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Abstract
The number of people using on-line social networks as a new way of communication is con-

tinually increasing. The messages that a user writes in these networks and his/her interac-

tions with other users leave a digital trace that is recorded. Thanks to this fact and the use of

network theory, the analysis of messages, user interactions, and the complex structures

that emerge is greatly facilitated. In addition, information generated in on-line social net-

works is labeled temporarily, which makes it possible to go a step further analyzing the dy-

namics of the interaction patterns. In this article, we present an analysis of the evolution of

user interactions that take place in television, socio-political, conference, and keynote

events on Twitter. Interactions have been modeled as networks that are annotated with the

time markers. We study changes in the structural properties at both the network level and

the node level. As a result of this analysis, we have detected patterns of network evolution

and common structural features as well as differences among the events.

Introduction
The way people communicate with each other is changing [1]. Social networks such as Linke-
din, Facebook and Twitter contain millions of users and are among the most popular sites on
the web [2]. Currently, users share their thoughts, preferences, feelings, or political beliefs in
on-line social networks. Each user’s contribution or interaction with others leaves a digital
trace. Therefore, there are vast amounts of data that can be used for research on human behav-
ior. New technologies are emerging facilitating the process of collecting and analyzing data
with unprecedented width, depth and scale. Through the application of these new technologies
in the context of social networks, it has become possible to have a broad view of users and their
interactions at different levels of detail. The analysis of structures that emerge from social inter-
actions helps to do the following: identify individuals and groups that play central roles; facili-
tate the detection of structural holes; and find opportunities to accelerate knowledge flows and
to locate information. Furthermore, this analysis is of tremendous importance in several areas.
In the area of marketing, this analysis has been applied to commercial usage [3], marketing and
strategies of persuasion [4], recommender systems [5] and also as social sensor to predict out-
comes [6] and to determine potential consumers [7]. It has also been used to determine the
users’ personality [8, 9], to detect the most influential users [10], or to understand how
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information flows [11]. Social network analysis has also been applied to social contexts such as
terrorism [12] and cyberbullying [13]. In other areas (e.g., information retrieval), it has been
used to rank Internet search results based on the neighbors of the users in the social network
[14].

Social networks can be considered to be dynamic processes [15, 16] where, as time passes,
individuals join, leave, create, or deactivate social ties thereby altering the structure of the net-
work [17]. An analysis of the evolution of a social network makes possible to study the dynam-
ics that are associated to interactions among users on a global scale. It allows us to understand
how relationships evolve over time, what kind of relationships are established among users
(i.e., if they are bidirectional or unidirectional), if there are conversations between users or,
conversely, users only disseminate information without interacting with other users, which
user profiles are preferred by users when interacting with them, which user profiles are most
active in the network, or what user profiles play a mediating role in users’ relationships. The
analysis of the data related to the evolution of user interactions network gives us valuable infor-
mation about the social behavior of users in virtual environments and facilitates the definition
of social network formation patterns that make easier the comparison with other
natural processes.

In this paper, we analyze a set of different types of events (TV shows, socio-political events,
keynotes and conferences) from Twitter using network theory. We created a set of temporally
annotated networks from the data collected about users interactions in these events. We stud-
ied the structural properties and the dynamical patterns of the networks associated to the
events. The analysis of structural properties helps us to answer the following questions about
the events that we analyzed: (i) do users interact in the same way in all types of the events?; (ii)
there are common structural properties or structural evolution patterns in networks of the
events of the same type?; (iii) the events of different types share any structural property or evo-
lution pattern?; (iv) which are the structural properties or structural evolution patterns that
characterize television, socio-political, keynote, and conference events?; (v) which are the most
important user profiles in each type of event?.

The paper is structured as follows. In Section 1, we present previous works that are related
to the analysis of social networks. Section 1 describes the dataset that we considered for the
analysis of each type of event. Sections 1 and 1 present the results of our analysis. Specifically,
Section 1 presents the analysis of structural properties that we considered at the network level,
and Section 1 presents the analysis of centrality properties that we study at the node level. In
Section 1, we discuss the results of the analysis at both the network and the node level. Finally,
Section 1 presents the conclusions of the analysis.

RelatedWork
In recent decades, different areas such as Sociology [18], Mathematics, or Physics [19, 20] have
directed their attention to the analysis of complex connectivity of modern society [21]. Due to
technological advances that facilitate global communication and digital interaction, and also
the exponential increase in the number of users in virtual environments, there has been grow-
ing interest in understanding new ways of interaction in on-line social networks. The area of
Networks is considered an appropriate tool for modeling and analyzing these complex
social systems.

Twitter is one of the on-line social networks that has been extensively studied due to the ac-
cessibility of the information that is posted by its users. It has millions of users around the
world that use it to stay connected to friends, family, work colleagues, or celebrities through
computers or mobile devices. Users can have a public profile where their messages can be seen
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by anyone or they can have a private profile where only selected followers can see the messages.
Most users usually have a public profile which allows other users to follow them and see their
messages in their time line (http://www.pewinternet.org/2013/05/21/teens-social-media-and-
privacy/ Latest access: 27/01/2015).

In Twitter, we distinguish between links established between followers and followees and
links between users that have interacted at least once. Huberman et. al [22] consider that most
of the links between followers and followees are meaningless from an interaction point of view.
The hidden social network among users that interact with each other is the one that really mat-
ters when trying to rely on word of mouth to spread an idea, a belief, or a trend. In contrast to
works based on Facebook, Flickr, and Youtube, which focus on friendship relationships [23],
the majority of works related to Twitter focus on the analysis of networks that arise from inter-
actions among users. For instance, Smith et al. [24] found six clearly different structures that
emerge from the interactions of users. They analyzed the density of the structure, identify the
users that interconnected different communities, the users that acted as hubs, and analyze
which hashtags were mentioned by the users and which URLs were most frequently used
in tweets.

In other works, the analysis of on-line social networks has helped to understand the users’
interactions in relation to political events. In [25], Morales et. al analyzed the structures that
emerged from users’ interactions during the Venezuelan protest. The authors consider two
type of networks: one represented the social substratum (network of followers), and the other
represented the interactions among the users (information diffusion graph). From the analysis
of these networks, the authors identified three different types of users that determined the in-
formation flow (information producers, active consumers, and passive consumers). They ob-
served that communities formed around information producers in the followers network. In
the information diffusion network, people were more selective when retransmitting informa-
tion and users were connected around producers that are highly followed and retransmitted.

Borondo et. al [6] also studied the social activity during a political event. They built two net-
works: one was built based onmentions and the other was based on retweets. They analyzed the
distribution of the degree of connection, assortativity, and community structure. The authors
concluded that the majority of the users only participated by posting a couple of messages and
that there was a set of participants (media and politicians) that received the majority of mes-
sages and generated communities around them. The interaction patterns reflected thatmen-
tions tended to occur among the political parties a little more frequently than retweets;
therefore, there was a lack of debate among the politicians.

