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This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the
diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether
it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which
take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module
for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents
as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a
fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network
configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules
if the power network increases in size, making its application possible to only one component, a specific area, or the whole context
of the power system.

1. Introduction

Nowadays, the operators of the control centers of the elec-
trical energy transmission systems are overwhelmed by the
great amount of information they are required to analyze to
maintain the system in the best operation conditions. When
there is an event in the system, the operator, based on the
alarms set by the SCADA and the faulty components, tries
to make the most accurate diagnosis of the current situation
of the system to restore it as soon as possible. That diagnosis
can be extremely complicated depending on the number of
the faulty components and the operated protection devices.
This paper is fundamentally aimed to introduce a method
for the implementation of a fault diagnosis system, using
artificial neural networks with a modular focus on electrical
energy transmission systems, for the purpose of using it as
an auxiliary tool for decision making. It is a well-known fact

that a fast and accurate diagnosis helps restore the collapsed
electrical system quickly.

In the last decades, projects focused on the diagnosis of
faults in the power electrical systems, with different neural
structures such as Bayesian networks [1], radial basis function
networks (RBF) [2, 3], backpropagation networks [4, 5], and
SOM networks [6], have been developed with good results
but with limitations. One limitation is the enclosed structure
of monolithic type, which as the networks increase size
implementing a diagnosis of faults becomes more difficult
[4, 7, 8].

The fault diagnosis method proposed here consists of
two levels of diagnosis for the bus neural modules, the
transmission lines, and the transformers and a third level
assigned only for the neural module of the transmission
lines. The first level of diagnosis checks if the fault occurred
in the component undergoing analysis through the correct
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operation of their own and/or the back-up switches asso-
ciated to it [9, 10]. The second level of diagnostic verifies
whether the fault was in the component under analysis
through the correct operation of its own protection schemes
or the back-up ones [9, 10]. The result of the two previously
established diagnostic levels is used to verify that both levels
are true for the fault so it is assigned to the component under
analysis; otherwise the fault does not correspond to this
component.The third level diagnostic module, assigned only
to the neural transmission lines, reinforces the diagnosis of
the first two levels of themodule by processing the continuous
signals and the frequency spectra, the voltage oscillograms,
and the current failure of the corresponding line through a
neural structure to verify if it really was subject to failure
and also to determine the type of the failure (L-g, LL-g, LL,
LLL, and LLL-g). A considerable advantage of the proposed
diagnostic system is that its implementation does not require
the use of a system network configurator. It does not depend
on the size of the grid nor on retraining neural modules if
the grid increases in size; and it can be applied to a single
component, a specific area, or the whole context of the power
system. The method is reinforced to issue a more accurate
diagnosis since it considers both the analog voltages and the
fault currents of the transmission lines, such as the discrete
ones (state of switches and relays).

2. Description of the Diagnosis Method

To explain the proposedmethod, theMerida “a breaker and a
half ” substation (MDA-115 kV), which belongs to the Merida
Zone of the peninsular area of the Mexican electrical system,
is taken as an example. This substation interconnects to the
Metropolitan substation (MTO-115 KV) through the L line,
as shown in Figure 1. To make it easier, the method will be
applied only to the L transmission line [11–13].

2.1. First Level of Diagnosis (by Breakers). The L transmission
line referred to is the MDA-73400-MTO, and it is connected
at both ends to “a breaker and a half ” substations. The
primary breakerswhich connect the L line to both substations
MDA-115 andMTO-115, as shown in Figure 1, are MDA INT-
4, MDA INT-11, MTO INT-35, and MTO INT-36.

Each component of the electrical network is characterized
by a group of protection schemes which protect it against
short-circuit fault.

For the L transmission line of the MDA-115 substation,
the primary protection scheme is represented by a 21-distance
relay for faults between phases and a 21N distance relay for
phase-to-ground faults. This kind of protection is typically
for radial or long lines; as for grid or short lines, the primary
protection can be characterized by an 87L differential relay.

The secondary scheme of protection is implemented by
a 67-overcurrent directional relay for faults between phases
and a 67N overcurrent directional relay for faults from phase
to ground.

The back-up or additional scheme of protection, in this
case, is comprised by a 50FI instantaneous overcurrent relay,
and it is directly related to each breaker.

