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Abstract 

The oxo-degradation process of polypropylene (PP) samples containing different 

concentrations (4% and 10% w/w) of pro-oxidant/pro-degradant additive Envirocare
TM

 

AG1000C was investigated under accelerated test conditions. Samples were initially 

exposed to UV radiation for 300 hours. The tendency to biodegradation in soil medium 

of these UV-aged samples was then indirectly assessed by an indirect method for a 

period of 6 months. The entire degradation process of these materials was first 

examined by monitoring changes in their morphological properties (melting 

temperature, maximum lamellar thickness and crystallinity) with the aging time, by 

Differential Scanning Calorimetry (DSC). Then, changes in the thermal properties 

(onset temperature and maximum decomposition temperature) of these materials with 

the aging time were analysed by Thermogravimetric Analysis (TGA). Furthermore, the 

kinetics of the thermal decomposition of these PP samples with pro-oxidant/pro-

degradant was also studied during the oxo-degradation process, by means of the Chang 

differential method. During exposure to UV radiation, the more significant changes in 

the morphological and thermal properties that were detected in PP samples containing 

http://ees.elsevier.com/pdst/viewRCResults.aspx?pdf=1&docID=8655&rev=3&fileID=236982&msid={B811CA19-2D4F-4089-B661-8EF58628E5DA}
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pro-oxidant/pro-degradant additive compared to pure PP, clearly suggest a higher level 

of oxidation in these samples, confirming the effectiveness of this pro-oxidant/pro-

degradant additive in promoting the abiotic oxidation of polypropylene during UV-

irradiation. Moreover, the level of oxidation observed in UV-aged samples seems to be 

dependent on the additive load. 

On the other hand, during incubation in soil medium, changes in the morphological and 

thermal properties of previously photo-oxidized PP samples with pro-oxidant/pro-

degradant were detected that indirectly support a certain progress of oxidation, 

indicating that previous abiotic oxidation can promote further degradation of the 

polypropylene matrix by soil microorganisms. In general, both morphological and 

thermal properties exhibit a non-linear dependency with the incubation time in soil, 

supporting the idea that biodegradation is a complex process that occurs in different 

stages. Furthermore, the extent of the changes in these properties during soil incubation 

was found to be proportional to the pro-oxidant/pro-degradant load and the previous 

photo-oxidation level.  

 

Keywords: 

Polypropylene (PP); pro-oxidant/pro-degradant additive; photo-oxidation; soil 

biodegradation; Differential Scanning Calorimetry (DSC); Thermogravimetric Analysis 

(TGA) 

 

1. Introduction 

 

The use of degradable polyolefins is an approach that has been recently developed to try 

to contribute to solve the environmental problem caused by the large quantities of these 
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plastic wastes [1-4]. These materials are designed to retain functionality during their 

processing, storage and service life, but to rapidly degrade to non-toxic products, once 

they are discarded. Degradable polyolefins can be obtained using special additives, 

called pro-oxidant/pro-degradants, that can be various complexes of transition metal 

ions, especially, Fe
3+

, Co
2+

 and Mn
2+

, in the form of salts of fatty acids [4,5]. Pro-

oxidant/pro-degradants can accelerate the abiotic oxidation rate by catalyzing chain 

scission by light and/or heat. In particular, photo-oxidation can be initiated by Fe
3+

, and 

thermo-oxidative degradation can be promoted by Co
2+

 and Mn
2+

. As a consequence, 

low molecular weight oxidation products are rapidly formed [6-10], which are claimed 

to be easily biodegraded by microorganisms [3,4,11]. This degradation mechanism is 

called oxo-degradation. This term refers to a two stage process consisting of an initial 

oxidative degradation (which is normally abiotic), followed by the biodegradation of the 

oxidation products [12]. Although the abiotic and biotic degradative processes occur 

simultaneously, the abiotic oxidation is considered to be the rate-determining stage of 

the entire process. With an appropriate selection of the pro-oxidant/pro-degradant 

additive and its loading, it is expected to control the induction time required for a 

specific application.    

The oxo-degradation process of polyethylene containing pro-oxidant/pro-degradant 

additives (especially LDPE formulations) is now well documented [13-34]. In contrast, 

studies on the abiotic [35-39] and biotic [40-43] degradability of polypropylene (PP) 

with pro-oxidant/pro-degradant additives are scarce as yet, although being this 

polyolefin one of the most widely used commodity polymers.   

This work is aimed at investigating the entire degradation process of polypropylene 

containing a commercial pro-oxidant/pro-degradant additive, by first subjecting it to 

UV-irradiation and subsequently to an accelerated soil burial test. The oxo-degradation 
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process was examined by monitoring changes on the morphological and thermal 

properties of the polypropylene matrix, as a function of the aging time (both abiotic and 

abiotic) and the additive load.  

