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Abstract

This paper deals with the construction of random power series solution of second
order linear differential equations of Hermite containing uncertainty through its
coefficients and initial conditions. Under appropriate hypotheses on the data, we
establish that the constructed random power series solution is mean square conver-
gent. We provide conditions in order to obtain random polynomial solutions and, as
a consequence, random Hermite polynomial are introduced. Also, the main statisti-
cal functions of the approximate stochastic process solution generated by truncation
of the exact power series solution are given. Finally, we apply the proposed tech-
nique to several illustrative examples comparing the numerical results with respect
to those provided by other available approaches including Monte Carlo simulation.

Key words: random differential equation, random power series solution, mean
square calculus, random Hermite polynomial

1 Introduction

Differential equations are powerful tools to represent reality up to certain
point. Real problems use to involve a combination of complexity, uncertainty
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and/or ignorance, sometimes due to natural phenomena, and also due to hu-
man behaviour. The quantification of uncertainty requires a model specifying
the mechanism by which randomness is generated.

Random differential equations have been used in the last few decades to deal
with errors and uncertainty. For example, see [1] for the general randomness
case and [2,3] for the case of white noise uncertainty. Theoretical approaches of
random differential equations probably started with Strand in [4,1]. Thinking
of applications using explicit analytic solutions or numerical methods, a few
results may be found in [5–11].

Hermite differential equation has a great interest in the development of applied
mathematics, not only because it appears in a natural way when solving partial
differential equations of the mathematical physics by using the separation
of variables technique, but also because its prevalent role in other areas of
mathematics such as functional analysis or orthogonal polynomials theory.
The aim of this paper is twofold. Firstly, constructing mean square series
solutions of the random Hermite differential equation

Ẍ(t)− 2tẊ(t) + AX(t) = 0, −∞ < t < +∞, (1)

where A is a random variable satisfying certain conditions to be specified
later. Secondly, we show how and under which situations the random Her-
mite polynomials appear and are solutions of appropriate random Hermite
differential equations. An important difficulty to be overcome is the lack of
sub-multiplicativity of the mean square norm (and as a consequence of the
mean fourth norm) as well as the necessity of bounding products of random
variables. Particularly interesting is the case where A is a discrete random
variable taking a finite number of even integer values. In such case, it ap-
pears mean square finite series solutions of problem (1), referred as to random
Hermite polynomials.

The paper is organized as follows. Section 2 deals with some preliminaries
about the mean square calculus that will be required throughout the paper.
The concepts of fundamental set of solution process to equation (1) as well as
random polynomial are also introduced in Section 2. Section 3 deals with the
proof of an important inequality related to the norm of the product of random
variables. This result manages satisfactorily the lack of submultiplicativity of
the mean square and mean fourth norms. Section 4 deals with the construction
of mean square convergent power series solution to (1) in the case where A
is a random variable satisfying certain conditions related to the exponential
growth of its absolute moments with respect to the origin. The case where A
is a discrete random variable taking a finite number of even values leads to
the concept of random Hermite polynomials whose definition and obtention
is shown in Section 5. Statistical functions of the truncated random power
series solutions, and particularly of random Hermite polynomials, are studied
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in Section 6. Finally, in Section 7 some illustrative examples are presented
showing the discrepancies with respect to the so-called dishonest and Monte
Carlo methods.

2 Preliminaries

For the sake of clarity in the presentation, we begin this section by introducing
some concepts, notations and results that may be found in [5, chap.4], [12, part
IV], [13, chap.1-3]. Let (Ω,F , P ) be a probability space. In this paper we will
work in the set L2 which elements are second order real random variables
(2-r.v.’s), i.e., X : Ω → R such that E[X2] < +∞, where E[·] denotes the
expectation operator. One can demonstrate that L2 endowed with the so-
called 2-norm

‖X‖2 =
(
E

[
X2

])1/2
, (2)

has a Banach space structure.

As it is usual, given a r.v. X, E
[
Xk

]
, k = 0, 1, 2, . . . and E [|X|s], s > 0 will

denote the k-th moment and s-th absolute moment (both with respect to the

origin), respectively. Note that, E [X0] = E
[
|X|0

]
= 1. It is easy to prove that

if E [|X|s] < +∞⇒



∃E [|X|r] < +∞ ∀r : 0 ≤ r ≤ s,

∃E [Xm] < +∞ ∀m : m = 0, 1, . . . , s.
(3)

Next result, so-called cs-inequality, is useful for bounding the absolute mo-
ments of a binomial expression in terms of the absolute moments of both
summands and moreover it establishes that if s-th absolute moments of X
and Y are finite then s-th absolute moment of X + Y does

E [|X + Y |s] ≤ cs (E [|X|s] + E [|Y |s]) , cs =





1 if s ≤ 1,

2s−1 if s ≥ 1.
(4)

We say that {X(t) : t ∈ T } is a second order stochastic process (2-s.p.), if the
r.v. X(t) ∈ L2 for each t ∈ T , being T the so-called space of times. Throughout
this paper we will assume that T is always a real interval. The expectation
function of X(t) provides a statistical measure of its mean statistical behavior
and it will denoted by E [X(t)] or µX(t), while its covariance function will be
denoted by Cov [X(t), X(s)] and it is defined as follows

Cov [X(t), X(s)] = E [(X(t)− µX(t)) (X(s)− µX(s))]

= E [X(t)X(s)]− µX(t)µX(s), t, s ∈ T .
(5)
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When s = t, one obtains the variance function

Var [X(t)] = Cov [X(t), X(t)] = E
[
(X(t))2

]
− (µX(t))2 . (6)

The term ΓX(t, s) = E [X(t)X(s)] appearing into (5) is called the correlation
function and it plays an important role in the m.s. calculus because many
important stochastic results can be characterized through this two-variables
deterministic function (see, [5, chap.4]).

We say that a sequence of 2-r.v.’s {Xn : n ≥ 0} is mean square (m.s.) conver-
gent to X ∈ L2 if

lim
n→∞ ‖Xn −X‖2 = lim

n→∞

(
E

[
(Xn −X)2

])1/2
= 0.

Later we will present a method to provide approximations of the s.p. solution
X(t) to the random differential equation (1). The following properties will play
a fundamental role when we are interested in computing the mean and variance
of such approximations as well as assuring they are close to the correspondent
exact values.

