

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1016/j.future.2015.10.002

http://hdl.handle.net/10251/62699

Elsevier

Moltó, G.; Caballer Fernández, M.; Alfonso Laguna, CD. (2016). Automatic memory-based
vertical elasticity and oversubscription on cloud platforms. Future Generation Computer
Systems. 56:1-10. doi:10.1016/j.future.2015.10.002.

Automatic Memory-based Vertical Elasticity and
Oversubscription on Cloud Platforms

Germán Moltóa,∗, Miguel Caballera, Carlos de Alfonsoa

aInstituto de Instrumentación para Imagen Molecular (I3M). Centro mixto CSIC Universitat
Politècnica de València CIEMAT, camino de Vera s/n, 46022 Valencia, Espaa

Abstract

Hypervisors and Operating Systems support vertical elasticity techniques such as memory

ballooning to dynamically assign the memory of Virtual Machines (VMs). However,

current Cloud Management Platforms (CMPs), such as OpenNebula or OpenStack, do

not currently support dynamic vertical elasticity. This paper describes a system that

integrates with the CMP to provide automatic vertical elasticity to adapt the memory

size of the VMs to their current memory consumption, featuring live migration to prevent

overload scenarios, without downtime for the VMs. This enables an enhanced VM per

host consolidation ratio while maintaining the Quality of Service for VMs, since their

memory is dynamically increased as necessary. The feasibility of the development is

assessed via two case studies based on OpenNebula featuring i) horizontal and vertical

elastic virtual clusters on a production Grid infrastructure and ii) elastic multi-tenant

VMs that run Docker containers coupled with live migration techniques. The results

show that memory oversubscription can be integrated on CMPs to deliver automatic

memory management without severely impacting the performance of the VMs. This

results in a memory management framework for on-premises Clouds that features live

migration to safely enable transient oversubscription of physical resources in a CMP.

Keywords: Cloud computing, Cloud Management Platform, Virtualisation, Vertical

Elasticity, Memory Overcommitment, Oversubscription

∗Corresponding author
Email address: gmolto@dsic.upv.es (Germán Moltó)

Preprint submitted to Elsevier Wednesday 21st October, 2015

1. Introduction

Elasticity [2], or the ability to rapidly provision and release resources, is one of the

integral characteristics of Cloud Computing. Horizontal elasticity is commonly employed

to provision additional computational nodes in order to sustain the quality of service

delivered by an architecture deployed on a Cloud platform, specially after an increase

in the number of users or workload. Horizontal elasticity has been extensively studied

in the past, with services already available for public Clouds, such as Auto Scaling1 for

Amazon Web Services (AWS), and Heat2 for OpenStack.

Instead, vertical elasticity enables to increase and decrease the number of resources

allocated to a single Virtual Machine (VM). The increased support to techniques such

as memory ballooning [3] and CPU hot plugging by popular hypervisors such as KVM,

Xen or VMware paves the way for vertical elasticity to be adopted by Cloud platforms.

However, popular open source CMPs such as OpenNebula and OpenStack do not cur-

rently support vertical elasticity without stopping the VMs. As an example, the KVM

hypervisor fully supports memory ballooning in order to dynamically modify the allo-

cated memory to a given VM without any downtime, and the main Operating Systems

(OSs) support this feature. However, CMPs require to stop the VM in order to change

its allocated memory.

In our previous work [4] we demonstrated the benefits of introducing vertical elas-

ticity to dynamically adjust the allocated memory of VMs to their current memory

consumption, specially for applications with dynamic memory requirements during their

execution. In fact, the number of VMs that one physical machine can support is typically

limited by its memory size. Besides, users tend to overestimate the amount of memory

required by their applications resulting in unused memory that could be dedicated to

additional VMs running on the same physical machine [5]. In addition, CMPs typically

provide templates, such as the flavors in OpenStack, which enforce a certain amount of

memory size regardless of the actual memory requirements of the application. Just as air-

lines sell more tickets than available seats (i.e. oversubscribe the plane) in the hope that

some passengers do not show up, Cloud providers can oversubscribe their resources by

1Auto Scaling: http://aws.amazon.com/autoscaling
2Heat: https://wiki.openstack.org/wiki/Heat

2

http://aws.amazon.com/autoscaling
https://wiki.openstack.org/wiki/Heat

deploying additional VMs in a host, in the hope that VMs will actually use less memory

than initially requested.

However, this situation might incur in memory overload for a host, where the sum of

used memory of its VMs exceeds the physical memory of the host. Therefore, oversub-

scription [6] is a technique that can lead to an increase in the number of VMs per physical

host though it can have an impact on the Quality of Service and probably violate the

Service Level Agreement established by the Cloud provider. However, oversubscription

can enable Cloud providers to better use the available memory in their physical sys-

tems if the appropriate countermeasures are introduced. As Williams et al. [7] state,

in well-provisioned datacenters, overload is unpredictable, relatively rare, uncorrelated,

and transient, indicating that an opportunity exists for memory oversubscription in those

facilities.

In this paper we introduce CloudVAMP (Cloud Virtual machine Automatic Mem-

ory Procurement) a memory oversubscription framework that can be integrated in an

on-premises CMP to automatically monitor the VMs and to dynamically adjust their

allocated memory to adapt to the current memory requirements of their running appli-

cations. Without any user intervention, the system automatically manages the memory

of the VMs (or a subset of VMs) irrespective of the memory initially allocated by the

user. This introduces enhanced VM consolidation per physical node while live migration

is employed to prevent overload of the physical machines.

The remainder of the paper is structured as follows. First, section 2, describes the

related works in the area of vertical elasticity and memory oversubscription. Next, section

3 briefly describes the problem addressed and the underlying technologies employed.

Later, section 4 describes the architecture of CloudVAMP, in order to manage vertical

elasticity in an on-premises Cloud. Then, section 5 describes two case studies carried

out to assess the behaviour and benefits of the developed platform. Finally, section 6

summarises the paper and points to future work.

2. Related work

There can be found other works in the literature that have focused on vertical elastic-

ity and memory oversubscription (also called in the literature memory overcommitment),

3

though most of them are just focused on virtualisation platforms and, thus, not cover-

ing the intricacies of CMPs. In [8], the authors propose an Elastic VM architecture

that scales the number of cores, CPU capacity and memory using the Xen hypervisor.

They study the adaptation of the VM capacities to the requirements of a web applica-

tion. However, their case study does not address memory scaling but only increasing the

virtual CPU allocation.