 

2. Material and methods 

 

2.1. Materials 

Test samples were injection-molded seedboxes of a commercial grade of polypropylene 

homopolymer (Moplen HP548S) manufactured by Basell with MFR = 35g/10min 

(230ºC/2.16Kg ISO1133), containing different concentrations (4% and 10% w/w) of 

pro-oxidant/pro-degradant additive Envirocare
TM

 AG1000C (samples A and B, 

respectively). Envirocare
TM

 is an additive developed and marketed by Ciba Specialty 

Chemicals, which is based on the proprietary TDPA
TM

 (Totally Degradable Plastic 

Additive) technology from EPI Environmental Products Inc. [4]. The TDPA
TM

 

technology utilizes a combination of transition metal carboxylate and an aliphatic 

poly(hydroxyl-carboxyl) acid as pro-degradant system, as disclosed in US patent 

5854304 [44].  

Additive-free polypropylene seedboxes were used as control samples (PP). All the 

samples were kindly supplied by SanSan Prodesing (Valencia, Spain). Test samples 

were cut into ~ 0.5 x 8 cm strips and subjected to accelerated abiotic and biotic 

degradation tests. 

 

2.2. Accelerated photo-oxidation test 

Samples containing pro-oxidant/pro-degradant and additive-free control samples were 

subjected to an accelerated photo-oxidation test using an Atlas XLS+ Suntest, equipped 
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with a xenon lamp emitting ultraviolet radiation at solar radiation wavelengths. The 

black body temperature was kept at 55ºC. Samples were exposed to an average radiation 

of 478 W/m
2
 for 100, 200 and 300 hours. 

 

2.3. Accelerated soil burial test 

Photo-oxidized and pristine samples containing pro-oxidant/pro-degradant additive 

were subjected to an accelerated soil burial test during 6 months, according to the DIN 

EN ISO 846:1997 European standard norm [45]. This is a method which merely 

assesses biodegradability of polymers indirectly, by monitoring changes in their 

physical properties due to the action of microorganisms.  It is only valid therefore to 

confirm indirect biodegradability, intended as a change in the structural properties of the 

pristine polymer with the incubation time.  

Samples were buried in biologically active soil in rectangular plastic boxes, which were 

kept opened to ensure a continuous fresh oxygen supply. The soil was a 50/50 % by 

weight mixture of a soil extract picked up from a culture field and a soil typically used 

in tree-nurseries for pine growth. The soil burial test was carried out in a Hereaus B12 

culture oven at a constant temperature of 28 ± 0.5ºC, with periodical control of the pH 

and the water content of the soil. Photo-oxidized samples were removed every month, 

and pristine samples were removed every 3 months. After removal, samples were 

carefully washed with a soap solution to stop the degradation process and stored at room 

temperature in a desiccator before any analytical measurement.  

 

2.4. Differential Scanning Calorimetry (DSC) 

DSC measurements were carried out using a DSC-820 Mettler Toledo Calorimeter 

previously calibrated with indium standard. Three consecutive scans were performed 
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under nitrogen atmosphere with 5-7 mg of samples at a heating/cooling rate of 

10ºC/min. During the first scan, samples were heated from 0 ºC to 200 ºC to completely 

erase their thermal history. Then, samples were cooled from 200 ºC to 0 ºC and finally, 

samples were heated from 0 ºC to 200 ºC. Measurements were repeated at least twice 

with different samples. Thermal properties such as melting temperature (Tm), melting 

enthalpy (Hm) and crystallinity () were calculated from DSC traces recorded during 

the second heating scan. The melting temperature was determined as the maximum of 

the main endotherm. The crystalline content was obtained by dividing the melting 

enthalpy by the enthalpy of 100% crystalline polypropylene ( 0
mH ), reported as 209 J/g 

[46]: 

0
m

m

H

H
χ




      (1) 

 

The maximum lamellar thickness (lmax) of polypropylene was also determined according 

to the method proposed by Wlochowicz and Eder [47], based on the Thomson equation: 

 













lH

σ2
1TT 0

m

e      (2) 

 

where T is the melting temperature of lamella of thickness l, 0T is the equilibrium 

melting temperature of an infinite crystal, e is the surface free energy of the basal plane 

and Hm is the melting enthalpy per unit volume. Considering the values of these 

parameters for polypropylene [46] 0T  = 460.7 K, e = 49.6  10
-3

 J/m
2
 and Hm = 1.34 

 10
8
 J/m

3
, the maximum lamellar thickness corresponding to the melting temperature 

Tm can be calculated for each sample.  
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2.5. Thermogravimetric Analysis (TGA) 

Thermogravimetric experiments were carried out using a Mettler Toledo TGA/SDTA 

851e module. Dynamic measurements were performed from 25 ºC to 600 ºC at a 

heating rate of 10ºC/min under Argon atmosphere (flow rate = 200ml/min). 

