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Abstract: Plant breeding has been very successful in developing improved varieties using conventional 15 

tools and methodologies. Nowadays, the availability of genomic tools and resources is leading to a new 16 

revolution of plant breeding, as they facilitate the study of the genotype and its relationship with the 17 

phenotype, in particular for complex traits. Next Generation Sequencing (NGS) technologies are allowing 18 

the mass sequencing of genomes and transcriptomes, which is producing a vast array of genomic 19 

information. The analysis of NGS data by means of bioinformatics developments allows discovering new 20 

genes and regulatory sequences and their positions, and makes available large collections of molecular 21 

markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis 22 

of complex traits. Genomic approaches include TILLING and EcoTILLING, which make possible to 23 

screen mutant and germplasm collections for allelic variants in target genes. Re-sequencing of genomes is 24 

very useful for the genome-wide discovery of markers amenable for high-throughput genotyping 25 

platforms, like SSRs and SNPs, or the construction of high density genetic maps. All these tools and 26 

resources facilitate studying the genetic diversity, which is important for germplasm management, 27 

enhancement and use. Also, they allow the identification of markers linked to genes and QTLs, using a 28 

diversity of techniques like bulked segregant analysis (BSA), fine genetic mapping, or association 29 

mapping. These new markers are used for marker assisted selection, including marker assisted backcross 30 

selection, ‘breeding by design’, or new strategies, like genomic selection. In conclusion, advances in 31 

genomics are providing breeders with new tools and methodologies that allow a great leap forward in 32 

plant breeding, including the ‘superdomestication’ of crops and the genetic dissection and breeding for 33 

complex traits. 34 

 35 
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 39 

INTRODUCTION 40 

 41 

Ever since the beginnings of the domestication of plants, some 10,000 years ago, plant breeding 42 

has been extremely successful in developing crops and varieties that have contributed to the development 43 

of modern societies, and have successively beaten (neo-)Malthusian predictions [1]. Application of 44 
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conventional pre-genomics scientific breeding methodologies has led to the development of modern 45 

cultivars, which have contributed to the dramatic improvement of yield of most major crops since the 46 

middle of the 20th century. The success of plant breeding in the last century has relied in the utilization of 47 

natural and mutant induced genetic variation and in the efficient selection, by using suitable breeding 48 

methods, of the favorable genetic combinations. In this respect, the evaluation and identification of 49 

genetic variants of interest as well as the selection methodologies used have largely been based in the 50 

phenotypic evaluation.  51 

Nowadays, genomics provides breeders with a new set of tools and techniques that allow the 52 

study of the whole genome, and which represents a paradigm shift, by facilitating the direct study of the 53 

genotype and its relationship with the phenotype [2]. While classical genetics revolutionized plant 54 

breeding at the beginning of the 20th century, genomics is leading to a new revolution in plant breeding at 55 

the beginning of the 21th century.  56 

The field of genomics and its application to plant breeding are developing very quickly. The 57 

combination of conventional breeding techniques with genomic tools and approaches is leading to a new 58 

genomics-based plant breeding. In this new plant breeding context, genomics will be essential to develop 59 

more efficient plant cultivars, which are necessary, according to FAO, for the new 'greener revolution' 60 

needed to feed the world’s growing population while preserving natural resources.  61 

One of the main pillars of genomic breeding is the development of high-throughput DNA 62 

sequencing technologies, collectively known as next generation sequencing (NGS) methods. These and 63 

other technical revolutions provide genome-wide molecular tools for breeders (large collections of 64 

markers, high-throughput genotyping strategies, high density genetic maps, new experimental 65 

populations, etc.) that can be incorporated into existing breeding methods [2, 3, 4, 5]. Recent advances in 66 

genomics are producing new plant breeding methodologies, improving and accelerating the breeding 67 

process in many ways (e.g., association mapping, marker assisted selection, ‘breeding by design’, gene 68 

pyramiding, genomic selection, etc.) [5, 6, 7].  69 

Genomics approaches are particularly useful when dealing with complex traits, as these traits 70 

usually have a multi-genic nature and an important environmental influence. Thanks to these 71 

technological improvements it is now feasible for a small laboratory to generate in a short time span (e.g., 72 

several months) enough molecular data to obtain a set of mapped quantitative trait loci (QTLs), even in a 73 

species lacking any previous genomic information [8]. Genomic tools are thus facilitating the detection of 74 
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QTLs and the identification of existing favorable alleles of small effect, which have frequently remained 75 

unnoticed and have not been included in the gene pool used for breeding [9, 10].  76 