In [9], a system to provide proactive dynamic memory allocation based on the Bayesian

predictions is introduced to increase server consolidation. In [10], the Ginkgo mem-

ory overcommitting framework is introduced, which dynamically estimates VM memory

requirements for applications and automates the distribution of memory across VMs

through ballooning techniques. It uses performance profiles of the applications to char-

acterise incoming load. The case study focuses on VMs running on a single physical

host. These two works focus on a set of virtual machines running in a single hypervi-

sor, while our work focuses at the whole infrastructure provided by the CMP, involving

memory management across multiple physical hosts. In [11] an extension of balloon-

ing techniques is applied to applications, using as example a database engine and the

Java runtime, to reallocate memory between memory managers of different applications.

However, these requires modifications of the Xen Balloon Driver and does not address

the overcommitment problems that arise in CMPs.

Overdriver [7] is a system to mitigate the problems that arise in oversubscribed virtu-

alised hosts, by automatically deciding when to use network memory, using a cooperative

swap approach, or live migration depending on whether the workload is considered to be

transient or sustained, respectively. However, they do not consider memory ballooning

as a mitigation strategy for oversubscription. This is the case of the work by Hwang et

al. [12] where a system to opportunistically use memory during periods of light loads

is introduced. For that, they allow the hypervisor to dynamically allocate memory at

fine granularity, focusing on disk and application level caches. The work by Baset et al

[13] describes the different techniques employed to alleviate oversubscription and mit-

igate overload. They designed an event-driven simulator to develop an understanding

of oversubscription. However, they focus exclusively on offline and live migration but

ballooning techniques are discarded.

4

Regarding memory ballooning, the KVM hypervisor has a project called Automatic

Ballooning [14] where the management of the balloon is automatic. When the host is

under pressure, it asks guests to relinquish memory. When a guest detects memory

pressure, it gets some memory back from the host. This requires Linux kernel 3.10+

and a specific version of QEMU. However, this approach focuses exclusively on the VMs

running on a single physical machine and, thus, it does not solve the problems that arise

when the host is overloaded, specially within an on-premises Cloud, where VMs could

be live migrated across other physical hosts to restore the level of service.

The most similar work to our proposal is the one carried out by Litke [15], where

the Memory Overcommitment Manager (MOM) is introduced. This system requires a

daemon to be installed in the VMs to gather information regarding the memory usage

from the VMs and a policy actuator that runs on the host’s OS to decide when to increase

or decrease memory though memory ballooning techniques. While this approach is of

interest for a virtualisation platform where VMs have dynamic memory requirements, it

does not introduce countermeasures for overloaded hosts.

As the authors of [6] state, much of the research conducted thus far has focused

on managing oversubscription of a single physical machine, though this narrow focus is

rather limiting. While other projects successfully manage memory overcommitment at

a host level, we have not found any previous work that automatically manages oversub-

scription in an on-premises Cloud. Therefore, building on previous works in the area we

introduce CloudVAMP, a memory management framework for on-premises Clouds that

features live migration to safely enable transient oversubscription of physical resources

in a CMP.

As opposed to previous work, our approach considers memory management not at a

single physical host but at the whole infrastructure level in an on-premises Cloud. In

addition, CloudVAMP is responsible to safely reduce the allocated memory to the VMs

in order to enable transient oversubscription of the memory of the physical hosts. The

fact that CloudVAMP is integrated with a CMP enables the latter to deploy additional

VMs to the same physical host according to the stablished scheduling policies within

the Cloud infrastructure. Therefore, CloudVAMP not only manages but also enables

oversubscription at the Cloud infrastructure level, which is a feature not included in

5

Physical Host A

VM1 VM2

Hypervisor

Physical Host A

VM1 VM2

Hypervisor

VM3

Physical Host A

VM1 VM2

Hypervisor

VM3

Physical Host B

Hypervisor

a) b) c)

VM5VM3

Figure 1: Depiction of an on-premises Cloud with support for dynamic memory management. a) the

allocated memory of the VMs has been reduced because there is enough free memory, b) a third VM

is deployed on the same physical host and c) live migration is employed to prevent memory overload in

the physical host.

previous aforementioned related works.

In addition, we introduce a proof-of-concept open source implementation based on

OpenNebula, which can be easily adapted to other CMPs (such as OpenStack). There-

fore, this introduces unattended efficient memory management for on-premises Clouds.

3. Problem, Methods & Materials

This paper is based on the following underlying technologies. First, KVM [16], a

popular open source hypervisor that fully supports memory ballooning. Second, Open-

Nebula [1], an open-source Cloud Management Platform that manages the life cycle of

VMs on a physical infrastructure.

According to [13], there are different mechanisms to mitigate the problems that arise

with oversubscription: i) stealing, which allows a hypervisor to steal (actually borrow)

resources from underloaded VMs running on the same physical host; ii) quiescing VMs, so

that a VM is shut down and migrated offline to an underloaded physical machine; iii) live

migration, to hot migrate VMs from an overloaded physical machine to an underloaded

one; iv) streaming disks, to transfer the minimum portion of a VM’s local disk to allow

the VM to be started on another physical machine, and v) network memory, to use

memory of another machine as a swap space over the network.

6

In this paper we focus both on memory ballooning and live migration techniques

together with its integration in a CMP. We rely on these techniques because they are fully

supported on most hypervisors and by the main OSs (including Linux and Windows).

Therefore, this enables to create a system that can be easily integrated in current on-

premises Cloud deployments to seamlessly leverage these techniques.

Figure 1 summarises the main problem that aims to be addressed. In a), two VMs

(VM1 and VM2) have been deployed by a CMP on the same physical host (A). Depend-

ing on the scheduling configuration of the CMP this situation can be very frequent. For

example, OpenNebula can be configured to use a packing scheduler and so, the VMs tend

to be allocated to the same physical machine if there is enough memory available. In

KVM, a deployed VM has both a memorysize and a maxmemorysize attribute. A VM

cannot grow beyond the maxmemorysize, which corresponds to the memory initially

allocated when the VM was created. However, its memorysize (the memory currently

allocated to the VM) can range from the minimum amount of memory to support the OS,

typically in the order of 200-300 MB for a Linux VM [4], to its maxmemorysize. Notice

that in a) the memory size of both VMs has been shrunk due via memory ballooning,

because the applications running on the VM were not using that amount of memory.

Then, in b) since there is enough available memory to host an additional VM (because

the used memory by VM1 and VM2 is less than the original amount requested), the

CMP’s scheduler has decided to allocate a new VM to that physical host.

Later, in c), VM2 requires more memory because the application (or applications)

running inside has requested so and, thus, the physical host might become overloaded.

Therefore, one or more VMs (in this case, only VM3) have to be relocated to another

physical host to maintain the quality of service across the infrastructure managed by the

CMP. In our case, this involves live migration, according to a certain policy, so that no

downtime is introduced for the migrated VM.

