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Abstract

Wetlands  are  naturally  patchy  habitats,  but  patchiness  has  been  accentuated  by  the  extensive

wetlands loss due to human activities. In such a fragmented habitat, dispersal ability is especially

important to maintain gene flow between populations. Here we studied population structure, genetic

diversity  and  demographic  history  of  Iberian  and  North  African  populations  of  two  wetland

passerines,  the  Eurasian  reed  warbler  Acrocephalus  scirpaceus and  the  moustached  warbler

Acrocephalus melanopogon. These species are closely related and sympatric in our study sites, but

the reed warbler is a long-distance migrant and widespread bird while the moustached warbler is

resident or migrates over short  distances,  and breeds across a more discontinuous range.  Using

microsatellites and mtDNA data, we found higher population differentiation in moustached than in

reed warbler, indicating higher dispersal capability of the latter species. Our results also suggest that

the sea limits dispersal in the moustached warbler. For both species, we found evidence of gene

flow  between  study sites,  indicating  the  capability  of  compensating for  habitat  fragmentation.

However, in most cases gene flow was restricted, possibly because of the large distances between

study sites (from c. 290 to 960 km) or breeding site fidelity. Haplotype diversity was higher for the

reed  warbler,  possibly  because  of  a  more  important  contribution  of  dispersal  from  different

populations and the higher population size. Studying demographic history, we obtained signs of

postglacial  population  growth  for  both  species,  and  evidences  of  a  recent  colonization  or  re-

colonization of the Mallorca Island by the moustached warbler.
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Introduction

Habitat fragmentation consists of reduction of the total habitat area and creation of separate patches

from  a  wider  continuous  distribution  (Frankham  et  al.  2010).  The  consequences  of  habitat

fragmentation on the demographic and genetic structure of a natural population vary according to

both landscape features (degree of habitat isolation, type of matrix between fragments) and species

characteristics (population size and density, dispersal ability, stress tolerance; Matthysen et al. 1995,

Newton 1998, Bohonak 1999, Desrochers et al. 1999, Galbusera et al. 2004). Wetlands are patchy

habitats immersed in a terrestrial matrix, and this natural characteristic of discontinuity has been

accentuated by the extensive habitat destruction caused by human activities (Finlayson et al. 1992,

Van Vessem et al. 1997, Paracuellos and Telleria 2004, Silva et al. 2007, Laurence 2010). In such a

scattered habitat,  the dispersal ability of a species is  crucial  to produce sufficient  gene flow to

reduce the impact of population fragmentation. Lack of gene flow between fragmented populations

can lead to loss of genetic diversity (e.g. Kvist et al. 2011), inbreeding and consequently higher

extinction risk compared to a continuous population (Frankham et al. 2010). Dispersal ability of

birds is generally high (Koenig et al. 1996, Frankham et al. 2010), but detailed species-specific

estimates are difficult to obtain. This is largely due to practical difficulties; studying dispersal over

large distances requires large-scale marking schemes (Paradis et al. 1998, Hansson et al. 2002), and

the  use  of  satellite  telemetry  or  geolocators  is  usually  possible  only  on  a  reduced  number  of

individuals due to the high costs. However, indirect genetic methods can provide useful information

about gene flow and population differentiation. 

Here  we  present  new  information  of  genetic  diversity  and  population  structure  of  two

closely related and sympatric wetland passerines with different migration strategies, the moustached

warbler  Acrocephalus  melanopogon  and  the  Eurasian  reed  warbler  Acrocephalus  scirpaceus

(hereafter reed warbler), based on both microsatellites and mitochondrial DNA data.
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The moustached warbler is a polytypic species breeding across a discontinuous area ranging

from SW Europe to Central Asia (Kennerley and Pearson 2010). Our study populations in Spain

belong to the nominal subspecies melanopogon, which occupy the western part of the species range.

These populations are mostly sedentary or migrate over short distances (Castany 2003, Castany and

López 2006, Kennerley and Pearson 2010). In Spain, the distribution of the moustached warbler is

discontinuous and most of the ~ 1000 breeding pairs are concentrated in a few marshlands along the

Mediterranean  Coast  and  on the  Mallorca  Island  (Castany  and  López  2006).  Until  now,  no

information about  genetic  diversity and genetic  population structure has  been provided for this

species.

The reed warbler is a common and largely widespread breeding bird in Europe. This species

is  a  long-distance  migrant  wintering  in  sub-Saharan  Africa  (Kennerley  and  Pearson  2010);  a

migratory  divide  in  Central  Europe  splits  the  European  reed  warbler  population (subspecies

scirpaceus) into SW- and SE-migrating populations (Procházka et al. 2008). Iberian reed warblers

belong to the SW-migrating group, have more rounded and shorter wings (Cramp 1992, Peiró 2003)

and winter more north than the other SW-migrating populations (Procházka et al. 2008). Procházka

et  al.  (2011),  using ten microsatellite loci,  found no clear population structure and low genetic

differentiation of reed warbler  populations across Europe,  indicating a high level of gene flow.

Furthermore, the authors reported slight, but significant, differentiation of Iberian populations and

suggested that they may have a different evolutionary history than other populations. North African

reed warblers seem to be partly sedentary (Amezian et al. 2010, Kennerley and Pearson 2010) and

birds breeding in Morocco differ from European reed warblers also in biometrics, coloration and

moult strategy (Amezian et al. 2010, Jiguet et al. 2010). On this basis, some authors suggest that

these birds could constitute a new taxon (Amezian et al. 2010, Jiguet et al. 2010), thus the status of

this population is still unclear.