In this review, we present and discuss the most relevant advances in the development and 77 

application of genomic tools for plant breeding, in particular for complex traits. Firstly, we introduce the 78 

most relevant genomic tools and secondly we provide examples of the application of these tools to plant 79 

breeding. The objective is to provide modern breeders with an updated synthetic view of how genomics 80 

can effectively improve the efficiency of breeding programs. 81 

 82 

GENOMIC TOOLS AND RESOURCES FOR PLANT BREEDING 83 

 84 

Genome and transcriptome sequencing 85 

 86 

The availability of the whole genome sequence of a crop is of great utility for plant breeding, but 87 

until recently it has been an unachievable goal for most crops. This privilege was restricted to a reduced 88 

number of model species with small genomes and to projects with an important investment in time and 89 

resources, but now has extended to an increasing number of crops. However, it is also true that for 90 

important cultivated species with large and complex genomes such as wheat, sugarcane, or coffee, the 91 

sequencing of the whole genome is very challenging and may take several years before a draft is 92 

completed. Given the high cost of whole genome sequencing, transcriptome sequencing has been a 93 

cheaper alternative. The cDNA sequences (expressed sequence tags, ESTs) provide relevant information 94 

about the genes expressed in a certain tissue or organ, at a given stage of development and under 95 

particular environmental conditions. ESTs sequencing projects do not provide information about non-96 

coding sequences and, even using diverse libraries, it is difficult to identify all genes and transcripts 97 

variants. Despite these limitations, ESTs collections have been very useful for breeders.  98 

The Sanger technology has been the predominant sequencing method for the past thirty years. It 99 

has been used to sequence several genomes as well as many transcriptomes. The first international 100 

collaborative project resulted in the whole genome sequence of the model plant Arabidopsis thaliana 101 

[11]. Since then, reference genomes of selected genotypes were completed in a limited number of crops 102 

such as rice [12], maize [13], sorghum [14], populous [15], grapevine [16], papaya [17], or soybean [18]. 103 

The transcriptomes of most major crops, to a greater or lesser extent, were also sequenced. A global view 104 
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of the genomes and transcriptomes sequenced can be obtained from the Gene Index Project 105 

(http://compbio.dfci.harvard.edu/tgi/plant.html) or in the NCBI Unigene database 106 

(http://www.ncbi.nlm.nih.gov/unigene).  107 

The field of genomics has changed with the arrival of NGS technologies [19]. These new 108 

technologies have reduced the cost of sequencing by more than one thousand times compared to Sanger 109 

technology, by avoiding time-consuming and tedious traditional cloning steps and making possible to 110 

perform millions of sequencing reactions in parallel (Table 1). Among the “second generation” 111 

technologies, the 454 (Roche, http://www.454.com) and Illumina (Illumina, http://www.illumina.com) 112 

platforms are already profusely used to sequence crop species. Others, like Solid (Applied Biosystems, 113 

http://www.appliedbiosystems. com/technologies), have been less exploited in plants. By using these 114 

NGS technologies, the sequencing capacity of laboratories is continuously increasing. For instance, one 115 

High-Seq 2000 Illumina Sequencer is able to generate 55 Gb per day, which is roughly eighteen times the 116 

size of the human genome. Moreover, new, “third generation” platforms are being developed and 117 

incorporated to sequencing projects, such as PacBio RS (Pacific Biosciences, 118 

http://www.pacificbiosciences.com), Helicos (Helicos, http://www.helicosbio.com), or Ion Torrent (Life 119 

Technologies, http://www.iontorrent.com). The sequence obtained by NGS are generally deposited in the 120 

NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/unigene). 121 

Nowadays, it is feasible to sequence most crop genomes (excluding those with a very large and 122 

complex  genome) with a relatively modest budget, by combining Sanger with NGS technologies. 123 

Sequencing projects for 135 plant genomes, most of them corresponding to cultivated species or wild 124 

relatives, have been completely sequenced (3), are being assembled (27) or are in progress (105), as 125 

reported at the NCBI database (http://www.ncbi.nlm.nih.gov/genomes/leuks.cgi). Other databases 126 

including plant genome sequences are Plant GDB (http://www.plantgdb.org) and Phytozome 127 