4. Architecture

The architecture of CloudVAMP consists of three components:

• Cloud Vertical Elasticity Manager (CVEM). An agent that analyses the amount

of memory actually needed by the VMs and dynamically updates the memory
7

HW

OS

ONE CVEM

HW

OS

KVM - LibVirt

GUEST OS

App

ONE Host

GUEST OS

DockerMRMR

C1

App1 App2

C1VM

VM

a) b) c)
ONE Host

One
Gate

1. List VMs and Monitor
Memory Usage

2. Update
Memory

 Collect
Memory Usage

MOG

OpenNebula

ONE Front-end

Figure 2: An on-premises Cloud with CloudVAMP. a) the OpenNebula (ONE) frontend host, b) a ONE

host that executes VMs and c) configuration employed for the second case study in this paper.

allocated to each of them, according to a set of customisable rules. It is an agent

that queries the monitoring system of the CMP, and has access to the hypervisors

(e.g. ssh access to the physical nodes of the on-premises Cloud). It can decide to

live migrate VMs in order to restore the level of service under memory overload

situations.

• Memory Reporter (MR). An agent that runs in the VMs and reports to a monitoring

system the free, used memory and usage of the swap space, by the applications in

the VM. This information must be available for CVEM, so it should be integrated

within the CMP’s monitoring system (as it has been currently implemented) or by

relying on a third-party monitoring system (e.g. Ganglia).

• Memory Oversubscription Granter (MOG). A system that informs the CMP about

the amount of memory that can be oversubscribed on the hosts, to be taken into

account by the scheduler of the CMP.

8

Figure 2 depicts the architecture of the proposed system and how it fits in an on-

premises Cloud. The proof-of-concept implementation is based on OpenNebula (ONE)

and it is seamlessly integrated using the components that it offers. OpenNebula requires

a cluster-based installation in which the main services are installed in the front-end node

(ONE Front-end in Figure 2.a) whereas the VMs are deployed on the internal working

nodes (ONE Host in Figure 2.b), where the KVM hypervisor (other hypervisors are

supported as well) has to be installed.

The architecture of CloudVAMP has been implemented via lightweight Python-based

agents. For example, CVEM runs alongside ONE to obtain the monitoring information

regarding the actual memory usage of all the VMs in the infrastructure. For that, we

rely on the MR, which runs in the VM. The MR agent periodically (by default every

five seconds although it can be configured on a per-VM basis) reports the memory usage

to OneGate3 by properly querying /proc/meminfo to obtain both the total and free

memory in the VM as well as the usage of the swap space. We rely on the contextual-

isation mechanisms provided by OpenNebula to dynamically stage in the running VM

the agent that periodically monitors the memory consumption and the memory avail-

able reporting back to OneGate. This enables CVEM to access centralised monitoring

information about the memory usage of all the VMs deployed in the on-premises Cloud

(by default also every five seconds). Notice that MR and CVEM are decoupled systems

which can work at different frequencies. In addition, the MR only reports significative

memory changes so it can run very frequently.

The usage of contextualisation avoids the need to have pre-packaged Virtual Machine

Images (VMIs) with the MR agent pre-installed. Instead, by using the contextualisation

mechanisms offered by OpenNebula, our solution is independent of the VMI chosen by

the user (though our proof-of-concept is based on GNU/Linux-based VMIs), since the

agent is installed on-the-fly when the VM is deployed. Notice that, for other CMPs,

DevOps tools such as Puppet or Ansible could also be used to dynamically deploy the

MR agent right after the VM has booted.

Finally, to inform the ONE scheduler about the amount of memory from the hosts that

3OneGate: http://docs.opennebula.org/4.12/advanced_administration/application_insight/

onegate_overview.html

9

http://docs.opennebula.org/4.12/advanced_administration/application_insight/onegate_overview.html
http://docs.opennebula.org/4.12/advanced_administration/application_insight/onegate_overview.html

can be oversubscripted, we have created a modified version of the KVM Virtual Machine

Manager (VMM) monitoring driver component that is shipped with OpenNebula. This

version calculates the amount of stolen memory from each host and instructs the ONE

scheduler to use part of it to allocated additional VMs in that host. We define the

stolen memory for a given physical host as the total amount of memory that CVEM has

been able to freed from the different VMs running on that physical host, in our case,

through the use of memory ballooning via KVM. CVEM decides to enlarge or shrink the

VM’s allocated memory depending on the actual memory usage reported by the MR to

OneGate.

Notice that the current Allocated Memory (AM) to a VM is divided between the

current Used Memory (UM) by the applications running inside and the Free Memory

(FM) and, therefore, AM = UM + FM . The vertical elasticity rules implemented

in CloudVAMP build on our previous work [4] to maintain a Memory Oversubscription

Percentage (MOP) of an additional 20% of the current UM. The goal is to keep that extra

amount of free memory in case the application running in the VM starts requesting more

memory. In our previous work we assessed the behaviour of different values of MOP, in

particular 10% and 30% to understand the tradeoff between reducing the free memory in

a VM at the expense of increasing the chances of an application to start thrashing due

to lack of free memory in case the application requires a memory increase [4].

However, the vertical elasticity rules are only triggered if the percentage of free mem-

ory of the VM is smaller than 80% or greater than 120% of the MOP. This enables the

system to only react when substantial changes in the used memory of the VM occur, thus

removing unnecessary oscillatory memory changes. In these circumstances, CloudVAMP

dynamically adapts the VM memory size using (1),

AM = UM × (1 + MOP) (1)

where AM is the newly allocated memory to the VM by the hypervisor and UM is

the current used memory by the applications in the VM. As an example, a MOP of 20%

means that the elasticity rule will only be triggered when the free memory of the VM is

lower than 16% (80% of 20%) or greater than 24% (120% of 20%) of the used memory of

the VM. As an example, if a VM has 1000 MB of AM and the application starts using

10

Memory (MB)

Time

Used Memory (UM)

Free Memory (FM)
1200

1000

Increase Memory Threshold - IMT
(16% of UM = 160 MB of FM)

Decrease Memory Threshold - DMT
 (24% of UM = 240 MB of FM)

2500

Initial VM
Allocated
Memory

(AM)

Current VM
AM

Current App(s)
Memory

Consumption

UM

FM

2400

2000
IMT (320 MB of FM)

DMT (480 MB of FM)

Maximum VM
AM

VM1

VM1

Figure 3: Memory thresholds that trigger the vertical elasticity rules in two example VM configurations.

In the left, a VM with 1000 MB of Used Memory (UM) and, in the left, a VM with 2000 MB of UM.

MOP=20% of UM.