Based on the fact that for any activation of a relay the
opening of a breaker corresponds if there is a failure in the
L transmission line, the knowledge that the neural module
will have to learn will be implemented based on the following
criterion.

If the failure really happens in L, the primary breakers of
both ends INT’s MDA-4 and -11 and INT’s MTO-35 and -36
should open.

Sending Side. If the INTMDA-4 fails, the breakers that should
open to avoid the propagation of the fault are MDA-1, 2, 3, 5,
6, and 7.

If the INTMDA-11 fails, the back-up breakers that should
open to avoid the propagation of the fault are INT MDA-18
and INT LRA-34.

Receiving Side. If the INTMTO-36 fails, the back-up breakers
that should open to avoid the propagation of the fault are INT
MTO-37 and -38.

If the INTMTO-35 fails, the back-up breakers that should
open to avoid the propagation of the fault are INT MTO-37
and INT SUR-51.

2.1.1. Implementation of the Knowledge Base. With the pur-
pose of a better and more adequate handling of the infor-
mation about the state of the protection breakers and relays,
the information taken from the SCADA system is organized
creating the data base shown in Table 1. Each component
undergoing diagnosis will have a similar data base according
to its characteristics.

Based on the database of line L, patterns with the different
combinations are created. These patterns characterize the
fault in each of the primary and/or the back-up breakers,
and they will be used for the training of a backpropagation
multilayered neural network [6, 14, 15].This networkwill have
as input the latter patterns and as output the activation since
the fault was in the line under diagnosis, considering only the
opening of the breakers on one side (sending side).

This neural structure will be formed by an input layer of
11 neurons and an output layer of only one neuron. It is worth
mentioning that this diagnosis is located only at an end of a
line (sending side) so it is necessary to locate a similar neural
network with the same patterns and the same output at the
other end of the line (receiving line).

The combination of the results of the neural networks
at both ends (sending and receiving) will issue the final
diagnosis of the component, in this case line L. For this
combination, a logical decision table is constructed; this table
has as inputs the activations of each of the ends of line L and
as outputs the verification by breakers that the fault is in the
line.

This decision table is implemented by a neural structure
formed by an input layer with two neurons and an output
layer with a single neuron. A fault will only exist if the
activation occurs at one or both ends of the line.

The complete modular structure for the failure diagnosis,
considering only the activation states of each one of the line
breakers is shown in Figure 2.
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Table 1: Data base for the L neural module.

Inputs 1 2 3 4 5 6 7 8 9 10 11
4 11 1 2 3 5 6 7 18 34

state 1 1 1 1 1 1 1 1 1 1

Relays 21 21N 67 67N 50FI 21 21N 67 67N 50FI
state 0 0 0 0 0 0 0 0 0 0

Inputs 1 2 3 4 5 6 7 8 9 10 11
35 36 37 51 37 38

state 1 1 1 1 1 1

Relays 21 21N 67 67N 50FI 21 21N 67 67N 50FI
state 0 0 0 0 0 0 0 0 0 0

Lo
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l e
nd

INT 4 INT 11
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m

ot
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nd

INT 35 INT 36

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

Int PyR

Int PyR

0⇢ open breaker
1⇢ closed breaker

1⇢ activated relay
0⇢ deactivated relay

2.2. Second Level of Diagnosis (by Relays). With the above
neural network, the existence of a fault in line L is determined
only by the opening of the primary and the back-up breakers
that are directly related to it. It may be the case that the single
state of the breakers cannot determine whether there is actu-
ally a fault in this line or not due to the lack of information;
as a consequence, it is necessary to reinforce this diagnosis
with the validation of the protection schemes directly related
to the L line. In this case, there are three protection schemes
per primary breaker associated to the line, and remembering

that if the failure is really in the L line, at least one relay of a
protection scheme at both ends of the line must be activated,
except for the 50FI relay associated to the fault of the breaker
of the L line and to the activation of at least another relay (21,
21N, 67, and 67N).

2.2.1. Implementation of the Knowledge Base. The combi-
nation of the activation states of each relay will issue the
final diagnosis on each component, in this case line L.
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line.

Considering the protection schemes, to have a failure in line
L one relay, at least, must be activated at both ends. For this
combination, a decision logic table is designed; this has as
inputs the activation states of each relay and as outputs the
final diagnosis for the line, according to the logic state of the
protection scheme of each breaker. With the activation of the
protection schemes of the line, we can state that the failure
occurs in this one. The complete neural structure for the
diagnosis, considering exclusively the activation states of the
different protection schemes of the line, is shown in Figure 3.