The aims of this study were: 1) to provide new information of genetic diversity, population

4

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70



structure and population history of the study species in Iberia (and also in North Africa for the reed

warbler),  2) to assess the possible effects  of habitat  fragmentation on the genetic diversity and

structure of the study populations and 3) to compare the results obtained for the two species, taking

into account especially their differences in migration strategy and population size.

Methods

Sampling and DNA extraction

We obtained blood samples from birds mist-netted during the breeding season of 2012-2013 at four

study areas: the Pego-Oliva Natural Park (38°51' N - 0°03' W), S'Albufera de Mallorca (39°47' N -

3°06' E) and Villafranca de los Caballeros (39°27' N - 3°19' W) in Spain and Larache (35°08' N -

6°05' W) in Morocco (Fig. 1).  At the last site,  the breeding population of moustached warbler is

small and we captured no individuals. Blood drops (5-15 µl) were obtained from the brachial vein

and stored in 96% ethanol. Overall, we sampled 54 moustached warblers and 68 reed warblers. We

extracted  DNA using  UltraCleanTM Blood  SpinTM Kit  (MoBio  Laboratories)  according  to  the

protocol.

DNA amplification

Microsatellites

We amplified 16 polymorphic microsatellite loci from reed warbler DNA samples: Ase25, Ase34,

Ase37, Ase48, Ase58 (Richardson et  al.  2000,  Acrocephalus sechellensis), Pocc2 (Bensch et  al.
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1997, Phylloscopus occipitalis), Ppi2 (Martínez et al. 1999, Pica pica), Aar4, Aar5 (Hansson et al.

2000,  Acrocephalus arundinaceus), FhU2 (Ellegren 1992,  Ficedula hypoleuca), Pca3 (Dawson et

al.  2000,  Cyanistes caeruleus),  Pdoµ1 (Neumann and Wetton 1996,  Passer domesticus),  Cuµ28

(Gibbs et al. 1999, Catharus ustulatus), Gf05 (Petren 1998, Geospiza fortis), Pdo5 (Griffith et al.

1999,  P.  domesticus)  and  ZL54  (Frentiu  et  al.  2003,  Zosterops  lateralis).  In  the  case  of  the

moustached warbler, we successfully amplified eight polymorphic loci: Ase18 (Richardson et al.

2000, A. sechellensis), Aar4, Pdo5, Ppi2, ZL54, Pocc2, Pca3 and Ase25. Details on the Polymerase

Chain Reaction (PCR) are available in the online supplementary material. We ran the PCR products

with ABI PRISM 3730 DNA Analyzer (Applied Biosystems) and scored them with GeneMapper

4.0. We checked the data with the program MICROCHECKER 2.2.3 (van Oosterhout et al. 2004)

for possible genotyping errors (null alleles, scoring errors due to stuttering, large allele dropouts).

Mitochondrial DNA

For reed warblers we amplified 473 bp of the mitochondrial cytochrome oxidase CO1 using primers

CO1F and CO1R (Hebert et al. 2004). For moustached warblers we amplified 623 bp of the CO1

using primers CO1F and CO1R2 (Kerr et al. 2007). Details on the PCR procedures are available in

the  online  supplementary  material.  For  reed  warblers,  we  sequenced  both  strands,  while  for

moustached  warblers  we  sequenced  all  individuals  with  forward  and  26  individuals  also  with

reverse primers. We used the BigDyeTM Terminator 3.1 Cycle Sequencing Kit (Applied Biosystems)

and  ran  the  sequencing  reactions  with  ABI  PRISM  3730  automatic  sequencer  (Applied

Biosystems).  We obtained sequences  of  50 reed warblers  and 43 moustached warblers  and we

checked and aligned them with BioEdit 7.2.5 (Hall 1999).

Statistical analysis
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Microsatellites

We  tested  the  possible  deviations  from  the  Hardy-Weinberg  and  linkage  equilibrium  with

GENEPOP 4.2 (Raymond and Rousset 1995, Rousset 2008), for each sampling site and for the total

sample of both species. For the same groups we calculated the expected heterozygosity (H e) with

Arlequin 3.5.1 (Excoffier et al. 2010) and inbreeding coefficient (FIS) and allelic richness (A) with

FSTAT 2.9.3 (Goudet 1995). 

To  infer  the  population  genetic  structure  we  used  the  program  STRUCTURE  2.3.4

(Pritchard et al. 2000, Falush et al. 2003). This program is based on a Bayesian approach and allows

estimation of the most probable number of distinct genetic clusters (K) in the data set. We chose a

model  with  population  admixture  and  correlated  allele  frequencies  (Falush  et  al.  2003),  and

performed the analysis without any prior spatial information. We performed ten independent runs

for each value of K between 1 and 10, with a burn-in period of 50000 iterations and 500000 Markov

chain Monte Carlo (MCMC) replications. Furthermore, we calculated the ad hoc statistic ΔK from

the STRUCTURE results as described by Evanno et al. (2005), to better assess the real number of

genetic clusters.  We investigated population differentiation also by calculating pairwise FST  values

between each of the sampling sites using the program Arlequin.