900 MB, then the new AM will be 1080 MB (900 × 1.2).

For the sake of clarity, Figure 3 shows the memory thresholds that trigger the verti-

cal elasticity rules in an example VM (left part of the figure) that was initially deployed

with 2500 MB and was subsequently downsized to 1200 MB (AM), of which 1000 MB

are being used by the application (UM) and 200 MB are the free memory (FM) provided

by the MOP (20% of the UM). Whenever the UM exceeds the Increase Memory Thresh-

old (IMT) or the Decrease Memory Threshold (DMT) the vertical elasticity rule (1) is

applied in order to maintain that extra 20% free memory. Any memory consumption

changes between those thresholds will not trigger the elasticity rules to avoid unnecessary

oscillations. In case the application starts demanding additional memory, the system al-

locates extra memory resulting in the case shown in the right part of the Figure 3, which

corresponds to the VM with, for example, 2000 MB of UM.

The elasticity rule has been complemented with a fail-safe mechanism when thrashing

has already occurred within a VM. In that case, the memory size increase should be much

larger to rapidly counteract the devastating effects that thrashing has in application

performance [17]. For that we use a mechanism that greatly inspires in exponential

11

backoff [18]. If there is no available free memory in the VM, an additional 50% of the

difference between the maximum memory and the current allocated memory is assigned.

This enables to rapidly increase the allocated memory to the VM, attempting to scape

from thrashing as fast as possible. If there is still shortage of memory, the same additional

allocation of memory is performed. Finally, if the third monitoring interval still reports

a shortage of memory in the VM (probably because the application running in the VM is

requesting memory faster than the rate at which CloudVAMP is increasing the allocated

memory to the VM), the VM is allocated its maximum memory size. Notice that any

excess of allocated memory will be corrected in subsequent steps by CloudVAMP by

reducing the allocated memory according to the rule in (1), leading to a self-regulatory

system.

4.1. Oversubscription via Stolen Memory

The KVM VMM monitor shipped with ONE has been modified in order to instruct

the ONE scheduler to oversubscribe the memory of the physical hosts. The actual amount

of memory available in the host that is reported to the ONE monitoring system is the

amount of physical memory obtained by the actual monitoring system plus a percentage

O from the amount of memory that could be stolen from the free memory available in

the VMs. The scheduler shipped in ONE is unaware of the memory reduction of the

VMs, and calculates the amount of memory available for virtual machines in one host as

the memory available in the host minus the memory requested by the VMs when they

were deployed, as shown in (2).

HostVMsmem = Hostmem −
∑

VM in Host

VMmem (2)

Using this approach, the ONE scheduler will act as if the hosts had more memory

available for the VMs and will try to deploy new VMs in the physical host even if the

total amount of memory requested by the VMs is greater than the physical memory

available at the destination host.

The value of O can be configured for the on-premises Cloud in order to increase the

degree of memory oversubscription. It is a percentage so a value of 0% means that no

memory oversubscription will be introduced by CloudVAMP. This means that the sum

12

of allocated memory of all the VMs of a host in the on-premises Cloud will never exceed

the available memory of that host. A value of 100% for O means that CloudVAMP will

try perform as much oversubscription as possible. This means to reclaim all the free

memory from the VMs to enable maximum oversubscription, since the CMP scheduler

will allocate additional VMs to the underlying hosts. Notice that this may require to

migrate VMs more frequently if applications start demanding additional memory. Also,

under no circumstances CloudVAMP will reclaim memory being used from the VMs

since that would have a dramatic impact on the performance of applications. In the

end, this parameter should be properly fine-tuned depending on the requirements of the

on-premises Cloud.

4.1.1. Live Migration in On-premises Clouds

KVM fully supports live migration among physical hosts without any downtime pro-

vided that i) the Virtual Machine Image is located on a shared storage among the source

and destination physical machines, and ii) both physical machines reside in the same

subnet. These assumptions are commonly (and easily) met in an on-premises Cloud

deployment.

Migration involves copying the memory pages from source to destination machines.

The time involved in the live migration depends on the memory size of the VM but it is

much more dependent on the rate at which dirty pages are created, which depends on the

application usage of memory. As Clark et al. [19] noted, if the VM continuously dirty

pages faster than the rate of copying, then the copy of pages work will be in vain. In

particular, we have detected stalled live migrations for VMs executing memory-intensive

applications, in which the memory is being frequently modified, thus creating new dirty

pages at a faster rate than the ability of KVM to transfer those pages to destination.

This behaviour of live migration affects the policy employed to select the VM that

should be live migrated under memory overload scenarios. Notice that the VM whose al-

located memory is being increased, as happens in Figure 1.c, is expected to later use that

memory, thus being a candidate to produce more dirty pages. Therefore, CloudVAMP

will try to avoid choosing that VM when considering which VM should be migrated.

In particular, CloudVAMP uses the following approach: First, it selects the VM with

the least amount of allocated memory, running on the same machine that hosts the VM
13

whose memory is growing, in a host that might become overloaded. This policy tries to

minimise the migration time. Then it selects the destination host, selecting the one with

the largest amount of free memory. In case that none of the available hosts has enough

free memory to receive the VM, the migration is not performed. Notice that enhanced

live migration strategies can be addressed although they lie out of the scope of this paper.

5. Assessment via Case Studies

This section assesses the usefulness of the developed system in a standard produc-

tion environment based on OpenNebula 4.8 that consists of three dual 4 core Xeon

E5620@2.40GHz with 16 GB RAM and three quad 4 core Xeon E7520@1.86GHz with 64

GB RAM, for a total of 72 cores and 240 GB RAM. The operating system for the plat-

form is Ubuntu 12.04.5 LTS, using KVM version 1.0. Any piece of software is installed

from the official repositories of Ubuntu and OpenNebula, except for the implementations

made in this paper. In our tests, the value of O is set to 100% to gain the maximum

amount of memory for other VMs, thus fostering maximum oversubscription.

For that, two case studies are executed. The first one integrates this technique in

a production elastic virtual cluster of the es-NGI4 infrastructure, the Spanish National

Grid Initiative, to seamlessly accommodate workload of different sizes within a virtual

cluster that features both horizontal and vertical elasticity. The second one focuses on

the deployment of Docker containers running on a multi-tenant vertical elastic VM to

adapt its memory size to the varying workload.

5.1. Fully Elastic Virtual Clusters for Grid Infrastructures

The es-NGI infrastructure is the spanish national Grid initiative that contributes

computing and storage resources to the European Grid Initiative (EGI5) which is a global

Grid infrastructure (also supporting federated Clouds) that supports scientific activities.

More than 320 organisations across 43 countries offer a computing capacity that exceeds

480.000 cores where more than 1.4M jobs per day are executed6.

