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Camino de Vera s/n, Edificio 8G, 2nd, 46022, Valencia (Spain)

L. Villafuerte
CEFyMAP, Universidad Autónoma de Chiapas (México)
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Abstract

This paper deals with the construction of approximate solutions of random logis-
tic differential equation whose nonlinear coefficient is assumed to be an analytic
stochastic process and the initial condition is a random variable. Applying p-mean
stochastic calculus, the nonlinear equation is transformed into a random linear equa-
tion whose coefficients keep analyticity. Next, an approximate solution of the non-
linear problem is constructed in terms of a random power series solution of the
associate linear problem. Approximations of the average and variance of the solu-
tion are provided. The proposed technique is illustrate through an example where
comparisons with respect to Monte Carlo simulations are shown.

Key words: Random logistic differential equation, random power series solution,
p-mean stochastic calculus

1 Introduction

Deterministic differential equation x(t) = ax(t) − b(x(t))2, constitutes the
basic pattern of logistic model which appears in modeling problems (popu-
lation models in Biology, widespread of illness in Epidemiology, diffusion of
new products and technologies in Marketing, etc). In the Verhulst’s popula-
tion model, a > 0 represents the maximum per capita growth rate and b > 0
is interpreted in terms of the maximum sustainable population (carrying ca-
pacity). In many cases, biologists can fix the parameter a depending on the
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species under study, however unsettled environment and inherent complexity
of the surrounding medium suggest to consider b as a random variable (r.v.)
rather than a numerical constant. In addition, in practice both quantities vary
with time t, thus it is more realistic consider them as functions of time. These
considerations lead us to study the random nonlinear differential equation:

Ẋ(t) + a(t)X(t) +B(t)(X(t))2 = 0, X(0) = X0, (1)

where a(t) is an analytic function and B(t) is an analytic process,

a(t) =
∑
n≥0

ant
n, B(t) =

∑
n≥0

Bnt
n, t ∈ D = {t : |t| ≤ c} , c > 0, (2)

being Bn, X0 r.v.’s satisfying certain conditions to be specified later. These
type of models have been considered in different scenarios. In [1], a random
logistic model with time-independent coefficients is studied using the so-called
sample approach [2]. Recently, a logistic model with nonlinear perturbations
and randomness modeled by means of the white noise process has been studied
taking advantage of Wiener-Hermite method [3]. In [4,5] the stochastic logistic
model is studied by considering Itô calculus and the generalized polynomial
chaos approaches, respectively.

2 Preliminaries about p-mean stochastic calculus

In this section we summarize the main concepts related to the so-called p-
mean stochastic calculus that will be required along this paper. For p = 2,
usually they are referred to as mean square (m.s.) and mean fourth (m.f.)
calculus. For further details, we refer to [2, chap.4] for m.s. calculus, and
[6], for m.f. calculus. Let (Ω,F , P ) be a probability space, throughout this
article we will work in the Banach spaces (Lp, ‖X‖p), with p = 2, 4, 8, whose
elements X = X(ω) are called p-order real random variables (p-r.v.’s), i.e.,
r.v.’s X : Ω→ R such that E[|X|p] < +∞, where E[·] denotes the expectation

operator and, ‖X‖p = (E [|X|p])1/p
. In this space a stochastic process (s.p.)

will be denoted by X(t) = X(t, ω), with t lying in a set T . By applying Schwarz
inequality [2, p.43], one obtains the following inequality between p-norms:

‖XY ‖p ≤ ‖X‖2p ‖Y ‖2p , ∀X, Y ∈ L2p, (3)

that will be applied later for p = 2, 4, 8. As usual, in Lp spaces, p-mean con-
vergence is referred to as the corresponding p-norm; when p = 2, it is called
m.s. convergence, for p = 4, m.f. convergence and so on. Two important fea-
tures related to Lp spaces and p-mean convergence is that every p2-r.v. is a
p1-r.v. and, p2-mean convergence entails p1-convergence, whenever p2 > p1.
M.s. differentiation product rule for m.s. differentiable processes holds when
one of the factors is deterministic or independent of the other (see [2, p.96]
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and proposition 2.5 in [6]). Lemma 3.14 in [6] proves a product m.s. differen-
tiation rule with no such restrictions. Instead, we require that both processes
be m.f. differentiable. From that, it is straightforward to obtain the following
m.s. differentiation quotient rule:

Lemma 1 Let {W (t) : t ∈ T} and {Z(t) : t ∈ T} be 4-s.p.’s having 4-

derivatives dW (t)
dt

and dZ(t)
dt

, respect. and such that Z(t, ω) 6= 0 for all ω ∈ Ω.
Then W (t)/Z(t) is m.s. differentiable at t ∈ T and

d

dt

(
W (t)

Z(t)

)
=

dW (t)
dt

Z(t)−W (t)dZ(t)
dt

(Z(t))2 .