We  explored  the  spatial  genetic  structure  with  the program  SPAGeDi  1.4  (Hardy  and

Vekemans  2002),  using  the  Loiselle  kinship  coefficient  (Loiselle  et  al.  1995)  and  four  (reed

warbler)/three (moustached warbler)  distance classes.  The spatial  coordinates  of  the individuals

corresponded to the coordinates of the four sampling sites, and we built distance classes to include

one site per class. To obtain information about current dispersal between populations, we carried out

an assignment analysis and looked for first generation migrants with the program GENECLASS 2

(Piry et al. 2004). We used the Bayesian individual assignment methods by Rannala and Mountain
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(1997) and the simulation algorithm of Paetaku et al. (2004). For both assignment analysis and first

generation migrant detection, we used 1000 replicates, alpha level for the MCMC simulations at

0.01 and assignment threshold at 0.05. 

Genetic data from population samples carry also information about population history. First,

we looked for past bottlenecks by means of  the program BOTTLENECK 1.2.02 (Cornuet et al.

1996, Piry et al. 1999), which tests for heterozygosity excess caused by recent reduction of the

effective population size (Piry et al. 1999). We used the Wilcoxon test under the two-phase mutation

model with 95% single-step mutations. We also estimated the Garza-Williamson index (Garza and

Williamson 2001) with Arlequin, in order to search for strong past population bottlenecks. Using

the genetic clusters identified by STRUCTURE, we studied the population history with the program

DIY ABC 2.0.3 (Cornuet et al. 2008), based on approximate Bayesian computation (ABC). Using

DIY ABC it is possible to compare different competing historical/demographic scenarios and to

obtain  parameter  estimators  for  each  of  them.  For  reed  warblers,  we  found  no  population

differentiation with STRUCTURE (K = 1, see Results), thus we performed the analysis in DIY

ABC only  for  moustached  warbler  (K  =  2,  see  Results).  We  were  interested  to  estimate  the

divergence time and the current effective population sizes for the two STRUCTURE populations

(Spanish mainland and Mallorca Island, see Results) and for the ancestral population. We explored

five scenarios, the simplest one containing one divergence event while the remaining four contained

population size changes at different times after divergence in only one or both populations. We

chose the default range of priors for effective population sizes and divergence times (10-10000) and

set  the  conditions  for  the  chronological  order  of  historical  events.  We  adopted  the  default

Generalized  Stepwise  Mutation  model  (Estoup  et  al.  2002)  and  seven  of  11  default  summary

statistics  (four  within-  and  three  among-populations).  With  these  settings,  a  total  of  5000000

simulated data sets were calculated (1000000 per scenario); among them, the 50000 sets closest to

the observed data according to the summary statistics were used for parameter estimation.
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Mitochondrial DNA

We calculated haplotype and nucleotide diversities of the entire sample and of each population for

both  species  using  DnaSP 5.10.01 (Librado  and Rozas  2009).  To build  a  statistical  parsimony

network,  we  used  the program TCS 1.21  (Clement  et  al.  2000)  with  default  settings  of  95%

parsimony connection limit. As outgroups, we included sequences from other European populations

obtained from the  GenBank (accession  numbers  and  origin:  moustached  warbler  -  GQ481257,

Russia; reed warbler - GU571698, Sweden).

We used  the program Arlequin to obtain information about population differentiation, by

performing  an  analysis  of  molecular  variance  (AMOVA) and  calculating  pairwise  φST  values

between each of the sampling sites using pairwise differences and frequencies of haplotypes.

We studied demographic history by means of mismatch distribution analysis, which consists

of computing the distribution of the observed number of differences between pairs of sequences in a

sample.  Unimodal  distributions  usually  indicate  an  expansion  event,  whereas  multimodal

distributions are typical of populations at demographic equilibrium (Rogers and Harpending 1992).

In addition, we carried out Tajima's D (Tajima 1989) and Fu's Fs (Fu 1997) neutrality tests, where a

statistically significant negative value indicates a recent expansion event. We performed mismatch

distribution analysis and the neutrality tests for the entire sample and for each sampling site using

Arlequin and DnaSP. 

The reed warbler mismatch distribution suggested an admixture of two previously isolated

populations (see Results). Thus, we ran reed warbler data with DIY ABC to estimate the timing of

this  demographic  event.  We  compared  four  scenarios,  where  the  simplest  one  consisted  of  a

population admixture at time ta and a previous population divergence at time t2.The remaining three

scenarios followed the same basic setting but included population size changes at different times for
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only one or  both  populations  before  admixture.  Reed warbler  populations  in  Iberia  and across

Europe are abundant (Carrascal and Palomino 2008, BirdLife International 2014), thus we set the

maximum effective population size at 1000000 individuals in the model. As maximum time for the

admixture  and  the  previous  divergence  events  we  chose  10000  and  20000  generations

(corresponding to 10000 and 20000 years for the study species), respectively. We used the Kimura

two  parameters  mutation  model  (Kimura  1980)  and  all  default  summary  statistics.  A total  of

4000000 simulated data sets were calculated (1000000 per scenario); among them, the 40000 sets

closest to the observed data according to the summary statistics were used for parameter estimation.

