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Abstract: Electrochemical Impedance Spectroscopy (EIS) has been used to develop a 

methodology able to identify and quantify fermentable sugars present in the enzymatic 

hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus,  

a low-cost non-destructive system consisting of a stainless double needle electrode associated 

to an electronic equipment that allows the implementation of EIS was developed. In order to 

validate the system, different concentrations of glucose, fructose and sucrose were added to 

the pineapple waste and analyzed both individually and in combination. Next, statistical data 

treatment enabled the design of specific Artificial Neural Networks-based mathematical 

models for each one of the studied sugars and their respective combinations. The obtained 

prediction models are robust and reliable and they are considered statistically valid (CCR% 

> 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, 

non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic 

hydrolysis monitoring. 
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1. Introduction 

The search for sustainable and environmentally friendly energy sources alternative to fossil fuels is 

raising the investigation of agro-industrial wastes as potential inputs for second-generation bioethanol 

production. In this sense, pineapple is generating a growing interest as its world production is steadily 

increasing and has reached 24 million tons in 2014 [1]. Nowadays, around 33% of its production is being 

processed, mainly by canning and juice industry [2] and its industrial waste (crown, pulp and peel), 

representing about 50% (W/W) of the total processed fruit [3], cannot be neglected. In addition, its  

bio-chemical composition reinforces the interest in this waste as a potential source for bioethanol 

production because of its high content of cellulose and hemicellulose [4–6]. 

In order to produce bioethanol from lignocellulosic biomass, it is necessary to hydrolyze cellulose 

(polymer of D-glucose units linked by β-1,4-glycosidic bonds) and hemicellulose (polymer of pentoses, 

hexoses and uronic acids) into fermentable sugars [7]. This is the most complex phase in the bioethanol 

production process and can be performed by chemical or enzymatic hydrolysis. The enzyme-based 

saccharification is more efficient than the chemical hydrolysis, showing higher selectivity and lower 

energy costs. On the contrary, it is particularly complex due to the mechanism of the enzymatic hydrolysis 

and the relationship between the enzyme and the substrate structure [8]. 

Nowadays, there are several complex laboratory techniques for the identification and quantification 

of sugars generated during enzymatic hydrolysis processes, such as gas chromatography, high performance 

liquid chromatography, and enzymatic methods, even though the latter are generally applied for the 

quantification of a single type of sugar [9,10]. These techniques are very precise and considered as a 

reference but they are slow, expensive, destructive, and require skilled labor to be conducted. 

Over the last few years, several electrochemical-based techniques have been raising and nowadays 

they are showing promising results for the identification of chemical compounds in an easy, rapid,  

non-destructive, and online way. In this regard, EIS is one of the most remarkable ones. This technique 

allows the analysis of the properties of the materials by a successive application of alternate electric 

signals at different frequencies (sinusoidal voltage or current) in the test sample, the subsequent registration 

of the current or voltage responses within an electrochemical cell and the calculation of the impedance 

value for each signal [11,12]. EIS has been successfully applied in several fields such as medicine [13–15], 

materials science and engineering [16–18], water [19] and environmental engineering [20]. EIS has also 

been widely applied in food engineering: study of salt levels in food products [21–24] quality control of 

fish [25–27] and meat products [28,29], and novel food processes [30,31]. 

In these electrochemical techniques, an appropriate statistical treatment of the obtained data  

becomes fundamental because of its large size. In this sense, Principal Components Analysis (PCA) and 

Partial Leasts Squares (PLS) are quite usual and efficient but nowadays Artificial Neural Networks 

(ANNs) have been raised as very promising and alternative methods to conduct sample classifications 

and pattern recognition [32]. These methods are called neural networks because of their similarity to the 
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way the human brain processes information [33]. ANNs, as a biological brain, have a set of neurons 

linked together in a complex way and are able to treat information in a multifunctional process.  

In addition, ANNs are able to learn in their training process in order to improve themselves and find the 

optimal conditions to work showing high flexibility and adaptive capacity. In addition, ANNs are being 

used in a wide range of applications such as electronic noses [34,35] and tongues [36,37] and they are 

showing very interesting prediction models in several fields such as water [38], food [39] and the 

environment [40,41]. 

According to this, the aim of the present work is to study the suitability of EIS-based techniques to 

identify and quantify fermentable sugars present in the enzymatic saccharification process of pineapple 

wastes for bioethanol production by an optimized prediction system. 