The logic for failure validation in the line, considering
both the breakers and the protection schemes diagnosis, will
be implemented by a perceptron neural network, which will
have as inputs both breakers and relays diagnosis and as
outputs the final diagnosis of line L. To consider a failure in
the valid line, it is required that the breaker validation and the
protection scheme validation are confirmed; otherwise, the
failure in line L will be ruled out. The whole neural structure
for the failure diagnosis in lines connected at both ends to “a
breaker and a half ” substations is shown in Figure 4.

This structure will be implemented by a function on the
MatLab software environment, and it will be invoked every
time any transmission line suffers any change of state in its
own or the backup relays. It is worth mentioning that both
for the buses as for the transformers the same implementation
procedure described above is used.

3. Third Diagnosis Level (for Current
Oscillograms and Fault Voltages)

In order to have a more accurate and reliable diagnosis
system, the final diagnosis of the faulty transmission lines is
reinforced with a third level of verification which processes
the voltage oscillograms and the fault currents in the corre-
sponding line [16] as well as the frequency spectra of these
oscillograms, through a neural structure, to verify if it really
had a fault and at the same time to determine its type (L-g,
LL-g, LL, LLL, and LLL-g). This process can be carried out
since all the transmission line, suffering a fault, will show fault
currents and voltages before it is isolated from the system by
its own protection schemes.

The interconnection block diagram for the different
diagnosis levels is shown in Figure 5.

3.1. Transmission Line Model to Obtain the Types of the Fault.
The data base representing the training patterns for the
proposed neural structure for the third level of diagnosis will
consist of the characterization of each one of the dynamics of
the different fault types occurring in a transmission line (L-g,
LL-g, LL, LLL, and LLL-g).These dynamics are obtained from
simulations carried out in theMatLab PowerSys Blockset [17]
with the characteristic parameters of the transmission line
being diagnosed, which corresponds to a 13 Km long line
operating at a nominal voltage level of 115 kV.

Each one of the types of fault will be characterized
by their transient response oscillograms of each phase.
The knowledge base will consider the voltage and current
oscillograms as training patterns for each one of the fault
types that happened whether at the end of the sending line,
in the center, or at the end of the receiving line. To explain
the procedure, voltage and current oscillograms at the end
of the transmission line (at 3 Km) for a phase A to ground
type of fault will be simulated so the corresponding graphs
can be observed and presented in a data base to train a neural
structure which will classify the type of fault occurred in the
line and also verify if the fault did happen.

3.1.1. Calculus Methodology. To simulate the voltage and
current fault for each one of the different types of faults in
the model of the line presented in the PowerSys, a frequency
signal of 28.8 KHz will be handled [5, 18]. This signal
frequency guarantees a good simulation of the current and
voltage signals of analog type which occur in the recorders of
events located at the ends of the transmission lines.

The reproduction of signals for simulation purposes, of
a 28.8 KHz frequency and a simulation time of 0.1 seconds,
corresponds to an integration time of 34.722𝜇sec and 2880
points for each simulated signal.

The simulation time will be of 0.1 seconds since this time
corresponds to 6 cycles of the current or voltage signal where
the first two cycles match the dynamic of the signal previous
to the fault, the three following cycles correspond to the fault
dynamic and the last cycle is where the fault is now released.

3.1.2. Filtering and Sampling Process. It is proven that when
handling a 28.8 Khz frequency for the voltage and current
signals of the fault, it is possible to reproduce, through
simulations, the different types of fault occurring in the
transmission line. To condition the voltage and current
analog signals, a second-order low-pass filter is included in
the model represented in the PowerSys to eliminate high
frequencies and so avoid the aliasing problem during the
sampling process [19]. To countwith the sampled fault voltage
and current signals so they represent accurately the real fault
voltage and current signals, a decimation of 120 rates is done.
This means that a point will be taken as a sample every 120
points of each cycle resulting in 4 points (samples) for each
cycle of both voltage and current signals so if the dynamics
of the voltage and current faults is characterized by 6 cycles
there will be 24 samples which will reproduce accurately the
original signals [5].