Results

Reed warbler

Microsatellites

Using MICROCHECKER we found possible null alleles in loci Ase25, Ase37, Ase48 and ZL54.

We  excluded  these  loci  from  calculations  for  the  Hardy-Weinberg  equilibrium,  linkage

disequilibrium and inbreeding coefficient, as well as from BOTTLENECK analysis, while for the

other analyses we used all 16 loci. We found no evidences of large allele dropouts or scoring errors

in the data set.

We found no significant deviations from Hardy-Weinberg equilibrium for any sampling site

or  for  the  entire  data  set.  Linkage  disequilibrium was  found  only  for  FhU2  and  Pca3  in  the

Villafranca population and in the entire sample. Basic polymorphism parameters (Table 1) showed

similar values across the four sampling sites, ranging from the highest polymorphism in Villafranca
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(He = 0.710, A = 1.71) to the lowest in Mallorca (He = 0.650, A = 1.65).

The program STRUCTURE attributed the highest likelihood (-2412) to K = 1, although K =

2 obtained a similar support (-2417).  ΔK showed a peak at  K = 2, but as it  is not possible to

compute ΔK for K = 1,  we could not compare the two hypotheses based on this  statistic.  The

STRUCTURE bar  plot  obtained for  K = 2 (Fig.  2)  support  the K = 1 hypothesis,  because  all

individuals showed approximately equal probability of belonging to both of the two clusters. To

detect  a  possible  weak  population  structuring  we  repeated  the  analysis  adding  geographical

information (LOCPRIOR model), but we obtained similar results. Therefore, the most supported

hypothesis is the lack of a clear population structuring in the sample.  Nonetheless, in two cases

(Larache - Pego-Oliva and Villafranca - Mallorca) pairwise FST values between sampling sites were

significant, though low (Table 2).

Using the program SPAGeDi, the regression between the kinship coefficients of individual

pairs  and the logarithm of the distances between sampling sites was significantly negative (r  =

-0.058, p = 0.042).  However, given the low regression coefficient, this result does not represent a

clear  evidence for isolation by distance. Out  of 68 birds,  25 (38%) were not  assigned to  their

sampling sites (Table 3) by the assignment test. Two birds sampled at Mallorca were identified as

first generation migrants and assigned to Pego-Oliva. Both individuals (a male with evident cloacal

protuberance and a female with brood patch) were breeding when sampled, thus this result indicates

possible evidence of dispersal.

We  found  no  evidence  of  past  bottlenecks  according  to  the  shapes  of  allele  frequency

distributions  or  excess  of  heterozygotes for the entire  data  set  and for Larache and Villafranca

samples (Table 1). Pego-Oliva and Mallorca samples were too small to perform the analysis. The

Garza-Williamson (G-W) index provides a sign of past bottleneck when is lower than 0.68 while

excludes this event if exceeds 0.8 (Garza and Williamson 2001). Based on this, the entire and the

Larache samples did not  show evidence of past  bottlenecks,  in Villafranca the G-W index was
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intermediate and Pego-Oliva and Mallorca values were lower than 0.68 (Table 1). However, the

results of the latter two sites are poorly reliable due to the low sample size. Overall, we found no

clear evidence of past bottlenecks. 

Mitochondrial DNA

The 50 sequenced reed warblers belonged to 18 different haplotypes. The TCS cladogram (Fig. 3)

show a star-like structure, with one dominant haplotype including 25 individuals (50% of the total)

and 17 other haplotypes represented by few birds (1-4). This structure suggests past  population

expansion events. Four birds resulted to be more related to the outgroup individual from Sweden

than to  the remaining Iberian/African sample (Fig.  3).  Haplotype and nucleotide diversities are

reported in Table 4.

AMOVA analysis did not detect any population differentiation (φST = -0.0087, p = 0.438),

with  100% variation  ascribed  to  differences  within  sampling  sites.  We obtained  no  significant

pairwise φST values between study sites (Table 5).

According to the neutrality tests, we found signs of population expansion for Larache and,

less clearly, for the entire data set. In fact, Tajima's D and Fu's Fs were significantly negative for

Larache sample (D = -2.203, p < 0.01; Fs = -7.063, p = 0.001), not significant for Pego-Oliva and

Villafranca, while over the whole sample only Fu's Fs was significantly negative (D = -1.581, p >

0.05; Fs = -8.590, p < 0.001). Mismatch distribution did not detect significant deviations from the

expansion hypothesis. Furthermore, mismatch distribution of Larache, Villafranca and the whole

data  set  showed  a  bimodal  shape  (Fig.  4),  suggesting  a  past  admixture  of  previously  isolated

populations.  Exploring demographic history with DIY ABC, the scenario with populations size

change in one population before admixture (hereafter A; Fig. 5) resulted to be the best. However,

the simplest scenario with an admixture and a previous divergence event, without population size
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changes (hereafter B; Fig. 5), obtained high support too, thus we report the parameters estimates

obtained from both  scenarios  (Fig.  5).  Scenario  A obtained lower  posterior  probability  than  B

according to direct estimation (A = 0.386, B = 0.440), but the logistic approach clearly supported

scenario A (A = 0.841, B = 0.159). Thus, we performed the analysis  of confidence in scenario

choice over all scenarios as implemented in DIY ABC, which confirmed scenario A as the best but

with high Type I error (56.8% according to direct approach, 55.4% to logistic approach) due to the

good performance of scenario B. Both scenarios fitted the data well according to model checking,

with no significant deviation in summary statistics between posterior distributions and observed

data. Timing of admixture was estimated to be 5690 generations ago (CI 95% 583 – 9610) from

scenario A and 4750 generations (CI 95% 505 - 9420) from scenario B.  In both species, the first

breeding occurs at  the age of 1 year (like in  most passerines,  Noon and Sauer 1992),  thus we

assumed that  this time corresponded to one generation.