(http://www.phytozome.net). A fully sequenced and well annotated genome provides useful tools for the 128 

breeders, as it allows the discovery of genes, determining their position and function, as well as the 129 

development of large marker collections and high resolution maps. In the cases where only a draft 130 

sequence is available, its usefulness depends on the quality of the assembly. For instance on many 131 

occasions thousands of scaffolds are obtained but they are not anchored to the genetic map, which 132 

difficults the use of the information. Many transcriptomes have also been sequenced, a number of them in 133 

species for which no previous sequence information was available. Sweet potato [20], squash [21], 134 
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pigeonpea [22], or buckwheat [23] represent some examples published in the last months. These assays 135 

are showing the great complexity of plant transcriptomes, allowing the identification of rare transcript 136 

variants that are being used to improve gene annotation and our knowledge of gene function and 137 

regulation.  138 

 139 

Bioinformatics 140 

 141 

NGS technologies are facilitating sequencing projects, but have brought new challenges, as 142 

millions of short DNA reads have to be analysed and assembled [19]. Also, genetic maps, genotypes, or 143 

expression information at a genomic scale have to be processed in order to obtain the relevant biological 144 

information. Therefore, it is necessary to develop new bioinformatics tools (algorithms and software), 145 

which allow the analyses of huge amounts of genome-wide data, but it is also necessary to change the 146 

approaches used to understand complex biological traits [25, 26].  147 

The field of sequence analysis has a long tradition and  has enabled the assembly of many 148 

genome sequences obtained by Sanger sequencing. Nowadays, the huge amount of sequence reads 149 

generated by NGS and the low quality of individual reads requires new software tools and algorithms that 150 

allow dealing with these data in an efficient way [27]. We consider this to be a limiting factor for this kind 151 

of analyses right now. Although in the last years great advancements in the sequence processing 152 

algorithms have been achieved, the software currently available requires improvements in many cases.  153 

Two of the most common analyses carried out on these NGS reads are genome assembly and 154 

annotation and mapping. Genome assembly is a complex task requiring powerful computers and skilled 155 

bioinformaticians [25]. In particular, the RAM memory requirements of the computers used to assemble 156 

eukariotic genomes could hinder the application of this technique by small laboratories. Some of the most 157 

commonly used assemblers are Roche's 454 Gsassembler, Celera Assembler, and Mira. Once a reference 158 

genome is available in the species it is common to study its variation [19]. To do this, a mapper software 159 

is commonly used instead of an assembler software. A mapper tries to align every read against the 160 

reference genome. This process is much simpler and faster than the assembly. In this case the computer 161 

requirements are usually less demanding and the limiting factor could be the storage capacity. Some 162 

commonly used mappers are Bowtie, BWA, and TopHat. Once the reads are aligned, single nucleotide 163 

polymorphism  (SNPs) can be detected by using the SAMtools or the GigaBayes SNP callers [28]. 164 
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The open source software mainly used by the bioinformaticians is cumbersome for users not well 165 

versed in the Unix command line operating system. Some commercial proprietary solutions easier to use 166 

have been developed (e.g., LaserGene or CLC Genomics Workbench), but they have not been widely 167 

embraced by the breeders. Galaxy is an open source project devoted to create an easy to use web interface 168 

to the open source CLI based applications used in this area. 169 

An important amount of work has been devoted in this field to the creation of standard and open 170 

file formats capable of storing information regarding sequence alignment and modelling (SAM) [24], 171 

SNP calls using variant call format (VCF; http://1000genomes.org/wiki/doku.php?id=1000_genomes: 172 

analysis:vcf4.0), genomic regions with browser extensible data (BED, http://genome.ucsc.edu/FAQ/ 173 

FAQformat# format1) and genomic annotations using the general feature format (GFF; 174 

http://www.sequenceontology.org/resources /gff3.html]). These open and standard formats allow the 175 

interoperability of the different software tools that are being actively developed and used. In addition, the 176 

computer requirements might be strong as some analyses require a large amount of RAM memory or 177 

storage capability. 178 

The algorithms and methods used to store and process raw genomic data generated by the 179 

different technological platforms will depend on the type of data being processed and on the result 180 

expected. In any case, once the relevant information is obtained by the bioinformaticians, results have to 181 

be made available to the breeders by using an interface as easy and friendly as possible [25]. To provide 182 

access to this information, the generation of an easily browseable web site is a common and usually 183 

successful approach. Several general purpose web databases exist to make the relevant biological 184 

information available to the researchers and breeders (Table 2), like GenBank 185 

(http://www.ncbi.nlm.nih.gov/genbank/), EBML (http://www.ebi.ac.uk/embl/), DDBJ 186 

(http://www.ddbj.nig.ac.jp/) and Swiss-prot (http://expasy.org/sprot/). These latter databases are devoted 187 

to store information about any species, but several other more specific databases focused on species of 188 

interest to the breeders also exist, like the Sgn (http://solgenomics.net/), Phytozome 189 

