with

πm
r (Tδ1) ≤ C.

We apply again Theorem 4.3.4 to the m− r−summing operator Tδ1 . For
the m−compact subset K of B(Lq(m)) and the subspace S of Lp(m) that is
r− ε−normed by K, we obtain a probability measure δ2 so that

‖Tδ1( f )‖Ls(δ1,X) ≤
C

(1− ε)
1
r

(∫

K

∥∥∥∥
∫

f gdm
∥∥∥∥

r

X
dδ2(g)

) 1
r

for every f ∈ S. As previously we can consider the operator associated
to the measure δ2 as follows. Tδ2 : Lp(m) → Lr(δ2, X), with Tδ2( f )(g) :=∫

Ω f gdm for f ∈ Lp(m) and g ∈ K. Clearly, for each f ∈ S, ‖Tδ1( f )‖Ls(δ1,X) ≤
C

(1−ε)
1
r
‖Tδ2( f )‖Lr(δ2,X). Proceeding in this way, we obtain a sequence of

probability measures (δn) defined on the σ−algebra of subsets of K and so
that

‖Tδn( f )‖Ls(δn,X) ≤
C

(1− ε)
1
r
‖Tδn+1

( f )‖Lr(δn+1,X), f ∈ S. (4.31)

Since 1 < r < s < ∞, there is some α ∈]0, 1[ such that 1
r = α + 1−α

s . A
direct application of Hölder’s inequality yields for n ∈ N and f ∈ S,

‖Tδn( f )‖Lr(δn,X) ≤ ‖Tδn( f )‖α
L1(δn,X) · ‖Tδn( f )‖1−α

Ls(δn,X). (4.32)

An application of (4.31), (4.32) and Hölder’s inequality for series gives, for
each f ∈ S,

∞

∑
n=1

1
2n ‖Tδn( f )‖Ls(δn,X) ≤

∞

∑
n=1

1
2n

C

(1− ε)
1
r
‖Tδn+1

( f )‖Lr(δn+1,X)

≤ C

(1− ε)
1
r

∞

∑
n=1

1
2n ‖Tδn+1

( f )‖α
L1(δn+1,X)‖Tδn+1

( f )‖1−α
Ls(δn+1,X)

≤ C

(1− ε)
1
r

(
∞

∑
n=1

1
2n ‖Tδn+1

( f )‖L1(δn+1,X)

)α (
∞

∑
n=1

1
2n ‖Tδn+1

( f )‖Ls(δn+1,X)

)1−α

≤ C

(1− ε)
1
r

(
∞

∑
n=1

1
2n ‖Tδn+1

( f )‖L1(δn+1,X)

)α (
2

∞

∑
n=1

1
2n ‖Tδn( f )‖Ls(δn,X)

)1−α

.

A direct computation yields for f ∈ S and n ∈ N

∞

∑
n=1

1
2n ‖Tδn( f )‖Ls(δn,X) ≤

(
C

(1− ε)
1
r

) 1
α

2
1−α

α

∞

∑
n=1

1
2n ‖Tδn+1

( f )‖L1(δn+1,X).

(4.33)
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Then, we can define a probability measure λ over the Borel subsets of K as
λ := ∑∞

n=1
1
2n δn. Therefore for every f ∈ S we get

1
2
‖Tδ1( f )‖Ls(δ1,X) ≤

(
2

C

(1− ε)
1
r

) 1
α ∞

∑
n=1

1
2n ‖Tδn+1

( f )‖L1(δn+1,X)

=

(
2

C

(1− ε)
1
r

) 1
α

‖Tλ( f )‖L1(λ,X)

where Tλ : Lp(m) → L1(λ, X) is defined in the natural way. Thus, by (4.30)
we have for f ∈ E

‖T( f )‖Y ≤ πm
s (T)‖Tδ1( f )‖Ls(δ,X) ≤

πm
s (T)

(1− ε)
1
s

(
2

C

(1− ε)
1
r

) 1
α ∫

K

∥∥∥∥
∫

Ω
f gdm

∥∥∥∥ dλ(g).

(4.34)
By Theorem 4.3.4, this directly implies that T is m− 1−summing.

4.4. Applications

Maurey-Rosenthal Theory relates the geometrical properties of Banach
lattices, norms inequalities for operators and factorization through Lp−spaces.
The original works were done by Rosenthal, Krivine and Maurey, see [45],
[50], [67] and [48], their purposes were related to the study of the structure
of Banach lattices and operators. Nowadays this theory is the keystone
in several areas of functional analysis with applications in interpolation of
Banach spaces, operator ideal theory (see [27] and [22]) and geometry of
Banach lattices, [23] and [24].

In [58, Chapter 6] the authors relate factorization results for p−th fac-
torable operators with Maurey-Rosenthal factorization Theory. Here we
find thar Maurey-Rosenthal Theory provides, under certain assumptions,
a factorization theorem for q−concave operators. For 1 ≤ q < ∞, let X(µ)
be a σ−order continuous q-convex Banach function space. Consider a Ba-
nach space E and a q-concave linear operator T : X(µ) → E, then there
exist g0 ∈ M(X(µ), Lq(m)) := {g ∈ L0(µ) : g · f ∈ Lq(m) for every f ∈
X(µ)} so that T factorizes as follows:

X(µ) T //

Mg ##GG
GG

GG
GG

G E

Lq(µ)
S

=={{{{{{{{{
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where S is a continuous linear operator, Mg is the continuous operator of
multiplication by g and ‖Mg‖‖S‖ ≤ M(q)[T]M(q)[X(µ)].

Proposition 4.4.1. Let p ≥ r and m : Σ → X be a positive vector measure with
values in an r−concave Banach lattice X. If the identity I : Lp(m) → Lp(m) is
m− r−summing, then there is some x∗0 defining a Rybakov control measure for
m so that Lp(m) = Lp(〈m, x∗0〉).

Proof. Since I is m− r−summing, for every finite choice f1, . . . , fn ∈ Lp(m)
we have

(
n

∑
i=1

‖ fi‖r

) 1
r

≤ K sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
r

X

) 1
r

≤ KMr(X) sup
g∈B(Lq(m))

∥∥∥∥∥∥

(
n

∑
i=1

∣∣∣∣
∫

Ω
|g fi|dm

∣∣∣∣
r
) 1

r
∥∥∥∥∥∥

X

≤ KMr(X) sup
g∈B(Lq(m))

∥∥∥∥∥∥

∫

Ω

(
n

∑
i=1

| fi|r
) 1

r

|g|dm

∥∥∥∥∥∥
X

= K

∥∥∥∥∥∥

(
n

∑
i=1

| fi|r
) 1

r
∥∥∥∥∥∥

Lp(m)

where the last inequality is a consequence of [48, Proposition 1.d.9] ensur-
ing that a positive operator with range in an r−concave Banach space is
r−concave.

Then, I is r−concave, therefore p−concave (see [58] Prop. 2.54). A
direct application of Maurey Rosenthal theory yields the following factor-
ization scheme for a particular Rybakov measure 〈m, x∗0〉,

Lp(m) I //

i &&MMMMMMMMMM
Lp(m)

Lp(〈m, x∗0〉)
Sx∗0

88qqqqqqqqqq

.

Therefore, a direct density argument yields that Sx∗0 is also the identity and
Lp(m) = Lp(〈m, x∗0〉).

Remark 4.4.2. It is easy to see that the same arguments can be adapted to
prove factorization theorems for m− r−summing operators T : Lp(m) →
Y through Lp(〈m, x∗0〉) spaces. The key is that under the adequate restric-
tions these operators are r−concave and then the factorization theory of
[58, Ch.6] applies.
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In what follows we study of those operators T that have the following
property: S ◦T is r−summing (m− r−summing) whenever S is s−summing
(respectively m − s−summing). In the classical Operator Ideal Theory,
these operators are known as mixing operators. Our aim is to adapt the
study made by Pietsch in [61]; a good reference in this topic is also [22].
For 1 ≤ r < s < ∞, an operator T ∈ L(X, Y) between Banach spaces is
said to be (s, r)−mixing if for each Banach space Z and every S ∈ Πs(Y, Z)
the composition S ◦ T is r−summing. The restriction r < s is made to
avoid the trivial case. The following characterization is a consequence of
Pietsch domination theorem, the proof can be found in [22] page 419.

Proposition 4.4.3. Let 1 ≤ r < s ≤ ∞ and T ∈ L(X, Y), the following
assertions are equivalent.

(i) T is (s, r)−mixing.

(ii) There is a constant c ≥ 0 so that for every probability measure µ defined on
B(Y∗) there is a probability measure ν defined on B(X∗) such that

(∫

B(Y∗)
|〈T(x), y∗〉|sdµ(y∗)

) 1
s

≤ c
(∫

B(X∗)
|〈x, x∗〉|rdν(x∗)

) 1
r

holds for every x ∈ X.

(iii) There is a constant c ≥ such that



m

∑
j=1

(
n

∑
k=1

|〈T(xj), y∗k 〉|s
) r

s



1
r

≤ c‖(xj)j‖`w
r (X)‖(y∗k )k‖`s(Y∗),

for all finite sequence x1, . . . , xm ∈ X and y∗1, . . . , y∗n ∈ Y∗.

As for the summability, in order to study operators defined (or with
range) in spaces of p−integrable functions with respect to a vector mea-
sure, we will give a new definition in the framework of the duality rela-
tionship between Lp(m) and Lq(m).

Definition 4.4.4. Let 1 ≤ r < s < ∞, m : Σ → X and Y a Banach space. An
operator T ∈ L(Lp(m), Y) is (s, m− r)−mixing whenever for every Banach
space Z and every S ∈ Πs(Y, Z), the composition S ◦ T is m− r−summing.

The following result gives a characterization for the (s, m− r)−mixing
operators. The proof is based in Theorem 4.3.4.

Proposition 4.4.5. Let 1 ≤ r < s < ∞, m : Σ → X and T ∈ L(Lp(m), Y), the
following statements are equivalent assuming that the space Lp(m) has property
(r− ?),
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(i) T is (s, m− r)−summing,

(ii) There is a positive constant Q so that for each probability measure µ defined
on B(Y∗), each m−compact K ⊂ Lq(m) and for every S ∈ S , where S is
a dense family of subspaces of Lp(m), so that S is r− ε−normed by K for
some 0 < ε < 1

2 , there exists a probability measure δK defined on the Borel
subsets of K so that

(∫

B(Y∗)
|〈T( f ), y∗〉|sdµ(y∗)

) 1
s

≤ Q

(1− ε)
1
r

(∫

K

∥∥∥∥
∫

Ω
f gdm

∥∥∥∥
r

X
dδK(g)

) 1
r

(4.35)
for every f ∈ S.