Moustached warbler

Microsatellites

MICROCHECKER detected possible null alleles in loci Ase18 and Ase25, thus we excluded them

from the same analyses as listed for the reed warbler. For the remaining analyses, we used all eight

loci. We found no evidence of large allele dropouts or scoring errors in the data set.

The whole sample was not in Hardy-Weinberg equilibrium (χ2
32 = ∞, p = highly significant),

nor was Pego-Oliva (χ2
12 =  ∞, p = highly significant)  and Mallorca samples (χ2

12 =  47.18,  p <

0.001), while for Villafranca the test was not significant (χ2
12 =  20.01, p = 0.067). We found no

significant linkage disequilibrium between loci. We obtained higher expected heterozygosity He and

allelic richness A values and lower inbreeding coefficients FIS for the mainland sites of Pego-Oliva
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and Villafranca than for the Mallorca sample (Table 1).

Using the program STRUCTURE, we obtained the highest support in terms of likelihood for

K = 3 (-919). However, at K = 2 (likelihood = -935) we observed a clear peak of ΔK, indicating that

the most reliable structuring is the occurrence of two clusters. In the STRUCTURE bar plot (Fig. 2)

the  Mallorca  sample  is  clearly distinct  from the  remaining  individuals,  thus  we identified  two

clusters corresponding to Mallorca and the Spanish mainland (Pego-Oliva + Villafranca sampling

sites).  Pairwise FST values  were significant  between all  sampling  sites,  as  well  as  between the

STRUCTURE populations (Table 2).

We did not find any correlation between the Loiselle kinship coefficients and logarithms of

distances (r = 0.000, p = 0.825) when studying isolation by distance with the program SPAGeDi.

The assignment analysis did not assign 12 out of 54 (22%) individuals to their sampling sites (Table

3). Considering the STRUCTURE populations, 6 out of 54 birds (11%) were not assigned to their

cluster (Table 3).  One bird sampled in Mallorca and one in Villafranca were identified as first

generation migrants and assigned to Pego-Oliva. The first was a female with regressing brood patch

and the second a male with evident cloacal protuberance (i.e. breeding individuals), thus our results

suggest dispersal between the study sites.

We  found  signs  of  recent  population  reduction  in  Mallorca  with  the program

BOTTLENECK (Wilcoxon test,  heterozygosity excess, p = 0.023; shifted allele frequency class

mode)  and  less  clearly  for  the  Spanish  mainland  STRUCTURE  population  (Wilcoxon  test,

heterozygosity excess, p = 0.039; normal L-shape of allele frequency distribution). No evidence of

past bottlenecks was found for Pego-Oliva and Villafranca samples. G-W indexes were always >

0.8, indicating no bottleneck history in a more remote past. We obtained further information about

demographic history using the program DIY ABC. Out of the five simulated scenarios, the best was

the simplest one (Fig. 6), with divergence at time t1 and no effective population size (Ne) change

after divergence. Posterior probabilities of this scenario were 0.970 according to direct estimation
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and 0.991 according to logistic approach. The model checking based on seven summary statistics

and the PCA analysis supported the reliability of the scenario, with the exception of two summary

statistics (mean M index, Garza and Williamson 2001; (δμ)2 distance, Goldstein et al. 1995) where

posterior distributions strongly deviated (0.01 > p > 0.001) from the observed data. The estimate of

divergence time was 230 generations (95% CI 41 - 449), corresponding to 230 years. Ne estimate

for Spanish mainland was 4460 (95% CI 1240 - 6360), and 1500 for Mallorca (95% CI 290 - 2740).

The ancient population size (before divergence) was estimated to be 5890 (95% CI 1430 - 7820).

Mitochondrial DNA

The 43 sequenced moustached warblers belonged to seven different haplotypes. Similarly to the

reed  warbler,  TCS cladogram (Fig.  3)  showed  a  star-like  structure,  suggesting  past  population

expansion. A dominant haplotype included 35 individuals (81% of the total), while the other six

haplotypes were represented by one or two birds. Compared to  the reed warbler, haplotype and

nucleotide diversity (Table 4) are markedly lower.

We did not find significant differentiation between sampling sites with AMOVA analysis

(φST = 0.0363, p = 0.108), while using the populations identified by STRUCTURE, we obtained a

significant  result  (φST =  0.0862,  p  =  0.022),  with  8.62%  variation  due  to  differences  among

populations  and  91.38%  within  populations.  Pairwise  φST values  were  significant  between

STRUCTURE populations  and  between  Pego-Oliva  and  Mallorca  samples,  and  not  significant

between the other sampling sites (Table 5).