4es-NGI: http://www.es-ngi.es
5EGI: European Grid Initiative
6http://www.egi.eu/infrastructure/operations/egi_in_numbers/

14

http://www.es-ngi.es
http://www.egi.eu/infrastructure/operations/egi_in_numbers/

Our research group contributes with computing capacity in the shape of elastic virtual

clusters in which VMs are dynamically provisioned to support the execution of incoming

jobs in a sandboxed environment created by EC3 (Elastic Cloud Computing Cluster)7 [20]

an open-source tool to create elastic virtual clusters on hybrid Cloud infrastructures. This

virtual cluster is based on a front-end node managed by CLUES [21] that monitors the

LRMS (Local Resource Management System) and decides when to scale out (provision

additional working nodes) and scale in (terminate working nodes) according to a set of

configurable rules. However, the nodes of the cluster, which are VMs, are deployed with

a fixed amount of memory, regardless of the amount of memory actually consumed by

the applications being executed in them. The Workload Management System (WMS) of

the Grid infrastructure is responsible for allocating the applications to resources with at

least as much free memory as the application requests. However, the running applications

typically use less memory than the one actually available in the VMs. That memory could

be employed to allocate new VMs for the execution of other jobs thus increasing both

the job throughput and the usage of our on-premises Cloud platform.

In this case study we wanted to assess the effectivity of introducing vertical elasticity

in the shape of dynamic memory management within this production platform. We intro-

duced CloudVAMP into the platform, and recorded data from a representative workload

that arose from different real jobs in a period of 12 hours. The case study involves three

physical hosts with 16 GB of RAM (niebla02, niebla03 and niebla04) and one physical

host with 64 GB of RAM (niebla13).

Figure 4 represents a summary of the evolution of the stolen memory for the physical

hosts that hosted the VMs that where part of the elastic virtual cluster deployed to

support the execution of jobs coming from the es-NGI. Remember that the stolen memory

is the memory that has reclaimed in a physical host by CloudVAMP. The figure also

depicts the sum of stolen memory across the physical hosts. The larger the amount of

stolen memory per host, the higher the chances are that the CMP deploys additional

VMs in that host. The figure shows that under real workload scenarios, CloudVAMP

is able to free memory from the VMs by adjusting their allocated memory to the real

memory requirements of the VM.

7EC3: http://www.grycap.upv.es/ec3

15

http://www.grycap.upv.es/ec3

0	

10	

20	

30	

40	

50	

60	

70	
1:
00
:0
0	

1:
20
:5
9	

1:
41
:3
8	

2:
02
:2
0	

2:
23
:2
4	

2:
44
:1
1	

3:
04
:4
7	

3:
25
:1
7	

3:
45
:4
8	

4:
06
:1
5	

4:
26
:2
4	

4:
44
:4
7	

5:
02
:5
3	

5:
21
:1
9	

5:
40
:0
5	

5:
58
:1
8	

6:
16
:3
9	

6:
34
:4
8	

6:
52
:5
7	

7:
11
:2
0	

7:
30
:3
8	

7:
50
:1
4	

8:
09
:0
4	

8:
28
:0
2	

8:
47
:1
9	

9:
06
:3
9	

9:
25
:5
5	

9:
45
:2
7	

10
:0
4:
52
	

10
:2
4:
02
	

10
:4
3:
13
	

11
:0
2:
23
	

11
:2
1:
37
	

11
:4
0:
50
	

M
em

or
y	
(G
iB
)	 niebla03	

niebla04	

niebla02	

niebla13	

Total	

Figure 4: Evolution of the stolen memory of the hosts that execute the VMs that support the virtual

elastic cluster that executes the jobs from the es-NGI Grid infrastructure.

Within the same time frame, Figure 5 describes the evolution of a representative

subset of nine VMs of that virtual cluster. Take into account that the number of nodes

of the virtual cluster dynamically changes depending on the number of jobs currently

received by our Grid site. Notice that all the VMs are initially deployed with 8 GB and

they are almost instantly downsized depending on the actual memory consumption of the

application. A VM can host the execution of different simultaneous Grid applications,

depending on the number of virtual CPUs, which for this study is set to 4 vCPUs.

Subsequent executions of different applications in the same VM is also possible.

The oscillatory memory allocation patterns that can be seen at the beginning of

the execution of some VMs, as is the case of VM1 and VM7, can be both due to the

highly dynamic memory consumption patterns of a single application or the concurrent

execution of different applications and, henceforth, with different memory consumption.

Notice that VM8 and VM9 are deployed at around 7 hours and 30 minutes since

the study was started. These represents the horizontal elasticity of the virtual cluster

in action, where two additional nodes are deployed because new incoming jobs are re-

quested to be executed in the virtual cluster. Then, VM8 is terminated approximately 20

minutes after its deployment. These depends on the horizontal elasticity rules provided

by CLUES, where new VMs are dynamically deployed to host the execution of incoming

16

0

1

2

3

4

5

6

7

8

9

1
:0
0
:0
0

1
:1
4
:5
2

1
:2
9
:4
8

1
:4
4
:1
8

1
:5
8
:5
6

2
:1
3
:5
1

2
:2
8
:4
0

2
:4
3
:2
7

2
:5
8
:0
8

3
:1
2
:4
3

3
:2
7
:1
2

3
:4
1
:4
8

3
:5
6
:1
8

4
:1
0
:4
9

4
:2
5
:0
2

4
:3
8
:0
7

4
:5
1
:0
9

5
:0
3
:5
7

5
:1
7
:0
3

5
:3
0
:1
9

5
:4
3
:3
4

5
:5
6
:2
4

6
:0
9
:2
6

6
:2
2
:2
2

6
:3
5
:1
4

6
:4
8
:0
7

7
:0
1
:0
7

7
:1
4
:1
0

7
:2
7
:1
3

7
:4
1
:4
9

7
:5
5
:3
1

8
:0
8
:5
4

8
:2
2
:0
7

8
:3
5
:5
5

8
:4
9
:3
6

9
:0
3
:2
1

9
:1
7
:0
1

9
:3
0
:4
4

9
:4
4
:3
7

9
:5
8
:1
9

1
0
:1
2
:0
3

1
0
:2
5
:3
9

1
0
:3
9
:1
5

1
0
:5
2
:5
2

1
1
:0
6
:2
6

1
1
:2
0
:0
6

1
1
:3
3
:4
3

1
1
:4
7
:2
3

A
llo

ca
te

d
 M

e
m

o
ry

 (
G

iB
) VM1

VM2

VM3

VM4

VM5

VM6

VM7

VM8

VM9

Figure 5: Evolution of the allocated memory of some of the VMs that compose the virtual elastic

cluster.