Measurements were repeated at least twice with 8-10 mg of different samples. 

Thermogravimetric parameters such as residue and the extrapolated onset temperature 

(Tonset) [48] were directly calculated from TGA traces. The onset temperature 

corresponds to the temperature at which the weight loss begins and it is associated 

therefore to the beginning of the thermal decomposition of the material.  

DTG curves were also obtained from the first derivative of the thermogravimetric curve. 

The maximum decomposition temperature (Tmax) was determined as the maximum of 

the DTG curve, which corresponds to the maximum slope of the thermogravimetric 

curve, that is, to the temperature at which thermal degradation occurs with maximum 

degradation rate.  

The characterization of the thermal decomposition of these materials was completed by 

performing a kinetic analysis. The kinetic of the reaction is usually described by the 

basic rate equation of chemical reactions: 

 

   αT fk
dt

d



    (3) 

 

where  represents the degree of conversion, k(T) is the rate constant and f() is the 

conversion function that depends on the reaction mechanism.  

The degree of conversion is defined in terms of the mass loss as: 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT






0

0       (4) 

 

where 0,  and ∞ are, respectively, the initial weight, the weight at time t and the 

final weight, measured at the end of the decomposition process. 

Assuming that the temperature dependence of the rate constant is satisfactorily 

described by the Arrhenius equation, the kinetic of the reaction can often be given by 

the following rate equation: 

 αf
RT

-E
expA

dt

d a 










    (5) 

 

where A is the pre-exponential factor, R is the gas constant, T is the absolute 

temperature and Ea is the activation energy. 

The simplest model used to describe the kinetic function f() is: 

 

   nα  1f      (6) 

 

where n is the order of reaction, and its substitution to equation (5) gives: 

 

 na α-1
RT

-E
expA

dt

d











    (7) 

 

Methods that are based on equation (7) are denoted as differential methods, since they are 

directly deduced from a kinetic equation in its derivative form. In this study, the kinetic 

analysis of the thermal degradation of polypropylene was performed with the differential 

method proposed by Chang [49], which is based on the logarithm of equation (7): 
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  RT

E
Anl

α-1

dt

d

ln a
n

















 

    (8) 

 

According to the Chang model, the plot of     n
α-1ln dtd  against T1 gives a straight 

line with a slope equals to  R-Ea  for each process, from which it is easy to obtain the 

corresponding activation energy, if the order of reaction is selected correctly. In that 

respect, Gao et al. [50] have shown that a first-order reaction model cannot be applied to 

properly describe thermal degradation of polypropylene. In contrast, the appropriate order 

of reaction for both, dynamic and isothermal thermal degradation of polypropylene, was 

determined by these authors to be n = 0.35. 

 

3. Results and discussion 

 

3.1. Characterization of pristine PP samples with pro-oxidant/pro-degradant 

Pristine PP samples containing pro-oxidant/pro-degradant additive were initially 

characterized by DSC and TGA and compared to pure PP control samples, in order to 

assess the effect of this additive on the morphological and thermal properties of the 

polypropylene matrix. 

   

3.1.1. Morphological properties 

Initially, all the pristine samples display the typical DSC thermogram of polypropylene, 

consisting of a main endotherm with maximum around 160 ºC and an overlapped 

shoulder at lower temperatures (around 140 ºC). In general, the pro-oxidant/pro-
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degradant additive does not modify substantially the calorimetric curve of 

polypropylene. Only a  slight shift of the DSC thermogram towards higher temperatures 

is observed, that  results in a slight increase of the melting temperature and, in turn, of 

the maximum lamellar thickness (Table 1). Furthermore, pristine samples containing 

pro-oxidant/pro-degradant additive also exhibit a slightly higher crystalline content 

(Table 1). The crystallization rate of polypropylene is increased by the presence of 

foreign particles in the melt (i.e. additives), that act as nucleation sites, and around 

which the polypropylene chains can crystallize [51]. Such a nucleating effect of the pro-

oxidant/pro-degradant additive could explain the increased crystallinity of pristine 

samples A and B, compared to pure PP.   

 

3.1.2. Thermal  properties 

Initially, all the pristine samples show the typical TGA runs of polypropylene, 

consisting of a single-step process. The thermal decomposition of pure PP starts at 

approximately 450ºC, reaches its highest rate at 466ºC and is almost completed at 600ºC 

(residue <1%) (Table 2). Compared to pure PP, both the maximum decomposition 

temperature and the onset degradation temperature of PP with pro-oxidant/pro-

degradant additive are reduced (Table 2). Particularly, the decrease in the onset 

degradation temperature is more significant. This indicates a lower thermal stability of 

these materials, probably as a result of the pro-degradative effect of this additive during 

processing. Similar results were obtained by Pablos et al. for LDPE and LLPDE 

samples containing Fe and Ca-stereate [14] and by Corti et al. for commercial LLDPE 

mulch films with pro-oxidant/pro-degradant additives [28]. Although the thermal 

decomposition of samples A and B also occurs with almost no residue remaining ( ~ 

4%), the amount of residue is higher than for pure PP (Table 2). This suggests that the 
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origin of the residue of these samples is mainly the additive, which may not completely 

decompose in the temperature range of these experiments due to its inorganic 

components.  