The results of neutrality tests suggested past expansion for the whole sample (D = -1.954, p

< 0.05; Fs = -5.308, p = 0.004), but not for the single sampling sites or for the STRUCTURE

populations.  Mismatch  distribution  did  not  detect  significant  deviations  from  the  expansion

hypothesis.
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Discussion

Reed warbler

Our results indicate high gene flow between the sampling sites, suggesting high dispersal capability

for the reed warblers. However, a weak but significant differentiation among some of the sampling

sites (Table 2) indicates that gene flow is partly restricted. Other researchers obtained similar results

studying the reed warbler across the whole Europe (Procházka et al. 2001) and in Croatia (Kralj et

al.  2010). A possible cause of gene flow restriction in our study is the relatively large distance

between sampling sites (from c. 290 to 960 km), but testing for isolation by distance did not clearly

support this hypothesis. Breeding site fidelity, reported for this species especially for adult birds

(Vadász  et  al.  2008),  could  also  explain  limitations  to  gene  flow. Given  the  lack  of  a  clear

structuring in a sample including birds breeding in Spain (subspecies scirpaceus) and in Morocco,

our results do not support the hypotheses that the latter belong to a new taxon (see Introduction;

Amezian et  al.  2010, Jiguet  et  al.  2010).  Besides  the geographical  proximity of  the two areas,

Morocco is  crossed by the  migration routes  of  the European SW-migrating populations,  which

includes  the  Iberian  reed  warblers  (Procházka  et  al.  2008),  and  this  is  likely  to  facilitate  the

exchange of individuals between Moroccan and Iberian populations.

Our  results  about  demographic  history  indicate  past  population  growth  and  mixing  of

previously isolated populations. The dating of this population admixture calculated in DIY ABC

(Fig. 5) is compatible with a postglacial expansion from a refugium area. In fact, during and before

this time the climate became warmer and wetter, causing the expansion of the suitable habitat also

for many other species (Murray Gates 1993, Wright et al. 1993, Hewitt 2000, Dubey et al. 2006).
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Arbabi et al. (2014) investigated phylogeography of reed warblers with mtDNA data and identified

three evolutionary lineages corresponding to three subspecies (scirpaceus,  fuscus and avicenniae),

which  had  remained  isolated  in  three  different  glacial  refugia  during  the  Middle  Pleistocene

glaciations. Procházka et al. (2011) suggested that it is possible that the Iberian Peninsula was one

of the refugium areas for reed warblers, as has been documented for many other species (Hewitt

2004). As we did, also Arbabi et al. (2014) found evidence of population growth, but their samples

were mainly from Germany, representing the subspecies  scirpaceus.  Comparing diversity indices,

both haplotype and nucleotide diversities were higher in our study (N = 50; h = 0.745; π = 0.006)

than in Germany (N = 347; h = 0.544; π = 0.002) or for the whole sample of subspecies scirpaceus

(N = 380; h = 0.558; π = 0.002) in Arbabi et al. (2014). The higher diversity in our study area can be

a  sign  of  more  ancient  refugium area  (Taberlet  et  al.  1998,  Comes  and  Kadereit  1998)  than

suggested by Arbabi et al. (2014), or, more likely, a result of the relatively recent admixture event.

The population divergence preceding the admixture, according to both DIY ABC scenarios (Fig. 5),

is  posterior  to  the  Last  Glacial  Maximum and could  have  been  caused by the  colonization  of

separated areas by individuals originating from the same glacial refugium. Due to the drier climate,

wetland areas were probably scarcer than currently, thus making it plausible that habitats suitable

for reed warblers were sparse and isolated enough to promote population divergence.

Moustached warbler

The results obtained from microsatellite data indicate that gene flow is limited between the Spanish

mainland  and  Mallorca  Island  (also  according  to  the  mtDNA results,  see  Table  5)  and  partly

restricted among the two mainland sites.  Approximately the same distance (c. 290 km) separates

Pego-Oliva from Villafranca and from Mallorca, but only the Mallorcan sample was clearly distinct

according  to  STRUCTURE  analysis. This  fact  suggests  that  gene  flow  between  the  Spanish
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mainland and Mallorca is likely to be limited not only by the distance, but also by the sea (c. 200

km wide) between the coast and the island. Thus, our results suggest that the sea forms an effective

dispersal barrier and limits gene flow in moustached warblers, at least for our study populations.

For a warbler, crossing the sea implies the lack of resting and foraging opportunities until reaching

land,  resulting  to  more  risky  and  difficult  displacement  than  over  the  solid  ground.  The

GENECLASS results suggest  that  limited  dispersal  from the  mainland  to  Mallorca  can  occur.

However, it is possible that the classification of a breeding bird as a first generation migrant is not

due to a real dispersal event, but to false detection due to small sample size or due to the sampling

sites not being in H-W equilibrium (Excoffier and Heckel 2006). The low differentiation among the

mainland sites indicates the occurrence of gene flow between the important breeding populations of

the Mediterranean coast  and the small  and scattered inland populations  breeding in  Castilla-La

Mancha (estimated to be only 10 pairs by Castany and  López 2006), represented respectively by

Pego-Oliva and Villafranca samples in our study. The breeding bird sampled in Villafranca and

classified as first generation migrant from Pego-Oliva can be a further sign of dispersal. The gene

flow, however, is partly restricted, possibly because the two populations are divided by a wide area

without  any other  known breeding populations (Castany and  López 2006) and without  suitable

habitat. Like for reed warblers, breeding site fidelity in moustached warblers (Vadász et al. 2008)

could also reduce dispersal.

mtDNA  showed  evidence  of  past  population  growth,  probably  a  sign  of  postglacial

expansion. As for reed warblers, it is likely that moustached warbler populations were confined in

glacial refugia and extended their range across Europe as the climate became warmer and wetter.

