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SOME TOPOLOGICAL CARDINAL INEQUALITIES
FOR SPACES Cp (X)

J. C. FERRANDO, J. KA̧KOL, M. LÓPEZ-PELLICER, M. MUÑOZ

Abstract. Using the index of Nagami we get new topological cardinal inequalities for

spaces Cp(X). A particular case of Theorem 1 states that if L ⊆ Cp(X) is a Lindelöf

Σ-space and the Nagami index Nag(X) of X is less or equal than the density d(L) of L

(which holds for instance if X is a Lindelöf Σ-space), then (i) there exists a completely

regular Hausdorff space Y such that Nag(Y ) ≤ Nag(X), L ⊂ Cp(Y ) and d(L) = d(Y );

(ii) Y admits a weaker completely regular Hausdorff topology τ ′ such that w(Y, τ ′) ≤
d(Y ) = d(L). This applies, among other things, to characterize analytic sets for the weak

topology of any locally convex space E in a large class G of locally convex spaces that

includes (DF )-spaces and (LF )-spaces. The latter yields a result of Cascales-Orihuela

about weak metrizability of weakly compact sets in spaces from the class G.

1. Introduction

A consequence of a remarkable theorem due to Amir-Lindenstrauss [1] stating that

every weakly compactly generated (WCG) Banach space admits a continuous one-to-

one linear operator into c0(Γ) for suitable Γ is that for a (WCG) Banach space E one

has d(E, σ(E,E ′)) = d(E ′, σ(E ′, E)), hence E is weakly separable if and only E ′ is weak*

separable. This result has been extended to allK-analytic metrizable locally convex spaces

by Canela [4, Proposition 7]. Later, Cascales and Orihuela [8, Theorem 13] extended the

later result to a large class G of locally convex spaces E (containing all metrizable and

(DF )-spaces) for which E under the weak topology σ(E,E ′) is a Lindelöf Σ-space (see

Section 3). In this paper, using the index of Nagami, we provide a general version of

the mentioned consequence of the Amir-Lindenstrauss theorem for spaces Cp(X) of real-

valued continuous functions with the pointwise convergence topology (Theorem 1 and

Corollary 1), which particularly contains the above results.

All spaces X are assumed to be completely regular and Hausdorff. By `(X), d(X),

hd(X), w(X), nw(X), t(X) and q(X) we denote the Lindelöf number, the density, the

hereditarily density, the weight, the network weight, the tightness and the Hewitt-Nachbin

number of X respectively. Note that iw(X) means the smallest infinite cardinal λ for

which there exists a continuous bijection from X onto a space Y with w(Y ) ≤ λ, see [2].

A compact-valued map φ : Y → 2X is said to be usco if it is upper semicontinuous.
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The index of Nagami of a topological space X, denoted by Nag(X), is the smallest

infinite cardinal number λ for which there are a topological space Y of weight λ and

an usco map φ : Y → 2X covering X. The number Nag(X) measures how the space

X is determined by its compact subsets via upper semicontinuous compact-valued maps

defined on topological spaces, see [14] and also [7], [24].

In [7] and [16] another useful cardinal function has been introduced which assigns to

each topological space X the cardinal number `Σ(X) of K-determination of X defined

as the smallest infinite cardinal number λ for which there exist a metric space M with

w(M) = λ and an usco map from M into 2X covering X. Both concepts have been

essentially used to study and generalize several results from Cp-theory, see [3], [7], [17].

Note that the spaces X with `Σ(X) = ℵ0 are precisely the Lindelöf Σ-spaces (also called

K-determined spaces). If there exists an usco map from NN into 2X covering X, then X

is called K-analytic. Note that K-analytic ⇒ Lindelöf Σ ⇒ Lindelöf. We say that X is

analytic if it is a continuous image of the space NN. A topological space X is called a

quasi-Suslin space if there exists a set-valued map T from NN into 2X covering X such

that if αn → α in NN and xn ∈ T (αn) for each n ∈ N, then the sequence (xn)n has a

cluster point in T (α), see [26, Chapter One, 4.2].

Recall some of interesting relations for any completely regular Hausdorff space X.