The Scientific World Journal 5

Breaker 1

Breaker 2

Breaker 1

Breaker 2

1
2
3

5
1
2
3

5
1
2
3

5
1
2
3

5

Lo
ca

l e
nd

 
Re

m
ot

e e
nd

Final diagnosis
(by relays)

...
...

...

...

...

...

...

...

Figure 3: Modular network for the failure diagnosis by protection schemes.

Final diagnosis

1 1 1
1 0 0
0 1 0
0 0 01

2
3

5
1
2
3

5
1
2
3

5
1
2
3

5

Lo
ca

l e
nd

 
Re

m
ot

e e
nd

Final diagnosis
(by relays)

11

1
2
3

1
2
3

11

Local end

Remote end

By breakers

Final diagnosis
(by breakers)

By relays

...

...

...

...

...

...

F LT Int

F LT Int

F LT Rel

F LT Rel

...

...

...

...

...

...

F LT Final

Figure 4: The complete neural structure for the diagnosis connected at both ends with “a breaker and a half ” substations.



6 The Scientific World Journal

SCADA
system

Modular 
neural network

(buses)

State of breakers and relays

Modular 
neural network

(lines)

Modular 
neural network
(transformers) Faulted

elements

Logic
translator

Faulted elements

Faulted elements
(lines, transformers, and
buses)
Faulted breakers
and relays 
Operated breakers
and relays 

SEL relay
(Simulink

simulation)
Faulted

lines

Logic
translatorModular 

neural network
(line)

Kind of fault 

Voltages and currents 
of fault 

Digital signals 

Analogic signals

Figure 5: Diagram of the interconnection of the different levels of diagnosis.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22 24
Samples

−1

−0.8

−0.6

−0.4

−0.2

1∘ window 2∘ window 3∘ window

Vfa
Vfb

Vfc
Vg

Vo
lta

ge
s [

P.U
]

Figure 6: Failure voltages in the different phases and in neutral.

The classification of the signals by sectors can be seen in
Figures 6 and 7 where the voltage and current dynamics for a
phase A to ground fault is represented.

3.2. Structure of the Training Data Base (Continual Signals).
To illustrate, it will be shown how to organize the data used as
training patterns for the neural structure. The input patterns
will be obtained from the simulations corresponding to the
type of faults.

The data base will be implemented as follows: for a
phase A fault, to ground, the information of the voltage and
current of the different phases is represented in Figures 6
and 7, and in this particular case at a distance of 3 Kms
from the sending bar of the transmission line mentioned
above, it will be grouped as shown in Table 2. The first eight
columns represent the voltage and current values of each
phase, which, in this specific case, correspond to a phase A to
ground fault to a distance of 3 Kms from the sending node of
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Figure 7: Failure currents in the different phases and in neutral.

the transmission line. The last four columns represent the
type of fault in a binary way, which is referred to, in this case,
as a phase A to ground fault.

The structures of the data for phase A to ground fault in
the center (6.5 Km) and at the receiving end of the line are
placed in a decreasing order. In total, there are 72 training
patterns, which characterize a line-to-ground fault, in this
case of phase A, in three different places of the line, at the
sending end (3Km), in the middle (6.5 Km), and last at
the receiving end of the line (3 Km). Being able to handle
three possible positions of the fault in the line provides the
neural structure with a generalization capacity. Since with
these three possible locations of the fault, it can classify
appropriately the type of fault the line is suffering. This
structure completes the grouping; it repeats itself for each one
of the types of faults; this means there will be 11 groupings of
72 patterns adding up to 792 training patterns.The outputs of
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Figure 8: Failure voltages: phase A to ground.

each grouping, the same as the first one, represent the type of
fault, which they refer to in a binary way.

3.2.1. Neural Structure. The neural structure will be formed
by an input layer with 8 inputs, a hidden layer with 14
neurons, and an output layer with 4 neurons. This structure
presented the greatest generalization capacity, using the error
backpropagation algorithm, for the pattern classification that
the neural structure was designed for. Each of the transmis-
sion lines in the electric power network will be assigned a
similar neural structure which will be trained according to
the parameters and characteristics of each line.