Taking into account the population structuring and the results of BOTTLENECK and coalescence

analysis,  we conclude that  Mallorca has been recently colonized or re-colonized by individuals

originating from the mainland. After the settlement of the breeding population, the limited gene

flow produced the population structuring we observed.
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Differences  in  population  structure  and  demographic  history  between  the  two  species  –

possible explanations

The lower genetic differentiation found in reed warblers indicates a higher dispersal ability in them

than in moustached warblers. This is consistent with Paradis et al. (1998), who found long-distance

migrants  to  have  higher  dispersal  ability  than  sedentary  or  short-distance  migrants.  Also  other

researchers have reported lower intraspecific  differentiation in  migratory than in  sedentary bird

species (e.g. Gill et al. 1993, Lovette et al. 1998, Arguedas and Parker 2000). Our results suggest

that differences in dispersal ability between reed and moustached warblers also can result  from

different capability in crossing natural barriers, in this case stretches of sea. Migration routes of reed

warblers include crossing the Mediterranean Sea, thus crossing this kind of a barrier is a necessary

ability for this species. Conversely, migration of Spanish and French populations of moustached

warblers  mostly follow the Mediterranean coast  (Castany 2003) and do not  necessarily require

crossing the sea, thus overcoming such a barrier is probably less common for these birds. Higher

differentiation in moustached warblers could be also due to the smaller population size and the

more discontinuous breeding range than in reed warblers. In fact, breeding areas of moustached

warblers are more isolated from each other, making the exchange of individuals more difficult. In

addition,  Vadász  et  al.  (2008),  studying  several  warbler  species  in  Hungary,  reported  higher

breeding site fidelity in moustached than in reed warblers. The authors hypothesized that the more

specialized  habitat  preferences  of  moustached  warblers  limit  the  opportunities  of  finding  new

suitable areas, and that would result in reduced dispersal rates (Vadász et al. 2008). Similar studies

of the West Mediterranean moustached and reed warbler populations would be needed to assess if

breeding site  fidelity  is  higher  for  moustached  warblers  also  in  this  area.  Differences  in  wing

morphology could also partly explain the difference in dispersal capability between the two species.
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In fact, reed warblers have more pointed wings than moustached warblers (Kennerley and Pearson

2010) allowing greater flight efficiency (e.g. Norbert 1989).

Both species showed signs of postglacial expansions, consistently with the findings of other

researchers studying European populations of wetland passerines (e. g. Hansson et al. 2008, Neto et

al. 2012, Arbabi et al. 2014). Haplotype diversity was higher for reed warblers, possibly because of

a more important contribution of dispersal from different populations and the higher population

size.  Unlike  in  reed  warblers,  we  did  not  find  evidences  of  past  population  admixtures  in

moustached warblers, indicating that the postglacial expansion of these species evolved in different

ways.         

Conclusion

Despite the large distances between our sampling sites, we detected gene flow between sampling

sites for both reed and moustached warblers, although partly restricted or even limited in the case of

moustached warblers of Mallorca. These results suggest that both species are able to avoid the risk

of isolation derived from breeding in a fragmented habitat. We found lower differentiation in reed

warblers than in moustached warblers,  indicating higher dispersal capability of reed warblers, a

species migrating over longer distances, with higher population size and more continuous breeding

range than moustached warblers. We did not find support for the occurrence of a new taxon of reed

warbler  breeding  in  Morocco.  Additional  information  from other  breeding  areas  is  needed  for

moustached warblers in order to investigate population structuring and demographic history on a

larger  scale.  For  both  species,  further  information  about  dispersal  is  needed  from  large-scale

marking schemes.
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Table 1. Sample sizes,  expected heterozygosity (He),  allelic richness (A),  inbreeding coefficient

(FIS), Wilcoxon p – values (Wil. Test, one-tailed for heterozygosity excess) and Garza-Williamson

index (G-W) of (a) reed warbler and (b) moustached warbler, calculated from microsatellite data for

each sampling site and populations defined by STRUCTURE (Str).

a)

Sample N He (SD) A (SD) FIS (SD) P (Wil. Test) G-W
Larache 38 0.696 (0.316) 1.70 (0.32) 0.127 (0.314) 0.207 0.84
Pego-Oliva 7 0.681 (0.366) 1.68 (0.37) 0.049 (0.281) 0.67
Mallorca 3 0.650 (0.375) 1.65 (0.38) -0.153 (0.413) 0.62
Villafranca 20 0.710 (0.249) 1.71 (0.25) -0.022 (0.257) 0.661 0.73
Total 68 0.716 (0.272) 1.68 0.014 (0.316) 1.00

b)

Sample N He (SD) A (SD) FIS (SD) P (Wil. Test) G-W
Pego-Oliva 30 0.602 (0.184) 3.76 (2.16) -0.275 (0.404) 0.078 0.96
Villafranca 9 0.590 (0.185) 3.47 (2.22) -0.344 (0.477) 0.078 0.85
Mallorca

(= Str - Mallorca)