Lemma 1 (see, [5, p.88]) Let {Xn : n ≥ 0} be a sequence of 2-r.v.’s m.s.
convergent to X, then

E [Xn] −−−→
n→∞ E [X] , Var [Xn] −−−→

n→∞ Var [X] . (7)

We say that a 2-s.p. {X(t) : t ∈ T } is m.s. continuous in T if

lim
τ→0

‖X(t + τ)−X(t)‖2 = 0,

for each t ∈ T , such that t + τ ∈ T .

Example 2 Let {Xn : n ≥ 1} be a sequence of r.v.’s in L2 and t ∈ T with T a
real interval, then for each positive integer n0, the 2-s.p. {n0Xn0t

n0−1 : t ∈ T }
is m.s. continuous for all t ∈ T . In fact,

∥∥∥n0Xn0(t + τ)n0−1 − n0Xn0t
n0−1

∥∥∥
2

= n0

∣∣∣(t + τ)n0−1 − tn0−1
∣∣∣ ‖Xn0‖2 −−→τ→0

0,

because ‖Xn0‖2 < +∞ as Xn0 ∈ L2 for each n0 and, the continuity of the
deterministic function f(t) = tn0−1 with respect to t.

A 2-s.p. {X(t) : t ∈ T } is said to be m.s. differentiable at t ∈ T and Ẋ(t)
denotes its m.s. derivative if

lim
τ→0

∥∥∥∥∥
X(t + τ)−X(t)

τ
− Ẋ(t)

∥∥∥∥∥
2

= 0,

for all t ∈ T , such that t + τ ∈ T .
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Example 3 With the notation of Example 2, the process {Xn0t
n0 : t ∈ T } is

m.s. differentiable in T and its m.s. derivative is {n0Xn0t
n0−1 : t ∈ T }. Note

that,

∥∥∥∥∥
Xn0(t + τ)n0−Xn0t

n0

τ
−n0Xn0t

n0−1

∥∥∥∥∥
2

=

∣∣∣∣∣
(t + τ)n0−tn0

τ
−n0t

n0−1

∣∣∣∣∣‖Xn0‖2 −−→τ→0
0.

Later, due to the random differential equation (1) involves m.s. derivatives up
to second order, the following result will required. For {X(t) : t ∈ T } a 2-s.p.
twice m.s. differentiable on T , one can demonstrate that the averages of its
two first m.s. derivatives exist and they are given by

E
[
Ẋ(t)

]
=

d

dt
(E [X(t)]) , E

[
Ẍ(t)

]
=

d2

dt2
(E [X(t)]) , ∀t ∈ T , (8)

where d
dt

and d2

dt2
denote first and second deterministic derivatives, respectively.

This result can be extended to the n-th m.s. derivative whenever {X(t) : t ∈ T }
is n-th times m.s. differentiable on T (see [5, p.97]).

If X and Y are 2-r.v.’s, Schwarz inequality establishes that

E[ |X Y | ] ≤
(
E

[
X2

])1/2 (
E

[
Y 2

])1/2
. (9)

Later we will require the following basic property

AXn
m.s.−−−→

n→∞ AX, (10)

which holds true if A ∈ L2, {Xn : n ≥ 0} is a sequence of 2-r.v.’s such
that Xn

m.s.−−−→
n→∞ X and A, Xn are independent r.v.’s for each n. However,

independence hypothesis cannot be assumed in many practical cases like those
that we will consider below. This motivates the introduction of r.v.’s X such
that E[X4] < ∞ which will be denoted by 4-r.v.’s. Note that a 4-r.v. is a 2-r.v.
The set L4 of all the 4-r.v.’s endowed with the norm

‖X‖4 = 4

√
E[X4], (11)

is a Banach space (see [2, p.9]). A stochastic process {X(t) : t ∈ T}, where

E
[
(X(t))4

]
< ∞ for all t ∈ T , will be called a 4-s.p.

Definition 4 A sequence of 4-r.v.’s {Xn : n ≥ 0} is said to be mean fourth
(m.f.) convergent to a 4-r.v. X if

lim
n→∞ ‖Xn −X‖4 = 0.

This type of convergence will be represented by Xn
m.f.−−−→

n→∞ X.

5



The following lemma establishes the link between the two types of convergence
introduced previously.

Lemma 5 Let {Xn : n ≥ 0} be a sequence of 4-r.v.’s and suppose that

Xn
m.f.−−−→

n→∞ X. Then Xn
m.s.−−−→

n→∞ X.

Proof . Using the Schwarz inequality (9), one gets

(‖Xn −X‖2)
2 =E

[
1× (Xn −X)2

]
≤1×

(
E

[
(Xn −X)4

])1/2
=(‖Xn −X‖4)

2 .

Since ‖Xn−X‖4 −−−−→
n→+∞ 0 (because Xn is m.f. convergent to X), it immediately

follows that ‖Xn −X‖2 −−−→
n→∞ 0 and therefore Xn

m.s.−−−→
n→∞ X.

Now, we can give sufficient conditions in order to property (10) holds true
without assuming hypotheses based on independence.

Lemma 6 Let A be a 4-r.v. and {Xn : n ≥ 0} a sequence of 4-r.v.’s such that

Xn
m.f.−−−→

n→∞ X. Then AXn
m.s.−−−→

n→∞ AX.

Proof. By the definition of the norm ‖ · ‖2, we have

(‖A(Xn −X)‖2)
2 = E

[
A2(Xn −X)2

]
. (12)

On the other hand, the hypothesis Xn
m.f.−−−→

n→∞ X implies by definition (Xn −
X)2 m.s.−−−→

n→∞ 0 and, as clearly A2 m.s.−−−→
n→∞ A2, then from (12) and the Lemma 1

one obtains ‖A(Xn −X)‖2 −−−→
n→∞ 0 and hence AXn

m.s.−−−→
n→∞ AX.

Next we extent from the deterministic framework to the random one the con-
cept of fundamental set of solutions.