Lotan et. al [26] considered Twitter to be an information-sharing network more than a so-
cial network, and they tried to characterize the most common information flows. The authors
extracted statistics from the tweets, retweets, and mentions for two political events. They classi-
fied the users into a set of categories (mass media, journalists, bloggers, etc.). They analyzed
how information flows based on this classification. They detected several main trends: (i) indi-
viduals (journalists and activists) were more successful in seeding prominent information
flows than organizations; and (ii) related to the number of participants in an information flow,
tweets from bloggers or non-media organizations were the most likely to spread. In [11],
Romero et. al also focused on how information flows and the influence of the hashtag in Twit-
ter. The authors analyzed the ways in which Twitter hashtags spread on a network defined by
the interactions among Twitter users. They found significant differences in the ways that hash-
tags on different topics spread. The authors also analyze the subgraph structure of the initial
adopters for different hashtags finding structural differences across topics.

The majority of the research works about on-line social networks that emerge from user in-
teractions in Twitter study a specific point in time. However, the majority of real-world on-line
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social networks evolve over time and generate an enormous amount of data that is temporally
annotated. Currently, a limited number of works that have analyzed the evolution of social net-
works and only a few of them are based on Twitter. For instance, Kumar et. al [27] presented
an evolutionary analysis of structural properties of Flickr and Yahoo! 360 networks. The au-
thors considered different parts of the networks in their analysis: singletons, the giant compo-
nent, and the middle region. They analyzed the structure of each part and the patterns of
evolution of the whole network. In their work, the evolution of structural properties such as
reciprocity, density, the distribution of the degree of connection were considered. In general,
the authors conclude that the major part of the nodes were outside the giant component and
that the star structure characterizes the structure formed by the majority of nodes that are out-
side of the giant component. They also detected distinct stages of growth that were character-
ized in terms of density and diameter. Borge-Hoelthoefer et. al [28] studied the structural and
dynamical patterns of a network made up of Twitter users during the 15M social phenomenon
in Spain. The authors found that the dynamical network had some properties such as robust-
ness or power-law distributions that were typical of critical systems. The authors also detected
that network formation was not a gradual process and that the patterns of popularity growth
reflected a tendency towards a hierarchical structure.

Peña et al. [29] analyze Spanish social movements in social networks. They propose an anal-
ysis of the evolution of social movements in four time snapshots: Origin, Early, Boom, and
Late. The authors analyze the network generated in each movement taking into account
retweets and mentions and focus their analysis in the k-core decomposition and the communi-
ty detection. Moreover, the authors elaborate a demographical analysis. They conclude that
there is no inter-institutional dialogue. The Twitter accounts that participate in conversations
are individual accounts related to political parties. The authors also detect that the accounts
representing media act as intermediates between government institutions and
social movements.

Cha et al. [30] examine how three types of influential users performed in spreading popular
news topics. They compare three measures of influence: indegree, retweets, and mentions and
investigate the dynamics of an individual’s influence by topic and over time. After the temporal
analysis, the authors conclude that the most influentials accounts interact differently with their
audience. Mainstream news organizations consistently spawned a high level of retweets over
diverse topics. In contrast, celebrities were better at inducing mentions from their audience.

Most studies analyzing user interactions focus on political events or social movements.
There are other studies that analyze user activity during television programs. Shamma et al.
[31] start to study tweets related to media events. By examining conversation volume and activ-
ity over time, they were able to temporally segment a live news event and identify the key peo-
ple in the event. Based on this work, Diakopoulos et al. [32] propose an analysis of the activity
for a television event based on sentiment analysis to help journalists understand the dynamics
of feelings regarding program content.

Our proposal does have similarities with some of the presented the works since we consider
on-line social networks to be dynamic processes. However, our proposal differs from previous
works in the literature since we propose a vision of the evolution over time of user interactions
from a global point of view (i.e., network level) and from a user perspective (i.e., node level).
Moreover, in this analysis, we focus not only in one type of event, but also we analyze the evolu-
tion of social behavior of users in different type of events in order to characterize each event
and determine similarities and differences in the resultant social structures that emerge from
social interactions.
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Social Network Datasets
We decided to use Twitter to analyze dynamic on-line networks. As we stated in Section 1, the
main reason is the accessibility to the information posted by its users due to its open access. In
other social networks such as Facebook, you only have access to information of your friends
and users that explicitly allow you access to their profile information. Twitter users share ideas,
opinions, and links to other content through short text messages (maximum 140 characters)
called tweets. We have classified tweets into two categories: global and individual. Global tweets
are used when the update is meant for anyone that cares to read it. Individual tweets are those
that involve another user. Individual tweets can be: retweets, mentions, and replies to users.
Retweets are messages that were previously posted by another user.Mentions are messages that
are used when a user aims to inform about an update to a specific person. Often, two or more
users will have conversations by posting mentions to each other. Replies to users are messages
where a user mentions another user as a result of a previous message.

Interactions between users generate social structures that can be dynamically analyzed. We
focus on the analysis of interactions during a specific event that has been previously scheduled
(i.e., it has a predefined time for starting and for ending) and has an associated hashtag. A
hashtag is a label with the symbol # used to mark keywords or topics in an event. Our datasets
for analysis were collected from different events on Twitter with their corresponding hashtags.
We considered events from the following contexts: TV shows and series, Technical conferences,
Socio-Political events, and Keynote events (see Table 1). Note that the aim of the paper is to ana-
lyze a set of events of different types to determine if they share any characteristics, if they have

Table 1. Description of events on Twitter that have been analyzed.

Event Description Start End

#lavoz the last show of a Spanish TV show about music 2013/12/18-20:00:00 2013/12/19-03:00:00

#topchef12 the last show of a Spanish TV show about cooking 2013/12/18-20:30:00 2013/12/19-02:30:00

#Operacion Palace Spanish news show 2014/02/23-19:30:00 2014/02/24-00:30:00

#breakingbad last episode of a serial drama 2013/09/30-01:00:00 2013/09/30-06:30:00

#GH15 reality show 2014/12/18-19:30:00 2014/12/10-03:30:00

#GameOfThrones first episode of a serial drama season 2014/04/07-01:00:00 2014/04/07-06:30:00

#lomce #24O social protests due to political decisions in Spain related to changes in the
education law

2013/10/24-10:00:00 2013/10/24-21:00:00

#viacatalana social protests due to political decisions in Spain related to independence of a
Spanish region

2013/09/11-15:00:00 2013/09/11-21:00:00

#diada2014 National Day of Catalonia 2014/09/11-06:00:00 2014/09/11-23:30:00

#LoteriadeNavidad Christmas National Lottery 2014/12/22-07:00:00 2014/12/22-15:30:00

#AppleKeynote presentation of new technological products to the audience: improvements in
OSX Mavericks, . . .

2013/10/22-17:00:00 2013/10/22-23:00:00

#nuevosiPhone presentation of new models of iphone 2013/09/10-17:00:00 2013/09/10-22:00:00

#innovation
reinvented

presentation of new Nokia devices and applications 2013/10/22-17:00:00 2013/10/22-23:00:00

#MensajedelRey keynote of the head of the state 2014/12/24-19:00:00 2014/12/24-23:20:00

#EBE13 social web conference 2013/11/15-09:00:00 2013/11/17-16:00:00

#IoTWF Internet of Things World Forum 2013/10/29-06:00:00 2013/10/31-18:30:00

#seo4seos SEO conference 2013/10/05-07:00:00 2013/10/05-23:30:00

#tedxvalencia interdisciplinary conference 2013/06/22-06:30:00 2013/06/22-17:00:00

#comunica2 Social Networks International Congress 2014/02/20-06:00:00 2014/02/21-21:00:00

doi:10.1371/journal.pone.0124049.t001
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characteristics that can be used to distinguish among them, and in that case, what these charac-
teristics are. Mainly, we analyzed events that occurred in Spain, and therefore the conclusions
that we have drawn from this analysis should be interpreted in the context of the Spanish socie-
ty and the specific events that we have considered in this analysis.