On the other hand, from the kinetic analysis performed using the Chang model, two 

different processes, with different activation energies, were found to be involved in the 

thermal degradation of polypropylene. These were denoted as stage 1 (from 359ºC to 

406ºC) and stage 2 (from 412ºC to 468ºC), in order of increasing temperature. For pure 

PP, activation energy of 145 kJ/mol and 319 kJ/mol was obtained for stages 1 and 2, 

respectively (Table 3). The thermal decomposition of polypropylene is a very complex 

radical chain mechanism initiated by random chain scission and followed by radical 

transfer process, including midchain -scission, end-chain--scission, radical addition, 

radical recombination and disproportionation [52,53]. Moreover, the presence of methyl 

side groups with low steric hindrance in polypropylene favours intramolecular hydrogen 

transfer [54] and intermolecular hydrogen abstraction [55] during its thermal 

degradation. All the aforementioned reactions have low activation energies since they 

are associated to the breakdown of less stable bonds [52,56]. Stage 1 displays similar 

activation energy and can consequently be adscribed to these low activation energy 

reactions. In contrast, activation energy of stage 2 is similar to carbon-carbon bond 

dissociation energy [52,56], and can therefore be assigned to random chain scissions in 

the carbon backbone, requiring higher activation energies.  

Kinetic results also show that the pro-oxidant/pro-degradant additive causes a drop in 

the activation energy of the kinetic stage associated to the thermal breakdown of the 

carbon backbone (stage 2) (Table 3), confirming the idea that this additive promotes the 

thermal decomposition of polypropylene during processing, resulting in less thermally 

stable materials.   



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
3.2. Abiotic degradation: photo-oxidation 

 

3.2.1. Morphological changes 

DSC experiments were performed to study first the morphological changes undergone 

by PP samples with and without pro-oxidant/pro-degradant additive during UV-

irradiation. It was found that photo-oxidation only leads to slight changes in the DSC 

thermogram of pure PP. The DSC curve shape is qualitatively not modified, however it 

is slightly shifted towards lower temperatures [37,57-60]. In consequence, the melting 

temperature and the maximum lamellar thickness of pure PP tend to slightly decrease 

during photo-oxidation (Table 1). It is generally accepted that oxidation, although 

mainly occurring in the amorphous phase due to its higher oxygen permeability, may 

also take place in the interface of crystallites [61]. This process can be assumed to cause 

an increase in the surface free energy of the crystals (e) which, in accordance with the 

Thomson equation (eq. 2), results in the subsequent lowering of the melting temperature 

[62]. Furthermore, a slight increase of the original crystalline content is also observed 

for pure PP during exposure to UV radiation (Table 1). It is well evidenced that the 

crystalline content of polypropylene increases at the beginning of oxidation [35-

37,57,59,60,63-65]. This phenomenon has been explained as due to chain scission, 

which initially is the major driving force of the oxidative process, and leads to 

increasing segment mobility and chain arrangements, favouring further crystallisation 

[58]. 

These calorimetric results suggest that pure PP has only reached low level of oxidation, 

since the morphological changes that were noted during its photo-oxidation are 

characteristic phenomena that can be assigned to the chain scission effect that prevails 

at short-term UV exposure times.   



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
In contrast, an appreciable modification of the DSC thermogram is observed during 

photo-oxidation of PP samples containing pro-oxidant/pro-degradant additive (Fig. 1). 

Basically, UV-irradiation leads to a multimodal and more heterogeneous DSC curve 

[37,57-59,66]. Regardless of the additive content, as the exposure time increases, there 

is a shape transition in which the maximum shifts to the lowest temperature 

contribution, while the original high temperature contribution vanishes. These 

morphological changes lead to a significant drop of the melting temperature 

[37,57,59,62] that occurs concurrently with a considerable decrease of the maximum 

lamellar thickness of these photo-oxidized PP samples, suggesting that as photo-

oxidation proceeds, crystals are progressively becoming thinner (Table 1). Furthermore, 

this evidences that the crystalline phase, despite its lower permeability to oxygen, is also 

affected by the photo-oxidation process. 