2. Experimental Section 

2.1. Raw Material and Sample Preparation 

Pineapple fruits selection (MD-2 cultivar, Extra Sweet or Golden Sweet) was based on external factors 

such as the absence of injuries, ripeness and weight. In order to prepare the samples, pineapples were 

first washed in a sodium hypochlorite solution (0.1%) for 5 min. Next, the crown was removed, and the 

pulp was separated from the rest of the fruit by using a pineapple cutter. Peel and core (waste) were cut 

into smaller pieces and grinded in a blender (Solac Inox Professional 1000 W Mixer). The resulting 

product was then frozen and kept at −22 °C until the experiments were conducted. 

2.2. Electrochemical Impedance Spectroscopy Equipment 

EIS measurements were carried out using a system developed by the Group of Electronic Development 

and Printed Sensors (GED + PS) belonging to the Centro de Reconocimiento Molecular y Desarrollo 

Tecnológico (IDM) at the Universitat Politècnica de València (UPV). This system consists of a device 

called AVISPA (Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer) (Figure 1) 

associated with a specific software application that is able to apply different sinusoidal voltage signals 

with amplitudes up to 1 Vpp and frequency sweep from 0.01 Hz to 10 MHz using up to 32 current scales. 

The hardware consists of an Altera Cyclone II EP2C5T144C8N Field Programmable Gate Array 

(FPGA), clocked at 100 MHz, a 12-bit THS5661A Digital-to-Analog Converter (DAC), two identical 

ADS6125 12-bit Analog-to-Digital Converters (ADC), and various analog blocks to adapt signals to the 

required levels. It also contains hardware to be able to select 32 current scales, by means of various shunt 

resistors, to increase the sensitivity of the current measurement. 

The user can configure, by means of the software, the start and end frequency, the number of 

frequencies of the sweep and the amplitude of the sine wave to be generated. The user also has the option 

to fix the currents scale, or let the software choose the appropriate current scale at each measurement 

dynamically: if the values are below 20% or above 80% of the full range of the ADC, the software selects 

a higher or lower shunt resistor, respectively. 

Once the measurement is started, the software calculates the digital values to be sent to the DAC, 

using a previously generated calibration file, and sends the data to a memory block inside the FPGA. 

Once the FPGA receives the last byte, it starts to generate the signal and acquire the data of the two ADCs 
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simultaneously, which are written to two separate memory blocks. Once the signal generation and 

acquisition stage has been finished, the FPGA sends the obtained data to the PC software, where the 

digital data is converted to analog values by the use of a calibration file. The software calculates modulus 

and phase values and plots these values into a graph. This is repeated for each of the frequencies in the 

sequence obtaining a frequency response plot of the sample. 

 

Figure 1. Block diagram of the AVISPA device. 

The sine wave generated is formed by 1000 points per cycle wherever allowed, taking into account 

the generated frequency and the working frequency of the FPGA. The worst case scenario is the 

generation of a 10 MHz signal that can only contain 10 points per cycle due to the clock speed of the 

FPGA at 100 MHz. 

2.3. Electrochemical Impedance Spectroscopy Sensor 

Previous studies suggested using non-oxidizable materials instead of oxidizable ones (e.g., Cu, Co, 

Ni, Ag) due to their rust resistance and easy handling, avoiding complex cleaning treatments of the 

electrodes [41,42]. Moreover stainless steel was selected among other non-oxidizable materials (e.g., Pt, 

Au, Ir, Rh) because of a clear economic motivation and its successful and extended use in food industry 

applications [21,28,30]. A double needle electrode (working and counter electrodes) composed of two 

parallel stainless steel needles 1.5 cm long and 1 mm in diameter, separated by a distance of 1 cm was 

used (Figure 2). The plastic frame containing the needles was designed with a 3D printer 

(EKOCYCLE™ Cube®, Cubify 3DSYSTEMS®) and fixed with an epoxy kit (RS 199-1468).  

This design keeps both a constant the separation between the needles and also a constant electrode 

surface in contact with the samples during the measurements as protects the electrical connections to 

transmit information to the device. The specific design of the sensor assures that the distance between 

electrodes is enough to consider a stable electric field preventing polarization effects. In addition,  
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the use of parallel electrodes compared to other kind of designs (e.g., coaxial electrodes) generates a 

homogenous electric field distribution [22]; thus, an easier interpretation of the obtained measures is 

possible, so that the design is particularly appropriate for liquid samples. 

 

Figure 2. A view of the designed double needle electrode. 

2.4. Electrochemical Impedance Spectroscopy Measurements 

EIS measures were conducted in thawed pineapple waste samples with pH adjusted to 5 by adding  

a few drops of NaOH 1N (Panreac Química, S.L.U.). The penetration depth of the electrodes into the 

samples was 1 cm and it was a constant for all the assays. Analyses were made in triplicate at 25 °C by 

using a thermostatic bath (PolyScience®) and samples were selected randomly in order to avoid any 

memory effect in the measurements. 