We built a temporally annotated network for each type of event (data repository: http://dx.
doi.org/10.6084/m9.figshare.1296156) (see Table 2). A user A becomes a node of the network
when he/she participates by writing a global or individual message (retweet, mention or reply
to user) with the hashtag associated to the event or when another user B references him/her in
an individual message. Each user has an associated label that represents the instant when he/
she joined the network. Links of the network are established when a user writes an individual
message to an existing or new user. Therefore, the network is directed (see Fig 1). It is impor-
tant to note that we work with accumulated data (i.e., the network at time t also includes the
nodes and links from a previous moment t0 < t).

Network Structure Analysis
Each network was analyzed in a temporal interval that started two hours before the event and
ended two hours after the event. During the temporal interval, we analyzed the network in a set
of snapshots. The time between snapshots depended on the duration of the event. At the net-
work level, we analyzed the evolution of the following properties for different types of events
over time:

• types of interactions: This shows the number of the different types of messages that were gen-
erated in an event. The evolution of the number of each type of messages provides insights

Table 2. High-level statistics in the last snapshot of the social networks analyzed (N = nodes; E = links; clust. = clustering degree; d = network di-
ameter; path = average path length; comp. = number of connected components in the network; k = average degree of connection; %GC =% of
nodes in the giant component; %sl = percentage of symmetric links.

Event N E clust. d path comp. k %GC %sl

#lavoz 45,914 39,891 0.07 9 2.11 19,398 0.87 39 6.95

#topchef12 26,044 27,155 0.05 25 8.74 10,689 1.04 49.12 12.29

#Operacion Palace 107,606 195,470 0.08 23 8.26 19,504 1.82 80 15.06

#breakingbad 151,473 120,661 0.05 13 3.24 67,060 0.80 47 14.26

#GH15 25,011 56,612 0.08 18 6.71 4950 2.26 75.26 6.17

#GameOfThrones 98,882 96,290 0.09 21 5.45 40,806 0.97 52.6 21.23

#lomce #24O 61,653 97,570 0.07 27 6.93 8,088 1.58 80 10.80

#via catalana 41,166 76,094 0.07 23 8.28 8,705 1.85 74.7 12.19

#diada2014 63,451 119,906 0.08 25 7.94 10,036 1.88 80.9 13.22

#LoteriadeNavidad 57,152 62,747 0.04 15 3.14 12,232 1.09 72 4.61

#Apple Keynote 3,367 1,729 0.04 4 1.27 1,827 0.51 20 1.53

#nuevos iPhone 9,509 10,600 0.05 9 2.09 1,227 1.12 82.02 6.47

#innovation reinvented 110 95 0.04 3 1.34 32 0.86 26 10.00

#MesajedelRey 1,490 1,173 0.03 3 1.12 469 0.78 44.7 5.62

#EBE13 4,150 17,545 0.22 9 3.40 330 4.23 88.6 30.83

#IoTWF 1,051 2,608 0.20 9 3.86 60 2.48 92.0 19.76

#seo4seos 367 1,474 0.35 6 2.91 16 4.02 94.5 31.07

#tedx valencia 325 843 0.17 8 3.60 45 2.59 85 8.60

#comunica2 1,290 5,745 0.37 7 3.00 65 4.45 91.3 34.12

doi:10.1371/journal.pone.0124049.t002
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about how users participate at different moments: before the event starts, once the event
starts, or after the event.

• nodes: the evolution of nodes provides a view of the evolution of the participation in the
events (i.e., at what moments the majority of the users join the event).

• links: The evolution of the links reflects how the information flows in the network and influ-
ences the formation of the giant component.

• symmetric links: The evolution of symmetric links shows at what moments of an event there
is reciprocity in the messages between users (i.e., there are conversations between users).

• distribution of the degree of connection: The evolution of the distribution of the degree of con-
nection helps to understand the topology of the network and how it changes or when it re-
mains constant as time passes.

• average path length and diameter: The evolution of the average path length helps us to under-
stand at what moment there is a change in the network structure that reduces the average
number of hops between two users in the network. The evolution of the diameter provides
information about at what moment the largest geodesic distance in the (connected) network
has its lowest value. For the analysis of the average path length and the diameter, we have
used the giant component.

• clustering: Clustering quantifies the number of closed triplets over the total number of triplets
(both open and closed). The evolution in the number of triplets shows how the interactions
between nodes (that are neighbors) evolve (i.e., two nodes that are neighbors of a node are
also neighbors themselves).

• nodes that are part of the giant component: The evolution of this property provides an estima-
tion of at what moment during an event the giant component is formed and when it has the
highest part of nodes in the network.

The results of the analysis are shown in Figs 2 and 13. For each structural property, we show
the results obtained in a set of selected events of each type (i.e., TV shows, socio-political events,

Fig 1. Social network based on user interactions on Twitter.

doi:10.1371/journal.pone.0124049.g001
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keynote events, or technical conferences). The Y-axis of the graphs shows the value of the prop-
erty that we analyzed. Each event is represented by a set of points of certain color. To compare
the results obtained in the different events, the structural metrics were normalized in the range
[0, 1]. The X-axis shows the time snapshots starting from two hours before the event and end-
ing two hours after the event. To compare the evolution of the events over time, the time snap-
shots were normalized in the range [0:130]. The time interval [0:15] corresponds to the period
of time before the event begins (we considered the user interactions that occur two hours be-
fore the event starts). The time interval [15:115] corresponds to the duration of the event. Fi-
nally, the time interval [115:130] corresponds to the period of time once the event ends (we
considered two hours after the event ends). In each of the properties analyzed, the regression
function that best fits the data collected from the events is also shown. In Table 3, we show the
goodness-of-fit statistic R-squared of the regression functions considered in the analysis. If the
value of R-squared is low, we do not plot the regression function.

Types of interaction
The number of messages of each type is not a structural metric but it gives us insights about
how users interact in the network. For the number of messages generated by the users in the
TV show events analyzed, we observed that there was a linear increase in all of the types of mes-
sages before and during the event (see Figs 2a, 3a, 4a and 5a). However, there was a large differ-
ence in the number of global and individual messages. The number of global messages was

Fig 2. Evolution of the number of global messages in different type of events.

doi:10.1371/journal.pone.0124049.g002
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almost twice the number of mentions (see Table 2). This means that users in the context of the
TV shows analyzed preferred using Twitter to express their opinion rather than to interact
with other users. At the end of the event, the number of messages remained constant except for
mentions and retweets that continued to increase slowly (see Figs 3a and 4a). This means that
users tended to interact with other users after the event in order to share their opinion about
what happened during the TV show.

In the socio-political events analyzed, the evolution of the number of global and individual
messages grew linearly as time passed (see Figs 2b, 3b, 4b and 5b). The total number of individ-
ual messages (mentions, retweets, and reply to) was higher than the number of global messages
during the event, which indicates that users at the events analyzed tended to interact more than
users in other events such as TV shows (see Table 2). At the end of the event, there was a sharp
increase in the number of mentions.