Definition 7 Let A1 and A2 be r.v.’s, and let X1(t) and X2(t) a pair of
solutions of the second-order random differential equation

Ẍ(t) + A1Ẋ(t) + A2X(t) = 0, −∞ < t < ∞. (13)

We say that {X1(t), X2(t)} is a fundamental set of solution processes of (13)
in −∞ < t < +∞, if any solution X(t) of (13) admits a unique representation
of the form

X(t) = C1X1(t) + C2X2(t), t ∈ (−∞,∞) , (14)

where C1 and C2 are r.v.’s uniquely determined by X(t).

Definition 8 Let S = {X1(t), X2(t)} be a pair of solutions of (13), the s.p.
given by

WS(t) = X1(t)Ẋ2(t)−X2(t)Ẋ1(t),
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is called the wronskian determinant process of S.

The following result provides sufficient conditions for a pair of solutions of
(13) defines a fundamental set. We omit the proof because it follows in broad
outline the same steps as in the deterministic case.

Proposition 9 If S = {X1(t), X2(t)} is a pair of solution processes of the
random differential equation (13) in −∞ < t < ∞ and there exists t0 ∈
(−∞,∞) such that WS(t0) 6= 0, then S = {X1(t), X2(t)} is a fundamental set
of solution processes of (13).

As we have outlined in the first section, we are interested in determining
solutions of differential equation (1) by means of random power series which
under certain conditions become random polynomials. Now we introduce these
concepts.

Definition 10 Given a collection of r.v.’s {Xk : k ≥ 0} and t ∈ T ,
∑

k≥0 Xkt
k

is called a random power series. If P [Xk = 0] = 1 for all k > m, that is,
P [{ω ∈ Ω : Xk(ω) = 0, ∀k > m}] = 1, then

∑m
k=0 Xkt

k is said to be a random
polynomial in t of degree m.

We close this section by recalling the following differentiation theorem for m.s.
random convergent series that will be required later.

Theorem 11 (see, [18]) Let us assume that for each integer k ≥ 0, the s.p.

{Uk(t) : t ∈ T } is m.s. differentiable for each t ∈ T ,
{
U̇k(t) : t ∈ T

}
is m.s.

continuous, U(t) =
∑

k≥0 Uk(t) is m.s. convergent and the series
∑

k≥0 U̇k(t) is
m.s. uniformly convergent. Then the s.p. {U(t) : t ∈ T } is m.s. differentiable
and

U̇(t) =
∑

k≥0

U̇k(t).

3 A crucial inequality

An important fact is that the 2-norm ‖·‖2 given by (2) does not provide a
Banach algebra structure to L2, i.e., it is not submultiplicative because the
property ‖XY ‖2 ≤ ‖X‖2 ‖Y ‖2 does not hold. In fact, let Z be a non-constant
positive 2-r.v. and let us take X = Y = Z1/2, then

(‖XY ‖2)
2 − (‖X‖2)

2 (‖Y ‖2)
2 = E[Z2]− (E[Z])2 = Var[Z] > 0.

Therefore ‖XY ‖2 > ‖X‖2‖Y ‖2. As a consequence, 2-norm ‖·‖2 is not sub-
multiplicative. This situation difficult our next target. Indeed, in the following
section we shall obtain the solution of (1) by a random power series in which
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the general term is the product of r.v.’s. In order to establish the absolute m.f.
convergence of this series (thus its m.s. convergence), we will require to bound
the 4-norm of a product of r.v.’s in terms of the 4-norm of each factor. Next
we address our work to provide some results to overcome this difficulty.

Given a r.v. X such that E [|X|n] < +∞ then

(E [|X|m])
1/m ≤ (E [|X|n])

1/n
, 0 ≤ m ≤ n. (15)

Note that in this case, E [|X|m] < ∞ holds. This result is called the Lia-
pounov’s inequality (see, [12, p.157]).

Next proposition contains the main result in this section and it constitutes a
generalization of (9).

Proposition 12 Let {Xi}n
i=1, n ≥ 2 be r.v.’s such that E

[
(Xi)

2n]
< ∞,

i = 1, 2, . . . , n, then

E

[∣∣∣∣∣
n∏

i=1

Xi

∣∣∣∣∣

]
≤

(
n∏

i=1

E
[
(Xi)

2n−1]
)1/2n−1

, n ≥ 2. (16)

Proof. It follows by induction on the number n of the involved r.v.’s. For
n = 2, (16) is exactly the Schwarz’s inequality given by (9). Note that since

by hypothesis E
[
(Xi)

4
]

< ∞ for i = 1, 2, then by (3) one gets E
[
(Xi)

2
]

< ∞,

i = 1, 2. For n = 3, by applying twice (9) one obtains

E [|X1X2X3|] ≤
(
E

[
(X1X2)

2
])1/2 (

E
[
(X3)

2
])1/2

=
(
E

[
(X1)

2 (X2)
2
])1/2 (

E
[
(X3)

2
])1/2

≤
(
E

[
(X1)

4
])1/4 (

E
[
(X2)

4
])1/4 (

E
[
(X3)

2
])1/2

≤
(
E

[
(X1)

4
])1/4 (

E
[
(X2)

4
])1/4 (

E
[
(X3)

4
])1/4

,

where in the last inequality we have applied (15) for X = X3 and m = 2 ≤
4 = n. Now, we assume by induction hypothesis that (16) holds and we shall
establish that

E

[∣∣∣∣∣
n+1∏

i=1

Xi

∣∣∣∣∣

]
≤

(
n+1∏

i=1

E
[
(Xi)

2n])1/2n

.

Indeed, by the induction hypothesis one gets

E

[∣∣∣∣∣
n+1∏

i=1

Xi

∣∣∣∣∣

]
= E [|(X1) (X2) · · · (Xn−1) (XnXn+1)|]

≤
(
E

[
(X1)

2n−1])1/2n−1(
E

[
(X2)

2n−1])1/2n−1

· · ·
(
E

[
(Xn−1)

2n−1])1/2n−1

×
(
E

[
(Xn)2n−1

(Xn+1)
2n−1])1/2n−1

,
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next we apply the Liapounov’s inequality (15) to the n − 1 first factors and,
the Schwarz’s inequality (9) to the last factor of the right-hand side, this yields

E

[∣∣∣∣∣
n+1∏

i=1

Xi

∣∣∣∣∣

]
≤

(
E

[
(X1)

2n])1/2n (
E

[
(X2)

2n])1/2n

· · ·
(
E

[
(Xn−1)

2n])1/2n

×
(
E

[
(Xn)2n])1/2n (

E
[
(Xn+1)

2n])1/2n

=

(
n+1∏

i=1

E
[
(Xi)

2n])1/2n

.

