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Abstract 

The combination of different experimental techniques, such as solid 13C and 1H MAS NMR 

spectroscopy, fluorescence spectroscopy, and powder X-ray diffraction, together with 

theoretical calculations allows the determination of the unique structure directing role of the 

bulky aromatic proton sponge 1,8-bis(dimethylamino)naphthalene (DMAN) towards the extra-

large pore ITQ-51 zeolite through supra-molecular assemblies of those organic molecules.  
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1.- Introduction 

Bulky and rigid organic structure directing agents (OSDAs) can be useful for the preparation of 

zeolites with large void volumes, and especially for the synthesis of extra-large pore zeolites.[1] 

Using large and rigid OSDAs different extra-large pore zeolites presenting mono-directional 14-

ring channels,[2] multidimensional extra-large channels,[3] and even mesoporous zeolites [4] 

have been synthesized. In these cases, the zeolite crystallization occurs through the interaction 

of single organic molecular units and the inorganic sources present in the synthesis gel. Bulky 

and rigid OSDAs must be soluble in the synthesis media (usually aqueous media), present high 

hydrothermal stability, and more importantly, have strong non-bonded interactions with the 

host inorganic matrix during nucleation-crystallization processes.[5] However, when the C/N 

ratio is increased above a certain value (C/N>14), some solubility problems of these bulky 

OSDAs in aqueous media can appear, precluding their structure directing capacity.[1] 

Several years ago, a new organic structure directing concept based on supramolecular 

assemblies was introduced in the preparation of zeolites, and the pure silica small pore large 

volume A zeolite (LTA) was synthesized breaking the paradigm that this zeolite could only be 

synthesized with high Al contents.[6] In this case, the bulky OSDA required to template the 

large LTA cavity and to allow minimization of framework negative charges, was achieved by the 

supramolecular self-assembling of two organic molecules presenting an aromatic ring, forming 

stable and soluble bulky dimers through - type interactions.[6] Later, similar supramolecular 

self-aggregation through - type interactions of aromatic molecules, such as 

benzylpyrrolidine, has also been described for the crystallization of the large pore AlPO-5 

zeotype.[7] 

Very recently, we have introduced a new type of aromatic OSDAs, i.e. an aromatic proton 

sponge (1,8-bis(dimethylamino)naphthalene [DMAN], see Figure 1), for the synthesis of the 

extra-large pore ITQ-51 zeotype, whose structure presents 16-ring channels.[8] DMAN is a 

commercially available bulky aromatic diamine with the amine groups in close proximity, 

providing high basicity (pKa>12.1) by the repulsion of the close electronic lone pairs.[9] This 

high basicity would favor their protonation in the synthesis media, allowing organic-inorganic 

interactions during the nucleation-crystallization processes. 

We will show here a combination of experimental and computational techniques in order to 

evaluate the structure directing roles of these aromatic molecules, including their ability to be 

protonated and their self-aggregation as dimers in the synthesis gel and in the final as-



prepared solid. The proton sponge dimers will allow the stabilization of the 16-ring extra-large 

pores of the ITQ-51 zeolite.  

2.- Experimental and computational details 

2.1.- Synthesis 

The synthesis procedure of ITQ-51 can be found in ref [8]. Aqueous solutions of DMAN were 

prepared by adding equimolecular amounts of the corresponding proton sponge and 

phosphoric acid. The ionic complex of DMAN with orthophosphoric acid was prepared by 

mixing 217.7 mg of H3PO4 (85%wt, Sigma-Aldrich), 257.2 mg of proton sponge (99%wt, Sigma-

Aldrich), and 615.4 mg of water, and the resultant solution was liofilized to remove the solvent. 

2.2.- Characterization 

The solid-state NMR spectra were recorded at room temperature on a Bruker AV 400 

spectrometer MAS. 13C MAS NMR cross-polarization (CP) spectrum was recorded at a sample 

spinning rate of 5 kHz. 1H MAS NMR spectrum was achieved with a spinning rate of 10 kHz at 

400 MHz with a π/2 pulse length of 5 μs.  13C and 1H NMR chemical shifts was referenced to 

adamantine and TMS, respectively.  

Steady-state photoluminescence measurements were recorded in a Photon Technology 

International (PTI) 220B spectrofluorimeter having a Xe arc lamp light excitation and Czerny-

Turner monochromator, coupled to a photomultiplier. The solid samples were pressed 

between two windows Suprasil quartz cuvettes with a path length of 0.01 mm and placed at a 

45° angle to both the excitation and emission monochromators. All measurements were 

carried out at room temperature. 