The evolution of the messages in the keynote events analyzed was as follows (see Figs 2c, 3c,
4c and 5c). Before the event, there was a great increase in the number of messages. Once the
event started, the number of global and individual messages remained almost constant. In
events of this type, there was a significant difference between the number of global messages
and the number of individual messages (see Table 2). The people tended to express their opin-
ion or provide information at the beginning of the event through global messages rather than
interact with other users through an individual message.

Finally, in the conferences analyzed, the number of global and individual messages increased
linearly during the event (see Figs 2d, 3d, 4d and 5d). This behavior is similar to the socio-politi-
cal events analyzed. If the conference took place over two days, the number of messages in-
creased during the conference and remained constant after the conference. The main

Table 3. Goodness-of-fit statistic R-squared of the regression functions considered in the analysis of each network level feature (T = tweets;
ReT = retweets; Ment. = mentions; Reply. = reply-to; N = nodes of the network; E = links; sl = symmetric links; k = average degree of connection;
d = network diameter; path = average path length; clust. = clustering degree; GC = giant component).

Ev. Regress. T ReT Ment. Reply. N E sl k d path clust. GC

TVShows Lineal 0.9 0.86 0.8 0.73 0.75 0.81 0.03 0.51 0.42 0.46 0.075 0.44

Log. 0.91 0.9 0.77 0.72 0.91 0.82 0.009 0.33 0.56 0.5 0.04 0.50

Exp. 0.43 0.46 0.51 0.52 0.39 0.49 0.001 0.4 0.3 0.26 0.1 0.34

Power 0.68 0.72 0.73 0.72 0.64 0.72 0.027 0.35 0.51 0.47 0.06 0.34

Pol. 0.9 0.91 0.85 0.83 0.9 0.88 0.15 0.57 0.69 0.65 0.107 0.47

Socio-pol. Lineal 0.94 0.93 0.93 0.89 0.93 0.93 0.044 0.8 0.48 0.44 0.5 0.52

Log. 0.81 0.79 0.78 0.47 0.86 0.79 0.055 0.75 0.52 0.42 0.31 0.53

Exp. 0.67 0.65 0.68 0.7 0.64 0.67 0.028 0.65 0.32 0.27 0.17 0.26

Power 0.8 0.79 0.81 0.83 0.79 0.8 0.033 0.77 0.46 0.43 0.24 0.35

Pol. 0.9 0.9 0.9 0.87 0.93 0.93 0.05 0.81 0.64 0.58 0.67 0.74

Keynotes Lineal 0.51 0.39 0.43 0.32 0.53 0.46 0.037 0.23 0.2 0.16 0.24 0.02

Log. 0.55 0.33 0.34 0.3 0.57 0.38 0.023 0.13 0.29 0.13 0.19 0.01

Exp. 0.4 0.3 0.31 0.18 0.43 0.32 0.06 0.1 0.07 0.03 0.07 0.003

Power 0.54 0.33 0.35 0.21 0.55 0.37 0.005 0.04 0.22 0.07 0.05 0.0009

Pol. 0.72 0.54 0.55 0.54 0.73 0.59 0.073 0.37 0.65 0.41 0.51 0.04

Conferences Lineal 0.91 0.92 0.92 0.83 0.88 0.9 0.43 0.67 0.007 0 0.611 0.33

Log. 0.84 0.84 0.83 0.73 0.87 0.84 0.49 0.77 0.0008 0.002 0.75 0.55

Exp. 0.65 0.67 0.69 0.62 0.62 0.63 0.28 0.42 0.01 0.002 0.46 0.18

Power 0.83 0.86 0.87 0.77 0.81 0.83 0.33 0.55 0.002 0.001 0.57 0.31

Pol. 0.92 0.93 0.92 0.84 0.9 0.91 0.49 0.75 0.27 0.34 0.73 0.56

doi:10.1371/journal.pone.0124049.t003
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difference between conferences and the rest of the events such as TV shows, socio-political
events, and keynotes was that in conferences, the most significant increase was in mentions
rather than in global messages. This fact reflects the higher degree of interaction between users.

Nodes and Links
Nodes give us a view of the evolution of participation in an event. Links allow us to understand
if the participation of nodes in an event is through individual messages, which implies an inter-
action with other users, what type of interactions occur (mention, retweet, or reply to), and
how information flows. Depending on the type of event, the evolution of nodes and links is not
the same. For instance, in the TV shows networks analyzed, the number of nodes and links
evolved similarly before and during the event (see Figs 6a and 7a). During the two hours before
the TV show started, there was a sharp increase in the number of nodes. This increase contin-
ued at a lower rate during the TV show event. At the end of the event, the number of nodes in-
creased steadily and finally remained almost constant. However, the number of links
continued growing, albeit at a lower rate than before. The last links were individual messages
between nodes that were already present in the network since the number of the nodes did not
increase. This indicates that at the end of the event nodes interacted with other nodes to com-
ment on what happened during the TV show.

In the socio-political networks analyzed, the number of nodes and links increased linearly
before, during, and after the event (see Figs 6b and 7b). However, the number of links increased

Fig 3. Evolution of the number of retweet messages in different type of events.

doi:10.1371/journal.pone.0124049.g003
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at a higher rate than the number of nodes. Therefore, in socio-political events, users tended to
interact more than in other types of events (such as TV programs or keynotes).

The number of nodes and links in the keynote networks analyzed had similar behavior (see
Figs 6c and 7c). Before the keynote started, the number of nodes and links grew significantly.
Then, during and after the event, the number of nodes and links increased moderately. The
people in the events analyzed preferred to talk and interact before the event rather than during
the keynote.

In the conference networks analyzed, the number of nodes grew rapidly before the event
started (see Figs 6d and 7d). Then, during the event, there was also an important increase in
the number of nodes. Towards the end of the event as well as after the event, the number of
nodes remained almost constant. If the conference lasted on two or three days, the first day was
when a most significant increase in the number of new nodes occurred. The number of links
evolves similarly as the nodes. However, the increase in the number of interactions was pro-
duced at a higher rate. This means that attendees to a conference were more social and inter-
acted with other attendees. This behavior was similar to the behavior of participants in socio-
political networks.

Fig 4. Evolution of the number of mentionmessages in different type of events.

doi:10.1371/journal.pone.0124049.g004
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Symmetric links
Interactions among users can be undirected or bidirectional. A unidirectional link means that a
user sends an individual message to another user and he/she never receives a response. This
usually happens when users interact with celebrities or with the official Twitter account of the
event. A bidirectional (symmetric) link means that a user A sends a message to another user B
and user B also sends a message to A, which implies that there is a conversation. The evolution
of symmetric links gives insights about when there are conversations between users.