First of all, individual identification and quantification of sugars was carried out taking into account 

that the absence of added sugars in some specific samples did not mean the absence of endogenous 

sugars in the raw material, which was considered as a baseline for these determinations. In addition,  

the presence or effect of any potential interfering compound in the samples was negligible due to the use 

of the same homogenous pineapple waste for all the analyses. Previous works in this research line 

determined the behavior of the existing sugars along the enzymatic hydrolysis in pineapple  

samples [43]. Thus, the concentration range for each sugar was selected attending to these results. 

Accordingly, seven different concentrations were added to the pineapple waste samples and then 

analyzed for each studied sugar: 0 g/L, 5 g/L, 10 g/L, 20 g/L, 30 g/L, 40 g/L, and 50 g/L for glucose, 

and 0 g/L, 5 g/L, 10 g/L, 15 g/L, 20 g/L, 25 g/L, and 30 g/L for sucrose and fructose. Analyses were 

conducted in triplicate for a total of 63 samples (189 analyses). 

Next, identification and quantification of combined sugars was conducted. In order to assess the 

ability of EIS to identify and quantify combinations of three sugars, a total of 81 pineapple waste samples 

(241 analyses) were prepared by mixing the three studied sugars (glucose, fructose and sucrose) at three 

different added concentrations (0, 25 and 50 g/L). 

Once the samples were thermostated and the AVISPA device was ready, EIS measurements started 

by placing the double needle electrode into the assayed sample. Then, the system carried out the 
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procedure described in Section 2.2 in order to instantly show the modulus and phase of the signal on the 

PC screen and compile the data into the corresponding file for further analyses. 

2.5. Statistical Analysis 

PCAs were carried out with data obtained from the samples in order to assess the feasibility of the 

EIS technique to discriminate among different sugar concentrations both individually and in combination. 

PCAs were performed using just the specific impedance modulus and phase data obtained in the 

frequency range in which the sensor showed the highest sensitivity. In addition, PLS analyses were also 

carried out to create predictive models for each studied sugar from their respective EIS measurements. 

According to the literature and previous studies in this research line, PLS prediction models were created 

using two series of the experimental data (66% of the data for the calibration set). The model was then 

validated with the remaining series of experimental data (34% for the validation set) [41,44]. The 

accuracy was given by the root mean square error of prediction (RMSEP) and the coefficient of 

determination (R2). All multivariate analyses were performed using SOLO© (Eigenvector Research, Inc., 

Manson, WA, USA). 

A commercial ANN software (Alyuda Neurointelligence 2.2©, Alyuda Research Inc., Los Altos, CA, 

USA) was used throughout this study in order to create alternative, flexible and more adaptive predictive 

models to PLS [35,38,39]. Multi-layer feed forward neural networks and a single hidden layer ANN 

structure were selected and on-line back propagation training algorithms were used for fitting the network. 

The optimal network topology was selected by developing several artificial neural network structures 

in order to determine the number of neurons of the hidden layer. Similarly, several trials suggested the 

selection of logistic-type transfer functions for the output layer neurons and hyperbolic tangent-type 

functions for the hidden nodes. Random data division was used by Alyuda Neurointelligence 2.2© in 

order to select the samples for training (70%), validation (15%) and test (15%) data [38–40]. In addition, 

overfitting was avoided by using proportional number of nodes in the network architecture [45], cross 

validation and early-stopping in the training phase, so that the difference between training and validation 

mean square errors was minimal. As described before, the accuracy of the model was given by the root 

mean square error of prediction (RMSEP) and the coefficient of determination (R2) in the case of 

numerical prediction models. On the other hand, when classification models were developed, the accuracy 

of the model was given by the correct classification rate (CCR%) and the confusion matrix. 

3. Results and Discussion 

3.1. Individual Identification and Quantification of Sugars 

The AVISPA device generated 200 data per analyzed sample corresponding to the modulus and  

phase of the 100 analyzed frequencies in each test. Analyses were carried out independently for each 

fermentable sugar at the above mentioned different concentrations. As shown in Figure 3, the frequency 

range showing the highest sensitivity to sucrose concentration was the one between 5.96 × 105 Hz and 

7.47 × 105 Hz. Glucose and fructose showed their respective highest sensitivity in similar ranges. 