Host niebla13 niebla02 niebla04 niebla03

Phys. Mem. (GiB) 64 16 16 16

Avg. Stolen Mem. (GiB) 4.97 12.82 9.91 16.38

Table 1: Comparison of the physical memory of the hosts vs the stolen memory (the freed memory per

node when using CloudVAMP) .

jobs and they are terminated when no longer required.

Table 1 compares the physical memory of the hosts with the average stolen memory

obtained as a result of the application of CloudVAMP during the 12-hour case study.

Notice that in the case of the host niebla03 the average stolen memory exceeds its

physical memory. To understand this, consider a scenario in which two 8 GB VMs are

deployed on a physical host with 17 GB of RAM and, with the help of CloudVAMP, the

VMs are reduced to 1 GB to fit the memory consumption of the applications running

in them. Then, an additional 8 GB VM is deployed on the same host and later shrank

to 1 GB. These VMs fit in the physical host and you are saving 7 GB per VM, which

17

represents a total save of 21 GB, an amount greater than the physical host’s memory.

Therefore, CloudVAMP enables memory oversubscription to take place, by allowing the

CMP to schedule the deployment of additional VMs in the physical hosts. However, when

applications running in the VMs start using more memory, and CloudVAMP increases

their allocated memory, the physical host might incur in memory overload. This is why

live migration techniques can be used to maintain the quality of service delivered by the

on-premises Cloud. This is the topic addressed in the next case study.

5.2. Preventing Memory Overload via Live Migration

This section introduces an approach to prevent memory overload by using live migra-

tion techniques available in the KVM hypervisor. For that, we are going to introduce a

multi-tenant scenario based on Docker containers.

Docker [22] introduces the ability to package applications and their dependences into

lightweight containers tailored for specific distributions which, as opposed to VMs, can

be spun up very fast. This technology is of special interest for multi-tenant scenarios in

which a set of physical resources has to be shared among different users, by leveraging

process isolation and without the overhead introduced by a hypervisor layer. In fact

containerization is one of the underlying technologies among popular open-source PaaS

tools such as CloudFoundry8 and OpenShift9.

This case study features the deployment of a VM with Docker that supports the

deployment of containers to host different applications within the same VM. This ap-

proach separates infrastructure provision (from the Cloud) and application deployment

(using Docker containers) which introduces significant benefits to deploy applications on

multiple back-ends. In multi-tenant scenarios, where a single VM can be used to deploy

multiple containers from multiple users, it is expected a larger variation in the memory

consumption patterns, when compared to a single application running on a single VM.

This is why we believe that CloudVAMP can be beneficial by automatically managing

the allocated memory to the VM (or a set of VMs) according to the memory used by its

active containers.

Figure 6 describes the scenario employed, along with the following events:

8CloudFoundry: http://www.cloudfoundry.org
9OpenShift: http://www.openshift.com

18

http://www.cloudfoundry.org
http://www.openshift.com

Memory

Time

A

C

B

D

E F

G H

Figure 6: Sequence of events that introduce memory overload in a multi-tenant scenario based on

Docker containers.

A A VM (VM1) is provisioned with a certain amount of RAM on a given physical

host of the on-premises Cloud.

B CloudVAMP reduces the allocated RAM of VM1 since the memory consumption

of the VM after its boot is very low (no application is being ran yet).

C Docker is installed and the first container is deployed based on an image with the

Apache Tomcat application server. This will result in an increase of the allocation

of memory to VM1, as requested by CloudVAMP.

D A second container is deployed based on the same image. We expect a memory

increase, although slightly lower due to the sharing of some pages between the two

containers.

E Since VM1 memory was reduced, there is enough free available memory in the phys-

ical machine to host another VM (VM2), as decided by the OpenNebula scheduler,

which will be running in the same physical host.

F A memory-intensive application is executed on a third container which introduces

memory pressure for VM1. We will use a synthetic benchmark application that
19

0

50

100

150

200

250

300

350

400

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5
1
:0
0
:0
0

1
:0
0
:2
2

1
:0
0
:4
3

1
:0
1
:0
4

1
:0
1
:2
5

1
:0
1
:4
6

1
:0
2
:0
8

1
:0
2
:3
0

1
:0
2
:5
2

1
:0
3
:1
4

1
:0
3
:3
6

1
:0
3
:5
7

1
:0
4
:1
8

1
:0
4
:3
8

1
:0
5
:0
1

1
:0
5
:2
2

1
:0
5
:4
4

1
:0
6
:0
6

1
:0
6
:2
8

1
:0
6
:4
9

1
:0
7
:1
0

1
:0
7
:3
1

1
:0
7
:5
3

1
:0
8
:1
4

1
:0
8
:3
5

1
:0
8
:5
6

1
:0
9
:1
8

1
:0
9
:4
1

1
:1
0
:0
3

1
:1
0
:2
5

1
:1
0
:4
7

1
:1
1
:0
9

1
:1
1
:3
0

1
:1
1
:5
1

M
e

m
o

ry
 (

G
iB

)

VM MFLOPS

A B

C

D
F

G H

Figure 7: Memory consumption of a VM

enables us to control the memory allocation pattern and to obtain the performance

of the application (in MFLOPS) as described in [4].

G CloudVAMP will try to increase the memory of VM1 but since this would result in

memory overload, it will use a live migration strategy as a contingency plan. This

involves migrating a VM from the physical host to restore the capability of VM

memory without overload.

H When enough memory has been freed from the physical host, VM1 can be allocated

more memory. Remember that the VM memory size will not be able to grow beyond

the amount of memory specified when initially created the VM.

The aforementioned sequence of events has been carried out in the same on-premises

Cloud. Figure 7 shows the real memory allocation of the VM that hosted the different

Docker containers.

First of all, the VM is deployed with 4 GB of RAM at time instant 1:00:00 (which

corresponds to event A in Figure 6). A few seconds later, CloudVAMP detects that the

VM has enough free memory and decides to reduce its allocated memory to slightly over

20

than 500 MB (event B). At 1:01:57 we perform the installation of required packages to

use Docker, what demands additional memory and results in a periodic increase in the

allocated memory to the VM.

At 1:04:44, the first Docker container is deployed (C) what increments the memory

requirements for the VM, thus resulting in an increase of its allocated memory. The

plateau of allocated memory to the VM that can be noticed from 1:06 until 1:07 is due

to the steady state of the VM, since once the Docker containers are started, no activity

is really performed with those containers, for the sake of clarity in this case study.

At 1:07:36, the second container is deployed (D) what introduces memory pressure in

the VM resulting in a periodic increase in the allocated memory, according to the increas-

ing memory requirements for the containers, which host Tomcat, a memory-intensive Java

application server. Within this period we have purposely deployed other VMs within the

same physical host to introduce memory pressure in the host when the analysed VM

starts demanding more memory.