In the TV show networks that we analyzed, there were a few symmetric relationships be-
tween users (see Fig 8a). There was not a uniform behavior of the evolution of the symmetric
links among the events analyzed. In some of them, the behavior was the following: before the
event started, the value of symmetric links was high since there was a small proportion of
nodes that started conversations. However, just before the event started, as new nodes joined
the network through global or individual messages to official Twitter accounts, the number of
symmetric links decreased. Since there was not a high number of interactions between users
and the official Twitter accounts did not interact very much with anonymous users, the per-
centage of symmetric links decreased and after it remained constant. In other TV shows, the
behavior is just the opposite (i.e., the number of symmetric links increased at the end of the
event since individuals started conversations). The common feature is that the number of sym-
metric links remained almost constant during the event. In the socio-political events analyzed,

Fig 5. Evolution of reply-to messages in different type of events.

doi:10.1371/journal.pone.0124049.g005
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the majority of interactions were not bidirectional and there was not a similar evolution of the
symmetric links (see Fig 8b). The keynote networks analyzed had the lowest percentage of sym-
metric links (see Table 2) and also, as in socio-political events, there was not a similar evolution
of the symmetric links. Just the opposite situation occurred in the conference networks analyzed
(see Fig 8d). In these networks, the number of symmetric links was higher than in the rest of
the events. The number of symmetric links increased at the beginning of the event and also
during the first hours. Then, the increase in symmetric links became more gradual. Around
30% of the links of the network were symmetric (see Table 2). In these types of events, users
tended to interact more than in other events and speakers and official Twitter accounts did
more social interacting with anonymous users of the network. The percentage of symmetric
links in social networks that emerge from events on Twitter contrasts with the symmetry in
other social networks such as Flickr or Yahoo! 360 where the percentage of symmetry is close
to 80% [27]. This difference is due to the fact that Flickr and Yahoo! 360 networks are built tak-
ing into account relationships which are usually symmetric, and Twitter is based on interac-
tions that are not necessarily symmetric.

Distribution of the Degree of Connection
An analysis of the evolution of the distribution of the degree of connection shows how users’
connections evolve and their effects on the network topology. Fig 9 shows the results of the dis-
tribution of the degree of connection and the complementary cumulative distribution function

Fig 6. Evolution of the number of nodes in different type of events.

doi:10.1371/journal.pone.0124049.g006
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(CCDF). The CCDF function represents the fraction of vertices with degree of connection of at
least k and is denoted as P(K� k), where K represents a random, independent, and identically
distributed variable from the distribution. The results related to the degree of connection in the
analyzed events are shown in Fig 9.

In the case of the degree distribution, we analyzed the distribution of the indegree and out-
degree at the end of the event since there were no significant differences with previous snap-
shots. As expected, the degree distribution of the analyzed networks followed a power-law
independently of the event and the snapshot. There were many nodes with few connections
(i.e., anonymous users) and there were only a few nodes that had a high number of connections
that gained more connections as the event evolved over time (i.e., celebrities, official accounts,
or mass media). The networks maintained the degree distribution during and after the event.
The only variation was the α parameter of the power-law distribution.

In the case of the indegree and outdegree CCDF, we show two significant snapshots (one be-
fore the event and one during the event). When we compared the indegree vs the outdegree of
the nodes, we observed differences among the events. In the socio-political and TV show ana-
lyzed networks, there was an initial interval of k where the outdegree CCDF was higher than
the indegree CCDF (see Fig 9). When k had a higher value than the initial interval, the differ-
ences between indegree and outdegree were more noticeable. The outdegree CCDF decreased
at a higher rate than the indegree CCDF. In the keynote analyzed networks the behavior of the
CCDF for indegree and outdegree was similar to the socio-political and TV show networks.
The main difference was that the initial interval was smaller. In the conference networks

Fig 7. Evolution of the number of links in different type of events.

doi:10.1371/journal.pone.0124049.g007
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analyzed, we observed that there was a small difference between the indegree CCDF and the
outdegree CCDF in the initial interval, which means that for low degrees there was more prob-
ability for nodes to have an outdegree that was higher than an indegree (see Fig 9). After this
interval, there was a set of degrees where there was no difference between the indegree and the
outdegree CCDF. This means that there were users that interacted with other users with the
same probability as other users interacted with them when the number of interactions (links)
was in the interval. Finally, the outdegree CCDF decreased at a higher rate than the indegree
CCDF. This reflects that when the degree of connection increased, the probability of a small
percentage of nodes (i.e., celebrities or official accounts) having a high indegree was higher
than anonymous users having a high outdegree.

Diameter and Average Path Length
The TV show, socio-political, and keynote networks analyzed have some similarities regarding
the diameter and the average path (see Figs 10 and 11). In general, in these events, the average
path length and the diameter of the networks increased before the event starts and once the
event started the diameter remained constant. The initial increase was due to the fact that the
majority of the nodes participated in the event through a global message or an individual mes-
sage that mentioned an official Twitter account or celebrity. There is a small proportion of

Fig 8. Evolution of the number of symmetric links in different type of events.

doi:10.1371/journal.pone.0124049.g008
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Fig 9. Evolution of the CCDF in different type of events.

doi:10.1371/journal.pone.0124049.g009
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users that interacted with other anonymous users and there were a few conversations. This
made the average path and the diameter increase. During the event, users continued interacting
with official accounts or celebrities without having conversations and the diameter continued
increasing. At the end of the event, the diameter and path length remained constant. In the con-
ference networks analyzed (see Figs 10d and 11d), users and official Twitter accounts tended to
interact more and there was a higher number of conversations than in TV, socio-political, or
keynote networks. This made the diameter and the average path length decrease during
the event.

Clustering
The evolution of clustering shows how interactions between nodes that are neighbors evolve.
In the TV show networks analyzed, before the event started, the clustering degree fluctuated de-
pending on the event (see Fig 12a). Once the event started, the clustering degree remained al-
most constant. In socio-political events, the clustering degree increased before, during, and
after the event (see Fig 12b). The clustering increase is more significant before and after the
event. In the keynotes analyzed, the evolution of clustering was similar to the socio-political
events (see Fig 12c), but, in the keynotes, the value of clustering was lower (see Table 2). One of
the factors that influenced this low value of clustering was that there was a low number of

Fig 10. Evolution of the diameter in different type of events.

doi:10.1371/journal.pone.0124049.g010
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interactions among anonymous users. The majority of interactions were established with the
official Twitter accounts. In the conferences analyzed, the degree of clustering increased rapidly
before and during the first minutes of the event (see Fig 12d). Then, it continued increasing but
little by little it remained almost constant at the end of the event. If the conference lasted two
days, there was an increase at the beginning of the sessions on each day. The conference net-
works were the networks with the highest clustering degree.

The Giant Component
In order to determine when is most appropriate to spread information so that the majority of
network nodes can be reached, it is important to know the percentage of the users that belong
to the giant component. In general, we have observed that in all the events, the giant compo-
nent gains the largest number of nodes just before the event starts. Then, there is a moderate
increase in the number of nodes that are part of the giant component. During the events, there
is a small proportion of interactions with nodes that are outside the giant component. In the
case of the conference networks that we analyzed, there was an increase on the percentage of
users that were part of the giant component during the first moments of the conference (see
Fig 13d). Then, gradually, the giant component reached 80% of the graph nodes (see Table 2).
Something similar occurred in socio-political and TV shows networks analyzed (see Fig 13b and
13a). At the beginning, there was an increase in the number of nodes that belonged to the giant

Fig 11. Evolution of the path length in different type of events.

doi:10.1371/journal.pone.0124049.g011
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component. In the TVshows, this increase was more moderated than in the socio-political net-
works. During and after the event, the clustering remained almost constant or there was a mod-
erate increased. TVshows the clustering only reached 50% and in socio-political networks it
reached the 80% (see Table 2). In the keynote networks analyzed, there was not a common be-
havior in the clustering evolution (see Fig 13c).