(iii) There is Q ≥ 0 so that for every K and S as is (ii) the following holds




m

∑
j=1

(
n

∑
k=1

|〈T( f j), y∗k 〉|s
) r

s



1
r

≤ Q

(1− ε)
1
r
‖( f j)j‖`m

r (Lp(m))‖(y∗k )k‖`s(Y∗)

(4.36)
for every finite choice f1, . . . , fm ∈ S and y∗1, . . . , y∗n ∈ Y∗.

Proof. We begin by proving (i) implies (ii). Let µ be a probability measure
defined on B(Y∗). The operator Iµ : Y → Ls(µ) given by Iµ(y)(y∗) =
〈y, y∗〉 for each y ∈ Y and y∗ ∈ B(Y∗) is s−summing. Indeed, for n ∈ N

and y1, . . . , yn ∈ Y

(
n

∑
i=1

‖Iµ(yi)‖s
Ls(µ)

) 1
s

=

(
n

∑
i=1

∫

B(Y∗)
|〈yi, y∗〉|sdµ(y∗)

) 1
s

≤ sup
y∗∈B(Y∗)

(
n

∑
i=1

|〈yi, y∗〉|s
) 1

s

.

Since T is (s, m− r)−mixing, the composition Iµ ◦ T is m− r−summing.
For an r − ε−norming set K ⊂ B(Lq(m)) for a subspace S of Lp(m), a
direct application of Domination Theorem 4.3.4 yields the existence of a
probability measure δK defined on the Borel subsets of K and a constant
Q ≥ 0 such that

‖Iµ ◦ T( f )‖Ls(µ) ≤
Q

(1− ε)
1
r

(∫

K

∥∥∥∥
∫

Ω
f gdm

∥∥∥∥
r

dδK(g)
) 1

r

for every f ∈ S. Since ‖Iµ ◦ T( f )‖Ls(µ) =
(∫

B(Y∗) |〈T( f ), y∗〉|sdµ(y∗)
) 1

s
for

every f ∈ Lp(m), (4.35) holds in S.
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In order to prove (ii) implies (iii), let K be an m−compact subset
in B(Lq(m)), and S a subspace of Lp(m) that is r − ε−normed by K for
0 < ε < 1

2 . Fix two families f1, . . . , fm ∈ S and y∗1, . . . , y∗n ∈ Y∗. We can
assume without loss of generality that ‖(y∗k )‖`s(Y∗) = 1. We define a prob-
ability measure on B(Y∗) µ := ∑n

k=1 ‖y∗k‖Y∗δ‖y∗k‖−1
Y∗ y∗k

, then (ii) ensures the
existence of a probability measure δK defined on K such that

m

∑
j=1

(
n

∑
k=1

|〈T( f j), y∗k 〉|s
) r

s

≤
m

∑
j=1

(
Q

(1− ε)
1
r

(∫

K

∥∥∥∥
∫

Ω
f jgdm

∥∥∥∥
r

X
dδK(g)

) 1
r
)r

=
Qr

1− ε

m

∑
j=1

∫

K

∥∥∥∥
∫

Ω
f jgdm

∥∥∥∥
r

X
dδK(g)

≤ Qr

1− ε
‖( f j)j‖r

`m
r (Lp(m)).

We finish with the proof of (iii) implies (i). Remark that (iii) ensures that
every discrete probability measure µ defined on B(Y∗) satisfies

(
m

∑
j=1

(∫

B(Y∗)
|〈T( f j), y∗〉|sdµ(y∗)

) r
s
) 1

r

≤ Q

(1− ε)
1
r
‖( f j)j‖`m

r (Lp(m)) (4.37)

for every f1, . . . , fn ∈ S and for some Q ≥ 0. Since the set of discrete prob-
ability measures on B(Y∗) is σ(M(B(Y∗)), C(B(Y∗)))−dense in the set of
probability measures defined on B(Y∗), (4.37) holds for every probability
measure µ. Let S : Y → Z be an s−summing operator. An appel to the
classical Domination Theorem for s−summing operators and inequality
(4.37) directly implies the m− r−summability of S ◦ T. Indeed for every
n ∈ N and f1, . . . , fn in Lp(m) we have

(
n

∑
j=1

‖S ◦ T( f j)‖r

) 1
r

≤
(

n

∑
j=1

(
C

(∫

B(Y∗)
|〈T( f j), y∗〉|sdµ(y∗)

) 1
s
)r) 1

r

≤ C · Q

(1− ε)
1
r
‖( f j)j‖`m

r (Lp(m)).

4.5. Tensor product representation

Some of the deep ideas of A. Grothendieck that appear in his ”Résumé
de la théorie métrique des produits tensoriels topologique” (see [40]) were
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used later in the study of operator ideals. G. Pisier’s work, starting around
1975, gives a first approach to the idea of the relationship between tensor
product and operator ideals. This idea corresponds to the Representation
Theorem for maximal operator ideals. It ensures that there is a one–to–
one correspondence between finitely generated tensor norms and maxi-
mal normed operator ideals. All the details of this representation tech-
nique for general operator ideals can be found in Chapter 17 of the book
by A. Defant and K. Floret, see [22]. An easier version, for the particu-
lar representation of the ideal of r−summing operators, can be found in
Chapter 6 of [69]. In the following we give the main definitions and prop-
erties of this representation.

A norm α defined in a tensor product X⊗Y of Banach spaces X and Y
is a reasonable crossnorm if it has the following natural properties:

1. α(x⊗ y) ≤ ‖x‖X‖y‖Y for every x ∈ X and y ∈ Y.

2. For each x∗ ∈ X∗ and y∗ ∈ Y∗ the linear functional x∗⊗ y∗ : X⊗Y →
R defined by

x∗ ⊗ y∗(u) :=
n

∑
i=1

λi〈xi, x∗〉〈yi, y∗〉

for u = ∑n
i=1 λixi⊗ yi ∈ X⊗Y is bounded and ‖x∗⊗ y∗‖ ≤ ‖x∗‖‖y∗‖.

The basic norms for tensor products of Banach spaces are the projective
and the injective norms. The projective norm for the tensor product X ⊗ Y
is defined as follows, for u ∈ X⊗Y,

π(u) := inf{
n

∑
i=1

‖xi‖X‖yi‖Y : u =
n

∑
i=1

xi ⊗ yi}.

The injective norm is induced by the canonical algebraical embedding of
X ⊗ Y into the space of bilinear forms defined on X∗ × Y∗, B(X∗ × Y∗). It
is defined as follows for a tensor u ∈ X⊗Y,

ε(u) := sup

{∣∣∣∣∣
n

∑
i=1

〈xi, x∗〉〈yi, y∗〉
∣∣∣∣∣ : x∗ ∈ B(X∗), y∗ ∈ B(Y∗)

}
,

where ∑n
i=1 xi ⊗ yi is any representation of the tensor u.

Clearly the projective and injective norms satisfy the conditions to be
reasonable crossnorms. In fact they lie at extremum of the spectrum of
reasonable crossnorms, see for instance [69, Prop. 6.1].

Proposition 4.5.1. Let X and Y be Banach spaces. A norm α on X ⊗ Y is a
reasonable crossnorm if and only if ε(u) ≤ α(u) ≤ π(u) for every u ∈ X⊗Y.
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We say that a reasonable crossnorm is uniform if it behaves well with
respect to the formation of tensor products of operators; if S : X → W and
T : Y → Z are bounded linear operators, then S⊗ T : X ⊗α Y → W ⊗α Z
is bounded too and satisfies ‖S⊗ T‖ ≤ ‖S‖‖T‖.

A uniform crossnorm is finitely generated if the behavior of α is com-
pletely determined by its values on tensor products of finite dimensional
spaces. That is, for every pair of Banach spaces X and Y and each u ∈
X⊗Y we have

α(u; X⊗Y) = inf{α(u; M⊗ N) : u ∈ M⊗ N, dim M, dim N < ∞},
where M and N are finite dimensional subspaces of X and Y. A reasonable
crossnorm is a tensor norm whenever it is finitely generated and uniform.
In the following we recall the definition of some tensor norms that are use-
ful to represent the ideal of r−summing operators as the dual of a tensor
product.

Let 1 ≤ r ≤ ∞ and s its conjugated index (see (1.7)). The Chevet-Saphard
norm is defined as follows for u ∈ X⊗Y,

dr(u) = inf

{
‖(xi)‖`w

s (X)‖(yi)‖`r(Y) : u =
n

∑
i=1

xi ⊗ yi

}
, (4.38)

where the infimum is taken over all the representations of u ∈ X⊗Y.
In order to represent the ideal of r−summing operators as the dual

of a tensor product the dual of X⊗̂drY can be considered as a space of
operators from X into Y∗ using the trace duality. That is, if T is a linear and
continuous operator between the spaces X and Y∗, T ∈ L(X, Y∗), T is a
linear functional on X⊗̂drY when the action over a tensor u = ∑n

i=1 xi ⊗ yi
is given by

〈u, T〉 =
n

∑
i=1

〈yi, T(xi)〉,

and the boundedness of T means that there is some C ≥ 0 such that
∣∣∣∣∣

n

∑
i=1

〈yi, T(xi)〉
∣∣∣∣∣ ≤ C‖(xi)‖`w

s (X)‖(yi)‖`r(Y).

The minimum value of such C is the norm of T as a functional in the dual
space (X⊗̂drY)∗. In this context, the following representation theorem en-
sures that the space of s−summing operators between the Banach spaces
X and Y∗, Πs(X, Y∗), is isometrically isomorphic to (X⊗dr Y)∗.