(1) t(Cp(X)) ≤ Nag(X), `(X) ≤ Nag(X) ≤ `Σ(X) ≤ |X|,
(2) Nag(X) = max{Σ(X), `(X)},
(3) Nag(X) ≤ nw(X),

see [7, Proposition 7, Theorem 25, Corollary 27], where Σ(X) is the Σ-degree in the sense

of Hödel, [14].

Following [2], we say that a set A ⊂ X is of type Gλ in X if there exists a family γ of

open sets in X such that A =
⋂
γ and |γ| ≤ λ. Recall also that A is called λ-placed in X

if for each x ∈ X \A there is a set P of type Gλ in X such that x ∈ P ⊂ X \A. A Hewitt

λ-extension of X is the subspace υλX of βX consisting of all x ∈ βX for which any set

of type Gλ in βX containing x intersects X. If λ := ℵ0 the set υλX is just the (Hewitt)

realcompactification of X. Now define q(X) := min{λ ≥ ℵ0 : X is λ-placed in βX}. If

q(X) = ℵ0, then X is called a realcompact space. It is clear that υλX = X if λ ≥ q(X).

The inclusions X ⊂ υγX ⊂ υλX for λ ≤ γ are obvious, in fact, υγX is C-embedded in

υλX. In particular, X is C-embedded in υλX for every infinite cardinal number λ. We

recall that a subspace Y of a space X is C-embedded in X if every real-valued continuous

function on Y can be extended to a real-valued continuous function on X. Observe

also that if Y is a subspace of X which is C-embedded in X, then the restriction map,

π : Cp(X)→ Cp(Y ), is a continuous onto map, hence Nag(Cp(Y )) ≤ Nag(Cp(X)). Note

also the following inequalities, see[25, Theorem 1], [17, Proposition 4.3].

(1) q(X) ≤ d(Cp(X)) ≤ hd(Cp(X)),
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(2) q(X) ≤ Nag(X).

Another consequence of the above-mentioned theorem of Amir-Lindenstrauss is that a

compact space X is Eberlein compact if and only if the Banach space C(X) is (WCG).

Since every closed linear subspace Y of a (WCG) Banach space is a Lindelöf Σ-space

in the weak topology of Y , [11, Proposition 7.1.6], this may suggest the possibility to

classify compact spaces X in terms of topological properties of C(X) equipped with the

weak topology. In regard to this, let us recall that a compact space X is said to be a

Gul’ko compact if Cp(X) is a Lindelöf Σ-space. This leads to an interesting variant of the

Amir-Lindenstrauss theorem for Gul’ko compact spaces (see for example [11, Theorem

7.1.8]), which asserts that a compact space X is Gul’ko compact if and only if the Banach

space C(X) is a weakly Lindelöf Σ-space.

Consider the following concrete situation. If X and Cp(X) are Lindelöf Σ-spaces,

Talagrand’s [23, Theorem 2.4] assures that d(X) = d(Cp(X)). Consequently, if X is a

Gul’ko compact space, so that both X and Cp(X) are Lindelöf Σ-spaces, setting Y :=

Cp(X) and using the fact that d(X) = iw(Y ) as stated in [2, Theorem I.1.4], one gets

iw(Y ) = d(Y ) = d(X). This implies that there exists on Y a weaker completely regular

topology τ ′ such that w(Y, τ ′) = d(Y ) = d(X). These topological cardinal equalities

motivate parts (2) and (5) of Theorem 1 and Corollary 1 below.

Theorem 1. Let X be a topological space and L ⊂ Cp(X). Then there exist a space Y

and completely regular Hausdorff topologies τ ′ ≤ τ for Y such that

(1) Nag(Y, τ) ≤ Nag(X), `Σ(Y, τ) ≤ `Σ(X), d(Y, τ) ≤ d(X);

(2) w(Y, τ ′) ≤ d(L);

(3) nw(Cp(Y, τ)) = nw(Y, τ) ≤ max{Nag(X), d(L)}, d(Y, τ) ≤ max{Nag(X), d(L)},
hence d(Cp(Y, τ)) ≤ max{Nag(X), d(L)};

(4) L is embedded into Cp(Y, τ);

(5) d(L) ≤ max{Nag(L), d(Y, τ)}. Hence, if L is a Lindelöf Σ-space and Nag(X) ≤
d(L) (this holds for example if X is a Lindelöf Σ-space), then d(L) = d(Y, τ).