On the other hand, results also reveal that during photo-oxidation, crystallinity of PP 

samples containing pro-oxidant/pro-degradant additive tends to decrease with the 

exposure time to UV radiation (Table 1). It is generally accepted that when photo-

oxidation spreads, the increasing impurity concentration (like oxygenated groups, 

double bonds, etc.) limits the secondary crystallization of polypropylene by reducing its 

molecular regularity. Thus, at high UV exposure times, the large number of chemical 

defects in the polymeric chain becomes the major driving force that prevents further 

crystallization [57,58,60,66]. 

In general, the aforementioned morphological changes, although being similar for both 

PP samples with pro-oxidant/pro-degradant, were found to take place at different time 

scales, being faster for the sample with a higher additive load (sample B).  

It can then be concluded from the analysis of these calorimetric results that, as expected, 

photo-oxidation of polypropylene is enhanced by the pro-oxidant/pro-degradant 
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additive. In contrast to what was observed for pure PP, PP containing pro-oxidant/pro-

degradant seems to have reached a higher level of oxidation. Furthermore, 

morphological changes during UV-irradiation were found to be accelerated for higher 

additive loads.     

 

3.2.2. Changes in thermal properties 

Changes in the thermal properties of PP samples with pro-oxidant/pro-degradant and 

additive-free control PP samples during accelerated photo-oxidation were next studied 

by TGA. In general, the shape of the TG traces of pure PP is substantially not modified 

during UV-irradiation, displaying similar one-step degradation. However, the onset 

temperature and the maximum temperature decomposition were found to slowly 

decrease with the UV exposure time, indicating a slight trend towards thermal 

desestabilisation (Table 2). This trend is also confirmed by the decrease of the activation 

energy of the two identified kinetic stages that is observed as photo-degradation 

proceeds (Table 3). This lowering in thermal stability could be attributed to the low 

molecular weight oxidation products, with lower decomposition temperatures, resulting 

from chain scission reactions during photo-oxidation. 

On the other hand, the exposure to UV radiation leads to a considerably lowered onset 

degradation temperature and maximum decomposition temperature in PP samples with 

pro-oxidant/pro-degradant additive compared to pure PP (Table 2). Furthermore, this 

decrease is more significant for higher additive loads (sample B). A similar trend was 

reported for both naturally and artificially photo-degraded polyethylene formulations 

with pro-oxidant/pro-degradant additives compared to pure polymers [15,17,23,28,34]. 

This lowering in thermal stability is also confirmed in this case by the decrease of the 

activation energy of the two identified kinetic stages that is observed during photo-
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degradation of PP samples with pro-oxidant/pro-degradant (Table 3). This decrease of 

thermal stability observed in these UV-aged samples can probably be explained by the 

greater amount of low molecular weight fractions and chemical impurities (mainly 

oxygenated groups) resulting from photo-oxidation, which decompose at relatively 

lower temperatures, indicating that samples containing pro-oxidant/pro-degradant 

additive have undergone previous degradation [15,28,34]. Additionally, a concomitant 

decrease in the residue upon thermal degradation of these photo-oxidized samples is 

also apparent (Table 2). 

Thermogravimetric results confirm that photo-oxidation of polypropylene is promoted 

by the pro-oxidant/pro-degradant additive, as previously suggested by calorimetric 

results. Compared to pure PP,  photo-oxidation of PP containing pro-oxidant/pro-

degradant results in less thermally stable materials. Furthermore, the level of oxidation 

observed in UV-aged samples seems to be directly proportional to the additive load. 

 

3.3. Biotic degradation: biodegradation in soil 

 

3.3.1. Morphological changes 

Photo-oxidized samples containing pro-oxidant/pro-degradant additive were subjected 

to a subsequent soil burial test, in order to mimick the whole degradation process of 

these materials. Controls containing UV-unexposed PP samples with pro-oxidant/pro-

degradant were also incubated in soil medium under identical conditions. 

Morphological changes undergone by these samples were first investigated as a function 

of the incubation time in soil. Pristine samples do not exhibit substantial changes in the 

shape of their DSC traces as a consequence of incubation in microbiologically active 

soil. As a result, no significant changes in the calorimetric parameters of pristine 
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samples A and B were detected during the soil burial test (Tables 4, 5). These results 

indicate that pristine samples containing pro-oxidant/pro-degradant additive, but not 

previously photo-oxidized, exhibit almost no biodegradation when aged in soil. 

In contrast, a different behaviour is observed in the case of UV-exposed PP samples 

containing pro-oxidant/pro-degradant additive submitted to incubation in soil medium. 