Theorem 4.5.2. Let 1 < r, s ≤ ∞, conjugated numbers and X, Y Banach spaces.
An operator T ∈ L(X, Y∗) defines a functional of (X⊗̂drY)∗ if and only if T is
s−summing. Moreover the norm of T in (X⊗̂drY)∗ coincides with πs(T).
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In our context of m− r−summing operators we are interested into ob-
taining representations of these operators spaces in terms of particular ten-
sor products. For this aim we first have to adapt classical definitions to the
tensor product of an Lp(m) space of a vector measure m : Σ → X with a
Banach space Y. In this framework we say that a norm α in Lp(m) ⊗ Y
is an m−reasonable crossnorm whenever it is a reasonable crossnorm for
the particular tensor products of Lp(m) of a vector measure and a Ba-
nach space. We say that α is a uniform m−crossnorm whenever is behaves
well with respect the formation of tensor products of operators, that is,
for T ∈ L(Lp1(m1), Lp2(m2)) and S ∈ L(Y1, Y2), the operator T ⊗ S :
Lp1(m1) ⊗α Y1 → Lp2(m2) ⊗α Y2 is bounded with respect to the norm α

and ‖T ⊗ S‖ ≤ ‖T‖‖S‖. An m−tensor norm is an m-reasonable crossnorm
which is uniform and finitely generated. We define an m-tensor norm in
the tensor product Lp(m)⊗Y inspired in the Chevet-Saphard tensor norm
as follows. Let p, q, r, s be real numbers such that

1
p

+
1
q

= 1 =
1
r

+
1
s
, with 1 < p, q < ∞ and 1 ≤ r, s ≤ ∞. (4.39)

For u = ∑n
i=1 fi ⊗ yi ∈ Lp(m)⊗Y, we define

dm
r (u) := inf{‖( fi)i‖`m

s (Lp(m))‖(yi)‖`r(Y) : u =
n

∑
i=1

fi ⊗ yi} (4.40)

Notice that when m is a scalar measure, the norm dm
r for Lp(m)⊗ Y coin-

cides with the Chevet-Saphard tensor norm. Obviously dm
r is not a tensor

norm, since it is only defined for tensor products where the first space is
an Lp−space of a vector measure. Although we will show that dm

r still pre-
serves some properties of a tensor norm in the classical sense. We say that
an m−tensor norm defined for the tensor product Lp(m)⊗ Y is a general-
ized tensor norm if it stays between the π and the ε norms.

Remark 4.5.3. In order to prove some properties of dm
r we will provide an

alternative formula to compute (4.40). For u ∈ Lp(m)⊗Y, define

δm
r (u) = inf{‖(λi)i‖`r‖( fi)i‖`m

s (Lp(m))‖(yi)i‖`∞(Y) : u =
n

∑
i=1

λi fi ⊗ yi},

then δm
r (u) = dm

r (u) for u ∈ Lp(m)⊗ Y. Indeed, since each representation
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u = ∑n
i=1 λi fi ⊗ yi can be written as u = ∑n

i=1 fi ⊗ λiyi, then

dm
r (u) ≤ ‖( fi)i‖`m

s (Lp(m))‖(λiyi)i‖`r(Y) = ‖( fi)i‖`m
s (Lp(m))

(
n

∑
i=1

‖λiyi‖r
Y

) 1
r

≤ ‖( fi)i‖`m
s (Lp(m))

(
n

∑
i=1

|λi|r sup
i
‖yi‖r

Y

) 1
r

= ‖(λi)i‖r‖( fi)i‖`m
s (Lp(m))‖(yi)i‖∞.

And this is true for all representations of u, thus dm
r (u) ≤ δr,m(u). Con-

versely, let u = ∑n
i=1 fi ⊗ yi, then u = ∑n

i=1 λi fi ⊗ zi, where λi = ‖yi‖Y and
zi = yi/‖yi‖Y for all i = 1, . . . , n. Then the infimum δr,m(u) is less or equal
than the infimum in dm

r (u) for each u ∈ Lp(m)⊗Y.

Proposition 4.5.4. For p and r as in (4.39) and Y a Banach space, we have

(i) dm
r is a generalized tensor norm over Lp(m)⊗Y,

(ii) if r1 ≤ r2 then dr1,m ≥ dr2,m

Proof. To prove (i), let u1, u2 ∈ Lp(m) ⊗ Y and ε > 0. We can choose
particular representations u1 = ∑n

i=1 f 1
j ⊗ y1

j and u2 = ∑n
i=1 f 2

j ⊗ y2
j such

that for i = 1, 2 we have

‖( f i
j )j‖`m

s (Lp(m)) ≤ (dm
r (ui) + ε)

1
r and ‖(yi

j)j‖`r(Y) ≤ (dm
r (ui) + ε)

1
s .

Therefore ∑2
i=1 ∑n

i=1 f i
j ⊗ yi

j is a representation of u1 + u2 such that

‖( f i
j )j‖`m

s (Lp(m))‖(yi
j)j‖`r(Y) ≤

≤ (dm
r (u1) + dm

r (u2) + 2ε)
1
r (dm

r (u1) + dm
r (u2) + 2ε)

1
s

= dm
r (u1) + dm

r (u2) + 2ε,

therefore, when ε → 0 we get dm
r (u1 + u2) ≤ dm

r (u1) + dm
r (u2).

Let λ ∈ K, since ‖ · ‖`m
s (Lp(m)) and ‖ · ‖`r(Y) are homogeneous we have

that dm
r (λu) = |λ|dm

r (u) for every tensor u in Lp(m)⊗Y.
It least to prove that dm

r is an m−reasonable crossnorm. For this aim
we will prove that ε(u) ≤ dm

r (u) ≤ π(u) for all u ∈ Lp(m) ⊗ Y. The
first inequality is consequence of Hölder’s inequality and the fact that the
set Γ := {γg,x∗ : g ∈ B(Lq(m)), x∗ ∈ B(X∗)} ⊂ (Lp(m))∗ is norming
for γg,x∗( f ) :=

∫
Ω f gd〈m, x∗〉. We get, for all the representations for u =
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∑n
i=1 fi ⊗ yi,

ε(u) = sup

{∥∥∥∥∥
n

∑
i=1

ϕ( fi)yi

∥∥∥∥∥
Y

: ϕ ∈ B((Lp(m))∗)

}

≤ sup





(
n

∑
i=1

|ϕ( fi)|s
) 1

s

: ϕ ∈ B((Lp(m))∗)





(
n

∑
i=1

‖yi‖r
Y

) 1
r

≤ sup
g∈B(Lq(m))

(
n

∑
i=1

(
sup

x∗∈B(X∗)

∣∣∣∣
〈∫

Ω
figdm, x∗

〉∣∣∣∣
)s) 1

s
(

n

∑
i=1

‖yi‖r
Y

) 1
r

= ‖( fi)i‖`m
r (Lp(m))‖(yi)i‖`r(Y),

therefore ε(u) ≤ dm
r (u) for every u ∈ Lp(m)⊗Y. For the second inequality,

note that for all u ∈ Lp(m) ⊗ Y and ε > 0 there is a representation u =
∑n

i=1 fi ⊗ yi such that ∑n
i=1 ‖ fi‖Lp(m)‖yi‖Y ≤ π(u) + ε. We define, for each

i = 1, . . . , n,

f̃i =
‖yi‖

1
s
Y

‖ fi‖
1
r
Lp(m)

fi and ỹi =
‖ fi‖

1
r
Lp(m)

‖yi‖
1
s
Y

yi.

Then ∑n
i=1 f̃i ⊗ ỹi is also a representation of the tensor u, thus

dm
r (u) ≤ ‖( f̃i)i‖`m

s (Lp(m))‖(ỹi)i‖`r(Y)

= sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

f̃igdm
∥∥∥∥

s

X

) 1
s
(

n

∑
i=1

‖ỹi‖r
Y

) 1
r

≤
(

n

∑
i=1

sup
g∈B(Lq(m))

∥∥∥∥
∫

f̃igdm
∥∥∥∥

s

X

) 1
s
(

n

∑
i=1

‖ỹi‖r
Y

) 1
r

≤
(

n

∑
i=1

‖ f̃i‖s
Lp(m)

) 1
s
(

n

∑
i=1

‖ỹi‖r
Y

) 1
r

=

(
n

∑
i=1

‖ fi‖Lp(m)‖yi‖Y

) 1
s
(

n

∑
i=1

‖ fi‖Lp(m)‖yi‖Y

) 1
r

=

(
n

∑
i=1

‖ fi‖Lp(m)‖yi‖Y

)

= π(u) + ε.

This construction is possible for all ε > 0, therefore the conclusion follows.
Clearly, dm

r is uniform, and since the m − s−weak and the strong−`r

norms are unchanged if the range of the space is enlarged, we get that it is
also finitely generated.
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To prove (ii), let 1 < r1 < r2 < ∞ and let s1, s2 be their corresponding
conjugated exponents, u ∈ Lp(m)⊗ Y and ε > 0. We want to prove that
dm

r2(u) ≤ dm
r1(u)+ ε. Having in mind Remark 4.5.3, there is a representation

of u = ∑n
i=1 λi fi ⊗ yi such that ‖(λi)i‖`r1

‖( fi)i‖`m
s1
‖(yi)i‖`∞(Y) ≤ dm

r1(u) + ε

and all the coefficients λi are non-negative. We can rewrite this represen-

tation as ∑n
i=1 λi fi ⊗ yi = ∑n

i=1 λ
r1
r2
i (λ

1− r1
r2

i fi)⊗ yi, therefore

dm
r2(u) ≤

∥∥∥∥
(

λ
r1
r2
i

)

i

∥∥∥∥
`r2

∥∥∥∥
(

λ
1− r1

r2
i fi

)

i

∥∥∥∥
`m

s2
(Lp(m))

‖(yi)i‖`∞(Y).

We clearly have, by definition

∥∥∥∥
(

λ
1− r1

r2
i fi

)

i

∥∥∥∥
`m

s2
(Lp(m))

= sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
|λ1− r1

r2
i fig|dm

∥∥∥∥
s2

X

) 1
s2

= sup
g∈B(Lq(m))

(
n

∑
i=1

|λi|s2
(
1− r1

r2

) ∥∥∥∥
∫

Ω
f jgdm

∥∥∥∥
s2

X

) 1
s2

,

where, by applying Hölder’s inequality in the sum with the conjugated
exponents s1

s1−s2 and s1
s2 , we get the following

‖(λ
1− r1

r2
i fi)i‖`m

s2
(Lp(m)) ≤

(
n

∑
i=1

|λi|r1
) 1

r1
− 1

r2

sup
g∈B(Lq(m))

(
n

∑
i=1

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
s1

X

) 1
s1

.

Thus we get

dm
r2(u) ≤ ‖( fi)i‖m

s1‖(yi)i‖∞

∥∥∥∥
(

λ
r1
r2
i

)

i

∥∥∥∥
`r2

(
n

∑
i=1

|λi|r1
) 1

r1
− 1

r2

≤ dm
r1(u) + ε,

for all ε > 0, as wanted.

We say that an m−tensor norm α is m−right projective if for every Ba-
nach space Z and every quotient operator Q : Z → Y, the tensor prod-
uct operator Id⊗α Q : Lp(m)⊗α Z → Lp(m)⊗α Y is a quotient operator.
Note that Q ∈ L(X, Y) is a quotient operator whenever it is surjective and
Q(B(X)) ⊂ B(Y), in such a case Y will be isomorphic to X/ ker Q (as a
direct consequence of open mapping theorem).