Consequently, if X is a Lindelöf Σ-space and Nag(Cp(X)) ≤ d(X), since X is embedded

into Cp (Cp (X)) there exists a space Y admitting a weaker completely regular Hausdorff

topology τ ′ such that X embeds into Cp(Y ) and d(X) = d(Y ) ≥ w(Y, τ ′).

Corollary 1. Let X be a topological space and m an infinite cardinal number with ℵ0 ≤
m ≤ q(X). Let L ⊂ Cp(X) a subspace of Cp(X) such that d(L) = m. Then there exist a

space Y and completely regular Hausdorff topologies τ and τ ′ on Y such that τ ′ ≤ τ and

(1) Nag(Y, τ) ≤ min{Nag(υλX) : λ ≥ m} ≤ Nag(υmX),

`Σ(Y, τ) ≤ min{`Σ(υλX) : λ ≥ m} ≤ `Σ(υmX);

(2) w(Y, τ ′) ≤ d(L);

(3) d(Y, τ) ≤ min{Nag(υλX) : λ ≥ m} ≤ Nag(υmX);
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(4) L is embedded into Cp(Y, τ).

We provide applications of Theorem 1. Among the others, see Proposition 1, we charac-

terize weakly analytic sets from the class G, and reprove the aforementioned generalization

of Amir-Lindenstrauss theorem (Corollary 10) for spaces from the class G.

2. Proofs of Theorem 1 and corollaries

We are prepared to present a proof of Theorem 1.

Proof. Let D be a dense subset of L, such that |D| = d(L). Let TD and TL be the weakest

topologies on X that make continuous all those real-valued functions that belong to D

or L, respectively. By density, f(x) = f(y) for each f ∈ D implies f(x) = f(y) for each

f ∈ L. Let (X̂, T̂D) and (X̂, T̂L) be the topological quotients of (X, TD) and (X, TL) with

respect to the relation x ∼ y if and only if f(x) = f(y) for all f of D and L, respectively.

If we define the map F : (X, TD)→ RD by F (z) = ρz, where ρz (f) = f (z) for all f ∈ D,

then clearly F is continuous and x ∼ y if and only if F (x) = F (y). Hence, (X̂, T̂D) is

homeomorphic to a subspace of RD and consequently

w(X̂, T̂D) ≤ w(RD) ≤ |D| = d(L).

On the other hand, since (X̂, T̂L) is a continuous image of X, we note that

Nag(X̂, T̂L) ≤ Nag(X), `Σ(X̂, T̂L) ≤ `Σ(X), d(X̂, T̂L) ≤ d(X),

see [7, Proposition 7 (iv), Remark 8] and [10, Theorem 1.4.10]. Now, applying [18,

Theorem 3.2] we have that

nw(X̂, T̂L) ≤ max{Nag(X̂, T̂L), w(X̂, T̂D)} ≤ max{Nag(X), d(L)}.

On the other hand, by [2, Theorem I.1.3] we have

nw(Cp(X̂, T̂L)) = nw(X̂, T̂L).

In particular, as the density is less or equal than the network weight we have that

d(X̂, T̂L) ≤ max{Nag(X), d(L)},

d(Cp(X̂, T̂L)) ≤ max{Nag(X), d(L)}.

Therefore (Y, τ) := (X̂, T̂L) is a completely regular Hausdorff space such that d(Y, τ) ≤
max{Nag(X), d(L)} and d(Cp(Y, τ)) ≤ max{Nag(X), d(L)}. Now set (Y, τ ′) := (X̂, T̂D).

Clearly τ ′ ≤ τ on Y .

Setting

x̂ := {y ∈ X : f (y) = f (x) for all f ∈ L},

define T : L→ Cp(Y, τ) by T (f) = f̂ , where f̂ (x̂) := f (x). Note that if y ∈ x̂, then

f̂ (ŷ) = f (y) = f (x) = f (x̂) ,
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since f ∈ L, so that f̂ is well-defined. On the other hand, f̂ ∈ Cp(Y, τ). Indeed, if x̂d → x̂

in (Y, τ), then

f̂ (x̂d) = f (xd)→ f (x) = f̂ (x̂) .