Thus the result is established.

Now we rewrite the inequality (16) in terms of the 4-norm given by (11). For

this, we will assume that E
[
(Yi)

2n+1]
< +∞, i = 1, 2, . . . , n and we apply

Proposition 12 to the r.v.’s Xi = (Yi)
4, i = 1, 2, . . . , n, thus one obtains

0<E




(
n∏

i=1

Yi

)4

≤

(
n∏

i=1

E
[(

(Yi)
4
)2n−1])1/2n−1

=
n∏

i=1

(
E

[(
(Yi)

2n−1)4
])1/2n−1

,

taking fourth roots in this expression it follows


E




(
n∏

i=1

Yi

)4





1/4

≤
(

n∏

i=1

E
[(

(Yi)
2n−1)4

])1/2n+1

=
n∏

i=1

((
E

[(
(Yi)

2n−1)4
])1/4

)1/2n−1

,

i.e., considering the 4-norm definition one gets

∥∥∥∥∥
n∏

i=1

Yi

∥∥∥∥∥
4

≤
n∏

i=1

(∥∥∥(Yi)
2n−1

∥∥∥
4

)1/2n−1

, E
[
(Yi)

2n+1]
< +∞, i = 1, . . . , n. (17)

4 Solving the random Hermite differential equations

This section is addressed to obtain the solution of the random differential
equation (1) by means of a random power series as well as establishing its
m.s. convergence. As we will see later in this section, inequality (17) will play
a crucial role in order to prove this type of convergence. In the following
we will assume that the absolute moments with respect to the origin of r.v.
A appearing into (1) increase at the most exponentially, i.e, there exist a
nonnegative integer n0 and positive constants H and M such that

E [|A|n] ≤ H Mn < +∞, ∀n ≥ n0. (18)

9



Let us seek a formal solution process of problem (1) of the form

X(t) =
∑

n≥0

Xntn, (19)

where coefficients Xn are 2-r.v.’s. Assuming that X(t) is termwise m.s. differ-
entiable and applying Example 3, it follows that

Ẋ(t) =
∑

n≥1

nXnt
n−1, tẊ(t) =

∑

n≥1

nXntn, (20)

Ẍ(t) =
∑

n≥2

n(n− 1)Xnt
n−2 = 2X2 +

∑

n≥1

(n + 2)(n + 1)Xn+2t
n. (21)

By imposing that (19)-(21) satisfy (1), one gets

AX0 + 2X2 +
∑

n≥1

((n + 2)(n + 1)Xn+2 + (A− 2n)Xn) tn = 0. (22)

Therefore a candidate m.s. solution process of problem (1) can be obtained
by imposing

AX0 + 2X2 = 0,

(n + 2)(n + 1)Xn+2 + (A− 2n)Xn = 0 , n ≥ 1,





i.e.,

Xn+2 =
(2n− A)

(n + 2)(n + 1)
Xn, n ≥ 0. (23)

By a recursive reasoning, these coefficients Xn can be computed as follows

X2k+2 =
(−A)(4− A)(8− A) · · · (4k − A)

(2k + 2)!
X0, k ≥ 0, (24)

X2k+3 =
(2− A)(6− A)(10− A) · · · (4k + 2− A)

(2k + 3)!
X1, k ≥ 0. (25)

Note that, all above equalities must be understanding with probability 1.
Therefore taking into account relationships (24)-(25), the s.p. (19) can be
expressed in terms of the data

X(t) = X0X1(t) + X1X2(t), (26)

where

X1(t) =


1 +

∑

k≥0

t2k+2

(2k + 2)!

k∏

j=0

(4j − A)


 ,

X2(t) =


t +

∑

k≥0

t2k+3

(2k + 3)!

k∏

j=0

(4j + 2− A)


 .

(27)

Note that in (22) we have formally commuted r.v. A and a random infinite
sum, then property (10) has been applied implicitly. In order to legitimate

10



this commutation, hypotheses of Lemma 6 must be checked. Therefore, we
address our work to establish the m.f. convergence of the two random series
given by (27), and since (L4, ‖·‖4) is a Banach space, that is equivalent to
prove that both series are absolutely convergent in the 4-norm. Thus, for each
t ∈ (−∞, +∞), we consider the numerical series associated to the first series
in (27) given by

∑

k≥0

|t|2k+2

(2k + 2)!

∥∥∥∥∥∥

k∏

j=0

(4j − A)

∥∥∥∥∥∥
4

, (28)

and note that by hypothesis E [|A|n] < +∞, ∀n ≥ 0, then applying (17) one
gets ∥∥∥∥∥∥

k∏

j=0

(4j − A)

∥∥∥∥∥∥
4

≤
k∏

j=0

(∥∥∥(4j − A)2k
∥∥∥
4

) 1

2k
. (29)

Now we can bound each factor of the above right-hand side by considering
(4). Indeed, let k be a fixed nonnegative integer and, for each j = 0, 1, . . . , k
let us consider the factor

(∥∥∥(4j − A)2k
∥∥∥
4

) 1

2k
=

(
E

[
|4j − A|2k+2]) 1

2k+2

≤
(
22k+2−1

(
(4j)2k+2

+ E
[
|A|2k+2])) 1

2k+2

≤
(
22k+2−1

(
(4k)2k+2

+ E
[
|A|2k+2])) 1

2k+2
.

(30)

Under hypothesis (18), we can assure the existence of an integer, say, k0 such
that: (4k)2k+2 ≥ H M2k+2

for each k ≥ k0, so from (30) one gets

(∥∥∥(4j − A)2k
∥∥∥
4

) 1

2k ≤
(
22k+2−1

(
(4k)2k+2

+ E
[
|A|2k+2])) 1

2k+2

≤
(
22k+2

(
(4k)2k+2

)) 1

2k+2
= 8k, ∀ k ≥ k0.