Proposition 4.5.5. The m−tensor norm dm
r defined in Lp(m)⊗ Y is m−right

projective.
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Proof. Let Z be a Banach space and Q : Z → Y a quotient operator. Clearly
(Id⊗ Q)(B(Lp(m))⊗dm

r
Z) ⊂ B(Lp(m)⊗dm

r
Y). Take u ∈ Lp(m)⊗ Y such

that dm
r (u) < 1. Take ε > 0 so that (1 + ε)dm

r (u) < 1, and a representation
of u = ∑n

i=1 fi ⊗ yi such that ‖( fi)i‖`m
s
‖(yi)i‖`r(Y) < 1/(1 + ε).

Since Q is a quotient operator for each yi, i = 1, . . . , n, there is some
zi ∈ Z such that Q(zi) = yi and ‖zi‖Z ≤ (1 + ε)‖yi‖Y. Therefore, taking
v = ∑n

i=1 f j ⊗ zj ∈ Lp(m)⊗ Z the conclusion follows since Id⊗ Q(v) = u
and dm

r (v) ≤ (1 + ε)‖( fi)i‖`m
s (Lp(m))‖(yi)i‖`r(Y) < 1.

In the sequel we give the description of the completion of the normed
tensor product Lp(m)⊗dm

r
Y. We need a technical lemma.

Lemma 4.5.6. Let 1 < r < ∞, ( fn)n ∈ `m
s (Lp(m)) and (yn)n ∈ `r(Y). Then,

∑∞
n=1 fn ⊗ yn exists in Lp(m)⊗̂dm

r
Y, that is the sequence (∑n

i=1 fi ⊗ yi)n is dm
r

convergent.

Proof. Since Lp(m)⊗̂dm
r

Y is complete, we just have to prove that (sn)n =
(∑n

i=1 fi ⊗ yi)n is a dm
r -Cauchy sequence. Take for n ≤ n0, dm

r (sn0 − sn) =
dm

r (∑n0
i=n fi ⊗Yi) small. Since we have the following inequality

dm
r (

n0

∑
i=n

fi ⊗ yi) ≤ ‖( fi)n0
i=n‖`m

s (Lp)‖(yi)n0
i=n‖`r(Y)

= sup
g∈B(Lq(m))

(
n0

∑
i=n

∥∥∥∥
∫

Ω
figdm

∥∥∥∥
s

X

) 1
s
(

n0

∑
i=n
‖yi‖r

Y

) 1
r

,

the completeness of the spaces `m
s (Lp(m)) and `r(Y) ensure that the se-

quence (sn)n satisfies the Cauchy condition as wanted.

Proposition 4.5.7. For each u ∈ Lp(m)⊗̂dm
r

Y there are sequences ( fn)n ∈
`m

s (Lp(m)) and (yn)n ∈ `r(Y) such that the series ∑∞
n=1 fn⊗ yn is dm

r -convergent
to u in Lp(m)⊗̂dm

r
Y. Moreover, for every ε > 0 there are ( fn)n and (yn)n such

that
dm

r (u) ≤ ‖( fn)n‖`m
s (Lp(m))‖(yn)n‖`r(Y) ≤ dm

r (u) + ε. (4.41)

Proof. By definition Lp(m)⊗ Y is dense in the Banach space Lp(m)⊗̂dm
r

Y,
thus, for each η > 0 and u ∈ Lp(m)⊗̂dm

r
Y we can find a sequence (um)m ∈

Lp(m)⊗Y so that

u =
∞

∑
m=1

um, dm
r (u1) < dm

r (u) + η and dm
r (um) <

η2

4m for m ≥ 2.

For each um ∈ Lp(m)⊗Y we can do the following construction. For m = 1,
take a representation of u1 = ∑k1

i1 f 1
i ⊗ y1

i so that

‖( f 1
i )k1

i=1‖`m
s (Lp(m)) < dm

r (u) + η, and ‖(y1
i )

k1
i=1‖`r(Y) ≤ 1.
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For m ≥ 2, we can write um = ∑km
i=1 f m

i ⊗ ym
i so that

‖( f m
i )km

i=1‖`m
s (Lp(m)) <

η

2m and ‖(ym
i )km

i=1‖`r(Y) ≤
η

2m .

Joining the sequences we get

( fn)n = ( f 1
1 , f 1

2 , . . . , f 1
k1

, f 2
1 , . . . , f n

1 , . . . , f n
kn

, . . .)
(yn)n = (y1

1, y1
2, . . . , y1

k1
, y2

1, . . . , yn
1, . . . , yn

kn
, . . .),

that is, there is an increasing sequence of natural numbers l1 < l2 < . . . <

ln < . . . with l1 = 1, l2 = k1 + 1, . . . , lm+1 = km + lm so that for lm ≤
n < lm+1 then fn ∈ ( f m

i )km
i=1 and yn ∈ (ym

i )km
i=1. We finish by proving

that ∑∞
n=1 fn ⊗ yn converges to u in Lp(m)⊗dm

r
Y. For this aim, we will use

lemma 4.5.6. We must show that the norms of (yn)n and ( fn)n are bounded
in `r(Y) and `m

s (Lp(m)) respectively.

‖(yn)n‖`r(Y) =

(
∞

∑
n=1

‖yn‖r
Y

) 1
r

=

(
∞

∑
m=1

km

∑
i=1

‖ym
i ‖r

Y

) 1
r

=

(
k1

∑
i=1

‖y1
i ‖r

Y +
k2

∑
i=1

‖y2
i ‖r

Y + . . . +
km

∑
i=1

‖ym
i ‖r

Y + . . .

)

<
(
1 +

( η

22

)r
+ . . . +

( η

2m

)r
+ . . .

) 1
r

=

(
1 +

∞

∑
m=2

( η

2m

)r
) 1

r

,

that is

‖(yn)n‖`r(Y) <

(
1 + ηr

∞

∑
m=2

(
1
2m

)r
) 1

r

. (4.42)

To make easier the computation of the norm ‖( fn)n‖`m
s (Lp(m)), let us fix a

function g ∈ B(Lq(m)). We get
(

∞

∑
n=1

∥∥∥∥
∫

Ω
g fndm

∥∥∥∥
s

X

) 1
s

=

(
∞

∑
m=1

km

∑
i=1

∥∥∥∥
∫

Ω
g f m

i dm
∥∥∥∥

s

X

) 1
s

=

(
k1

∑
i=1

∥∥∥∥
∫

Ω
g f 1

i dm
∥∥∥∥

s

X
+ . . . +

km

∑
i=1

∥∥∥∥
∫

Ω
g f m

i dm
∥∥∥∥

s

X
+ . . .

) 1
s

≤
((
‖( f 1

i )k1
i=1‖`m

s (Lp(m))

)s
+

(
‖( f 2

i )k2
i=1‖`m

s (Lp(m))

)s
+ . . .

) 1
s

<

(
(dm

r (u) + η)s +
∞

∑
m=2

( η

2m

)s
) 1

s

.
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Since this holds for every g ∈ B(Lq(m)), we get

‖( fn)n‖`m
s (Lp(m)) <

(
(dm

r (u) + η)s + ηs
∞

∑
m=2

1
2ms

) 1
s

. (4.43)

Therefore we have that (yn)n ∈ `r(Y) and ( fn)n ∈ `m
s (Lp(m)) thus the

conclusion (4.41) holds directly from (4.42)and (4.43). Moreover, taking
an adequate η for the product of the right hand side of (4.42) and (4.43)
to be less or equal that dm

r (u) + ε, we obtain the final bound given in the
proposition.

In what follows we will characterize the dual of Lp(m) ⊗dm
r

Y as the
space of m − r−summing operators. For this aim we will use the trace
duality. We say that T ∈ L(Lp(m), Y∗) is a bounded linear functional on
Lp(m)⊗dm

r
Y whenever it acts as follows over a tensor u = ∑n

i=1 fi ⊗ yi ∈
Lp(m)⊗dm

r
Y:

〈u, T〉 :=
n

∑
i=1

〈yi, T( fi)〉, (4.44)

with the following boundedness condition
∣∣∣∣∣

n

∑
i=1

〈yi, T( fi)〉
∣∣∣∣∣ ≤ C‖( fi)i‖`m

s (Lp(m))‖(yi)i‖`r(Y), (4.45)

where C is a positive constant, the minimum value of which is the norm
of T in (Lp(m)⊗dm

r
Y)∗.

Proposition 4.5.8. Let T ∈ L(Lp(m), Y∗), the following assertions are equiva-
lent.

(i) T is an m− s−summing operator, that is, for each n ∈ N and every finite
choice of functions f1, . . . , fn in Lp(m), there is a positive constant Q such
that the following inequality holds

(
n

∑
i=1

‖T( fi)‖s
Y∗

) 1
s

≤ Q

(
sup

g∈B(Lq(m))

n

∑
i=1

∥∥∥∥
∫

figdm
∥∥∥∥

s

X

) 1
s

. (4.46)

(ii) T ∈ (
Lp(m)⊗dm

r
Y

)∗.

Moreover the norm of T as an operator in (Lp(m) ⊗dm
r

Y)∗ coincides with its
norm in the space Πm

s (Lp(m), Y∗) of m− s−summing operators, that is the min-
imum of the constants such that (4.46) holds for every finite choice of functions.
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Proof. We begin by proving the direct implication. Let T ∈ Πm
s (Lp(m), Y∗),

we will prove that inequality (4.45) holds for every u = ∑n
i=1 fi ⊗ yi in

Lp(m)⊗dm
r

Y. A direct application of trace duality and Hölder’s inequality
give us

|〈u, T〉| =

∣∣∣∣∣
n

∑
i=1

〈yi, T( fi)〉
∣∣∣∣∣ ≤

n

∑
i=1

|〈yi, T( fi)〉|

≤
n

∑
i=1

‖yi‖Y‖T( fi)‖Y∗ ≤
(

n

∑
i=1

‖yi‖r
Y

) 1
r
(

n

∑
i=1

‖T( fi)‖s
Y∗

) 1
s

≤
(

sup
g∈B(Lq(m))

n

∑
i=1

∥∥∥∥
∫

figdm
∥∥∥∥

s

X

) 1
s
(

n

∑
i=1

‖yi‖r
Y

) 1
r

= Q‖( fi)i‖`m
s (Lp(m))‖(yi)i‖`r(Y),

that is true for every representation of u, therefore T ∈ (Lp(m)⊗dm
r

Y)∗.
For the converse, take ϕ ∈ (Lp(m) ⊗dm

r
Y)∗ and u = ∑n

i=1 fi ⊗ yi ∈
Lp(m)⊗dm

r
Y, applying again trace duality, we can associate to ϕ an oper-

ator Tϕ : Lp(m) → Y∗ given by 〈Tϕ( f ), y∗〉 = ϕ( f ⊗ y∗)such that ϕ(u) =
∑n

i=1〈yi, Tϕ( fi)〉with condition (4.45). Let ε > 0, for each i = 1, . . . , n, there
is some yi ∈ Y so that

〈yi, Tϕ( fi)〉 = ‖Tϕ( fi)‖s
Y∗ and ‖yi‖Y ≤ (1 + ε)‖Tϕ( fi)‖s−1

Y∗ .