Consequently, this was the selected frequency range for data treatment and mathematical modeling. 
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(a) (b) 

Figure 3. Averaged phase values of the impedance spectra of different sucrose concentration 

measurements for (a) the entire analyzed frequency range and (b) the selected range for data 

treatment (5.96 × 105 Hz–7.47 × 105 Hz). 

PCA analyses showed a high percentage of the total variability (>99%) being explained just with  

the first two principal components for all the studied sugars. Specifically, variability for fructose data 

was explained up to 97.93% by the first component (PC1) and component 2 (PC2) explained the 

remaining 1.86% of the total variability. For sucrose, PC1 and PC2 explained 96.60% and 2.82% 

respectively of total variability (Figure 4). Finally, glucose variability was explained up to 97.57% and 

2.19% by PC1 and PC2, respectively. Therefore, the results indicate that these concentrations can be 

discriminated with only one main component in the studied ranges. 

 

Figure 4. Principal component analysis (PCA) for the studied sucrose concentrations.  

R1–3: average of each replicate. The blue ellipsis indicates 95% confidence level. 
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Since PCA analysis showed that EIS analyses with the double needle sensor can discriminate  

different concentrations of glucose, fructose and sucrose, a PLS analysis was performed to predict these 

concentrations from EIS measures. 

As shown in Table 1, good correlations were obtained for all the analyzed sugars with R2 = 0.958 or 

above and RMSEP = 2.272 or below. These results demonstrated an accurate fitting between predicted 

and experimental values and, consequently, the obtained models can be considered statistically valid. 

The best correlation was obtained for sucrose as shown in Figure 5. Moreover, the PLS analysis for sucrose 

showed that a reliable mathematical model can be obtained using just one latent variable. Thus, the phase 

data for just one frequency is enough to quantify sucrose in a sample. Consequently, the prediction model 

could be very simple and accurate. 

Table 1. Statistic values of Partial Least Square (PLS) discriminant analysis for the 

quantification of the studied fermentable sugars. (R2: coefficient of determination; RMSEP: 

Root Mean Square Error of Prediction; LV: Latent Variables.) 

Sugars 
Statistics 

R2 RMSEP LV 

Glucose 0.979 2.272 3 
Fructose 0.958 2.103 2 
Sucrose 0.983 1.576 1 

 

Figure 5. Correlation plot between experimental and predicted values of sucrose (g/L) by 

PLS statistical model (red line) and ideal behavior (green line). 

Consequently, the obtained results demonstrate that EIS is a robust and reliable methodology to 

quantify the concentration of the three main fermentable sugars in the studied ranges. 
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However, as an alternative method to PLS analyses, Artificial Neural Networks-based models (ANN) 

were designed using the same data set. In order to do this, different net architectures were tested for each 

analyzed sugar to optimize the fitting between the EIS data and the expected response. Thus, a (16-8-1) 

architecture was designed for glucose that means 16 input nodes connected to an 8-node hidden layer 

and a final output layer. For fructose and sucrose, (16-21-1) and (16-2-1) architectures were selected. 

The training phase of these ANN generated mathematical models that are summarized in Table 2. The 

obtained models showed determination coefficients higher than 0.95 and RMSEP lower than 3.96. 

Figure 6 shows the regression line obtained by ANN for sucrose. These results demonstrate that the 

designed ANN model generates noticeable results with sufficient accuracy and reliability for modeling 

sugar concentration depending on the EIS response. 

Table 2. Artificial neural network (ANN) results for the studied fermentable sugars (R2: 

coefficient of determination; RMSE: Root Mean Square Error). 

  R2 RMSE 

Glucose 

Training 0.99 1.41 

Validation 0.88 3.39 

Test 0.95 3.96 

Fructose 

Training 0.96 1.39 

Validation 0.99 0.27 

Test 0.95 1.63 

Sucrose 

Training 0.99 0.09 

Validation 0.88 1.26 

Test 0.99 0.40 

 

Figure 6. Regression line plot of the obtained ANN model for the studied sucrose 

concentrations (g/L). 

Considering R2 and RMSEP parameters for both PLS and ANN models, it follows that the fitting and 

accuracy of the models are quite similar (Tables 1 and 2). However, slight differences in RMSEP are 

observed, so that a better fit for fructose and sucrose is obtained by ANN as glucose is better fit by PLS. 
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Figure 7. Principal component analysis (PCA) for the studied fermentable sugars: glucose 

(G), fructose (F) and sucrose (S). 

Finally, a PCA analysis was performed to assess the ability of EIS to discriminate different fermentable 

sugars, comparing individual electrochemical responses in the studied frequency range (Figure 7). It is 

observed that the first two components explain a high percentage of the total variability (99.74%). 