If f̂ (x̂) = ĝ (x̂) for all x ∈ X then f (x) = g (x) for all x ∈ X, which implies that

f = g and consequently that f̂ = ĝ, so that T is injective. Moreover, if fp → f in L then

fp (x)→ f (x) for every x ∈ X, which implies that f̂p (x̂)→ f̂ (x̂). Hence, T is continuous.

Finally, if f̂p → f̂ in T (L) under the pointwise convergence topology, then f̂p (x̂)→ f̂ (x̂)

and hence fp (x) → f (x) for all x ∈ X. This shows that T is a homeomorphism from L

into Cp(Y, τ).

Lastly, let B be a dense subset of (Y, τ) of cardinality d(Y, τ). The restriction map

j : Cp(Y, τ)→ Cp(B)

is bijective and continuous. Since w(Cp(B)) = |B|, we deduce that Cp(Y, τ) admits a

weaker Hausdorff topology ξ such that w(C(Y, τ), ξ) ≤ |B|. Hence, L admits a weaker

topology ξL such that w(L, ξL) ≤ |B|. By [7, Proposition 7 (v) and Remark 8] we deduce

that

d(L) ≤ max{Nag(L), w(L, ξL)} ≤ max{Nag(L), |B|}.

Since Nag(L) is countable when L is Lindelöf Σ, the second part of (5) follows from (3)

and from the previous inequality. �

We prove Corollary 1.

Proof. Let D ⊂ L be a dense set in L with |D| = d(L) = m. Let λ be an infinite cardinal

number such that λ ≥ m and ψ : Cp(X)→ Cp(υλX) be defined by ψ(f) = fυλ where fυλ

is the unique continuous extension of f to the whole υλX, [21, Proposition 2]. Since ψ

is continuous on each set of cardinality λ, see [21, Proposition 1], ψ(D) is a dense subset

of ψ(L) with |ψ(D)| = d(L). On the other hand, as ψ−1 is continuous, there exists on

C(X) a topology ξ stronger than the pointwise convergence topology τp of Cp(X) such

that Cp(υλX) is linearly homeomorphic to (C(X), ξ). But τp|D = ξ|D (since |D| ≤ λ, so

ψ is a homeomorphism on D) so also τp|L = ξ|L. Hence, L ⊂ Cp(X) is homeomorphic to

ψ(L) ⊂ Cp(υλX). We apply Theorem 1 for each λ ≥ m and the proof finishes. �

Particular results applied to the countable case are obtained as corollaries. The first

one follows from Corollary 1.

Corollary 2. Let υX be a Lindelöf Σ-space. If L ⊂ Cp(X) is separable, then there exists

a separable submetrizable Lindelöf Σ-space Y such that L is embedded into Cp(Y ).

Corollary 3. Let X be a topological space such that Cp(X) is a Lindelöf Σ-space. If

L ⊂ Cp(X) is separable, then there exists a separable submetrizable Lindelöf Σ-space

(Y, τ) such that L is embedded into Cp(Y ).
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Proof. Let m := ℵ0 in Corollary 1. Since Cp(X) is a Lindelöf Σ-space then υX is a

Lindelöf Σ-space, see [2, Theorem IV.9.5], now Corollary 2 applies. �

Corollary 4. Let υX be a Lindelöf Σ-space and let L be a Lindelöf Σ-subspace of Cp (X).

Then L is separable if and only if there exists a separable and submetrizable Lindelöf Σ-

space Y such that L is embedded into Cp (Y ).

The following corollary can be found in [7, Proposition 15], that extends [23, Theorem

3.4] and [2, Corollary IV.2.10].

Corollary 5. Let X be a compact space and λ an infinite cardinal number. Then

`Σ(Cp(X)) ≤ λ if and only if there is a space Y such that X ⊂ Cp(Y ), (that is Y is

homeomorphic to a subspace of Cp(X) which separates points of X), and `Σ(Y ) ≤ λ.