A slight shift of the DSC traces towards lower temperatures, without substantial 

modification of their shape, is noted after 6 months of soil burial, suggesting that the 

crystalline phase of polypropylene is only slightly affected during biodegradation, in 

contrast to what was observed during photo-oxidation. This leads to a slight decrease of 

the melting temperature which, in turn, results in a slight decrease of the crystals 

thickness with the incubation time in soil (Tables 4, 5). A similar decrease of the 

melting temperature was found by Miyazaki et al. and Fechine et al. during 

biodegradation in soil of previously photo-oxidized PP samples containing different 

pro-oxidant/pro-degradant systems [42,43]. However, it is interesting to note that, in 

this case, this trend was found not to be linear, but in contrast, to occur in different 

stages. Moreover, a similar non-linear tendency was observed for the evolution of the 

crystalline content of both samples with the incubation time in soil, being such changes 

more significant for higher photo-oxidation times and higher additive contents (Tables 

4, 5). Similarly, in a previous work, it was shown that changes in the calorimetric 

parameters of PP containing starch-based biodegradable additive naturally aged in soil, 

also take place in different stages [67]. This behaviour is also in good agreement with 

the idea originally proposed by Albertsson et al. that biodegradation of polyolefins is a 

complex process consisting of various stages [68]. In this case, crystallinity successively 

increases and decreases slightly with the incubation time in soil. In semicrystalline 

polymers, biodegradation is expected to start in the amorphous phase where 
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microorganisms are more active, due to its higher oxygen permeability [69], leading to 

an initial increase in crystallinity. Although oxygen is usually insoluble in the 

crystalline phase and biodegradation cannot be expected to be initiated in this phase, 

changes occurring in the amorphous phase due to the degradation process, are likely to 

also subsequently affect the crystalline phase [67]. This could explain the further slight 

decrease in crystallinity [70,71]. Furthermore, it was found that this decrease in the 

crystalline content occurs concurrently with a slight increase in the maximum lamellar 

thickness (Tables 4, 5), suggesting that once biodegradation proceeds, thinner 

crystalline entities are firstly being affected. Manzur et al. reported similar results for 

physico-chemically aged LDPE films submitted to biodegradation by a fungi 

consortium [71].  

Therefore, the analysis of DSC results reveals slight calorimetric changes in the UV-

aged PP samples with pro-oxidant/pro-degradant during incubation in soil medium that 

can be associated with a certain progress of degradation of these samples by the action 

of soil microorganisms, promoted by previous photo-oxidation. In general, calorimetric 

properties were shown to exhibit a non-linear dependency with the incubation time in 

soil, suggesting that biodegradation occurs in different stages. Furthermore, the extent 

of the morphological changes undergone by the polypropylene matrix was found to be 

dependent upon the additive load and the previous photo-oxidation level. 

 

3.3.2. Changes in thermal properties 

Polypropylene samples submitted to the accelerated biodegradation test were also 

characterized by TGA, in order to investigate changes in their thermal properties with 

the incubation time in soil. Pristine samples do not display substantial changes in the 

shape of their TGA traces as a result of their incubation in microbiologically active soil. 
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Regardless of the incubation time in soil, the thermal decomposition of pristine samples 

A and B occurs in a one-step process with almost no residue remaining ( ≤ 5%) (Tables 

6, 7). As a consequence, no significant changes in the thermogravimetric parameters 

were detected during incubation in soil medium of these samples (Tables 6, 7). These 

results confirm that pristine samples containing pro-oxidant/pro-degradant additive, but 

not previously aged, show almost no biodegradation when subjected to the accelerated 

soil burial test. 

However, the thermal stability of previously photo-oxidized PP samples with pro-

oxidant/pro-degradant additive was found to further change upon the incubation time in 

soil. In particular, both the onset degradation temperature and the maximum 

decomposition temperature were found to vary non-linearly during incubation in soil 

medium (Tables 6, 7). These results are in good agreement with the previous 

calorimetric analysis and support the idea that biodegradation of polyolefins is a 

complex process that takes place in different stages [68]. In general, initially a slight 

increase of the thermal stability is observed with respect to the corresponding values 

attained before incubation in soil. Roy et al. also found the thermal stability of UV-aged 

LDPE films with pro-oxidant/pro-degradant additive to increase after incubation with 

bacterial consortium [34]. Nevertheless, at longer incubation times, the onset 

temperature and the maximum degradation temperature were found to further slightly 

decrease. Furthermore, changes in the thermal stability with the incubation time in soil 

are more appreciable for higher additive contents and higher previous exposure times to 

UV radiation. This complex trend in thermal stability is also confirmed by the non-

linear evolution of the activation energy of the two identified kinetic stages that is 

observed as degradation in soil proceeds (Tables 6, 7). Moreover, the activation energy 

of both processes alternatively increases and decreases with the incubation time in soil, 
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in a similar way and time scale as the onset degradation temperature and the maximum 

decomposition temperature do, for a given UV-exposure time and additive load. In a 

first step, preferential bioassimilation by soil microorganisms of low molecular weight 

polymer fractions generated during abiotic oxidation could explain the initial increase of 

thermal stability [23,34]. As a result, it is expected that smaller hydrocarbon fragments 

are released, which can in turn be further utilised by microorganism as carbon and 

energy sources [72]. The accumulation of these smaller polymer fractions would 

subsequently lead to a decrease of the thermal stability of the resulting polymeric 

matrix. Additionally, a concomitant decrease in the residue upon thermal degradation of 

photo-oxidized samples is also apparent (Tables 6, 7). 