At instant 1:09:01 the memory-intensive application is deployed in the VM to force

a steady memory consumption from 0 to 1000 MB in two minutes and maintain that

memory consumption for other 60 seconds (F). This results in CloudVAMP to period-

ically increase the allocated memory of the VM at relatively similar memory chunks

according to the periodic memory consumption increase of the VM. At instant 1:10:36,

there is so much memory pressure in the physical host that no additional memory can be

allocated to the VM. Although the application is constantly demanding more memory,

CloudVAMP cannot allocate additional memory to the VM because the host is starting

to become overloaded, in terms of memory. In this situation, the application might incur

in thrashing because it has to rely on swap memory. Since this situation would affect

the performance of application, it is important to prevent the memory overload in the

physical host. This requires live migration techniques to move a VM away from the

physical host so that the available free memory can later be allocated to additional VMs

running on the physical host.

In this case CloudVAMP was configured to live migrate the VM with the least amount

of allocated memory to prevent as fast as possible the memory overload situation. Re-

member that the time invested in live migration is typically related to the memory size,

21

though it is much dependent on the applications running inside, in particular the rate at

which dirty pages are created.

Therefore, at around instant 1:10:36 (G) a VM other than the one considered in this

case study is migrated away from the physical host in a process that lasted less than a

minute. This way, at instant 1:11:09 (H) the VM can now be allocated more memory to

comply with the increasing memory requirements of the application. Shortly after, the

application is stopped and the case study is finished.

It is important to point out that the usage of CloudVAMP in an on-premises Cloud

has enabled to dynamically manage the memory allocated to the VMs and to alleviate

the memory pressure that arises due to the oversubscription via live migration techniques

without any VM downtime.

Notice that Figure 7 also shows the MFLOPS that delivers the application, to eval-

uate the impact of the memory oversubscription scenario and the live migration of the

VM on the performance of the application being executed. You can notice a reduction of

up to 15% in the MFLOPS delivered by the application which can be attributed mainly

to eventual thrashing and secondarily to live migration. However, this reduction is very

transient and, for long running applications, might be negligible. In addition, Cloud-

VAMP can be fine tuned in order to try to prevent the applications from thrashing at

the expense of wasting additional memory by increasing, for example, the value of MOP

or reducing the value of O at the infrastructure level.

As a final remark, notice that certain type of applications that require low latency

responses may prefer not to be live migrated to other hosts, which might have an impact

(although relatively small, as shown on the case study) on its performance and the level

of service expected by the client. If a Cloud provider needs to run applications that

are very sensitive to performance, this can be supported in our system by allocating

the VMs that run those applications to a subset of hosts that will not be monitored by

CloudVAMP. This way, the allocated memory to those VMs will not be reduced and

applications will run on the requested resources without being migrated to other hosts.

Also, notice that the goal of CloudVAMP is not to allocate more resources to increase

the performance of an application but to reclaim the unused resources (in particular we

focus on the memory because hypervisors support their dynamic management) without

22

affecting the performance of the application. It is possible to reduce the allocated memory

of a VM that is currently not being used by an application for other VMs to use it. Of

course, depending on the memory consumption patterns, the application might require

the extra memory back and this might introduce a performance penalty. In the end,

these techniques can be further customised for a specific on-premises Cloud depending

on the workload and application characteristics.

6. Conclusion and Future Works

This paper has introduced CloudVAMP, a customisable system to safely enable tran-

sient memory oversubscription in on-premises Clouds via vertical elasticity without VM

downtime and featuring live migration to prevent oversubscription scenarios. By lever-

aging the memory ballooning techniques and live migration capabilities available in the

KVM hypervisor, CloudVAMP integrates with Cloud Management Platforms to dynam-

ically reduce and increase the allocated memory to the VMs so that they fit the memory

requirements of the applications running in the VMs.

We have introduced a generic architecture that can be deployed for different CMPs,

and we have implemented a fully functional open-source proof-of-concept based on Open-

Nebula which is currently being used in production at our research center10. The benefits

of CloudVAMP have been assessed via a case study that uses horizontal and vertical elas-

tic virtual clusters that run jobs from a production Grid infrastructure and a multi-tenant

scenario based on Docker containers. The ability of CloudVAMP to reclaim unused mem-

ory from the VMs to enable temporary oversubscription for the CMPs has resulted in

increased VM-per-host consolidation ratio with a reduced impact for the running appli-

cations. The usage of live migration has been beneficial to restore the level of service in

memory overload scenarios.

Future works includes adjusting the O percentage on a per-VM level considering the

stability of each VM. For example, CloudVAMP could reclaim different percentages of

free memory depending on the amount of time in which a VM’s memory consumption

has remained among a certain range. For VMs with long periods of stable memory

10CloudVAMP, available at https://github.com/grycap/cloudvamp

23

https://github.com/grycap/cloudvamp

consumption it might be safe to assume that the unused memory will not be used, and

a greater percentage can be reclaimed by CloudVAMP to be used for additional VMs to

be hosted on the same physical node. Also, we plan to evolve the CVEM to consider

historical information of the memory consumption of the VMs to avoid unnecessary

transient memory changes while maintaining the ability to rapidly react when memory

consumption spikes are detected.

In addition, we plan to explore memory bursting, where a VM could temporarily

allocate more memory than the one initially requested, much in the same way as CPU

bursting is available for certain instance types (e.g. t2.micro) in Amazon EC2. This can

be easily implemented by increasing the VM deployment memory request by a certain

percentage, which would depend on the policies of the on-premises Cloud, and letting

CloudVAMP to dynamically manage the memory consumption, which could temporarily

exceed the amount of memory initially requested.

Finally, we plan to generalise our development to other CMPs (e.g. OpenStack). For

that, one can use Ganglia as the memory reporting system and modify the monitoring

system of OpenStack to integrate CloudVAMP.

Acknowledgments

The authors would like to thank the Spanish “Ministerio de Economı́a y Competi-

tividad” for the project CLUVIEM (TIN2013-44390-R) and the European Comission for

the project INDIGO-DataCloud with grant number 653549.

References

[1] R. Moreno-Vozmediano I. M. Llorente, IaaS Cloud Architecture: From Virtualized Datacenters to

Federated Cloud Infrastructures, in: IEEE Computer (Long. Beach. Calif)., vol. 45, no. 12, pp.

6572, Dec. 2012.

URL http://doi.ieeecomputersociety.org/10.1109/MC.2012.76

[2] G. Galante, L. C. E. de Bona, A Survey on Cloud Computing Elasticity, in: 2012 IEEE Fifth

International Conference on Utility and Cloud Computing, IEEE, 2012, pp. 263–270.