We will show that (4.46) holds,

n

∑
i=1

‖Tϕ( fi)‖s
Y∗ =

n

∑
i=1

〈yi, Tϕ( fi)〉 ≤ |ϕ(u)|

≤ Qdm
r (u) ≤ Q‖( fi)i‖`m

s (Lp(m))‖(yi)i‖`r(Y∗)

= Q‖( fi)i‖`m
s (Lp(m))

(
n

∑
i=1

‖yi‖r
Y∗

) 1
r

≤ Q(1 + ε)‖( fi)i‖`m
s (Lp(m))

(
n

∑
i=1

‖Tϕ( fi)‖(s−1)r
Y∗

) 1
r

,

since (s − 1)r = s we get
(
∑n

i=1 ‖Tϕ( fi)‖s
Y∗

) 1
s ≤ Q(1 + ε)‖( fi)i‖`m

s (Lp(m)),
and the conclusion follows.



Chapter 5

Vector measure duality for
Orlicz spaces with respect to a
vector measure

Orlicz spaces with respect to a vector measure are the natural general-
ization of Lp(m) spaces. This spaces were defined and studied firstly by O.
Delgado in [21]. Another reference in this topic is the work of M. J. Rivera
(see [64]). Or aim in this chapter is to study the multiplication operators
between Orlicz spaces of integrable functions with respect to a vector mea-
sure. The study of multiplication operators Mg : f ∈ F → Mg( f ) := f g ∈
G has been already done when the spaces F and G are spaces of contin-
uous, holomorphic or analytic functions. But the study of multiplication
operators between Banach spaces of measurable functions is relatively lit-
tle. In [76], H. Takagi and K. Yokouchi studied multiplication operators
between Lp spaces over a σ−finite measure space, they particularly stud-
ied the continuity and the closedness of range. For multiplication oper-
ators between spaces of p−integrable functions with respect to a vector
measure, the corresponding study was done by R. del Campo et al. in
[7, 8]. Notice that the Köthe dual of a µ−Banach function space W, can
be considered as a space of multiplication operator, W ′ = M(W, L1(µ))
under the identification g ∈ W ′ 7→ Mg ∈ M(W, L1(µ)). Then the spaces
of multiplication operators are the natural generalization of Köthe dual
spaces.

Our aim in this section is to generalize this work, using the tools of
vector measure duality, for operators defined on Orlicz spaces with re-
spect to a vector measure. We begin the chapter with an introduction on
classical Orlicz spaces, and some general properties of the multiplications
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operators between Banach functions spaces. Following the definition of
O. Delgado, we study Orlicz spaces with respect to a vector measure de-
fined by conjugated Young’s functions, and the relation therein. The vec-
tor measure duality relationship is the key to study multiplication oper-
ators between those spaces. We finish the chapter with an application of
this theory, a characterization of those operators factorizing trough vector
measure Orlicz spaces.

5.1. Definition and properties

In this first section we introduce the notions on Orlicz spaces. Our ba-
sic references in this topic are the books [3, 44]. A function φ : [0, +∞)→
[0, +∞) is admissible whenever it is monotonically increasing, right– con-
tinuous, φ(u) = 0 if and only if u = 0, and limu→∞ φ(u) = ∞. In this case
the function Φ defined by

Φ(s) =
∫ s

0
φ(u)du, s ≥ 0,

and called a Young’s function is strictly increasing, continuous and convex.
Moreover, Φ(s) = 0 if and only if s = 0 and lims→∞ Φ(s) = ∞.

The conditions defining what we have called an admissible function
are those used in [44, (1.12)] and they differ from the ones in [3, Def.4.8.1],
where a more general context is considered; nevertheless, the generated
Young’s function is the same.

Let Φ be a Young’s function given by the admissible function φ. Next,
we define

ψ(v) = sup{u : φ(u) ≤ v}, for 0 ≤ v < ∞. (5.1)

Then ψ : [0, +∞) → [0, +∞) is also an admissible function. Thus

Ψ(t) =
∫ t

0
ψ(v)dv 0 ≤ t < ∞,

is a Young’s function, which is called the conjugated Young’s function of Φ.
It turns out that Φ is the conjugated function of Ψ [44, p. 11]. In the fol-
lowing Φ will always be a Young’s function and Ψ its conjugated Young’s
function.

Remark 5.1.1. Let Φ be defined by the admissible function φ. Instead of
using the function ψ defined in (5.1), the construction in [3] of its conju-
gated Young´s function employs another “generating” function. Never-
theless the conjugated function so obtained coincides with Ψ, since both
of them can be characterized directly in terms of Φ as shown in [44, (2.9)]
and [3, Thm. 4.8.12].
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The following inequality gives the fundamental relation between Φ
and Ψ; it is called Young’s inequality:

uv ≤ Φ(u) + Ψ(v), ∀u, v ≥ 0. (5.2)

Equality holds when u = ψ(v) or v = φ(u), see for instance [44, (2.8)].

Since the function Φ : [0, +∞) → [0, +∞) is continuous, strictly in-
creasing and limx→∞ Φ(x) = ∞, its inverse function Φ−1 : [0, +∞) →
[0, +∞) is also continuous and strictly increasing. This is also true for its
conjugated function Ψ. The following inequality relates Φ−1 and Ψ−1, the
proof can be found in [3, Lemma 4.8.16].

Lemma 5.1.2. If 0 ≤ w < ∞ then w ≤ Φ−1(w)Ψ−1(w) ≤ 2w.

The Luxemburg norm corresponding to the Young’s function Φ is de-
fined by

‖ f ‖LΦ(µ) = inf
{

k > 0 :
∫

Ω
Φ

( | f |
k

)
dµ ≤ 1

}
, f ∈ L0(µ). (5.3)

The Orlicz space LΦ(µ) consists of those (classes of µ-a.e. equal) functions
f ∈ L0(µ) so that ‖ f ‖LΦ(µ) < ∞. This space is a B.f.s. having the Fatou
property when endowed with the Luxemburg norm, as proved in [3, Thm.
4.8.9].

There is a duality relationship between the spaces LΦ(µ) and LΨ(µ). In
fact we have that the Köthe dual of LΦ(µ) is LΨ(µ), that is

LΦ(µ)′ = M(LΦ(µ), L1(µ)) = {g ∈ L0(µ) : f g ∈ L1(µ), ∀ f ∈ LΦ(µ)}
= LΨ(µ).

This duality relationship provides another norm for the space LΦ(µ), the
Orlicz norm:

‖ f ‖o
LΦ(µ) = sup

{∫

Ω
| f g|dµ : ‖g‖LΨ(µ) ≤ 1

}
, f ∈ LΦ(µ). (5.4)

Notice that the Orlicz norm is equivalent to the Luxemburg norm, in fact
we have:

‖ f ‖LΦ(µ) ≤ ‖ f ‖o
LΦ(µ) ≤ 2‖ f ‖LΦ(µ), f ∈ LΦ(µ). (5.5)

From (5.4) it follows the so called Hölder’s inequality for Orlicz spaces
(see for example [3, Sect. 4.8]). If f ∈ LΦ(µ) and g ∈ LΨ(µ), then f g is
integrable and ∫

Ω
| f g| dµ ≤ ‖ f ‖o

LΦ(µ)‖g‖LΨ(µ). (5.6)
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The Orlicz class corresponding to the Young’s function Φ is defined as

OΦ(µ) := { f ∈ L0(µ) : ρµ,Φ( f ) < ∞},
where ρµ,Φ is the Orlicz functional defined as

ρµ,Φ( f ) :=
∫

Ω
Φ(| f |) dµ = ‖Φ(| f |)‖L1(µ).

Notice that, for 1 < p < ∞, Φp(s) = sp, s ≥ 0 is a Young’s function.
Moreover LΦp(µ) = Lp(µ) = OΦp(µ) and its conjugated Young’s function
is Ψq(s) = sq, s ≥ 0, where the relation between p and q is given by
equality (1.7).

The following lemma, that corresponds to [3, Lemma 4.8.8] relates the
Orlicz functional and the Luxemburg norm.

Lemma 5.1.3. For f ∈ L0(µ) and Φ a Young’s function.

(i) If ‖ f ‖LΦ(µ) ≤ 1, then ρµ,Φ( f ) ≤ ‖ f ‖LΦ(µ).

(ii) If ‖ f ‖LΦ(µ) > 1, then ρµ,Φ( f ) ≥ ‖ f ‖LΦ(µ).

(iii) ‖ f ‖LΦ(µ) ≤ 1 if and only if ρµ,Φ( f ) ≤ 1.

In general, the Orlicz class and the Orlicz space are not equal, but we
always have the following inclusion

OΦ(µ) ⊂ LΦ(µ). (5.7)

In order to assure the equality the following condition is introduced (see
for instance [44, (9.1), p. 75]). A Young’s function Φ has the ∆2−property
whenever there are real numbers b > 0 and s0 ≥ 0 such that

Φ(2s) ≤ bΦ(s), ∀ s ≥ s0. (5.8)

Assuming that Φ has the ∆2−property, the space LΦ(µ) can be represented
as

LΦ(µ) = OΦ(µ). (5.9)

Remark 5.1.4. Let Φ have the ∆2−property and assume (5.8) holds with
s0 > 0. Notice that for any 0 < s1 < s0 we can find b1 > 0 such that
Φ(2s) ≤ b1Φ(s), ∀ s ≥ s1. Indeed, take

c = max
{

Φ(2s)
Φ(s)

: s1 ≤ s ≤ s0

}
< ∞,

it suffices to choose b1 := max{b, c} and the conclusion follows.
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Given a Young’s function Φ with the ∆2−property, one may wonder
whether its conjugated function Ψ also has this property. As we show in
the following example this is not always true.

Example 5.1.5. Take for instance φ(u) = log(1 + u) for u ≥ 0, as in [44, p.
28]. Then φ generates the Young’s function

Φ(s) = (1 + s) log(1 + s)− s, s ≥ 0.