3.3. Structure of the Training Data Base (Using the FFT). To
design the neural structure considering the frequency spec-
trum for each one of the different types of faults for the third
level diagnosis of the transmission lines, the sampled analog
type fault voltage and current signals will be considered, and
the frequency spectrum for each one will be obtained using
the FFT (fast Fourier transform). Such frequency spectrum
will be considered as the input patterns to implement the
knowledge base with which the neural structure will be
trained.

The input patterns will be obtained from the frequency
spectrum, which correspond to the type of fault. The data
basewill be represented as follows: for phaseA to ground fault
the frequency spectrum pertaining to such faults is shown in
Figures 8 and 9.

Such spectrum represents fault currents and voltages
of phase A to ground at a three-kilometer distance of the
sending bar of the transmission line mentioned above. The
values of each one of the samples of the spectrumof frequency
of the voltage and current fault are ordered the same way as
shown in Table 2 for the currents and voltages of the different
phases.

The first eight columns show the values of the frequency
spectrum of the voltage and current of the fault in each
one of the phases where, in this specific case, these values
correspond to a phase A to ground fault at a distance of three
kilometers from the sending node of the transmission line.
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Figure 9: Failure currents: phase A to ground.

The last four columns represent the type of fault in a binary
form which refers to, in this case as stated before, a phase A
to ground fault.

The spectrum in frequency for phase A to ground fault is
placed in a decreasing way in the center (6.5 Km) of the line
and at the end of the receiving side of the same line (3 Km). In
total, there are 39 training patterns that characterize a fault in
the line to ground, in this case of phase A, in three different
locations, at the sending end (3Km), in the middle (6.5 Km),
and last at the receiving end (3Km) of the line.This complete
grouping structure repeats itself for each one of the types of
fault; this means there are 11 groupings (one per type of fault)
of 39 patterns adding up to 429 training patterns. Handling
three possible fault locations in the line provides the neural
structure with a good generalization capacity since with these
three possible fault locations the neural structure is capable of
classifying appropriately the type of fault suffered by the line.

The neural structure will be formed by an input layer with
8 inputs, a hidden layer with 14 neurons, and an output layer
with 4 neurons. This structure is the same as the one for
the analog signals. The difference is that this neural structure
will be trained with the spectrum of frequency of the analog
signals of the voltages and currents of the fault as inputs. Each
of the transmission lines in the electric power network will
be assigned a similar neural structure which will be trained
according to the parameters and characteristics of each line.

4. Implementation of the Diagnostic Method

In order to provide a clear representation of the implemen-
tation of this fault diagnosis method, Figure 10 presents the
unifilar of the electric power network for the urban area of
the city of Merida, Yucatan, Mexico, where this method is
applied.

In accordance with the block diagram showing the
interconnection of the different diagnostic levels, presented
in Figure 5, the diagnostic method is based on the Excel
platform, as this has a complementary application which
interacts with the historical database of the SCADA system
and which was developed by the supplier of the SCADA
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software used in the electric power network for the urban
area of the city of Merida, Yucatan, Mexico. This platform
also interacts with MatLab ambient in order to resolve each
of the neural structures corresponding to each element in
the electric power network. The structures for acquiring the
information from the historical database of the SCADA, and
the fault diagnosis system, are shown in Figures 11 and 12.

Table 3 shows the list of faults detected by the diagnos-
tic system, from January to June of the current year, for

the different components of the electric power network
(buses, transformers, and lines).

5. Resulting Information Produced by
the Fault Diagnosis System

The following are some of the faults reported by the fault
diagnosis system from January to June of 2014, which include
simultaneous faults, breaker faults, and relay faults.
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Table 3: List of faults detected by the diagnostic system January–
June 2014.

Year 2014 Faulty element Response of fault
diagnosis system

January
Lines
Buses

Transformers NCM T5 Exact diagnosis

February
Lines NTE 73430 IGN Exact diagnosis

IGN 73490 PPO Exact diagnosis
Buses

Transformers NTE AT4 Exact diagnosis

March

Lines KNP 73880 MDN Exact diagnosis
Buses

Transformers NTE T3 Exact diagnosis
KOP T3 Exact diagnosis

April
Lines

TIC 73070 LRA-PTA Exact diagnosis
PTE 73590 CBR Exact diagnosis
PTE 73330 NTE Exact diagnosis

Buses PTE BUS-2 Exact diagnosis
Transformers IGN T1 Exact diagnosis

May
Lines
Buses

Transformers NCM T6 Exact diagnosis

June

Lines NCM 73150 CON Exact diagnosis
CNO 73520 IZE Exact diagnosis

Buses CNO BUS-1 Exact diagnosis

Transformers CNO T1 Exact diagnosis
CNO T2 Exact diagnosis

5.1. Simultaneous Faults. Fault in bus-2 of the PTE substation,
with simultaneous tripping of the PTE-73340-CBR, PTE -
73590-CCP lines and the PTE-T2 transformer (see Boxes 1,
2, 3, and 4).