(31)

As we are only interested in convergence, we can assume without loss of gen-
erality that k0 = 0. Then series (28) can be majorized by series

∑

k≥0

|t|2k+2

(2k + 2)!
(8k)k+1, (32)

which is convergent for all t as it can be directly checked by D’Alembert test.
Therefore, we have proven that numerical series given by (28) is convergent,
thus the first random series of (27) is m.f. convergent, so also m.s. convergent.
Following an analogous procedure, it is easy to establish the m.s. convergence
of the second series in (27) for all t. Note that the above reasoning shows
that both solution series X1(t) and X2(t) given by (27) are m.s. uniformly
convergent, therefore taking into account Examples 2 and 3 and Proposition
11, the formal differentiation considered in (20)-(21) is justified. On the other
hand, taking t0 = 0 and considering that X1(0) = 1, Ẋ1(0) = 0, X2(0) = 0
and Ẋ2(0) = 1, one gets that WS(0) = 1 6= 0, then by Proposition 9 and (14),
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the solution of random differential equation (1) with random initial conditions
X(0) = Y0 and Ẋ(0) = Y1 is given by

X(t) = Y0X1(t) + Y1X2(t), t ∈ (−∞, +∞) , (33)

where X1(t) and X2(t) are defined in (27).

Summarizing the following result has been established:

Theorem 13 The random differential equation (1) with initial conditions
X(0) = Y0 and Ẋ(0) = Y1, where A is a r.v. satisfying condition (18),
admits as random power series solution of the form (33) where X1(t) and
X2(t) are given by (27). Moreover the solution is m.s. convergent for each
t ∈ (−∞, +∞).

Remark 14 The constructive method we have developed previously justifies
itself the existence and uniqueness of the analytical m.s. solution of the random
differential equation (1) with initial conditions X(0) = Y0 and Ẋ(0) = Y1. In
fact, from the initial conditions X0 = Y0 and X1 = Y1, the recurrence (23)
permits to compute, in a unique way, the rest of the coefficients Xn, n ≥ 2
that define the s.p. solution (26)-(27). In addition, we have proven that this
random power series is m.s. convergent for every t. On the one hand, notice
that in this case the approach above permits to guarantee the existence and
uniqueness of the analytical m.s. solution of problem (1) with initial condi-
tions X(0) = Y0 and Ẋ(0) = Y1 in an easier way than applying the natural
generalization to the random framework of the classical Picard-type theorem
for general differential equations based upon convergence of successive approxi-
mations established in theorem 5.1.1 of [5, p.118] since its application requires
to check a m.s. Lipschitz condition which in practice is too restrictive (see
[5, p.119] for comments on this issue). On the other hand, we point out that
although theorem 8.1.1. of [5, p.219] provides an analogous result to theorem
5.1.1 but under weaker conditions (because it is just suited to linear random
differential equations) it only allows us to guarantees m.s. convergence in a
neighborhood about t = 0 whose radius will likely be very small in order to
assure the required convergence of the numerical series given in condition (b).
In connection with our development, notice that this condition (b) essentially
relies on the growth rates of the statistical moments associated with the input
r.v. A such as we have assumed in condition (18) (see [5, p.219] for additional
comments on this issue).

From (31), one deduces that previous exposition holds true by assuming the
following growth condition about the absolute moments of r.v. A

∃k1 : E
[
|A|2k+2] ≤ (4k)2k+2

, ∀ k ≥ k1, (34)

which is less restrictive that (18). However, from a practical viewpoint previous
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condition is not easy to check because of the lack of explicit expressions for
the absolute moments with respect to the origin of relevant r.v.’s such as
Binomial, Poisson, etc. In order to overcome this difficulty, from now on, we
will deal with r.v.’s A having finite domain, i.e., such that a1 ≤ A(ω) ≤ a2,
for each ω ∈ Ω. Note that this class of r.v.’s satisfy condition (18). Indeed, let
us assume that A is a continuous r.v. with density function fA(a), then taking
H = max(|a1|, |a2|), one gets

E [|A|n] =
∫ a2

a1

|a|nfA(a) da ≤ Hn.

Note that, by substituting the integral for a sum, previous conclusion remains
true if A is a discrete r.v. We emphasize that important r.v.’s such as Binomial,
Hypergeometric, Uniform or Beta have finite domain. Otherwise, we can use
the truncation method (see [12]) for dealing with unbounded r.v.’s such as
Poisson, Gaussian or Exponential (see Example 19 below).

5 Introducing the random Hermite polynomials

Next we address to motivate the introduction of random Hermite polynomials
as well as some aspects related to them that arise in a natural way when we
extend this deterministic concept to the stochastic framework. First, note that
taking into account (23)-(27), one deduces that if there exists n ≥ 0 such that
P [A = 2n] = 1, that is, A is a (degenerate) discrete r.v. whose total probability
mass is concentrated at the point 2n, then the random differential equation
(1) has a random polynomial solution. Since every even integer number takes
the form 4k or 4k+2, k ≥ 0, if there exists k ≥ 0 such that P [A = 4k] = 1 (or
P [A = 4k + 2] = 1), then X1(t) (or X2(t)) given by (27) generates a (random)
polynomial solution of degree 2k (or 2k + 1). These random (degenerate)
solutions can be interpreted as corresponding Hermite polynomials that one
presents in the deterministic framework. However in the random scenario there
are richer situations that deserve to be considered.

Indeed, in the case that A is a continuous r.v. since P [A = 2n] = 0 for every
integer n ≥ 0, then with probability 1, one can conclude that there are not
random polynomial solutions of differential equation (1). Whereas if A is a
discrete r.v. that only takes different even values (not concentrated in just
one even value), then there will exist with probability 1, random polynomial
solutions (see later, Example 20). This case generalizes the concept of Her-
mite polynomial solution from the deterministic framework (moreover, note
that this situation contains the previous case where A was a degenerated r.v.
concentrated just at a point).

For the case that A is a discrete r.v. whose values lie in a set containing some
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even numbers, random differential equation (1) does not have any random
polynomial solution, but it admits some sample representations which are
(deterministic) polynomials. Then, considering the stochastic process solution
as a family of trajectories, we can assign the probability ppol that the random
power series given by (33) and (27) has random polynomial sample solutions.
Note that this series becomes a random polynomial if, and only if, ppol = 1.
Thus if 0 ≤ ppol < 1, then X(t) given by (33) and (27) produces sample
solutions, with probability ppol, of random differential equation (1) with initial
conditions Y0(ω), Y1(ω), but not a random solution.