URL http://dl.acm.org/citation.cfm?id=2415689.2415736

[3] C. A. Waldspurger, Memory resource management in VMware ESX server, ACM SIGOPS Operat-

ing Systems Review 36 (SI) (2002) 181.

URL http://dl.acm.org/citation.cfm?id=844128.844146

24

http://doi.ieeecomputersociety.org/10.1109/MC.2012.76
http://dl.acm.org/citation.cfm?id=2415689.2415736
http://dl.acm.org/citation.cfm?id=844128.844146

[4] G. Moltó, M. Caballer, E. Romero, C. de Alfonso, Elastic Memory Management of Virtualized

Infrastructures for Applications with Dynamic Memory Requirements, in: Proceedings of the In-

ternational Conference on Computational Science (ICCS 2013), Elsevier, 2013, pp. 159–168.

[5] L. Tomás, J. Tordsson, Improving cloud infrastructure utilization through overbooking, in: Pro-

ceedings of the 2013 ACM Cloud and Autonomic Computing Conference on - CAC ’13, ACM Press,

New York, New York, USA, 2013, p. 1.

URL http://dl.acm.org/citation.cfm?id=2494621.2494627

[6] R. Householder, S. Arnold, R. Green, On Cloud-based Oversubscription, International Journal of

Engineering Trends and Technology 8 (8) (2014) 425–431.

[7] D. Williams, H. Jamjoom, Y.-H. Liu, H. Weatherspoon, Overdriver: handling memory overload in

an oversubscribed cloud, ACM SIGPLAN Notices 46 (7) (2011) 205.

URL http://dl.acm.org/citation.cfm?id=2007477.1952709

[8] W. Dawoud, I. Takouna, C. Meinel, Elastic VM for Cloud Resources Provisioning Optimization, in:

Advances in Computing and Communications. First International Conference, ACC 2011, Kochi,

India, July 22-24, 2011. Proceedings, Part I, Vol. 190, 2011, pp. 431–445.

URL http://www.springerlink.com/index/K75M2705443R2402.pdf

[9] E. Tasoulas, H. r. Haugerund, K. Begnum, Bayllocator: a proactive system to predict server utiliza-

tion and dynamically allocate memory resources using Bayesian networks and ballooning, in: Pro-

ceedings of the 26th international conference on Large Installation System Administration: strate-

gies, tools, and techniques, USENIX Association, 2012, pp. 111–122.

URL http://dl.acm.org/citation.cfm?id=2432523.2432532

[10] M. R. Hines, A. Gordon, M. Silva, D. Da Silva, K. Ryu, M. Ben-Yehuda, Applications Know

Best: Performance-Driven Memory Overcommit with Ginkgo, in: 2011 IEEE Third International

Conference on Cloud Computing Technology and Science, IEEE, 2011, pp. 130–137.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6133136

[11] T.-I. Salomie, G. Alonso, T. Roscoe, K. Elphinstone, Application level ballooning for efficient

server consolidation, in: Proceedings of the 8th ACM European Conference on Computer Systems

- EuroSys ’13, ACM Press, New York, New York, USA, 2013, p. 337.

URL http://dl.acm.org/citation.cfm?id=2465351.2465384

[12] J. Hwang, A. Uppal, T. Wood, H. Huang, Mortar: Filling the Gaps in Data Center Memory, ACM

SIGPLAN Notices 49 (7) (2014) 53–64.

URL http://dl.acm.org/citation.cfm?id=2674025.2576203

[13] S. A. Baset, L. Wang, C. Tang, Towards an understanding of oversubscription in cloud (2012) 7.

URL http://dl.acm.org/citation.cfm?id=2228283.2228293

[14] KVM, Automatic Ballooning.

URL http://www.linux-kvm.org/page/Projects/auto-ballooning

[15] A. Litke, Manage resources on overcommitted KVM hosts, Tech. rep. (2011).

URL http://www.ibm.com/developerworks/library/l-overcommit-kvm-resources/

[16] A. Kivity, Y. Kamay, D. Laor, KVM: the Linux virtual machine monitor, Proceedings of the Linux

25

http://dl.acm.org/citation.cfm?id=2494621.2494627
http://dl.acm.org/citation.cfm?id=2007477.1952709
http://www.springerlink.com/index/K75M2705443R2402.pdf
http://dl.acm.org/citation.cfm?id=2432523.2432532
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6133136
http://dl.acm.org/citation.cfm?id=2465351.2465384
http://dl.acm.org/citation.cfm?id=2674025.2576203
http://dl.acm.org/citation.cfm?id=2228283.2228293
http://www.linux-kvm.org/page/Projects/auto-ballooning
http://www.ibm.com/developerworks/library/l-overcommit-kvm-resources/

Symposium (2007) 225–230.

URL http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf

[17] P. J. Denning, Thrashing: Its causes and prevention, in: Proceedings of the December 9-11, 1968,

fall joint computer conference, part I on - AFIPS ’68 (Fall, part I), ACM Press, New York, New

York, USA, 1968, p. 915.

URL http://dl.acm.org/citation.cfm?id=1476589.1476705

[18] L. Miller, Performance analysis of exponential backoff, IEEE/ACM Transactions on Networking

13 (2) (2005) 343–355.

URL http://dl.acm.org/citation.cfm?id=1066626.1066636

[19] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield, Live migration

of virtual machines, in: NSDI’05 Proceedings of the 2nd conference on Symposium on Networked

Systems Design & Implementation, USENIX Association, 2005, pp. 273–286.

URL http://dl.acm.org/citation.cfm?id=1251203.1251223

[20] M. Caballer, C. de Alfonso, F. Alvarruiz, G. Moltó, EC3: Elastic Cloud Computing Cluster, Journal

of Computer and System Sciences 79 (2013) 1341–1351.

URL http://authors.elsevier.com/sd/article/S0022000013001141

[21] C. de Alfonso, M. Caballer, F. Alvarruiz, V. Hernández, An energy management system for cluster

infrastructures, Computers & Electrical Engineering 39 (8) (2013) 2579–2590.

URL http://www.sciencedirect.com/science/article/pii/S0045790613001365

[22] D. Merkel, Docker: lightweight Linux containers for consistent development and deployment, Linux

Journal 2014 (239) (2014) 2.

URL http://dl.acm.org/ft_gateway.cfm?id=2600241&type=html

26

http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
http://dl.acm.org/citation.cfm?id=1476589.1476705
http://dl.acm.org/citation.cfm?id=1066626.1066636
http://dl.acm.org/citation.cfm?id=1251203.1251223
http://authors.elsevier.com/sd/article/S0022000013001141
http://www.sciencedirect.com/science/article/pii/S0045790613001365
http://dl.acm.org/ft_gateway.cfm?id=2600241&type=html