Since φ is strictly increasing and continuous, we have ψ(v) = φ−1(v) =
ev − 1, v ≥ 0. Hence the conjugated Young’s function of Φ is

Ψ(t) = et − t− 1, t ≥ 0.

For s ≥ 0, after changing variables we find

Φ(2s) =
∫ 2s

0
log(1 + u)du = 2

∫ s

0
log(1 + 2w)dw

≤ 4
∫ s

0
log(1 + v)dv = 4Φ(s).

Therefore Φ has the ∆2−property. Moreover we have

Ψ(2t)
Ψ(t)

=
et − e−t(2t + 1)
1− e−t(t + 1)

→ ∞, when t → ∞.

Hence Ψ does not have the ∆2−property.

We introduce now the Orlicz spaces with respect to a vector measure
m : Σ → X. Recall that a map ρ : X∗ × L0(µ) → [0, ∞] is an m−norm (in
the sense of [21, Def. 3.1]) if it has the following properties:

(a) For each x∗ ∈ X∗, each map ρx∗ : L0(µ) → [0, ∞] given by ρx∗( f ) :=
ρ(x∗, f ), for f ∈ L0(µ), satisfies

(a1) ρx∗( f ) = 0 if and only if f = 0 |〈m, x∗〉|−a.e.,

(a2) ρx∗( f ) = |a|ρx∗( f ) for every a ∈ R and f ∈ L0(µ),

(a3) ρx∗( f + g) ≤ ρx∗( f ) + ρx∗(g), for f , g in L0(µ).

(a4) if f , g ∈ L0(µ) such that | f | ≤ |g|, |〈m, x∗〉|−a.e., then ρx∗( f ) ≤
ρx∗(g),

(a5) if f , fn such that 0 ≤ fn ↑ f |〈m, x∗〉|−a.e., then ρx∗( fn) ↑ ρx∗( f ),

(a6) ρx∗(χΩ) < ∞,



104 Vector measure duality for Orlicz spaces

(a7) there is some C = C(x∗) such that for every f ∈ L0(µ),
∫

Ω
| f |d|〈m, x∗〉| ≤ Cρx∗( f ).

(b) For each f ∈ L0(µ), the map ρ f : X∗ → [0, ∞] satisfies:

(b1) |a|ρ f (x∗) ≤ ρ f (ax∗), for all a ∈ R, a ≤ 1 and x∗ ∈ X∗,
(b2) for f = χΩ we have supx∗∈B(X∗) ρ f (x∗) < ∞.

Following the work of O. Delgado in [21] we consider the m−norm
ρ : X∗ × L0(m) → [0, +∞] defined by

ρ(x∗, f ) := ‖ f ‖LΦ(|〈m,x∗〉|) = inf
k>0

{∫

Ω
Φ

( | f |
k

)
d|〈m, x∗〉| ≤ 1

}
. (5.10)

Note that this definition is motivated by the Luxemburg norm for classical
Orlicz spaces LΦ(µ). In this setting, the weak Orlicz space with respect to
the vector measure m is defined as

LΦ
w(m) =

{
f ∈ L0(m) : ‖ f ‖m,Φ < ∞

}
(5.11)

where the norm is given by

‖ f ‖m,Φ := sup{ρ(x∗, f ) : x∗ ∈ B(X∗)}.

The closure S(Σ)
‖ · ‖m,Φ is the Orlicz space with respect to the vector measure

m, and will be denoted by LΦ(m).

Example 5.1.6. Notice that, for Φp(s) = sp, s ≥ 0, the spaces LΦp
w (m) and

LΦp(m) correspond, respectively, to the spaces of weakly p−integrable
and p−integrable functions with respect to the vector measure m.

Recall λ is a Rybakov measure for the vector measure m. By Proposi-
tions 3.5, 3.8 and 4.1 in [21] we have:

(i) LΦ
w(m) is a λ− B.f.s. with the Fatou property and is (5.12)

continuously included in L1
w(m),

(ii) LΦ(m) is an order continuous λ− B.f.s. and is (5.13)

continuously included in L1(m),
(iii) LΦ

w(m) = { f ∈ L0(m) : ρ(x∗, f ) < ∞ for all x∗ ∈ X∗}. (5.14)

As in the scalar situation, we now define the Orlicz classes

OΦ
w (m) := { f ∈ L0(m) : Φ(| f |) ∈ L1

w(m)},
OΦ(m) := { f ∈ L0(m) : Φ(| f |) ∈ L1(m)}.
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and the associated Orlicz functional ρm,Φ( f ) ≡ ‖Φ(| f |)‖L1(m). The follow-
ing result is the corresponding extension of Lemma 5.1.3 to Orlicz spaces
with respect to a vector measure.

Lemma 5.1.7. Let f ∈ L0(m).

(i) If ‖ f ‖m,Φ ≤ 1, then ρm,Φ( f ) ≤ ‖ f ‖m,Φ.

(ii) If ‖ f ‖m,Φ > 1, then ρm,Φ( f ) ≥ ‖ f ‖m,Φ.

(iii) ‖ f ‖m,Φ ≤ 1 if and only if ρm,Φ( f ) ≤ 1.

(iv) OΦ
w (m) ⊂ LΦ

w(m).

Proof. In order to prove (i), let f ∈ L0(m) satisfy ‖ f ‖m,Φ ≤ 1 and take
x∗ ∈ B(X∗). Then ‖ f ‖LΦ(|〈m,x∗〉|) ≤ 1. By (i) in lemma 5.1.3 this implies

‖Φ(| f |)‖L1(|〈m,x∗〉|) ≤ ‖ f ‖LΦ(|〈m,x∗〉|) ≤ ‖ f ‖m,Φ,

and the conclusion follows immediately.
To show (i), assume that ‖ f ‖m,Φ > 1 and take ε such that 0 < 2ε <

‖ f ‖m,Φ − 1. Next choose x∗ ∈ B(X∗) such that ‖ f ‖LΦ(|〈m,x∗〉|) ≥ ‖ f ‖m,Φ −
ε ≥ 1 + ε. Assertion (ii) of Lemma 5.1.3 yields ρ|〈m,x∗〉|,Φ( f ) ≥ ‖ f ‖m,Φ − ε.
If we take ε → 0 we obtain the conclusion.

Assertion (iii) is a direct consequence of (i) and (ii).
To prove (iv) let f ∈ OΦ

w (m) and take x∗ ∈ B(X∗). Then we have
Φ(| f |) ∈ L1(|〈m, x∗〉|). Using now (5.7), we have f ∈ LΦ(|〈m, x∗〉|). By
(5.14) this implies f ∈ LΦ

w(m).

Assuming that the Young’s function Φ has the ∆2−property with s0 =
0, O. Delgado established in [21, Props. 4.2 and 4.4] the following results
that we extend to the case s0 > 0.

Proposition 5.1.8. Let Φ have the ∆2−property. Then:

(i) LΦ
w(m) = OΦ

w (m).

(ii) A sequence ( fn)n ⊂ L0(µ) converges to 0 in LΦ
w(m) if and only if (Φ(| fn|))n

converges to 0 in L1
w(m).

(iii) LΦ(m) = OΦ(m).

Proof. Assertion (i) follows immediately from the corresponding scalar
case (5.9).

In order to prove (ii) assume first that ‖ fn‖m,Φ → 0. Then from (i) in
Lemma (5.1.7) we conclude that ‖Φ(| fn|)‖L1(m) → 0. Now let us assume
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that ‖Φ(| fn|)‖L1(m) → 0. For ε > 0, there is some j ∈ N such that 2−j < ε.
Moreover we can choose s1 > 0 small enough so that

Φ(2js1)‖m‖(Ω) <
1
2
. (5.15)

By Remark 5.1.4 there is some C > 0 such that

Φ(2s) ≤ CΦ(s), ∀ s ≥ s1. (5.16)

We can now find N ∈ N so that

Cj‖Φ(| fn|)‖L1(m) ≤
1
2
, ∀ n ≥ N. (5.17)

Let n ≥ N and x∗ ∈ B(X∗). Take Ωn := {x ∈ Ω : | fn(x)| ≥ s1}, previous
inequalities (5.15)-(5.17), yields

∫

Ω
Φ(2j| fn|) d|〈m, x∗〉| =

∫

Ω\Ωn

Φ(2j| fn|) d|〈m, x∗〉|

+
∫

Ωn

Φ(2j| fn|) d|〈m, x∗〉|

≤ Φ(2js1)‖m‖(Ω) + Cj
∫

Ω
Φ(| fn|)d|〈m, x∗〉|

≤ 1
2

+ Cj‖Φ(| fn|)‖L1(m) ≤ 1.

It follows that ‖ fn‖LΦ(|〈m,x∗〉|) ≤ 2−j, ∀ n ≥ N, ∀ x∗ ∈ B(X∗). Hence,
‖ fn‖m,Φ ≤ 2−j < ε, ∀ n ≥ N.

To show (iii) let f ∈ LΦ(m). Since LΦ(m) is order continuous, from
Lemma 1.0.1 we have

LΦ(m) = { f ∈ L0(µ) : lim
µ(A)→0

‖ f χA‖m,Φ = 0} (5.18)

By (ii) this implies

lim
µ(A)→0

‖Φ( f )χA‖L1(m) = ‖Φ( f )χA‖m,Φ = 0.

Using (5.18) we conclude that Φ( f ) ∈ L1(m). The other containment can
be proven in a similar way.
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5.2. Multiplication Operators

As claimed in the introduction, we are interested in the study of mul-
tiplication operators between Orlicz spaces. We begin this section with
some basic properties of M(W, Y), the space of multiplication operators
from W into Y, where W and Y are Banach function spaces with respect to
µ,

M(W, Y) := {g ∈ L0(µ) : f g ∈ Y for every f ∈ W}.
Notice that if g ∈ M(W, Y) can be identified to the multiplication operator
Mg : W → Y defined as Mg( f ) := f g for f ∈ W.

Proposition 5.2.1. The following asssertions holds for W ⊂ Y Banach functions
spaces.

(i) If g ∈ M(W, Y), then Mg ∈ L(W, Y).

(ii) The function ‖g‖M := ‖Mg‖ defines a norm on M(W, Y).

(iii) M(W, Y) is a B.f.s. with respect to µ.

(iv) If Y has the Fatou property, then M(W, Y) also has it.

Proof. Since W and Y are Banach spaces, to prove (i) it is enough to show
that Mg has closed graph. So, let us assume that ( fn) ⊂ W, f ∈ W, h ∈ Y
and fn → f in W, g fn → h in Y. Lattice property of the Banach function
spaces yields the existence of subsequence of ( fn) such that fnk → f µ−a.e.
and g fnk → h µ-a.e. It follows that g f = h µ−a.e. Therefore the graph of
Mg is closed.