2.3.- Refinement against powder XRD data 

The structure model was refined by Rietveld refinement using TOPAS with soft restraints for T-

O bond distances and rigid body restraints for the organic structure directing agents (OSDAs). 

The framework positions were fully occupied. There is one unique OSDA in the unit cell, with 

occupancy of 0.5. All the atoms were refined with isotropically and the atomic displacement 

parameters were restrained to be equal for similar atoms. The refinement of the ITQ-51 model 

was converged with RF = 0.0281 and Rwp = 0.0667. The refinement detail is given in Table S1.  

2.4.- Computational methods 



Several energetic contributions are widely acknowledged to be at play such as electrostatic 

(long range) and van der Waals (short range) zeo-OSDA. A fundamental idea behind this 

approach is the fact that the location of the OSDA molecule is mainly dictated by short range 

van der Waals forces between the OSDA and the zeolite framework, being the oxygen atoms of 

the zeolite the most important in the interaction with the OSDA due to their large size and 

anionic character. 

In order to estimate the OSDA location within the micropore void we use the following 

strategy: (i) one molecule of OSDA is located in the micropore of ITQ-51 and the minimum 

energy position is found through a simulated annealing type procedure with repeated cycles of 

molecular dynamics runs followed by energy minimization; (ii) the unit cell of ITQ-51 is filled 

with different loadings of each particular OSDA and the optimum loading is calculated as that 

which minimizes the total energy; (iii) once the optimum loading is found, we use minimization 

algorithms for the full system. Then, we calculate the final contributions to the energy of the 

subsystems as shown in equations (1)-(3). 

 Einitial = Eframe + EOSDA−OSDA + EOSDA (1) 

 Efinal = Eframe' + Eframe'− OSDA' + EOSDA'−OSDA' + EOSDA' (2) 

A full electrostatic model has been considered with OSDA molecules containing +1 charge. Due 

to the fact that the positions of the counteranions are unknown, the compensating charge has 

been uniformly distributed across the framework atoms in order to have a neutral unit cell. 

And so, it is expected that the energy difference between the final and initial states is due to 

the SDA incorporation which should be a negative, hence stabilising, interaction. Some of the 

above terms will be positive, such as the energy difference regarding framework energy (Eframe' 

– Eframe) and OSDA energy (EOSDA' – EOSDA), and hence each of the individual moities experiences 

an energy increase in the synthesis process. However, the interaction between the zeolite 

framework and the SDA molecules (Eframe'-OSDA') should be negative enough so as to compensate 

the previous energetic increase. 

Combining equations (2)-(1), we obtain the final expression below which shows quantitatively 

whether the synthesis is more or less feasible with the corresponding OSDA molecule. The 

more negative the value, the more favorable the synthesis. 

 Esynthesis = Eframe + Eframe'−OSDA' + EOSDA−OSDA + EOSDA  (3) 



The calculations in steps (i), (ii) and (iii) have been performed using lattice energy minimization 

techniques [10] and the GULP code,[11] employing a direct summation of the short range 

interactions with a cut off distance of 12 Å. The RFO (rational functional optimizer) technique 

was used as the cell minimization scheme with a convergence criterion of a gradient norm 

below 0.001 eV/Å. To account for the effect of the OSDA in the system, the forcefield by 

Kiselev et al. [12] has been used for the intermolecular OSDA–zeolite and OSDA–OSDA 

interactions. For the AlPO system, a force field developed in a previous study was 

employed.[13] 

For a more in depth study of the interactions between the OSDA molecules, a full electron 

quantum approach based on new functionals containing dispersion terms has been used in 

order to get a more accurate picture of the intermolecular interactions and their role in the 

total OSDA-OSDA energy obtained. The functionals CAM-B3LYP [14] and LCWPBE [15] including 

dispersion have been used. In all cases the accurate TZVP basis set [16] has been employed, 

and the results have been checked against basis set convergence by also using the further 

improved QZVP basis set. The Gaussian09 software package was used for the optimization of 

the OSDA molecules using the DFT approach outlined above. 

The calculated unit cell parameters are: a = 23.61 Å, b = 16.25 Å, c = 4.95 Å,  = 90.0°,  = 90.9°, 

 = 90.0°. The calculated stacking shows a relative rotation of the two SDA molecules of 155°, 

observing a tilt of 82° between the plane of the aromatic rings and the c (vertical) axis. This tilt 

is 74° in the experimental case. The combination of two opposite forces balanced could explain 

the slight discrepancies between the calculated and the experimental OSDA orientations. In 

this sense, attractive OSDA-framework interactions would drive the geometry towards a 90° 

tilt angle, whilst short range repulsions due to the limited pore diameter lead to a larger tilt 

angle. It is suggested that the forcefield employed does not contain the appropriate balance 

between attractive and repulsive forces. Nevertheless, an overall reasonable correspondence 

of the calculated OSDA location has been found with loading and location similar to the 

experimentally observed (see Table S2).  