5.2. Failure of Primary Protections. Fault in LT NTE-73430-
IGN of the NTE substation, with failure of primary protec-
tions (see Box 5).

Primary Breakers Operated
INT PTE-72020 -09:25:39 a.m.-
INT PTE-73340 -09:25:39 a.m.-
INT PTE-73590 -09:25:39 a.m.-
INT PTE-77000 -09:25:39 a.m.-
INT PTE-75010 -09:25:39 a.m.-

Protection Systems Activated
50FI-INT PTE-72020 -09:25:37 a.m.-
50FI-INT PTE-73340 -09:25:37 a.m.-
50FI-INT PTE-73590 -09:25:37 a.m.-
50FI-INT PTE-77000 -09:25:37 a.m.-
50FI-INT PTE-75010 -09:25:37 a.m.-

Box 1: Fault in MDA BUS-1.

5.3. Failure of Primary Breakers. Fault in LT IGN-73490-PPO
of the San Ignacio substation, with failure of primary switch
(see Box 6).

To prove the efficiency of the proposed method, the fol-
lowing example is solved through the global neural structure
(monolithic type) formed by three layers. The first layer
has 43 neurons corresponding to the breakers, 10 neurons
corresponding to the buses, 7 neurons corresponding to the
transmission lines, and 69 neurons corresponding to the
relays of the components which will be diagnosed adding in
total 129 neurons in the input layer.

The hidden layer is formed by 250 neurons and the output
layer by 17 neurons each one related to the component to be
diagnosed.The neural structure is trained by the patterns that
represent the normal operation of the network, the operation
with the simple fault of the breaker and with the simple
fault of the relays. Under these training patterns the network
responds adequately both for simple faults as for breakers and
relays. For double faults (two breakers and two relays or one
breaker and one relay) the neural structure does not respond
adequately so it is necessary to train it with double fault
patterns. For triple or more faults, it is necessary to introduce
patterns with these kinds of faults to the neural structure so
it can show generalization capacity with these faults.

From the above, it can be noticed that if the size of
the network increases so will the neural structure, so for
complex systems this type of global structure will become
more complex.The advantage of the proposedmethod is that
it only has three neural structures: one for the buses, one for
the lines, and one for the transformers.

Another advantage of this method is that if the network
increases its size, retraining the neural structures is not
necessary. One additional advantage is that to reinforce
the diagnosis of the transmission lines, both the discrete
(breakers and relays states) signals and the analog ones (fault
voltage and current faults) are considered.

Also to compare the proposed method to logical reason-
ingmethods, the above example is solved using 17 hypotheses,
one per each component capable of failure. Each hypothesis
is formed by three basic rules with their corresponding
conditions for normal operation of the flawed component,
breakers fault, and relays fault. The result obtained with this
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Diagnosis Referring to Local End
Primary Breakers Operated

INT PTE-73590 -09:25:39 a.m.-
Protection Systems that signal Primary Breaker INT PTE-73590

Rel50FI -09:25:37 a.m.-
Diagnosis Referring to Remote End

Primary Breaker INT CCP-73590 not Operated
Protection Systems not Activated

Box 2: Fault in LT PTE-73590-CCP.

Diagnosis Referring to Local End
Primary Breakers Operated

INT PTE-73590 -09:25:39 a.m.-
Protection Systems that signal Primary Breaker INT PTE-73590

Rel50FI -09:25:37 a.m.-
Diagnosis Referring to Remote End

Primary Breaker INT CCP-73590 not Operated
Protection Systems not Activated

Box 3: Fault in LT PTE-73590-CCP.