In order to prove (ii) notice that the association g → Mg is linear. It
follows that the function ‖ · ‖M is a seminorm. Assume that g ∈ M(W, Y)
and gw = 0, ∀w ∈ W. Since χΩ ∈ W, we have g = gχΩ = 0.

To show (iii) let f ∈ L0(µ) and g ∈ M(W, Y) be such that 0 ≤ | f | ≤ |g|
and take w ∈ W. Define h(x) = f (x)/g(x) when g(x) 6= 0 and h(x) = 0
when g(x) = 0. Then h ∈ L0(µ) and |h| ≤ 1. Since W has the lattice
property, we get hw ∈ W. Therefore f w = ghw ∈ Y. Thus f ∈ M(W, Y).
Moreover, for each w ∈ W we get

‖ f w‖Y = ‖ghw‖Y ≤ ‖g‖M‖hw‖W ≤ ‖g‖M.‖w‖W ,

This implies that ‖ f ‖M ≤ ‖g‖M. And the space of multiplication operators
has the lattice property.

Since W ⊂ Y, we have that χΩw = w ∈ Y for all w ∈ W. This shows
that χΩ ∈ M(W, Y). Using now the lattice property we just established,
we conclude that χA ∈ M(W, Y) for all A ∈ Σ.
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Take g ∈ M(W, Y). Since χΩ ∈ W, we have

‖g‖Y = ‖gχΩ‖Y ≤ ‖g‖M‖χΩ‖W . (5.19)

This shows that M(W, Y) is continuously included in Y. Since Y is also
continuously included in L1(µ), it follows that M(W, Y) is continuously
included in L1(µ).

It only rests to prove that M := M(W, Y) is complete. For this aim
take a sequence (gn)n in M satisfying ∑∞

n=1 ‖gn‖M < ∞, and take f ∈ W.
Therefore

∞

∑
n=1

‖ f gn‖Y ≤ ‖ f ‖W

∞

∑
n=1

‖gn‖M < ∞

As a direct application of Riez–Fisher criterion (see [78, Section 64]), the
inequality above implies ∑∞

n=1 | f ||gn| ∈ Y. Thus ∑∞
n=1 |gn| ∈ M. Another

application of Riez–Fisher criterion yields the completeness of M.
To prove assertion (iv) let (gn)n ∈ M be an increasing sequence so that

‖gn‖M ≤ C for some positive constant C. If 0 ≤ f ∈ W, then 0 ≤ gn f ↑ is
an increasing sequence in Y, with ‖gn f ‖Y ≤ C‖ f ‖W . Since Y has the Fatou
property, this implies that the limit g f ∈ Y and ‖g f ‖Y ≤ C‖ f ‖W . Hence
g ∈ M(W, Y) and ‖g‖M ≤ supn ‖gn‖m, and the proof is complete.

Multiplication operators on vector measure Orlicz spaces. In this sec-
tion we will study the spaces of multiplication operators M(LΦ(m), L1(m)),
M(LΦ(m), L1

w(m)), M(LΦ
w(m), L1

w(m)) and M(LΦ
w(m), L1(m)). We begin

by proving some results that show the vector measure duality between
the spaces LΦ(m) and LΨ(m). We start with the following lemma, which
provides a Hölder’s inequality for vector measure Orlicz spaces.

Lemma 5.2.2. Let f ∈ LΦ
w(m) and g ∈ LΨ

w(m), then f g ∈ L1
w(m) and

‖ f g‖L1(m) ≤ 2‖ f ‖m,Φ · ‖g‖m,Ψ.

Proof. Using inequality (5.6), for f ∈ LΦ
w(m) and g ∈ LΨ

w(m) we obtain:

‖ f g‖L1(m) = sup
x∗∈B(X∗)

∫

Ω
| f g|d|〈m, x∗〉|

≤ sup
x∗∈B(X∗)

(
2‖ f ‖LΦ(|〈m,x∗〉|) · ‖g‖LΨ(|〈m,x∗〉|)

)

≤ 2‖ f ‖m,Φ · ‖g‖m,Ψ.

In (5.12) we stated that LΦ
w(m) is continuously included en L1

w(m), the
following proposition strengthens this result.



5.2 Multiplication Operators 109

Proposition 5.2.3. LΦ
w(m) is continuously included in L1(m).

Proof. Take f ∈ LΦ
w(µ) and A ∈ Σ. Direct application of inequality (1.9)

and inequality (5.5) we get

‖ f χA‖L1(m) ≤ 2‖ f ‖m,Φ‖χA‖m,Ψ.

Recall that χΩ ∈ LΨ(µ) and LΨ(µ) is an order continuous B.f.s. with re-
spect to λ, a Rybakov’s control measure for m. From (1.1) it follows that
‖χA‖m,Ψ → 0 when λ(A) → 0. Using this in the above inequality, we
conclude that ‖ f χA‖L1(m) → 0 when λ(A) → 0. Since L1(m) is order con-
tinuous, using again (1.1) we conclude that f ∈ L1(m). The continuity of
the inclusion is obtained having in mind that

‖ f ‖L1(m) = ‖ f χΩ‖L1(m) ≤ 2‖χΩ‖m,Ψ‖ f ‖m,Φ.

The following proposition generalize Lemma 2 in [7].

Proposition 5.2.4. For Φ and Ψ conjugated Young’s functions

(i) LΨ(m) · LΦ
w(m) ⊂ L1(m), LΦ(m) · LΨ

w(m) ⊂ L1(m).

(ii) LΨ
w · LΦ

w = L1
w(m).

(iii) If Ψ has the ∆2−property, then LΨ(m) · LΦ
w(m) = L1(m).

(iv) If Φ and Ψ have the ∆2− property, then LΨ(m) · LΦ(m) = L1(m).

Proof. To prove (i) take f ∈ LΦ
w(m) and g ∈ LΨ(m). Since by construction

simple functions are dense in LΨ(m), there is a sequence (gn)n ⊂ S(Σ)
such that ‖gn − g‖m,Ψ → 0. By Lemma 5.2.3 we have f gn ∈ LΦ

w(m) ⊂
L1(m), for all n ∈ N. Using Lemma 5.2.2 we obtain f g ∈ L1

w(m) and

‖ f g− f gn‖L1(m) ≤ 2‖ f ‖Φ · ‖g− gn‖m,Ψ.

So we conclude that f gn → f g in L1
w(m). Since L1(m) is closed in

L1
w(m) and f gn ∈ L1(m) for all n ∈ N, then f g ∈ L1(m).

The other containment is obtained by interchanging Φ with Ψ in what
we have just proved.

To show equality (iii), by (i) it remains to prove inclusion L1(m) ⊂
LΦ

w(m) · LΨ(m). For this aim fix f ∈ L1(m), by Lemma 5.1.2 we have
| f | ≤ Φ−1(| f |)Ψ−1(| f |). From Lemma 5.1.7 it follows that Φ−1(| f |) ∈
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LΦ
w(m). Since Ψ has the ∆2−property, by (iii) in Proposition 5.1.8 we have

Ψ−1(| f |) ∈ LΨ(m). Thus | f | = f1 f2 where

f1 =
| f |

Φ−1(| f |)Ψ−1(| f |)Φ−1(| f |) and f2 = Ψ−1(| f |).

Since
| f |

Φ−1(| f |)Ψ−1(| f |) ≤ 1, we have f1 ∈ LΦ
w(m). Hence we have the

decomposition f = sign( f ) f1 f2.
Using similar arguments we can prove (ii) and (iv).

The next result is the vector measure case corresponding to the scalar
situation [44, Lemma 9.1]. Recall that ψ is the admissible function defining
Ψ.

Theorem 5.2.5. Let g ∈ L0(m) so that ‖g‖M(LΦ
w (m),L1

w(m)) < 1, then:

(i) f := ψ(|g|) ∈ LΦ
w(m) and ‖ f ‖m,Φ ≤ 1.

(ii) ‖Ψ(|g|)‖L1(m) ≤ ‖g‖M(LΦ
w (m),L1

w(m)).

Proof. To prove (i) let a > 0, the function ψ is monotonically increasing, it
follows that {u ≥ 0 : ψ(u) < a} ⊂ R is an interval. Since |g| : Ω → R+ is
a measurable function, we have that f = ψ(|g|) is also measurable.

Let us suppose that ‖ f ‖m,Φ > 1. Then, by (ii) in Lemma 5.1.7 we have
‖Φ( f )‖L1(m) > 1. For n ∈ N, take An := {w ∈ Ω : |g(w)| ≤ n} and
gn := |g|χAn . Then for each n ∈ N, gn ∈ L∞(m), 0 ≤ gn ≤ gn+1 and
gn → |g| λ−a.e.; therefore, since ψ is monotonically increasing, we have
0 ≤ ψ(gn) ≤ ψ(gn+1). Consider w ∈ Ω. If |g(w)| < ∞ then, for large
enough n ∈ N we have ψ(gn) = ψ(|g|). If |g(w)| = ∞, then gn(w) → ∞
and so ψ(gn) → ∞ = ψ(|g(x)|). Thus, ψ(gn) → ψ(|g|) = f λ−a.e. in Ω.

Since L1
w(m) has the Fatou property and ‖Φ( f )‖L1(m) > 1, it follows

from above that ‖Φ(ψ(gn0))‖L1(m) > 1 for some n0 ∈ N.
By Young’s inequality (see (5.2)), we have

0 ≤ Φ(ψ(gn0)) ≤ Φ(ψ(gn0)) + Ψ(gn0) = gn0ψ(gn0). (5.20)

Let M := M(LΦ
w(m), L1

w(m)). From (5.20) and (ii) in Lemma 5.1.7 fol-
lows

‖Φ(ψ(gn0)‖1
L(m) ≤ ‖gn0ψ(gn0)‖1

L(m) (5.21)

≤ ‖gn0‖M‖ψ(gn0)‖m,Φ ≤ ‖gn0‖M‖Φ(ψ(gn0))‖L1(m).

Since gn0 is bounded, it follows that Φ(ψ(gn0)) is also bounded and
so ‖Φ(ψ(gn))‖L1(m) < ∞. By (5.21), this implies ‖gn0‖M ≥ 1. On the
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hand side, since M is a Banach lattice, from |gn0 | ≤ |g| we conclude that
‖gno‖M < 1. Thus, we have a contradiction.

(ii) From Young’s inequality it follows that 0 ≤ Ψ(|g|) ≤ |g|ψ(|g|).
Using (i), this implies ‖Ψ(g)‖1

L(m) ≤ ‖|g|ψ(|g|)‖1
L(m) ≤ ‖g‖M.