3.- Results 

In a previous work, we have demonstrated by elemental analysis and solid 13C MAS NMR (see 

spectrum of the as-prepared ITQ-51 in Figure S1) that the proton sponge DMAN remains intact 

within ITQ-51 crystals after the crystallization process.[8] However, despite the high proton 

affinity of DMAN molecules to form stable ionic species containing intramolecular [N…H…N]+ 

hydrogen bonding,[9,17] the protonated nature of the occluded DMAN molecules within as-



prepared ITQ-51 was not described. To properly analyze whether DMAN molecules are 

protonated or not, as-prepared ITQ-51 was characterized by solid 1H MAS NMR spectroscopy. 

As seen in Figure 2c, two main peaks are observed, corresponding to hydrogen bonds bound to 

the aliphatic and aromatic carbons, which are centered at 2 and 6.8 ppm, respectively. In 

addition to those large peaks, a small peak appears at 18.5 ppm. Interestingly, similar chemical 

shifts (17-18 ppm) have been described in the literature for the acidic proton shielded by the 

amino groups on different DMAN complexes with inorganic and organic acids.[17,18] The solid 

1H MAS NMR spectrum of commercially available DMAN only shows the two large peaks 

corresponding to protons bounded to the aliphatic and aromatic carbons (see Figure 2a), but 

no signal at 18.5 ppm is observed. However, if an ionic complex of DMAN is prepared with 

orthophosphoric acid (see experimental section for details) to force the protonated DMAN to 

form, the 1H MAS NMR spectrum clearly shows the small band at 18.5 ppm (see Figure 2b), 

corresponding to the acidic proton between the amino groups, confirming that the DMAN is in 

a protonated form in the as-prepared ITQ-51. 

Once the protonated nature of DMAN molecules in the as-prepared ITQ-51 has been 

confirmed, the next step was to understand the directing roles of the aromatic proton sponge 

molecules during the zeolite crystallization process. As described above, the supramolecular 

chemistry has been rarely described in the structure direction of crystalline microporous 

materials, being through - type interactions of aromatic molecules the only examples 

reported.[6,7] However, if the chemical structure of DMAN molecule is considered, this proton 

sponge molecule shows the suitable size, rigidity, thermal stability, and hydrophobicity 

(aromatic naphthalene group), to be a potential candidate to form bulky dimers by 

supramolecular self-assembled OSDAs. 

It was described during the synthesis of LTA that when self-assembling through - type 

interactions of aromatic molecules occurs, the fluorescence spectrum shows an intense shift of 

the emission band towards higher wavelengths by the strong interaction of the aromatic 

rings.[6] Having that in mind, we have prepared two aqueous solutions of DMAN at different 

concentrations, 5.10-4 M and 3 M, in order to study the fluorescence emission spectra of the 

diluted and concentrated solutions. The idea behind is that DMAN molecules would remain as 

monomers in highly diluted conditions while dimerization may occur under concentrated 

conditions. It is important to note that this DMAN concentration is the same as it was required 

in the preparative gel for the synthesis of ITQ-51. Since the UV-Vis spectrum of DMAN in 

aqueous solution shows a band centered at 285 nm (see Figure S2), the photoluminescence 



study of both DMAN aqueous solutions is performed at the excitation wavelengths of 270, 285, 

and 300 nm. As it can be observed in Figure 3, both diluted and concentrated DMAN solutions 

present similar fluorescence emission spectra with a main fluorescence band centered at 475 

nm. This result clearly indicates that self-interactions of DMAN molecules through - type 

interactions of aromatic molecules does not occur either in the diluted or concentrated 

solutions of DMAN and, therefore, it can be expected that dimers of DMAN molecules by - 

stacking will not take place during the synthesis of ITQ-51. Indeed, the fluorescence emission 

spectrum of the as-prepared ITQ-51 solid shows a shift of the fluorescence band towards a 

lower wavelength (415 nm, see Figure 3), which could be attributed to a particular 

interaction of DMAN molecules in the confined space of the ITQ-51. Nevertheless, it can be 

asserted that neither in the synthesis gel nor in the final solid there is self-aggregation of 

DMAN molecules through - type interactions.     