Specifically, the first component (PC1) explains 92.66% and component 2 (PC2) explains the remaining 

7.08% of the total variability. Therefore, the obtained results indicate that all three fermentable sugars 

can be easily identified with just one principal component using the electrochemical data in the studied 

ranges. It means that the phase data for just one frequency in the studied frequency range is enough to 

identify the kind of sugar in a sample. Consequently, the prediction model could be very simple and accurate. 

3.2. Combined Identification and Quantification of Glucose, Sucrose and Fructose 

Once the EIS technique and double needle electrode was demonstrated to be sensitive to the presence 

of fermentable sugars in pineapple waste samples, the next step was to assess its sensitivity to the 

combined presence of the three studied sugars. In order to do this, mixtures of these three sugars at three 

different concentrations (0 g/L, 25 g/L and 50 g/L) were analyzed in pineapple waste samples. 

As in the previous cases, the AVISPA device generated 200 electrochemical data per assayed  

sample in the form of module and phase corresponding to 100 frequencies in the selected ranges.  

As happened before, phase data was the one showing the best sensitivity although in this specific case, 

the highest sensitivity was achieved in two different frequency ranges (1 Hz–1.41 × 105 Hz) and  

(5.76 × 105 Hz–8.48 × 105 Hz). 

Then, a PCA analysis was carried out in order to determine whether different combinations of the 

three fermentable sugars could be discriminated by EIS in the two studied frequency ranges. The result 

of this analysis showed that 97.29% of the total variability was explained with just two principal 
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components as PC1 and PC2 explained 77.78% and 19.51% of the variability. Therefore, these results 

indicate that mixtures of the three studied sugars can be discriminated with just two principal components. 

Next, PLS analyses were performed to generate a mathematical model able to predict concentrations 

of combined fermentable sugars. In order to do this, different PLS were conducted to check the capability 

of the system to detect and quantify each fermentable sugar from different mixtures of sugars in 

pineapple waste samples. The obtained results (R2 > 0.841 RMSEP < 8.23) indicate that PLS modeling 

for the combination of fermentable sugars is slightly lower than the ones shown in the previous cases. 

However, these results are not far from those obtained in other scientific studies in similar fields [39,41]. 

Therefore, ANN models were studied as an alternative to improve accuracy of the ones obtained  

by PLS. In this specific case, (11-38-9) was the selected ANN architecture to predict the combined 

concentration of the three fermentable sugars in pineapple waste samples. 

The obtained ANN-based mathematical models generated very promising results showing CCR% 

values higher than 93.443% and confusion matrices like the ones shown in Table 3 for the combined 

quantification of the studied sugars. These results demonstrate that ANN-based models are remarkable 

complements to PLS models for predicting the combined concentrations of fermentable sugars in 

pineapple waste samples via EIS determinations, generating significant results with sufficient accuracy 

and reliability. Future studies will focus on studying the suitability of this EIS-based technique to 

monitor industrial saccharification and fermentation processes. 

Table 3. Confusion matrices for combined sugars quantification. 

Glucose: Mean CCR% = 93.443% 

Training Validation Test Overall 

  
Fructose: Mean CCR% = 96.721% 

Training Validation Test Overall 

  
Sucrose: Mean CCR% = 100% 

Training Validation Test Overall 

  

4. Conclusions 

In the current energy outlook, the search for alternatives to fossil fuels is of strategic importance.  

In this sense, second-generation bioethanol production from agricultural and industrial food waste is  

a strategy that must be taken into account. Within this option, pineapple has a remarkable potential use 

due to its extensive worldwide market, the generation of an important waste volume in its industrial 

processing, and the bio-chemical composition of these wastes. 
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This work introduces an EIS-based methodology for monitoring and managing the concentration of 

sugars in the most complex phase for second generation bioethanol production: the enzymatic 

hydrolysis. In order to do this, an AVISPA device has been used as it is able to generate and receive EIS 

signals from an especially designed double needle sensor made of stainless steel. Statistical treatment of 

the data allowed to build reliable and robust ANN-based mathematical models (mean CCR% > 93.443%) 

to identify and quantify the main fermentable sugars (glucose, fructose and sucrose) in pineapple waste 

samples both individually and jointly. Furthermore, this methodology is easy, rapid, non-destructive, 

and in-situ. Thus, it can be considered as a promising alternative to the traditional laboratory techniques 

for enzymatic hydrolysis monitoring and management in second-generation bioethanol production not 

just from pineapple wastes but also from many other lignocellulosic sources. 
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