Proof. Assume that `Σ(Cp(X)) ≤ λ. Since X ⊂ Cp(Cp(X)), by Theorem 1(4 and 1) there

exists a space Y such that X ⊂ Cp(Y ) and `Σ(Y ) ≤ `Σ(Cp(X)) ≤ λ. Conversely, if there

exists a space Y such that X ⊂ Cp(Y ) and `Σ(Y ) ≤ λ, then Y is homeomorphic to a

subspace of Cp(X) and Y separates points of X. Then by [7, Proposition 14] we have

that `Σ(Cp(X)) ≤ λ. �

In [16] it is proved that if E is a Banach space and B∗ is the unit ball in the dual E ′

with the weak∗-topology, then `Σ(E, σ(E,E ′)) = `Σ(Cp(B
∗)). Applying Corollary 5 we

have the following general

Corollary 6. For every Eberlein-Grothendieck space X there exists a compact space Y

such that X embeds into Cp(Y ) and `Σ(Cp(Y )) ≤ `Σ(X).

Proof. Since X is an Eberlein-Grothendieck space, there exists a compact space K such

that X is homeomorphic to a subset of Cp(K), see for example [2]. Let φ : K → Cp(X)

be the (continuous) map defined by φ(p)(f) := f(p) for each f ∈ X and p ∈ K. Set Y :=

φ(K). Let φ∗ : Cp(Y ) → Cp(K) be the map defined by φ∗(f) := f ◦ φ. Then φ∗ embeds

Cp(Y ) into a closed subspace of Cp(K), Cp(Y ) contains a subspace homeomorphic to X

which separates points of Y , see [2, Corollary 0.4.8]. If λ is an infinite cardinal number with

`Σ(X) ≤ λ, by Corollary 5 we have that `Σ(Cp(Y )) ≤ λ. Hence, `Σ(Cp(Y )) ≤ `Σ(X). �

A family {Aα : α ∈ NN} of sets covering a set X is called a resolution of X if Aα ⊂ Aβ

whenever α ≤ β, α, β ∈ NN. We call {Aα : α ∈ NN} a compact resolution in X if each set

Aα is compact in X. Every K-analytic space has a compact resolution, see [23], or [5],

and every angelic space with a compact resolution is K-analytic, see [5, Corollary 1.1].

Corollary 7. Let υX be a Lindelöf Σ-space. Then a non-empty subset Y of Cp(X) is

analytic if and only if Y has a compact resolution and is contained in a separable subset

of Cp(X).
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Proof. If Y is contained in a separable subset of Cp(X), then Y admits a weaker metric

topology by Corollary 2. If additionally Y has a compact resolution, Y must be analytic

by application [23] or [8, Theorem 15]. The converse is obvious. �

Corollary 8. Cp(X) is analytic if and only if Cp(X) is separable and admits a compact

resolution.

Proof. Assume Cp(X) is separable and has a compact resolution. Since υX is a Lindelöf

Σ-space by [13, Corollary 23], we apply Corollary 7 with Y := Cp(X). �

3. Application to locally convex spaces

In working with compact sets in locally convex spaces, two essential questions may

naturally arise, the first one about the metrizability of such sets, the second relative to

the weakly angelicity of whole space. We refer to [8] (and references therein) where a list of

positive results is provided (among others for (LF )-spaces and (DF )-spaces) concerning

both questions. We only recall here that, inspired by some particular results about (LF )-

spaces and (DF )-spaces, in [8] is introduced and studied the so-called class G of lcs, for

which the two above-mentioned problems have positive answers.

A lcs E belongs to the class G if there is a resolution {Aα : α ∈ NN} in (E ′, σ(E ′, E))

(a G-representation of E ′) such that each sequence in any Aα is equicontinuous, [8]. The

class G is indeed large and contains “almost all” important locally convex spaces (includ-

ing (LF )-spaces and (DF )-spaces), is stable by taking subspaces, Hausdorff quotients,

countable direct sums and products. Nevertheless, as it is proved in [6], the space Cp(X)

belongs to the class G if and only if Cp(X) is metrizable.

A compact set K is a Talagrand compact if and only if it is homeomorphic to a weakly

compact subset of a lcs from the class G, see [8, Theorem 12]. Therefore, one may ask

when (weakly) compact sets in a lcs in class G are (weakly) metrizable. Both questions

were answered in [9] and [8], respectively. We prove the following more general case.

Proposition 1. A subset Y of a lcs E from the class G is σ(E,E ′)-analytic if and only

if Y has a σ(E,E ′)-compact resolution and is contained in a σ(E,E ′)-separable subset.