However, when both aqueous solutions of DMAN were studied by liquid 1H NMR spectroscopy, 

intense chemical shifts can be observed for the hydrogen bound to the aliphatic and aromatic 

carbons, which depend on the concentration of DMAN (see Figure S3). The diluted DMAN 

solution shows peaks ranging from 7.9 to 7.6 ppm for the protons associated to the aromatic 

carbons and a peak centered at 3 ppm for the protons associated to aliphatic carbons (see 

Figure S3a). On the other hand, the concentrated DMAN solution presents the signals at 6.8-

6.3 and 1.9 ppm, for the protons associated to the aromatic carbons and aliphatic carbons, 

respectively (see Figure S3b). These changes on the chemical shifts of more than 1 ppm in the 

liquid 1H NMR spectra depending on the DMAN concentration would be associated to some 

self-interactions of DMAN molecules under concentrations similar to those used during the 

zeolite synthesis. Interestingly, the 1H MAS NMR spectrum of the as-prepared ITQ-51 shows 

two broad peaks centered at 6.9 and 2.4 ppm (see Figure S3c), which resembles to the 1H NMR 

spectrum of the concentrated DMAN solution. Particular confined issues of DMAN molecules 

within ITQ-51 structure could be the reason for the slightly different chemical shifts. Thus we 

could conclude from the 1H NMR spectroscopy that a self-interaction of DMAN molecules may 

occur in the synthesis gel and in the final as-prepared ITQ-51 solid, but it cannot be 

unequivocally ascertain from the characterization results obtained so far. 

To confirm or reject the formation of DMAN dimers, the structure model of the as-prepared 

ITQ-51 material has been developed using powder X-ray diffraction (PXRD) data. The structure 

model was refined by Rietveld refinement using TOPAS [19] with soft restraints for T-O bond 

distances and rigid body restraints for the OSDAs. The framework positions were fully occupied. 



There are two OSDAs in one unit cell. All the atoms were refined isotropically and the atomic 

displacement parameters were restrained to be equal for similar atoms. The refinement of the 

ITQ-51 model converged to RF = 0.0281 and Rwp = 0.0667. The refinement details are given in 

Figure 4 and Table S1. From the structure solution, it is observed that the OSDAs are located in 

the middle of the 16-ring channels with a rotation angle of 74° from the channel axis (Figure 

5a), and form stacking OSDA-dimers (see Figure 5a and 5b).  

A computational study has also been performed to further support the dimer formation (see 

experimental for details). In the optimized geometry of ITQ-51-OSDA (Figure S4a), it can be 

observed that the OSDA molecules are not perpendicular to the channel axis. Since the OSDA 

molecule is wider (9.2 Å) than the channel width (7.7 Å), the OSDA has to rotate (Figure S4b). 

This deviation from an ideal angle of 90° seeks to maximize the OSDA-framework attraction 

and also maximize the OSDA-OSDA interaction.  

As described in the crystallographic structure model, the OSDA molecules adopt a stacking 

inside the zeolite which is not very different from that calculated in the gas phase, in spite of 

the fact that the pore size/shape represents a constraint for the optimization of the OSDA-

dimer (see details in experimental and Table S2). Calculations at the level of first principles 

using DFT indicate a stabilization energy in gas phase of 4.1 kJ/mol-of-dimer. The present 

OSDA-dimer interactions are mainly driven by electrostatic and van der Waals interactions (see 

experimental and Table S3). Regarding the geometries of the OSDA-dimers in the zeolite 

framework, Figure 6 shows in detail that the bulky methyl groups are in opposite sides of the 

neighbor OSDA, with the aromatic rings parallel to each other. The OSDA-OSDA distance in the 

optimized ITQ51-OSDA system is 4.3 Å. 

Conclusions 

We have demonstrated by experimental and computational techniques the unique self-

assembling role of the aromatic proton sponges in the synthesis of the extra-large pore ITQ-51 

zeolite. In this sense, the design of new OSDAs allowing the control of their supramolecular 

chemistry can provide an efficient tool to direct the synthesis of new microporous materials, 

especially those presenting extra-large pore structures. 
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Figure 1: Proton sponge 1,8-bis(dimethylamino)naphtalene [DMAN]. 
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Figure 2: Solid 1H MAS NMR spectra of DMAN (a), of the complex of DMAN with 

orthophosphoric acid (b), and as-prepared ITQ-51 molecular sieve (c). 
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Figure 3: Height-normalized fluorescence emission spectra of DMAN aqueous solutions at 

different concentrations and as-prepared ITQ-51 solid, measured at different excitation 

wavelengths (270, 285, and 300 nm). The arrow indicates the second-order emission. 