Node Level Analysis
At this level, we analyzed the evolution of centrality properties of individual nodes in the set of
studied events. We analyzed the centrality properties in order to determine which nodes were
the most important ones based on their location in a network. The centrality properties were
analyzed during a time interval that started two hours before the event and ended two hours
after the event. During the temporal interval, we analyzed the network in a set of snapshots.
The time between snapshots depended on the duration of the event. The centrality properties
analyzed were the following:

• Betweenness: This quantifies the number of times a node acts as bridge/broker through the
shortest path between two other nodes. A high betweenness centrality might suggest that the
individual is connecting several different parts of the network. This metric shows which

Fig 12. Evolution of the average clustering in different type of events.

doi:10.1371/journal.pone.0124049.g012
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nodes have control over the communication and over the flow of information in
the network.

• In-degree: This is the number of connections that a node receives from other nodes. This
metric indicates whether or not the node is meaningful for other people.

• Out-degree: This is the number of connections that a node has to other nodes. It indicates the
activity of the node (i.e., it communicates with other nodes).

• Degree of connection: This quantifies the importance of a node based on the number of con-
nections to other nodes.

• Eigenvector: Eigenvector centrality recognizes that not all acquaintances are equal. If the peo-
ple you know are influential, it makes you more influential also.

In Figs 14, 15 and 16, we show the results obtained for each centrality property in one event
of each type (i.e., TV show, socio-political, keynote, or conference events). The Y-axis of each
graph shows the value of the property that we analyzed. Each line represents one of the ten
users that had the highest value at the end of the event. We classified users in five categories
based on their profile: celebrities, official accounts, media, user groups, and anonymous users
(see Table 4). The X-axis shows the time snapshots starting from two hours before the event
and ending two hours after the event. To compare the evolution of the events over time, the
time snapshots were normalized in the range [0:130]. The time interval [0:15] corresponds to
the period of time before the event begins (we considered the user interactions that occur two

Fig 13. Evolution of the nodes that are part of the giant component in different type of events.

doi:10.1371/journal.pone.0124049.g013
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hours before the event starts). The time interval [15:115] corresponds to the duration of the
event. Finally, the time interval [115:130] corresponds to the period of time once the event
ends (we considered two hours after the event ends).

Betweenness
In the TV show networks analyzed, the nodes with the highest betweenness were official Twit-
ter accounts, celebrities that participated on the show (actors, actresses, or TV hosts) and
media. Initially, these nodes had a low value of betweenness that gradually increased before the
event (see Fig 14a). During the event, the value of betweenness increased at a higher rate than
before the event. After the event, the value of betweenness remained constant.

The nodes that acted as a bridge between communities in the socio-political networks ana-
lyzed were the nodes that represented the accounts of groups that were related to political
causes, journalists, and bloggers. The value of betweenness of these nodes started increasing
once the event started (see Fig 14b). One difference between the evolution of betweenness in
socio-political networks and in TV events was that, in socio-political events, the betweenness
of the nodes with the highest value continued increasing after the event.

The nodes with the highest betweenness value in the keynote networks analyzed were the
nodes that represented media, technological web pages, and bloggers. In general, the value of

Fig 14. Evolution of the betweenness of the ten nodes with the highest betweenness value in different type of events.

doi:10.1371/journal.pone.0124049.g014
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Fig 15. Evolution of the indegree and outdegree of the ten nodes with the highest indegree and outdegree value in different type of events.

doi:10.1371/journal.pone.0124049.g015
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Fig 16. Evolution of the eigenvector of the ten nodes with the highest eigenvector value in different type of events.

doi:10.1371/journal.pone.0124049.g016

Table 4. User profiles for each type of user taking into account the event.

Event Celebrities Off. Accounts Media User groups

TV shows Actor/actress
Presenter
Competitor
Jury

TV show/program account
Channel account
Similar program account

Blog
Blogger
Radio
Journalist
TV
media

Fan club

socio-
political

Politicians Organizations that give support to the event or that are related to the
event

Political
association,
Trade union,
Social association

keynotes Speaker
Relevant company
worker

Company or product accounts -

conference Speaker
Organizer

Conference account
Sponsors

-

doi:10.1371/journal.pone.0124049.t004
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betweenness of these nodes started increasing before the event and after the event (see Fig 14c).
However, during the event, the values of betweenness remained constant since there was not a
high number of interactions (new links) between nodes. There was a big difference between the
nodes that represented media or web pages and the rest of the nodes that represented bloggers
or users.

In conference networks analyzed, the nodes with the highest betweenness were official Twit-
ter accounts and speakers. In general, the official Twitter accounts and speakers had the highest
betweenness value (see Fig 14d). Among the nodes that represented the speakers there was also
a difference between those that participated in the first sessions and the speakers that partici-
pated in later sessions. The betweenness of the speakers that participated in the first sessions in-
creased from the beginning. However, the betweenness of the speakers that participated in later
sessions was initially almost constant and started to increase once the speakers participated in
the conference. After the event, the betweenness of all of the nodes remained almost constant.

In all the type of networks analyzed, except in conference networks analyzed, the most fre-
quent user profile among the list of the betweenness top ten Twitter accounts was annonymous
user (see Table 5).

Indegree and Outdegree
In the TV show networks analyzed, the nodes that received a higher number of mentions,
retweets, or reply to messages were the official Twitter accounts and the celebrities that partici-
pated in the event. The indegree of the official Twitter accounts increased linearly until the end
of the event where it remained constant (see Fig 15b). At the end of the event, there was a
sharp increase in the indegree of the celebrities of the TV show, specially in game shows. For
the outdegree, the nodes that had the highest outdegree were anonymous users. The evolution
of the outdegree reflected that users interacted mainly before the event and in the first part of
the event rather than at the end of it.

In the socio-political networks analyzed, the nodes with the highest indegree represented
mass media and groups of users. The indegree of these nodes increased linearly throughout the
entire event (see Fig 15d). Nodes with the highest outdegree were anonymous users and nodes
that represented groups of users. The evolution of their outdegree increased before and after
the event. During the event, the outdegree remained almost constant in the majority of the
nodes with a high outdegree of connection.

In the keynote networks analyzed, the nodes that received the highest number of messages
were the accounts associated to the product that was presented and the accounts of the media.
The indegree of these nodes increased before the event started and then remained constant

Table 5. Average number of users of each type of profile that are in the top-ten users with the highest betweenness in each type of the events
analyzed.

Celebrities Off. account Media User User group

�x σ �x σ �x σ �x σ �x σ

TVshows 1.83 0.75 1.33 0.82 2.17 2.40 3.67 1.97 1.00 1.67

socio-political 0.75 0.83 0.50 1.00 3.00 1.15 5.50 1.29 0.25 0.50

keynote 0.40 0.89 0.55 0.55 3.60 2.30 3.80 1.64 1.80 1.48

conference 5.60 1.14 1.20 1.10 0.60 0.55 2.60 0.89 0.00 0.00

doi:10.1371/journal.pone.0124049.t005
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until the event ended (see Fig 15f). The nodes that generated the highest number of individual
messages were anonymous users.