The analysis of these thermogravimetric results shows changes in thermal stability of 

photo-oxidized PP samples with pro-oxidant/pro-degradant additive during the 

accelerated soil burial test that can be related to a certain extent of oxidation, thus 

supporting the idea that previous abiotic oxidation of polypropylene promotes further 

biotic degradation. All the thermogravimetric parameters under study exhibit similar 

and concurrent non-linear changes with the incubation time in soil. Moreover, such 

changes were found to be accelerated for higher additive loads and longer previous UV 

exposure times. 

 

4. Conclusions 

 

The oxo-degradation process of PP samples containing pro-oxidant/pro-degradant 

additive was investigated by monitoring their morphological and thermal properties 

under abiotic and biotic accelerated degradative conditions.  
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During exposure to UV radiation, the more significant changes in the morphological 

and thermal properties that were detected in PP samples containing pro-oxidant/pro-

degradant additive compared to pure PP, clearly suggest a higher level of oxidation in 

these samples. These results indicate that, as expected, the pro-oxidant/pro-degradant 

additive can promote the abiotic oxidation of polypropylene during UV-irradiation. In 

particular, photo-oxidation was found to lead to a reduction of crystallinity and a drop 

of the melting temperature that are accompanied by the formation and subsequent 

predominance of thinner crystalline entities. It was also shown that these morphological 

changes occur concurrently with a significant lowering of the thermal stability of these 

materials during exposure to UV radiation. These calorimetric and thermogravimetric 

changes are in good agreement and can be both explained by the greater concentration 

of lower molecular weight products and chemical impurities that are formed during 

photo-oxidation in its more advanced stages. Moreover, the level of oxidation observed 

in UV-aged samples seems to be dependent on the additive load. 

On the other hand, in contrast to pristine control samples, changes in the morphological 

and thermal properties were detected in previously photo-oxidized PP samples with pro-

oxidant/pro-degradant when subjected to a subsequent soil burial test that can be 

associated with a certain progress of oxidation. These results suggest that previous 

abiotic oxidation is responsible for further extent of degradation of the polypropylene 

matrix by soil microorganisms. In general, both morphological and thermal properties 

were found to exhibit a non-linear dependency with the incubation time in soil, 

confirming the idea that biodegradation of this polyolefin is a complex process that 

occurs in different stages. Changes in crystallinity suggest that although the degrading 

activity of the soil microorganisms starts in the amorphous phase, this seems to later 

also affect the crystalline phase, starting from thinner crystals. Changes in thermal 
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stability can be related to bioassimilation of the low molecular weight polymer fractions 

generated during abiotic oxidation. Furthermore, changes in both the morphological and 

thermal properties of the polypropylene matrix during soil incubation were found to be 

proportional to the additive load and the previous photo-oxidation extent. At this point, 

it should be noted that all the aforementioned results supporting a certain extent of 

biodegradability are merely indirect, in so far as they have been assessed by an indirect 

method. 

It can then be concluded that the synergetic effect of abiotic degradation (due to UV 

exposure) and biotic degradation (as a consequence of the metabolic activity of the soil 

microorganisms) promotes the extent of the whole degradation of the PP samples 

containing pro-oxidant/pro-degradant additive studied in this work, confirming the 

potential of this additive in producing environmentally degradable polypropylene via 

combination of abiotic and biotic oxidizing agents.  
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Table captions 

 

Table 1. DSC parameters of photo-oxidized samples.  

Table 3. Activation energies of photo-oxidized samples calculated with the Chang model.  

Table 4. DSC parameters of pristine and photo-oxidized sample A aged in soil.  

Table 5. DSC parameters of pristine and photo-oxidized sample B aged in soil.  

Table 6. TGA parameters of pristine and photo-oxidized sample A aged in soil.  