As an illustrative example, let us assume that A is Binomial r.v. of parameters
n and p, A ∼ Bi(n; p). Table 1 shows the probability ppol for different values of
the parameters n and p. As in general, Bi(n; p) = Bi(n; 1−p), we only consider
values 0 < p ≤ 0.5. One observes that for p fixed, these values decrease up to
0.5 as n increases. The considerations above motivate the following result:

n ppol, p = 0.1 ppol, p = 0.2 ppol, p = 0.3 ppol, p = 0.4 ppol, p = 0.5

2 0.82 0.68 0.58 0.52 0.5

4 0.7048 0.5648 0.5128 0.5008 0.5

6 0.631072 0.523328 0.502048 0.500032 0.5

8 0.583886 0.508398 0.500328 0.500001 0.5

10 0.553687 0.503023 0.500052 0.5 0.5

100 0.5 0.5 0.5 0.5 0.5
Table 1
Probabilities of generating random polynomial (sample) solutions when A is a Bi-
nomial r.v. of parameters n and p

Corollary 15 Let us consider the random differential equation (1) with initial
conditions X(0) = Y0 and Ẋ(0) = Y1, where the (discrete) r.v. A takes only a
finite number of even integer values, that is, P [A = 2mj] = pj > 0, 1 ≤ j ≤ n
with

∑n
j=1 pj = 1. Then this i.v.p. has a random polynomial solution Hmn(t)

of the degree mn.

Definition 16 Let mn be a positive integer. The mn-th random Hermite poly-
nomial or the random Hermite polynomial of degree mn, is the random m.s.
solution of problem (1) with initial conditions X(0) = Y0 and Ẋ(0) = Y1,
being A the discrete r.v. taking the finite number of even integer values 2mj,
with probabilities P [A = 2mj] = pj > 0, 1 ≤ j ≤ n with

∑n
j=1 pj = 1.

With respect to Definition 16 and keeping this notation, it is important to
point out that under conditions of Corollary 15, a random Hermite poly-
nomial solution can be interpreted as a collection of deterministic Hermite
polynomials, which, for each j : 1 ≤ j ≤ n, have a probability pj of sampling.
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The degree mn of the random Hermite polynomial Hmn(t) is the greatest of
all degrees corresponding to each (deterministic) Hermite polynomials, but it
is not necessary that its sample associated probability pn be also greater than
pj for all j : 1 ≤ j ≤ n, (see Example 20).

Remark 17 Note that the situation where A is the discrete r.v. taking all the
even integer values with P [A = 2j] = 2−(j+1), j = 0, 1, 2, . . ., then for each j
one obtains a sample polynomial solution, but since j lies in the positive inte-
ger numbers, the degree of the random polynomial solution cannot be defined
according with Definition 16.

6 Statistical functions of the mean square random power series
solution

This section deals with the computation of the main statistical functions of the
m.s. solution of (1) given by (26)-(27) such that the average and variance in

terms of the data E [Y0], E [Y1], E [Y0Y1], E
[
(Y0)

2
]
, E

[
(Y1)

2
]

as well as certain
moments related to algebraic transformations of the random coefficient A that
will be specified later.

First at all, let us take the expectation operator in the random differential
equation (1). Then by applying property (8) one gets

d2

dt2
(µX(t))− 2t

d

dt
(µX(t)) + E [AX(t)] = 0. (35)

Note that, (35) is not a suitable equation for computing µX(t) because the
term E [AX(t)] cannot be factorized as AµX(t), in general. Nevertheless some
methods, like the so-called dishonest method (see, [19], [20, p.148]), accept the
above factorization as an alternative to handle the problem of computing the
mean of the solution process. Since we shall see right away through examples,
our approach avoid the above approximations and it allows us to provide
reliable values for the mean and the variance into quite general situations.

In practice, as it occurs in the deterministic framework, it will be unfeasible
the computation of the mean through the infinite series given by (26)-(27).
Then, we will consider the truncation of order N

XN(t) = X0


1 +

N∑

k=0

t2k+2

(2k + 2)!

k∏

j=0

(4j − A)




+ X1


t +

N∑

k=0

t2k+3

(2k + 3)!

k∏

j=0

(4j + 2− A)


 .

(36)
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Henceforth, we will assume that r.v. A is independent of initial conditions
X(0) = Y0 and Ẋ(0) = Y1 (note that from an applied point of view, this
hypothesis is realistic), then taking the expectation operator in (36) one gets

µXN
(t) = E [Y0]


1 +

N∑

k=0

t2k+2

(2k + 2)!
E




k∏

j=0

(4j − A)







+ E [Y1]


t +

N∑

k=0

t2k+3

(2k + 3)!
E




k∏

j=0

(4j + 2− A)





 .

(37)

E




k∏

j=0

(4j − A)


 =





∑

a:pA(a)>0

k∏

j=0

(4j − a)pA(a),

∫ ∞

−∞

k∏

j=0

(4j − a)fA(a) da,

and

E




k∏

j=0

(4j + 2− A)


 =





∑

a:pA(a)>0

k∏

j=0

(4j + 2− a)pA(a),

∫ ∞

−∞

k∏

j=0

(4j + 2− a)fA(a) da.

Now taking into account the expression (6) for computing the variance of the

truncated solution process, now we only require to calculate E
[
(XN(t))2

]
. In

order to save executing time in the computer, it is convenient considering the
following relationship

E
[
(XN(t))2

]
=

N∑

n=0

E
[
(Xn)2

]
t2n + 2

N∑

n=1

n−1∑

m=0

E [Xn Xm] tn+m.

With the usual convection
∏v

i=u f(i) = 1 if v < u, the terms involved in the
two previous sums can be computed as follows:

E [XnXm]=
1

n! m!