In the conference networks analyzed, the nodes that received the highest number of individ-
ual messages were the official Twitter accounts and the speakers. The official Twitter account
had the highest indegree value. In general, there was a high increase in the indegree once the
event started (see Fig 15h). This increase was more significant in the official Twitter accounts
or the speakers that participated first in the event. During the event, there were significant in-
creases in the indegree of nodes that represented speakers when they started participating in
the event. At the end of the event, the indegree of the nodes remained almost constant. When
analyzing the nodes with the highest outdegree in conference networks, we observed a differ-
ence with respect to other type of events. The official accounts and the speakers were among
the ten nodes with the highest outdegree. The outdegree increased at the beginning of the event
and then remained almost constant or increased slightly. If the event lasted several days, the
outdegree increased at the beginning of each day.

In TV show and conference networks analyzed, the most frequent user profile among the list
of the in-degree of connection top ten Twitter accounts was celebrities (i.e., actors, actresses,
competitors, in the case of TV shows and speakers and organizers in the case of conferences)
(see Table 6). In socio-political and keynote networks analyzed, the most frequent user profile
among the list of the in-degree of connection top ten Twitter accounts was media (i.e., bloggers,
journalits, webs, . . .).

Regarding the out-degree, in all the type of networks analyzed, except in conference net-
works analyzed, the most frequent user profile among the list of the out-degree of connection
top ten Twitter accounts was annonymous user (see Table 7). In the case of conference net-
works analyzed, celebrities (i.e., speakers and organizers) were the most frequent user profile.

Eigenvector
In general, the eigenvector value of the nodes evolved differently in each event. Therefore,
there was not a common behavior in the networks analyzed. For this reason, we focus in this
section in the user profiles that have the highest values of eigenvector and which are the most
frequent profiles. In the TV show networks analyzed, the nodes that had the highest eigenvector
were those that represented official Twitter accounts, contestants, actors/actresses, and celebri-
ties. In the socio-political networks analyzed, the nodes that had the highest value of eigenvector
were nodes that represented groups of users and media. There was no a common behavior of
the evolution of the eigenvector (see Fig 16b). In the keynote networks analyzed, the nodes that
represented media, bloggers, and the product had the highest eigenvector value. In general,
there was an increase in the eigenvector value before the event started, in the official Twitter

Table 6. Average number of users of each type of profile that appear in the top-ten users with the highest in-degree of connection in each type of
the events analyzed.

Celebrities Off. account Media User User group

�x σ �x σ �x σ �x σ �x σ

TVshows 4.17 1.47 2.67 1.37 0.83 0.75 2.33 1.03 0.00 0.00

socio-political 1.09 1.02 1.75 2.22 5.50 1.73 1.75 0.96 0.00 0.00

keynote 2.00 2.83 0.20 0.45 3.80 1.30 2.80 1.64 1.20 1.30

conference 7.20 1.48 1.60 0.55 0.20 0.45 1.00 1.22 0.00 0.00

doi:10.1371/journal.pone.0124049.t006
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accounts, bloggers, and media (see Fig 16c). However, as new nodes joined the network and
connected to the official Twitter accounts, the eigenvector value of the official Twitter accounts
decreased in some keynote networks. During the event, the eigenvector values remained con-
stant since there were not many interactions between nodes that modified the network struc-
ture. Official accounts and speakers were the nodes with the highest eigenvector value in the
conference networks analyzed. The official account had the highest eigenvector from the begin-
ning of the event and it remained constant at its highest value until the event ended (see Fig
16d). The official Twitter accounts were usually connected with other important accounts
throughout the entire event. However, the speakers’ eigenvector values varied as time passes. If
the conference had different sessions or days, the speakers that participated at the beginning of
the event had an eigenvector that increased rapidly. This is because there were not very many
users and the main interactions were between the speakers that were going to participate in the
conference and the official Twitter account. As the event evolved, new anonymous nodes with
a low degree of connection joined the network and the eigenvector of the speakers decreased
steadily. In contrast, the speakers that participated in the event later on had an eigenvector that
increased slightly before their participation in the event. Then, when the speakers participated
in the event, their eigenvector increased sharply. This means that other nodes with a high de-
gree of connection established a connection with the speakers. After this increase, the eigenvec-
tor centrality of the last speakers remained almost constant or there was a small decrease.
When the event was going to end, the eigenvector of all the nodes remained almost constant.

In TV show and conference networks analyzed, the most frequent user profile among the list
of the eigenvector top ten Twitter accounts was celebrities (i.e., actors, actresses, competitors,
in the case of TV shows and speakers and organizers in the case of conferences) (see Table 8).

Table 7. Average number of users of each type of profile that are in the top-ten users with the highest out-degree of connection in each type of the
events analyzed.

Celebrities Off. account Media User User group

�x σ �x σ �x σ �x σ �x σ

TVshows 0.33 0.82 0.00 0.84 0.17 0.41 8.17 2.79 0.83 2.04

socio-political 0.16 0.37 0.25 0.50 0.75 0.50 9.00 0.82 0.00 0.00

keynote 0.00 0.00 0.00 0.00 0.20 0.45 8.40 1.34 1.40 1.52

conference 5.80 1.64 1.00 1.00 1.00 1.22 2.20 1.64 0.00 0.00

doi:10.1371/journal.pone.0124049.t007

Table 8. Average number of users of each type of profile that are in the top-ten users with the highest eigenvector values in each type of the events
analyzed.

Celebrities Off. account Media User User group

�x σ �x σ �x σ �x σ �x σ

TVshows 4.33 2.07 2.67 0.00 0.67 0.52 2.33 1.75 0.00 0.00

socio-political 1.41 0.00 1.75 2.22 5.50 1.73 1.75 0.96 0.00 0.00

keynote 2.00 2.83 0.20 0.45 4.00 1.22 2.60 1.52 1.20 1.30

conference 7.20 1.48 1.60 0.55 0.20 0.45 1.00 1.22 0.00 0.00

doi:10.1371/journal.pone.0124049.t008
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In socio-political and keynote networks analyzed, the most frequent user profile among the list
of the eigenvector top ten Twitter accounts was media (i.e., bloggers, journalits, webs, . . .).

Discussion
After the analysis of the networks, we observed that the networks generated from the Twitter
events can be classified into two main groups based on the type of interactions among users.
One group consists of the TV show and keynote networks. The other group consists of the
socio-political and conference networks.

At the network level, in the group of TV show and keynote networks, users tend to partici-
pate in the event through global messages. The majority of interactions are unidirectional from
unknown users to official Twitter accounts or celebrities. This fact is clearly reflected in the
structural properties of the networks (see Table 2). The number of nodes is higher than the
number of links, which means that users prefer to participate through global messages rather
than interact with other users. The small proportion of individual messages are mentions that
are usually from anonymous users to a celebrity or an official Twitter account that usually does
not respond or interact with anonymous users. This fact is reflected in the low percentage of
symmetric links. One of the effects of the lack of symmetry in the interactions is that the path
length and the diameter are not reduced as the number of interactions increases. Another
structural property that reflects that there is a low level of social interaction is that users do not
interact with other nodes in their neighborhood (there is a low degree of clustering). The key-
note networks analyzed have the lowest value of clustering among all the type of events. At the
end of the events, the percentage of nodes that are part of the giant component in TV show
and keynote networks analyzed is under the 80%.