15 0.538 (0.202) 2.96 (1.60) -0.500 (0.454) 0.023 0.82

Str - Spanish mainland 39 0.611 (0.172) 4.28 (3.01) -0.240 (0.394) 0.039 0.96
Total 54 0.621 (0.182) 3.40 -0.250 (0.115) 0.88
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Table  2.  Pairwise  FST  values  (p-values  in  parentheses)  between  sampling  sites  and  between

STRUCTURE (Str) populations of (a) reed warbler and (b) moustached warbler, calculated from

microsatellite data.

a)

Sample Pego-Oliva Mallorca Villafranca
Mallorca 0.0030 (0.189) - -
Villafranca -0.0211 (0.505) 0.0732 (0.018) -
Larache 0.0189 (0.027) -0.0029 (0.351) -0.0193 (0.892)

b)

Sample Pego-Oliva Mallorca (= Str - Mallorca)
Mallorca 0.1146 (0.000) -
Villafranca 0.0609 (0.000) 0.1352 (0.000)
Str - Spanish mainland - 0.1078 (0.000)
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Table 3. Assignment of (a) reed warblers and (b) moustached warblers to the sampling sites and the

STRUCTURE (Str) populations, on the basis of microsatellite data; individuals which have not

been assigned to their site/population of origin are reported in bold. 

a)

Assigned to
Sampling site of origin Larache Pego-Oliva Mallorca Villafranca
Larache 35 1 0 2
Pego-Oliva 3 0 0 4
Mallorca 2 0 0 1
Villafranca 12 0 0 8

b)

Assigned to
Sampling site of origin Pego-Oliva Mallorca Villafranca
Pego-Oliva 30 0 0
Mallorca 5 9 1
Villafranca 6 0 3

Assigned to
Str population of origin Str - Spanish mainland Str - Mallorca
Str - Spanish mainland 39 0
Str - Mallorca 6 9
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Table 4. Sample sizes, number of segregating sites, number of haplotypes, haplotype diversity (h)

and  nucleotide  diversity  (π) of  (a)  reed  warbler  and  (b)  moustached  warbler,  calculated  from

mitochondrial DNA data for each sampling site and STRUCTURE (Str) population (Str populations

were identified on the basis of microsatellite data).  

a) 

Sample N N segregating sites N haplotypes h π
Larache 29 21 13 0.823 0.004
Pego-Oliva 5 11 3 0.700 0.010
Mallorca 3 0 1 0.000 0.000
Villafranca 13 14 6 0.718 0.008
Total 50 23 18 0.745 0.006

b)

Sample N N segregating sites N haplotypes h π
Pego-Oliva 22 3 4 0.333 0.001
Villafranca 8 0 1 0.000 0.000
Mallorca

(= Str - Mallorca)

13 4 4 0.526 0.001

Str - Spanish mainland 30 3 4 0.251 0.000
Total 43 7 7 0.339 0.001
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Table  5. Pairwise  φST  values  (p-values  in  parentheses)  between  sampling  sites  and  between

STRUCTURE (Str) populations of (a) reed warbler and (b) moustached warbler, calculated from

mitochondrial DNA data. STRUCTURE population were identified on the basis of microsatellite

data.   

a)

Sample Pego-Oliva Mallorca Villafranca
Mallorca -0.0918 (0.802) - -
Villafranca -0.0997 (0.685) -0.1149 (0.991) -
Larache 0.0486 (0.207) -0.1742 (0.991) 0.0302 (0.072)

b)

Sample Pego-Oliva Mallorca (= Str - Mallorca)
Mallorca 0.0660 (0.036) -
Villafranca -0.0402 (0.739) 0.0065 (0.541)
Str - Spanish mainland - 0.0862 (0.000)
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Figure 1. Location of the sampling sites: 1) Larache, 2) Villafranca de los Caballeros, 3) Pego-Oliva

Natural Park and 4) S'Albufera de Mallorca.
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Figure 2. Bar plots of the STRUCTURE results based microsatellite data of (a) reed warbler and (b)

moustached warbler for K = 2 and K = 3. Each column corresponds to an individual and represents

its probability to belong to one of the K clusters. 
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Figure 3.  Statistical  parsimony network based on (a)  reed warbler  and (b)  moustached warbler

mtDNA data. Each haplotype is represented by a circle, whose area is proportional to the number of

individuals belonging to the haplotype. Each connecting bar stands for one substitution.
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Figure  4.  Mismatch  distributions  calculated  over  the  whole  reed  warbler  sample  using

mitochondrial DNA data. The bimodal shape of the observed frequencies indicates a past admixture

of two previously isolated populations. 
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Figure  5.  Demographic  history of  reed  warbler  according to  the  two best  DIY ABC scenarios

obtained from mitochondrial DNA data. The parameters estimates are provided as median (95% CI)

and include the current (N1) and the ancient (N2, N3) effective population size, and timing (in

terms of generations) of the admixture event (ta),  population size variation (t2 scenario A) and

population divergence (t3 scenario A, t2 scenario B).
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Figure  6.  Demographic  history of  moustached warbler:  best  DIY ABC scenario  obtained from

microsatellite data. Divergence time (t1) of the two STRUCTURE populations (Pop 1 - Spanish

mainland and Pop 2 - Mallorca) has been estimated to be 230 generations (95% CI 41 – 449).
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