E
[
(Y0)

2
]
E

[
P1

(
n− 2

2

)
P1

(
m− 2

2

)]
if

n=0, 2, 4, . . . ,

m=0, 2, 4, . . . ,

E [Y0Y1]E
[
P1

(
n− 2

2

)
P2

(
m− 3

2

)]
if

n=0, 2, 4, . . . ,

m=1, 3, 5, . . . ,

E [Y0Y1]E
[
P2

(
m− 3

2

)
P1

(
n− 2

2

)]
if

n=1, 3, 5, . . . ,

m=0, 2, 4, . . . ,

E
[
(Y1)

2
]
E

[
P2

(
n− 3

2

)
P2

(
m− 3

2

)]
if

n=1, 3, 5, . . . ,

m=1, 3, 5, . . . ,

(38)
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where we have denoted

P1(k) =
k∏

j=0

(4j − A), P2(k) =
k∏

j=0

(4j + 2− A),

and the expectations appearing in (38) can be computed as follows

E [P1(k)P1(l)] =





∑

a:pA(a)>0

k∏

j=0

(4j − a)
l∏

j=0

(4j − a) pA(a),

∫ +∞

−∞

k∏

j=0

(4j − a)
l∏

j=0

(4j − a) fA(a) da,

E [P1(k)P2(l)] =





∑

a:pA(a)>0

k∏

j=0

(4j − a)
l∏

j=0

(4j + 2− a) pA(a),

∫ +∞

−∞

k∏

j=0

(4j − a)
l∏

j=0

(4j + 2− a) fA(a) da,

E [P2(k)P1(l)] =





∑

a:pA(a)>0

k∏

j=0

(4j + 2− a)
l∏

j=0

(4j − a) pA(a),

∫ +∞

−∞

k∏

j=0

(4j + 2− a)
l∏

j=0

(4j − a) fA(a) da,

E [P2(k)P2(l)] =





∑

a:pA(a)>0

k∏

j=0

(4j + 2− a)
l∏

j=0

(4j + 2− a) pA(a),

∫ +∞

−∞

k∏

j=0

(4j + 2− a)
l∏

j=0

(4j + 2− a) fA(a) da.

Taking into account property (7) as well as the m.s. convergence of random
series given by (33) and (27), the convergence of the mean and the variance of
the truncated solution (36) to the corresponding exact values are warranted
under the hypotheses of Theorem 13.

7 Examples

In this section we provide several illustrative examples. The results obtained
to approximate the mean and the variance by means of the series method
presented in this paper are compared with respect to the corresponding ones
provided by the dishonest and Monte Carlo approaches.

Example 18 Let us consider a random differential equation of the form (1)
where A is a Beta r.v. with parameters α = 2 and β = 3, i.e., A ∼ Be(α =
2; β = 3) and the initial conditions Y0 and Y1 are (positive) correlated r.v.’s
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such that E [Y0Y1] = 0.3 and, E [Y0] = 1, E
[
(Y0)

2
]

= 2, E [Y1] = 2, E
[
(Y1)

2
]

=
5. Note that r.v. A satisfies conditions of Theorem 13 since it takes values on a
bounded interval. Then the m.s. solution of model (1) with initial conditions Y0

and Y1 is given by (33) and (27). Table 2 shows the expectation of the truncated
solution s.p. for different values of the truncation order N (denoted by µXN

(t))
at different values of the time parameter t as well as the corresponding values
obtained by the dishonest (µd

X(t)) and Monte Carlo methods (µ̃m
X(t)) by using

m simulations. One observes that for values of t near of the origin (where

t µX5(t) µX10(t) µX20(t) µd
X(t)

µ̃m
X(t)

m = 50000

µ̃m
X(t)

m = 100000

0.00 1.00000 1.00000 1.00000 1.00000 0.99826 0.99995

0.25 1.49575 1.49575 1.49575 1.49574 1.49502 1.49611

0.50 2.01775 2.01775 2.01775 2.01761 2.01814 2.01855

0.75 2.63184 2.63184 2.63184 2.63099 2.63362 2.63315

1.00 3.44890 3.44891 3.44891 3.44545 3.45263 3.45088

1.25 4.69234 4.69267 4.69267 4.68111 4.69942 4.69553

1.50 6.86741 6.87373 6.87373 6.83843 6.88590 6.87801

1.75 11.2081 11.2854 11.2855 11.1806 11.30880 11.29240

2.00 20.8513 21.5482 21.5514 21.2341 21.60060 21.56350
Table 2
Comparison of the mean for different methods in Example 18

the initial conditions are established and the series solution s.p. is centered),
the approximations obtained by the method proposed in this paper coincide for
different truncation orders of the series solution. In fact, the approximations
are accurate for N = 5 about t = 0. These values differ from the corresponding
ones obtained by the dishonest method. Regarding approximations obtained
by means of the Monte Carlo method it is worthwhile pointing out that they
improve as the number m of simulations increases, and in general, they provide
better approximations than those obtained by the dishonest method. Table 3
compares the values of variance for the truncation method with respect to the
Monte Carlo method. In order to show that accurate approximations of the
variance require greater values of N , in Table 3 we have considered values of
N that differ from those we have taken in Table 2. Finally, note that as A is
a continuous r.v., in this case the initial value problem does not have random
(Hermite) polynomial solutions.

Example 19 In this example we take advantage of the so-called truncation
method (see [12]) to deal with a r.v. A that neither satisfy condition (18)
nor condition (34). Let us consider model (1) where A is a Gaussian r.v.,
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t Var [X10(t)] Var [X20(t)] Var [X50(t)]
Ṽar

m

X(t)

m = 50000

Ṽar
m

X(t)

m = 100000

0.00 1.00000 1.00000 1.00000 1.002 0.9978086

0.25 1.03943 1.03943 1.03943 1.04321 1.03741

0.50 1.18425 1.18425 1.18425 1.18964 1.18298

0.75 1.54404 1.54432 1.54432 1.55086 1.54517

1.00 2.44517 2.45458 2.45458 2.4609 2.461183

1.25 4.84512 5.01194 5.01197 5.01346 5.035022

1.50 11.2801 13.3658 13.3675 13.3465 13.4437

1.75 24.4765 46.25617 46.3373 46.2146 46.61740

2.00 105.1987 206.11745 209.017 208.359 210.273
Table 3
Comparison of the variance for different methods in Example 18

A ∼ N(µ = 5; σ = 1), and the initial conditions Y0 and Y1 are uncorrelated

r.v.’s such that E [Y0] = 1, E
[
(Y0)

2
]

= 2, E [Y1] = 2, E
[
(Y1)

2
]

= 5. Note that
r.v. A has unbounded domain. In order to overcome this difficulty, we will
consider the truncation of this r.v. on the interval [µ − 3 σ, µ + 3 σ] = [2, 8]
that will contain all the values of A with probability 0.997. The probability
density function associated to the new censured r.v., say, B is

fB(b) =
exp

(
−1

2
(b− 5)2

)

∫ 8

2
exp

(
−1

2
(x− 5)2

)
dx

, 2 ≤ b ≤ 8.