 

 

  

300 350 400 450 500 550 600

co
u

n
ts

 (a
.u

.)

wavelength (nm)
300 350 400 450 500 550 600

co
u

n
ts

 (a
.u

.)

wavelength (nm)

270 nm 285 nm

300 350 400 450 500 550 600

co
u

n
ts

 (a
.u

.)

wavelength (nm)

300 nm

Diluted DMAN (5.10-4 M)

Concentrated DMAN (3M)

As-prepared ITQ-51



Figure 4: Observed (blue), calculated (red) and difference (black) PXRD profiles for the 

Rietveld refinement of the as-prepared ITQ-51 ( = 1.5406 Å). The higher angle data has 

been scaled up (inset) to show the good fit between the observed and the calculated 

patterns. 

 

 

  



Figure 5: The structure of experimental as-prepared ITQ-51 zeolite viewed along [001] (a), 

and viewed along [010] (b). For clarity, the OSDAs in the channels on the edges of the unit 

cell were removed. 
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Figure 6: Views of the relative OSDA locations as calculated in the ITQ-51 zeolite. The 

distance between the OSDA molecules is 4.3 Å. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Material 

 

Figure S1: Solid 13C MAS NMR of as-prepared ITQ-51 molecular sieve (top) and liquid 13C NMR 

of proton sponge DMAN (bottom). 
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Figure S2: UV-Vis spectrum of DMAN in aqueous solution. 
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Figure S3: Liquid 1H NMR spectra of an aqueous solution of DMAN at 5.10-4 M (a), at 3 M (b), 

and solid 1H MAS NMR spectrum of the as-prepared ITQ-51 zeotype (c). 
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Figure S4: Views of the calculated unit cell of ITQ-51. 
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Table S1: Crystallographic data for Rietveld refinement of as-prepared ITQ-51. 

Chemical formula (C14N2H18H)0.5Al4P4O16 

Formula weight 2381.88 

a 24.0445(11) Å 

b 16.2542(6) Å 

c 5.0485(2) Å 

β 88.433(3)° 

V 1972.32(14) Å3 

Z 4 

Space group P21/n (no.14) 

CuKα1 1.5406 Å 

No. of  reflections 1380 

No. of parameters 117 

No. of restraints 384 T-O distances, 
rigid body for SDA and 

distance among the 
SDA and frameworks 

Rp 0.0521 

Rwp 0.0667 

Rexp 0.0263 

GOF 2.536 

RF 0.0281 

 

  



Table S2: Comparison of experimental and calculated cell parameters of as-prepared ITQ-51. 

Parameter Calculated Experimental Difference (exp-calc) 

a 23.61 Å 24.04 Å +0.43 Å (1.8%) 

b 16.25 Å 16.25 Å +0.00 Å (0.0%) 

c 4.95 Å 5.05 Å +0.10 Å (2.0%) 

 90.0º 90.0º  

β 90.9º 88.433(3)°  

 90.0º 90.0º  

Volume 1897.67 Å3 1972.32 Å3 74.67 Å3 (3.8%) 

tilt 82º 74º  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S3: Stabilization energy (kJ/mol) of the OSDAs in the ITQ-51 zeotype. The values have 

been calculated for the optimum loading, which includes 4 OSDA molecules in a 1x1x2 unit 

cell of ITQ-51. With these values, a total stabilization energy of -342 kJ is obtained according 

to eq (3)  [Esynthesis = Eframe + Eframe'−OSDA' + EOSDA−OSDA + EOSDA]. 

Esynthesis Eframe Eframe’-OSDA’ EOSDA-OSDA EOSDA 

-409 +80 -364 -145 +20 
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Figure captions 

Figure 1: Proton sponge 1,8-bis(dimethylamino)naphtalene [DMAN]. 

Figure 2: Solid 1H MAS NMR spectra of DMAN (a), of the complex of DMAN with 

orthophosphoric acid (b), and as-prepared ITQ-51 molecular sieve (c). 

Figure 3: Height-normalized fluorescence emission spectra of DMAN aqueous solutions at 

different concentrations and as-prepared ITQ-51 solid, measured at different excitation 

wavelengths (270, 285, and 300 nm). The arrow indicates the second-order emission. 

Figure 4: Observed (blue), calculated (red) and difference (black) PXRD profiles for the Rietveld 

refinement of the as-prepared ITQ-51 ( = 1.5406 Å). The higher angle data has been scaled up 

(inset) to show the good fit between the observed and the calculated patterns. 

Figure 5: The structure of experimental as-prepared ITQ-51 zeolite viewed along [001] (a), and 

viewed along [010] (b). For clarity, the OSDAs in the channels on the edges of the unit cell were 

removed. 

Figure 6: Views of the relative OSDA locations as calculated in the ITQ-51 zeolite. The distance 

between the OSDA molecules is 4.3 Å. 
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