Taking into account the evolution of the structural metrics, we observed similarities between
TV show networks and keynote networks in the evolution of mentions and links. We also find
differences between TV show networks and keynote networks. For instance, in the TV show
networks analyzed, users interact more before and after the event than during the event. How-
ever, in the keynotes, the majority of interactions occur before the event. This influences the
evolution of the structural properties. In keynote networks, the structural properties remain al-
most constant once the event starts, and in TV shows there are small improvements in the
structural properties as the interactions take place during and after the event (see Fig 17). The
evolution of the number of global messages and number of nodes in TV shows is different
from the rest of evolutions in other events.

In the group of socio-political and conference networks, users usually join the network
through individual messages and there is reciprocity in the messages. This behavior is observed
in the structural properties of the networks (see Table 2). The number of individual messages is
higher than the number of global messages and the number of links is higher than the number
of nodes. Moreover, at the end of the events, the percentage of nodes that are part of the giant
component in TV show and keynote networks analyzed is over the 80%.

Within this group of networks, the main differences between socio-political and conference
networks are in the degree of clustering, the percentage of symmetric links and the average de-
gree of connection. These three metrics have a higher value in conference networks than in the
rest of networks analyzed. Therefore, neighbors tend to interact more in the conference net-
works than in socio-political networks analyzed (see Table 2).

Taking into account the evolution of the structural metrics, we observed similarities between
socio-political networks and conference networks in the evolution of messages (global and indi-
vidual) as well as the number of nodes and links. In both type of events, in the first moments of
the events, and after that, the number of messages, nodes, and links increases linearly. The
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Fig 17. Patterns of evolution of structural measures at network level in different type of events.

doi:10.1371/journal.pone.0124049.g017
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main difference between the evolution of these metrics in these two type of events is that in
socio-political events these metrics continue increasing once the event ends. However, in con-
ference networks, the number of messages, nodes and links, remain almost constant at the end
of the events. The evolution of the number of symmetric links, average diameter, average path,
and clustering in conferences is different from the rest of events.

At the individual level, we observed differences between centrality metrics in the events. In
TV shows and conferences, the official Twitter accounts and celebrities have the highest be-
tweenness. In socio-political events, user groups and media have the highest value of between-
ness and in keynote events, the nodes with highest betweenness are media. Regarding the
indegree and outdegree of the nodes with the highest values, we observed differences in the
nodes that have a high outdegree. In TV shows and in keynote networks, the nodes with the
highest outdegree are anonymous users. However, in socio-political and in conference net-
works, the nodes with the highest out-degree of connection are not only anonymous users but
also mass media and groups of users in socio-political events. In conference events, official
Twitter accounts and speakers are among the users with the highest outdegree. Regarding the
eigenvector values, in TV show and conference events celebrities are the profiles with highest
values. In the case of socio-political and keynote networks, media is the profile with highest
eigenvector values.

Conclusions
In this paper, we have presented a study of the evolution of different types of events that take
place in the on-line social network Twitter. Each event was modeled as a network that was tem-
porally annotated and we analyzed how structural properties evolve over time. We considered
structural properties at the network level and at the node level. At the network level, we ana-
lyzed the evolution of nodes, links, symmetric links, distribution of degree of connection, path
length, diameter, clustering, and the giant component. At the node level, we focused on central-
ity properties such as betweenness, indegree, outdegree, and eigenvector.

For the analysis, we selected a set of events that we classified into TV show, socio-political,
keynote, and conference events. Mainly, these events take place in Spain and the conclusions
drawn from the analysis should be interpreted in this context and for the specific events ana-
lyzed. From the analysis, we were able to answer the questions we posed as a starting point at
the beginning this work:

• (i) do users interact in the same way in all types of events?
Based on the results of the analysis of the networks associated to the events, we can conclude
that users do not act in the same way in different events. For instance, in socio-political
events and conference events the number of interactions is much higher, specially in the lat-
ter type of events. Furthermore, depending on the type of event, the number of interactions
(links) can evolve following a linear (socio-political), logarithmic (TV shows), or polynomial
(keynotes and conferences) function. We have also observed that in general, in TV shows,
socio-political, and keynotes, there is not a large number of symmetric links (i.e., there are
not conversations). However, in conference events there is a high percentage of
symmetric links.

• (ii) there are common structural properties or structural evolution patterns in networks of
events of the same type?
Networks generated from user interactions in events of the same type share structural prop-
erties such as the relationship between nodes and links, clustering, and percentage of nodes
in the giant component. Furthermore, the structural properties of networks of the same type
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of event evolve in a similar manner. We have detected common patterns in the evolution of
messages, nodes, links, diameter of the network, clustering, and number of nodes in the
giant component.

• (iii) events of different types share any structural property or evolution pattern?
Among the different types of events, we have detected some common properties. For exam-
ple, in the case of TV shows and keynote events there are fewer interactions (links) than
users (nodes). Just the opposite happens in the socio-political events and conference events.
In socio-political events and conference events, the number of nodes that are part of the
giant component is also much higher than in TV shows and keynote events. Moreover, the
evolution of the number of messages, nodes and links in socio-political events and confer-
ence events is also very similar. In the case of TV show and keynote events, the evolution of
mentions and links is very similar.

• (iv) which are the structural properties or structural evolution patterns that characterize TV
show, socio-political, keynote, and conference events?.
We have also detected some properties that characterize each of the events. Conferences are
the easiest type of event to differentiate because there is a high number of interactions among
users what makes that the networks have a high average degree of connection and high clus-
tering. Besides these features, interactions in these events are reciprocal (i.e., there are conver-
sations) and therefore, networks have a high number of symmetric links. The networks
generated from interactions in keynote events are also easy to differentiate. These networks
have the lowest value of clustering and average degree of connection.
If you look at the evolution of the structural properties, we can detect more features to distin-
guish networks from different events. In the case of the TV show events, the evolution of
tweets distinguishes the TV shows of other events. In TV shows, the evolution follows a logis-
tic function where initially and before the event starts most messages are generated. This fact
is also reflected in the evolution of nodes and the evolution of nodes that are part of the
giant component.
In the case of socio-political events, the evolution of messages, nodes and links follows a line-
ar function. In clustering, evolution is a polynomial function where before and after the event
there is an increase of the clustering.
For conference events, the evolution of messages, nodes and links is similar to the socio-polit-
ical events. However, there is a difference at the end of the event. In conference events these
properties remain almost constant. Conference events also has a particular evolution of the
following properties: symmetric links, diameter, clustering, and nodes in the
giant component.

• (v) which are the most important user profiles in each type of event?
We have detected that celebrities are the profiles that are best connected and received the
highest number of messages in TV shows and conference networks. However, in socio-politi-
cal and keynote networks, media is the profile that is best connected and received the highest
number of messages. In conferences, the profiles that generate the most number of messages
are celebrities and official accounts in contrast to TV shows, socio-political, and keynotes
where anonymous user is the profile that generates the highest number of messages.

As a result of this detailed analysis, we detected patterns of behavior for the different events.
We have also identified similarities and differences between events such as TV shows and key-
notes or socio-political events and conferences. This analysis provides insights about character-
izing and understanding complex interaction structures, how these structures emerge, and how
the structure of interactions among users can be improved.
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