Table 7. TGA parameters of pristine and photo-oxidized sample B aged in soil.  
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Table 1.  

time 

(h) 

PP A B 

Tm (ºC) (%) lmax (Å) Tm (ºC) (%) lmax (Å) Tm (ºC) (%) lmax (Å) 

0 158.4 48.5 117 162.2 53.3 135 162.3 55.4 135 

100 158.0 51.5 115 162.3 53.1 135 161.5 54.3 131 

200 158.0 52.0 115 161.6 51.2 131 141.5 53.5 74 

300 157.7 52.4 114 140.8 50.6 73 141.2 51.9 74 
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Table 2.  

time 

(h) 

PP A B 

Tonset 

(ºC) 

Tmax 

(ºC) 

residue 

(%) 

Tonset 

(ºC) 

Tmax 

(ºC) 

residue 

(%) 

Tonset 

(ºC) 

Tmax 

(ºC) 

residue 

(%) 

0 448.6 466.0 0.6 440.2 465.0 4.5 439.0 463.5 4.3 

100 446.4 465.4 0.1 438.6 464.9 3.9 435.8 463.2 3.8 

200 446.6 465.0 0.1 435.1 463.0 3.7 431.1 461.4 3.1 

300 442.4 463.7 0.1 433.4 462.8 3.8 427.8 460.9 3.1 
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Table 3.  

time 

(h) 

PP A B 

Ea (Stage 1) 

(kJ/mol) 

Ea (Stage 2) 

(kJ/mol) 

Ea (Stage 1) 

(kJ/mol) 

Ea (Stage 2) 

(kJ/mol) 

Ea (Stage 1) 

(kJ/mol) 

Ea (Stage 2) 

(kJ/mol) 

0 145 319 143 238 142 234 

100 142 313 140 225 138 219 

200 130 310 128 209 123 192 

300 126 295 123 204 118 174 
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Table 4.  

UV exposure time 

(hours) 
time in soil 

(months) 
Tm (ºC) (%) lmax (Å) 

0 
0 162.2 53.3 135 

6 162.4 53.2 136 

100 

0 162.3 53.1 135 

2 161.2 53.9 129 

4 161.9 53.5 133 

6 161.4 55.3 130 

200 

0 161.6 51.2 131 

2 161.1 53.7 129 

4 161.4 53.3 130 

 6 160.6 52.6 126 

300 

0 140.8 50.6 73 

2 139.4 53.3 70 

4 139.9 52.0 72 

6 138.0 54.1 69 
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Table 5.  

UV exposure time 

(hours) 
time in soil 

(months) 
Tm (ºC) (%) lmax (Å) 

0 
0 162.3 55.4 135 

6 162.1 55.0 134 

100 

0 161.7 54.3 132 

2 161.1 54.5 129 

4 161.4 53.5 130 

6 160.4 55.2 126 

200 

0 141.5 53.5 74 

2 139.9 54.0 71 

4 140.5 51.1 73 

 6 138.9 51.7 70 

300 

0 141.2 52.0 74 

2 139.7 54.2 71 

4 140.7 52.6 73 

6 138.5 53.0 69 
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Table 6.  

UV exposure 

time (hours) 
time in soil 

(months) 

Tonset  

(ºC) 

Tmax  

(ºC) 

Residue 

(%) 

Ea (Stage 1) 

(kJ/mol) 

Ea (Stage 2) 

(kJ/mol) 

0 
0 440.2 465.0 4.5 143 238 

6 441.1 464.5 4.5 141 234 

100 

0 438.6 465.0 3.9 140 225 

2 439.3 465.6 3.9 142 226 

4 437.8 464.3 3.6 134 206 

6 434.7 463.9 3.1 138 205 

200 

0 435.1 463.0 3.7 128 209 

2 436.5 465.0 3.7 140 216 

4 435.3 464.2 3.5 132 202 

 6 437.0 464.8 3.5 139 207 

300 

0 433.4 463.3 3.8 123 204 

2 439.3 465.2 3.7 139 217 

4 430.8 463.7 3.8 123 186 

6 435.7 464.7 2.6 131 204 
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Table 7.  

UV exposure 

time (hours) 
time in soil 

(months) 

Tonset  

(ºC) 

Tmax  

(ºC) 

Residue 

(%) 

Ea (Stage 1) 

(kJ/mol) 

Ea (Stage 2) 

(kJ/mol) 

0 
0 439.0 463.5 4.2 142 234 

6 439.3 463.1 4.0 145 231 

100 

0 435.8 463.2 3.8 138 219 

2 439.0 465.8 3.7 148 224 

4 435.8 463.2 3.5 137 203 

6 436.0 463.4 2.9 139 206 

200 

0 431.1 461.4 3.1 123 192 

2 434.1 463.5 3.3 135 207 

4 433.4 462.7 3.4 125 197 

6 434.2 464.6 2.9 126 195 

300 

0 427.8 461.8 3.1 118 174 

2 429.5 462.8 3.4 130 182 

4 425.8 460.9 3.4 114 162 

6 428.3 461.4 2.8 122 170 
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Figure captions 

 

Fig. 1. DSC thermograms of PP with pro-oxidant/pro-degradant additive as a function 

of the exposure time to UV radiation: (a) sample A and (b) sample B. 
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