Proof. By [12, Corollary 1] the space Z := (E ′, σ(E ′, E)) is quasi-Suslin. Hence, there

exists a quasi-Suslin map T : NN → 2Z , α 7→ T (α). Note that υZ is K-analytic. Indeed,

since every T (α) is countably compact, its closure T (α) in υZ is compact. Then, α 7→
T (α) is an usco map, so W :=

⋃
T (α) is K-analytic. Since Z ⊂ W ⊂ υZ, we have

W = υW = υZ is K-analytic. As (E, σ(E,E ′)) ⊂ Cp(Z), we apply Corollary 7. �

Since every analytic compact set is metrizable, Theorem 1 yields [9, Theorem 10].

Corollary 9 (Cascales-Orihuela). A σ(E,E ′)-compact set Y in a lcs E from the class G

is σ(E,E ′)-metrizable if and only if Y is contained in a σ(E,E ′)-separable subset of E.
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Note that Theorem 1 applies to show [8, Theorem 13].

Corollary 10 (Cascales-Orihuela). Let E be a lcs from the class G such that (E, σ(E,E ′))

is a Lindelöf Σ-space, then d(E, σ(E,E ′)) = d(E ′, σ(E ′, E)).

Proof. Since E belongs to G and L := (E, σ(E,E ′)) is a Lindelöf Σ-space, the space

X := (E ′, σ(E ′, E)) is K-analytic by applying [22, Theorem 21] and [5, Corollary 1.1].

Clearly L ⊂ Cp(X), so by Theorem 1(5,1) there exists Y such that d(L) = d(Y ) ≤ d(X).

Note that d(X) ≤ d(L) also holds. Indeed, since X ⊂ Cp(Cp(X)), by Theorem 1(5,1)

there exists Z such that

d(X) ≤ max{Nag(X), d(Z)} = d(Z) and d(Z) ≤ d(Cp(X)).

On the other hand, d(Cp(X)) = iw(X), see [19] or [2, Theorem I.1.5]. If B is a dense

subset of L, then σ(E ′, B) ≤ σ(E ′, E), so iw(X) ≤ d(L). Hence, d(X) ≤ d(L). �

Finally we provide a short proof of the following result of this type taken from [8]. We

were informed by prof. Cascales that a simple proof for E being an (LF )-spaces was

already presented in the Meeting of Zaragoza (Spain) held in 1985.

Theorem 2 (Cascales-Orihuela). A precompact set in a lcs from the class G is metrizable.

Proof. Since the completion of a lcs E in class G belongs to the class G, we may assume

that E is complete and a precompact set K is compact. Let
{
Aα : α ∈ NN

}
be a G-

representation of E ′. By τ we denote the topology of E. We say that a subset M of

E ′ is K0-separated if (a+K0) ∩ M = {a} for each a ∈ M . By Zorn’s lemma there

exists a maximal K0-separated subset M1 of E ′. Clearly M1 + K0 = E ′. Note that

M1 is countable. Indeed, otherwise, since E ′ =
{
Aα : α ∈ NN

}
and Aα ⊂ Aβ whenever

α ≤ β, for α, β in NN, we apply a standard argument providing a countable infinite

subset P of M1 and γ ∈ NN such that P ⊂ Aγ, see [20], or [5], [15]. Since E belongs to

G, P is equicontinuous, so P is precompact in the topology of uniform convergence on

the τ -precompact subsets of E. Therefore there exists a finite set {ai : 1 ≤ i ≤ k} ⊂ P

such that P ⊂
⋃
{ai +K0 : 1 ≤ i ≤ k} . Clearly there exists 1 ≤ j ≤ k such that the set

(aj +K0) ∩ P is infinite, contradicting the hypothesis that M1 (⊃ P ) is K0-separated.

Let Mn be a maximal subset of E ′ that is n−1K0-separated, for each n ∈ N . The

set M0 :=
⋃
{Mn : n ∈ N} is countable. Let τM0 be the weakest topology on K that

makes continuous the functions of M0. If x 6= y are two points of K then there exist

g ∈ E ′ and n ∈ N such that |g(x)− g(y)| > 3n−1. Since E ′ = Mn + n−1K0, there exists

f ∈Mn(⊂M0) such that g ∈ f +n−1K0. Hence, |f(x)− f(y)| > n−1. Therefore (K, τM0)

is metrizable, so K is metrizable. �
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