Note that if the m.f. derivative exists, so does the corresponding m.s. deriva-
tive. Therefore, we can use indistinct notations for the m.s. and the m.f. deriva-
tive. Even more, this also remains true for p-derivatives of higher order, i.e., if
{X(t) : t ∈ T} is p2-mean differentiable then it is also p1-mean differentiable
whenever p2 > p1 and in this case both p-derivatives coincide.

Now, we address to extend the so-called (deterministic) Cauchy’s inequalities
that satisfy the coefficients of an analytic function in the case that we consider
a p-mean analytic s.p. By following an analogous development as in the m.s.
calculus, we can characterize the p-mean analyticity of a s.p. {H(t) : |t| < c},
i.e.,

H(t) =
∞∑
n=0

Hnt
n, Hn =

H(n)(0)

n!
, 0 ≤ |t| < c, (4)

(where convergence and derivatives are considered in the p-mean sense) in
terms of the (deterministic) analyticity of its correlation function ΓH(t1, . . . , tp)
at the diagonal points, i.e., t1 = . . . = tp, where

ΓH(t1, . . . , tp) =
∞∑

n1,...,np=0

γn1...np

(n1)!× · · · × (np)!
(t1)n1×· · ·×(tp)

np , |ti| < c, 1 ≤ i ≤ p,

(5)
being

γn1...np =
∂n1+···+npΓH(t1, . . . , tp)

∂tn1
1 · · · ∂t

np
p

∣∣∣∣∣
(t1,...,tp)=(0,...,0)

. (6)

Since ΓH(t1, . . . , tp) is analytic on (−c, c)p, by the deterministic Cauchy’s in-
equalities one gets

∃MΓH
> 0 :

∣∣∣γn1...np

∣∣∣ ≤ MΓH

ρn1+···+np
, 0 < ρ < c. (7)

Now, taking into account (4)-(7) and, formula (4.133) of [2] extended to the
p-mean calculus following an analogous reasoning as it was done for the m.f.
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calculus in paper [6], one obtains

∣∣∣γn1...np

∣∣∣ =
∣∣∣E[H(n1)(0)× · · · ×H(np)(0)

]∣∣∣ ≤ MΓH

ρn1+···+np
, 0 < ρ < c. (8)

By the definition of the p-norm, the expression of coefficients Hn(0) given by
(4) and expression (8) for n = n1 = . . . = np, one gets

‖Hn‖p = p

√√√√E

[(
H(n)(0)

n!

)p]
≤ p

√
E
[
(H(n)(0))

p
]
≤ p

√
MΓH

ρpn
=

p

√
MΓH

ρn
.

Thus setting M = p

√
MΓH

> 0, the following result has been established:

Proposition 2 Let {H(t) : 0 ≤ |t| < c} be a p-analytic s.p. given by (4).
Then there exists M > 0 such that

‖Hn‖p ≤
M

ρn
, 0 < ρ < c, ∀n ≥ 0.

3 Random logistic differential model: approximate solution, statis-
tical properties and example. Conclusions

Let us consider the linear random initial value problem

Ẏ (t) = a(t)Y (t) +B(t), Y (0) = (X0)−1. (9)

Following an analogous development as in [7], one can construct a random
power series solution s.p. of (9) whose expression is given by

Y (t) =
∑
n≥0

Ynt
n, Yn =

1

n

{
Bn−1 +

n−1∑
k=0

an−k−1Yk

}
, n ≥ 1, Y0 = (X0)−1, (10)

which is p = 8-mean convergent (hence p = 4-mean convergent) and p = 8-
mean differentiable on certain domain Tδ. At this point, we emphasize an
important aspect regarding the paper [7]: the construction of solution (10) in-
volves the use of random Cauchy’s inequalities whose proof was not provided
in [7] but we have already established in Section 2. Notice that, as X0(ω) 6= 0
for each ω ∈ Ω, r.v. Y0 is well-defined and it also satisfies that Y0(ω) 6= 0 for
each ω ∈ Ω. Thus, as a consequence of p = 8-mean continuity of s.p. Y (t)
in Tδ, the s.p. X(t) = 1/Y (t) is well-defined on this domain. Since Y (t) is
p = 8-mean differentiable, so it is also m.f. differentiable and by Lemma 1
one gets Ẋ(t) = −(Y (t))−2Ẏ (t). This change of variable transforms nonlinear
random differential equation (1) into linear problem (9) which solution s.p.
Y (t) is given by (10). However, from a practical standpoint the solution s.p.
X(t) = 1/Y (t) is not suitable since it involves through Y (t) an infinite series,
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so its truncation YN(t) is demanded in order to obtain computable approxi-
mations not only for the solution s.p., but also for average and variance. This
motivation leads us to define the approximation XN(t) = 1/YN(t) where

YN(t) =
N∑
n≥0

Ynt
n, Yn =

1

n

Bn−1 +
n−1∑
j=0

an−j−1Yj

 , N ≥ 1, Y0 = (X0)−1.