Diagnosis Referring to Local End
Primary Breakers Operated

INT PTE-73340 -09:25:39 a.m.-
Protection Systems that signal Primary Breaker INT PTE-73340

Rel50FI -09:25:37 a.m.-
Diagnosis Referring to Remote End

Primary Breaker INT CBR-73340 not Operated
Protection Systems not Activated

Box 4: Fault in LT PTE-73340-CBR.

method equals the one obtained with the proposed method
with the difference that the proposed method only uses three
neural modules, one per each type of component versus the
17 hypotheses generated from the logical reasoning method.
For the logical reasoning method if the amount of system
components grows, a new hypothesis per component must
be generated while with the proposed method there are still
only three neural modules. So the proposed method unlike
the logical reasoning method uses the analog signals and
the frequency spectrum of the voltage and current faults
corresponding to the transmission lines to confirm their
faults if there is no enough information of the breakers and
relays coming from SCADA.

6. Conclusion

Applying this new method gives a diagnosis at component
level since there are three generic modules that will be called
depending on the type of component to be diagnosed. This
allows a diagnosis per component, per zone, or for the whole
context of the electrical system. The method is reinforced

considering the diagnosis of the corresponding transmission
line, both the oscillograms and the frequency spectrum of the
voltage, and current of the fault, through a neural structure,
to verify if a fault really happened and at the same time to
determine the type of the fault (L-g, LL-g, LL, LLL, and LLL-
g). This is possible since each one of the generic modules will
be called every time the primary and/or the back-up relays of
each one of the components (lines, transformers, and buses)
change state. It is also observed that it is plausible to use this
neural modular structure which can be used as a tool for the
operators of the control centers.

Abbreviations and Acronyms

L-g: Phase-to-ground fault
LL-g: Phase-to-phase-to-ground fault
LL: Phase-to-phase fault
LLL: Three-phase fault
LLL-g: Three-phase-to-ground fault
L: Transmission line under diagnosis
INT: Breaker
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Diagnosis Referring to Local End
Primary Breakers Operated

INT NTE-73430 -04:22:38 a.m.-
Protection Systems that signal Primary Breaker INT NTE-73430

Rel21 not Operated
Rel67 not Operated
Rel50FI -04:22:36 a.m.-

Diagnosis Referring to Remote End
Primary Breakers Operated

INT IGN-73430 -04:22:36 a.m.-
Protection Systems that signal Primary Breaker INT IGN-73430

Rel21 not Operated
Rel67 not Operated
Rel50FI -04:22:34 a.m.-

Box 5: Fault in LT NTE-73430-IGN.

Diagnosis Referring to Local End
Primary Breakers Operated

INT PPO-72010 -15:29:13 p.m.-
Protection Systems that signal Primary Breaker INT PPO-72010

Rel21 -15:29:11 p.m.-
Diagnosis Referring to Remote End

Primary Breaker INT IGN-73940 not Operated
Back-up Breakers Operated

INT IGN-73430 -15:29:11 p.m.-
INT IGN-72010 -15:29:11 p.m.-
INT IGN-77000 -15:29:11 p.m.-

Protection Systems that signal Primary Breaker INT IGN-73940
Rel21 -15:29:08 p.m.-
Rel67 -15:29:08 p.m.-
Rel50FI -15:29:08 p.m.-

Box 6: Fault in LT PPO-73490-IGN.

Int PyR: Primary and back-up breakers
YInt e: Fault in line by breakers, local end
YInt r: Fault in line by breakers, remote end
Yrel e: Fault in line by relays, local end
Yrel r: Fault in line by relays, remote end
F LT Int: Fault in line by breakers
F LT Rel: Fault in line by relays
𝐼fa: Fault current in phase A to ground
𝐼fb: Fault current in phase B to ground
𝐼fc: Fault current in phase C to ground
𝐼𝑔: Fault current to ground
𝑉fa: Fault voltage in phase A to ground
𝑉fb: Fault voltage in phase B to ground
𝑉fc: Fault voltage in phase C to ground
𝑉𝑔: Fault voltage to ground
𝑉𝑎: Fault voltage spectrum phase A to ground
𝑉𝑏: Fault voltage spectrum phase B to ground
𝑉𝑐: Fault voltage spectrum phase C to ground
𝑉𝑔: Fault voltage spectrum to ground
𝐼𝑎: Fault current spectrum phase A to ground
𝐼𝑏: Fault current spectrum phase B to ground

𝐼𝑐: Fault current spectrum phase C to ground
𝐼𝑑: Fault current spectrum to ground.
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