In this way, B satisfies hypotheses of Theorem 13 since it takes values on
a bounded interval. Table 4 shows approximations of the expectation of the
solution s.p. computed by the truncation series, dishonest and Monte Carlo
methods. For the truncation method, Table 4 only shows results for N = 5, 10
because for greater values the obtained results do not change. Table 5 shows
approximations for the variance obtained by means of the truncation method
as well as Monte Carlo method. Analogous comments we made in Example 18
can be done again.

Example 20 Let us consider model (1) where A is a discrete r.v. whose values
and associated probabilities are specified in the two first columns of Table 6. In
this case, the random differential equation (1) with initial conditions X(0) =
Y0 and Ẋ(0) = Y1 has random (Hermite) polynomial solutions of degree 9.
For instance, with probability 1/8 one will present as (sample) solution the
polynomial 1− 2t2 generated from the term X1(t) (given by (27)) that defines
the general solution (26). Apart from a constant, this polynomial coincides
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t µX5(t) µX10(t) µd
X(t)

µ̃m
X(t)

m = 50000

µ̃m
X(t)

m = 100000

0.00 1.00000 1.00000 1.00000 0.996945 0.99917

0.25 1.32907 1.32907 1.32889 1.3267 1.3286

0.50 1.26473 1.26473 1.26175 1.26405 1.26507

0.75 0.7451 0.745101 0.729061 0.747267 0.746903

1.00 −0.271569 −0.271568 −0.324665 −0.265094 −0.267331

1.25 −1.80638 −1.80635 −1.93991 −1.7937 −1.79838

1.50 −3.85904 −3.85876 −4.13681 −3.83768 −3.84559

1.75 −6.41039 −6.4087 −6.90081 −6.37705 −6.38944

2.00 −9.43986 −9.43401 −10.1448 −9.39179 −9.4106
Table 4
Comparison of the mean for different methods in Example 19

t Var [X10(t)] Var [X20(t)] Var [X50(t)]
Ṽar

m

X(t)

m = 50000

Ṽar
m

X(t)

m = 100000

0.00 1.00000 1.00000 1.00000 0.99837 0.998648

0.25 0.774331 0.774331 0.774331 0.77285 0.774595

0.50 0.37752 0.37752 0.37752 0.379991 0.380405

0.75 0.54182 0.541811 0.541811 0.550826 0.546854

1.00 2.10416 2.10396 2.10396 2.11649 2.10742

1.25 5.48791 5.48669 5.48669 5.49385 5.48397

1.50 10.4335 10.4463 10.4463 10.454 10.4573

1.75 17.6092 18.0106 18.0117 18.1235 18.1765

2.00 38.0585 43.7945 43.8404 44.5363 44.7127
Table 5
Comparison of the variance for different methods in example 19

with the deterministic Hermite polynomial, given by 4t2 − 2. In fact, it is
enough taking as initial condition Y0 a r.v. concentrated in the point −2, i.e.,
P [Y0 = −2] = 1 for obtaining the Hermite (sample) polynomial of degree 2,
4t2 − 2. In the same way, with probability 1/4 we will obtain as solution the
polynomial t − 2/3 t3 which is generated from the term X2(t) given by (27).
For an initial condition Y1 such that P [Y1 = −12] = 1 one obtain just the
deterministic Hermite polynomial of degree 3, 8t3−12t. Following an analogous
procedure, we fill the table 6. We stress the degree of the random polynomial
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solution is 9 and, the sample polynomial solution associated to this degree
is 1/6, whereas the sample polynomial solution of degree 5 has the greater
probability of occurrence, 1/3.

A P [A] initial condition Hermite sample polynomial

4 1/8 Y0 = −2 −2 + 4t2

6 1/4 Y1 = −12 −12t + 8t3

10 1/3 Y1 = 120 120t− 160t3 + 32t5

12 1/8 Y0 = −120 −120 + 720t2 − 480t4 + 64t6

18 1/6 Y1 = 30240 30240t− 80640t3 + 48384t5 − 9216t7 + 512t9

Table 6
Hermite sample polynomials and its associated probabilities in Example 20

8 Conclusions

In this paper, we have constructed a power series solution of the Hermite
random differential equation (1) by assuming that coefficient A is a random
variable satisfying condition (18) related to its statistical moments. In order
to justify that this power series is mean square convergent over the whole
real line, the inequality (17) as well as some results linking the mean square
and mean fourth calculus have been previously established. We have also pro-
vided sufficient conditions for obtaining random polynomial solutions of (1)
which allows to introduce the random Hermite polynomials as an extension
of their deterministic counterpart. On the other hand, by assuming indepen-
dence between random initial conditions and input random variable A, explicit
analytic-numerical approximations of the main statistical functions associated
to the stochastic process solution of (1) have been provided. In the last sec-
tion, we have shown several illustrative examples where the approximations
of the mean and the variance of the solution of (1) with respect to dishonest
and Monte Carlo approaches are compared. These examples show that the
approach here proposed is more accurate.
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[9] J.C. Cortés, L. Jódar, L. Villafuerte, Numerical solution of random differential
initial value problems: Multistep methods, Math. Meth. Appl. Sci. 34(1) (2011)
63–75.

[10] M. El-Tawil, W. El-Tahan, A. Hussein A proposed technique of SFEM on
solving ordinary random differential equation, Appl. Math. Comput. 161 (2005)
35–47.
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processes of diffusion equation with data uncertainty, Comput. Math. Appl.
49 (2005) 1255–1266.

[19] J.B. Keller, Stochastic equations and wave propagation in random media, Procc.
Symp. Appl. Math. Am. Math. Soc. Providence Rhode Island 1963 16 (1963)
145–170.

[20] D. Henderson, P. Plaschko, Stochastic Differential Equations in Science and
Engineering, World Scientific, Singapore 2006.

23