(11)
Let us justify that this approximation XN(t) is m.s. convergent to solution
s.p. X(t). First, note that Y (t) is p = 8-mean differentiable so p = 8-mean
continuous and, since Y (0, ω) = Y0 6= 0 for all ω ∈ Ω, by a usual continuity

argument in the Banach space L8, we can assure that both
∥∥∥(Y (t))−1

∥∥∥
8

and∥∥∥(YN(t))−1
∥∥∥

8
are bounded in a certain neighborhood Tδ about t = 0. Then

applying inequality (3) and the m.f. convergence of YN(t) to Y (t) one gets:

‖XN(t)−X(t)‖2 =
∥∥∥(Y (t)− YN(t)) (YN(t)Y (t))−1

∥∥∥
2

≤ ‖(Y (t)− YN(t))‖4

∥∥∥(YN(t)Y (t))−1
∥∥∥

4

≤ ‖(Y (t)− YN(t))‖4

∥∥∥(YN(t))−1
∥∥∥

8

∥∥∥(Y (t))−1
∥∥∥

8
−−−→
N→∞

0.

Therefore, the following result has been established:

Theorem 3 Let be the random differential equation (1) whose coefficients a(t)
and B(t) defined by (2) are assumed to be an analytic deterministic function
and a p = 8-mean analytic stochastic process, respectively. If initial condition
X0 is a 8-r.v. such that X0(ω) 6= 0 for each ω ∈ Ω and it is independent of B(t)
for each t, then there exists δ > 0 such that its m.s. solution is X(t) = 1/Y (t)
for t ∈ Tδ = {t ∈ D : |t| ≤ δ}, where Y (t) is given by (10).

Notice that by applying theorem 4.3.1 [2, p.88] to XN(t) = 1/YN(t), we can
compute approximations of the mean and variance of the solution s.p. X(t).

Example 4 Let us suppose that a(t) = −eat and B(t) = Bt, being B a 8-r.v
in (1). Thus an = −an/n!, ∀n ≥ 0; B(t) is a p = 8-mean analytic s.p. and
B0 = 0, B1 = B, Bn = 0, ∀n ≥ 2. In this case does not exist a closed-form
solution of (1). Assuming that B and X0 are independent r.v.’s with p.d.f.
fB(b), fX0(x0), respectively, one gets

E
[
(XN(t))i

]
=
∫
R2

1

(gN(a, b, x0; t))i
fB(b)fX0(x0) db dx0, i = 1, 2,

gN(a, b, x0; t) =
N∑
n=0

Ynt
n, Yn =


Y0 = (X0)−1, Y1 = −(X0)−1, Y2 = (B + (X0)−1(1− a)) /2,

Yn = − 1

n

n−1∑
k=0

an−k−1

(n− k − 1)!
Yk, n ≥ 3.
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Table 1 shows approximations for both average and standard deviation accord-
ing to truncation method and Monte Carlo simulations at some selected points
of the interval 0 ≤ t ≤ 5. We have taken a = −0.01, B ≈ Exp(λ = 0.05) and
X0 ≈ Be(α = 3; β = 2). Computations have been carried out taking as trun-
cation order N = 30 in the series method, whereas m = 200000 simulations
were needed to get reliable numerical results by Monte Carlo approach.

t µXN
(t) , N = 30 µMC

Xm
(t) ,m = 200000 σXN

(t) , N = 30 σMC
Xm

(t) ,m = 200000

0.00 0.6 0.599558 0.2 0.20005

1.00 0.286393 0.286663 0.315007 0.316199

2.00 0.175139 0.176816 0.389404 0.397917

3.00 0.133116 0.135886 0.50605 0.524485

4.00 0.111498 0.114902 0.689718 0.725205

5.00 0.0982849 0.102281 0.969874 1.0395

Table 1
Comparison of the average and standard deviation functions in Example 4

In this paper we have obtained an approximate solution of random logistic
equation (1)-(2) taking advantage of the p-mean stochastic calculus. We have
also computed reliable approximations for its main statistical functions.
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