Corollary 5.2.6. For Φ and Ψ conjugated Young’s functions:

(i) ‖g‖m,Ψ ≤ ‖g‖M(LΦ
w (m),L1

w(m)) ≤ 2‖g‖m,Ψ, for g ∈ LΨ
w(m),

(ii) ‖g‖M(LΦ
w (m),L1

w(m)) = ‖g‖M(LΦ(m),L1(m)), for g ∈ LΨ
w(m).

Proof. We will take M := M(LΦ
w(m), L1

w(m)), M0 := M(LΦ(m), L1(m)).
In order to prove (i) let g ∈ LΨ

w(m). From Lemma 5.2.2 we get ‖g‖M ≤
2‖g‖m,Ψ. It only rests to establish the first inequality. Let 0 < r < 1. By

(ii) in Theorem 5.2.5, we have
∥∥∥Ψ(r |g|

‖g‖M
)
∥∥∥

L1(m)
≤ 1. Take x∗ ∈ B(X∗),

then
∫

Ω Ψ
(

r|g|
‖g‖M

)
d(|〈m, x∗〉|) ≤ 1. By the definition of the Luxemburg

norm this implies ‖rg‖LΨ(|〈m,x∗〉|) ≤ ‖g‖M. Letting r → 1, we conclude that
‖g‖m,Ψ ≤ ‖g‖M.

(ii) Let g ∈ LΨ(m), g 6= 0 and take 0 < r < 1. Using what we have just
established in (i) we obtain f ∈ B(LΦ

w(m)) such that ‖g f ‖L1(m) > r‖g‖M.
Given n ∈ N, take An := {w ∈ Ω : |g(w)| ≤ n} and fn := | f |χAn .
Then fn ∈ L∞(m), fn ∈ B(LΦ(m)), 0 ≤ fn ≤ fn+1 and fn → | f |. Since
L1

w(m) has the Fatou property, this implies ‖g fn‖L1(m) → ‖g f ‖L1(m). Hence
‖g fn‖L1(m) > r‖g f ‖L1(m) > r2‖g‖M, for some n ∈ N. Therefore ‖g‖M0 ≥
r2‖g‖M. Letting r → 1, we conclude that ‖g‖M0 ≥ ‖g‖M. The conclusion
follows having in mind that ‖g‖M ≥ ‖g‖M0 .

Theorem 5.2.7. The following equalities hold for Ψ and Φ conjugated Young’s
functions and m : Σ → X a vector measure:

LΨ
w(m) = M(LΦ(m), L1(m))

= M(LΦ(m), L1
w(m))

= M(LΦ
w(m), L1

w(m)).

Proof. In Proposition 5.2.4 we established LΨ
w(m) ⊂ M(LΦ(m), L1(m)).

Clearly M(LΦ(m), L1(m)) ⊂ M(LΦ(m), L1
w(m)).

From Lemma 5.2.2 we have LΨ
w(m) ⊂ M(LΦ

w(m), L1
w(m)) and clearly

M(LΦ
w(m), L1

w(m)) ⊂ M(LΦ(m), L1
w(m)).

It only rests to prove M := M(LΦ(m), L1
w(m)) ⊂ LΨ

w(m). Take g ∈
L0(m) and, for n ∈ N, consider An := {w ∈ Ω : |g(w)| ≤ n} and gn ≡
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|g|χAn . Then gn ∈ L∞(m) ⊂ LΨ
w(µ), 0 ≤ gn ≤ gn+1 and gn → |g|. Since

0 ≤ gn ≤ |g|, by Proposition 5.2.1 we have ‖gn‖M ≤ ‖g‖M, for all n ∈ N.
Applying (i) of Theorem 5.2.6, this implies (gn) is also bounded in LΨ

w(µ).
Since LΨ

w(µ) has the Fatou property, the above conditions imply that g ∈
LΨ

w(µ).

The following result corresponds to two of the equalities we have just
established.

Corollary 5.2.8. Let g ∈ L0(m). Then:

i) g f ∈ L1
w(m), ∀ f ∈ LΦ

w(µ) if, and only if, g f ∈ L1(m), ∀ f ∈ LΦ(µ).

ii) g f ∈ L1
w(m), ∀ f ∈ LΦ(µ) if, and only if, g f ∈ L1(m), ∀ f ∈ LΦ(µ).

Theorem 5.2.9. If Ψ has the ∆2−property, then

LΨ(m) = M(LΦ
w(m), L1(m)).

Proof. From Proposition 5.2.4 we have LΨ(m) ⊂ M(LΦ
w(m), L1(m)).

Take now g ∈ M(LΦ
w(m), L1(m)). Then g ∈ M(LΦ

w(m), L1
w(m)). So

we can apply Theorem 5.2.7 to conclude that g ∈ LΨ
w(m). Since Ψ has the

∆2−property Ψ(|g|) ∈ L1
w(m) and then by Lemma 5.1.7 Φ−1(Ψ(|g|)) ∈

LΦ
w(m). Thus gΦ−1(Ψ(|g|)) ∈ L1(m).

Applying Lemma 5.1.2, we get

Ψ(|g|) ≤ Ψ−1(Ψ(|g|))Φ−1(Ψ(|g|)) = |g|Φ−1(Ψ(|g|)).

Since L1(m) is a Banach lattice, it follows that Ψ(|g|) ∈ L1(m). Using now
(iii) in Proposition 5.1.8, we get g ∈ LΨ(m).

5.3. Applications: operators factorizing through vec-
tor measure Orlicz spaces

In this last section our aim is to characterize the class of operators de-
fined in a B.f.s. with range in a Banach space that factorize through a
vector measure Orlicz space, indeed these spaces turn out to be the opti-
mal domains for such operators. The theory of optimal domains for con-
tinuous operators defined on B.f.s. has been developed recently: see for
instance the book by S. Okada, W. Ricker and E. A. Sánchez-Pérez, [58].
We begin with a technical lemma that might be known, but whose proof
we include for the sake of completeness.
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Lemma 5.3.1. Let Z be a B.f.s. continuously included in L1(m). If f ∈ M =
M(Z, L1(m)) then ‖ f ‖M = sup

{∥∥∫
Ω f gdm

∥∥
X : g ∈ B(Z)

}
.

Proof. We will apply Lemma 3.11 in [58] which indicates that the norm of
h ∈ L1(m) can be computed as

‖h‖L1(m) = sup
{∥∥∥∥

∫

Ω
shdm

∥∥∥∥ : s ∈ S(Σ) ∩ B(L∞(m))
}

.

Hence

‖ f ‖M = sup
r∈B(Z)

sup
{∥∥∥∥

∫

Ω
s f rdm

∥∥∥∥ : s ∈ S(Σ) ∩ B(L∞(m))
}

, f ∈ M.

Recall that Z has the lattice property. Hence, if r ∈ B(Z) and s ∈ S(Σ) ∩
B(L∞(m)), then we have sr = g ∈ B(Z). From the above equality this
implies the conclusion.

Throughout what follows we will assume that W is an order continu-
ous Banach function space with respect to µ and T ∈ L(W, X). It follows
that the set function mT : Σ → X defined by mT(A) = T(χA) for A ∈ Σ
is a countably additive vector measure. We will suppose the operator T
is µ−determined, that is, µ(A) → 0 whenever ‖mT‖(A) → 0. Note that∫

Ω f dmT = T( f ), ∀ f ∈ W, holds. The following proposition provides
a characterization of bounded operators that factorize through a vector
measure Orlicz space.

Proposition 5.3.2. Let T : W → X be a µ−determined bounded operator. Then,
the following assertions are equivalent.

(i) There is a constant K > 0 such that

‖T( f g)‖X ≤ K‖ f ‖W‖g‖mT ,Ψ, ∀ f ∈ W, g ∈ S(Σ). (5.22)

(ii) T satisfies the following factorization diagram

W
T //

i ##GG
GG

GG
GG

G X

LΦ(mT)

I

OO

h where i and I are the respective inclusion and integration maps.

Moreover LΦ(mT) is the optimal domain, in the sense that if Z is a µ-B.f.s. such
that W ↪→ Z and (5.22) holds with Z instead of W, then Z will be continuously
included in LΦ(mT).



114 Vector measure duality for Orlicz spaces

Proof. Let MΦ := M(LΦ(mT), L1(mT)) and MΨ := M(LΨ(mT), L1(mT)).
We will first prove that (ii) implies (i). Let f ∈ W, g ∈ S(Σ). Applying

the above lemma and corollary 5.2.6 we have

‖T( f g)‖X =
∥∥∥∥
∫

Ω
f gdmT

∥∥∥∥
X
≤ ‖ f ‖mT ,Φ ‖g‖MΦ

≤ K‖ f ‖W‖g‖MΦ ≤ 2K‖ f ‖W‖g‖mT ,Ψ.

To prove the converse we first show that W ⊂ LΦ(mT) and that the
inclusion is continuous. By hypothesis, for every g ∈ S(Σ) we have
‖T( f g)‖X ≤ K‖ f ‖W‖g‖mT ,Ψ. Hence, from lemma 5.3.1 we get

‖ f ‖MΨ = sup
g∈B(LΨ(mT))

∥∥∥∥
∫

Ω
f gdmT

∥∥∥∥
X

= sup
g∈B(LΨ(mT))

{∥∥∥∥
∫

Ω
f gdmT

∥∥∥∥
X

: g ∈ S(Σ)
}

≤ ‖T( f )‖X ≤ K‖ f ‖W .

Corollary 5.2.6 yields now ‖ f ‖mT ,Φ ≤ K‖ f ‖W . Thus, W ⊂ LΦ
w(mT) and the

inclusion is continuous.
To prove the injectivity of i let A ∈ Σ, then we have

‖ f χA‖mT ,Φ ≤ K‖ f χA‖W .

Since T is µ−determined, note that µ(A) → 0 if, and only if, λ(A) → 0,
where λ is a Rybakov measure for mT. Since W and LΦ(mT) are order
continuous B.f.s., it follows from the inequality above that ‖ f χA‖mT ,Φ → 0
when µ(A) → 0. By (1.1), this implies that f ∈ LΦ(mT).

It lasts to prove the optimality of LΦ(mT). So suppose that there is a µ-
B.f.s. Z and some K > 0 such that W ↪→ Z and ‖T( f g)‖X ≤ K‖ f ‖Z‖g‖mT ,Ψ,
∀ f ∈ Z and g ∈ S(Σ). Similar arguments as those used just before show

that Z is continuously included in LΦ(mT).
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