(http://www.phytozome.net/), Gramene (http://www.gramene.org/) or CropNet (http://ukcrop.net/), which 190 

hold information that could have more specific use for breeding programs. 191 

 192 

Expression studies, from microarrays to RNA-seq 193 

 194 
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New genomic tools are also of interest to expand and accelerate gene expression studies. The 195 

analysis of gene expression has provided a rich source of biological information, which allows breeders to 196 

understand the molecular basis of complex plant processes, leading to the identification of new targets for 197 

manipulating these processes.  198 

Gene expression studies were at first based on the classical Northern blot method that only 199 

allowed the quantification of tens of genes simultaneously. The QRT-PCR is a more affordable  and 200 

quantitative technique;  but the number of genes analyzed by experiment is also limited [29]. Other 201 

approaches allowing the study of thousands of genes were differential display and cDNA amplified 202 

fragment length polymorphisms (cDNA-AFLPs) [30]. However, these methods are not really quantitative 203 

and are limited by the ability of the developed libraries to capture low-abundance transcripts. Other 204 

methods that overcome part of these problems are the serial analysis of gene expression (SAGE) [31] and 205 

massively parallel signature sequencing (MPSS) [32]. Nevertheless, the most employed methods at 206 

present to analyze transcript profiling are the hybridization-based platforms or microarrays [33]. 207 

Expression arrays have several advantages when compared with other methods. They can measure tens of 208 

thousands of different transcripts in the same reaction, they are semi-quantitative and sensitive to low-209 

abundance transcripts if those are represented in a given array.  210 

There are several  web resources that facilitate microarray data analysis (e.g., 211 

http://babelomics.bioinfo.cipf.es/) [34] or even web pages where the breeder can download experiments 212 

already performed and analyzed. There are also software packages specializated in microarrays analysis 213 

as the Bioconductor (http://www.bioconductor.org/help/workflows/oligo-arrays/) or MeV 214 

(ttp://www.tm4.org/mev/) [35]. Probably one of the most useful database is Genevestigator 215 

(https://www.genevestigator.com/gv/ doc/plant_biotech.jsp) [36], which contains microarray data from 216 

different species. The most extensive data are from the model species A. thaliana [37], but an increasing 217 

number of studies in crops like maize, wheat, rice, barley, or soybean are already available. All published 218 

expression data are public and disposables in databases as GEO (http://www.ncbi.nlm.nih.gov/geo/) [38], 219 

ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) [39] or species specific databases. These data can be 220 

really useful when analyzing gene expression in these species or other crops [40].   221 

Microarrays make use of the existing EST collections and genome sequence data. The vast 222 

increase provided by NGS in the number of sequences opens the possibilities of expression studies in a 223 

large number of species lacking previous sequence information. Also, deep NGS sequencing of RNA 224 
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transcripts (RNA-seq) is emerging as an alternative to microarray studies to quantify gene expression [41, 225 

42].  RNA-seq does not depend on genome annotation or on the probes contained in the array platform. 226 

This technology is also very useful to improve genome annotation, improving the detection of rare 227 

transcripts and splicing variants and the mapping of exon/intron boundaries. Moreover, RNA-seq avoids 228 

bias introduced during hybridization of microarrays and saturation level problems, haa a greater 229 

sensibility,  and shows high reproducibility [41, 43] . This approach has been already used in different 230 

crops with different breeding objectives, leading to the identification of genes involved in several 231 

metabolic pathways, disease response, fruit development, etc. [44, 45, 46, 47]. All these studies show the 232 

potential of RNA-seq for complex traits breeding. However, RNA-seq is an emerging technology and the 233 

methods used to analyze this kind of data are still being developed.  234 

 235 

Mutant and germplasm collections in the genomics era: TILLING and EcoTILLING 236 

 237 

Plant breeding requires genetic variability to be selected in order to increase the frequencies of 238 

favourable alleles and genetic combinations. Sources of natural genetic variability can be found within the 239 

crop, mostly in the form of landraces, and also in the wild relatives. Although many landraces have been 240 

substituted by modern and uniform cultivars and genetic erosion has taken place in wild materials, gene 241 

banks preserve many of these materials, which constitute an important reservoir of genetic variation 242 

useful for breeding [48].  243 

Another important source of variability corresponds to the artificial mutant collections developed 244 

in several crop species. These artificial collections are created by radiation, chemical mutagenesis, or 245 

transgenic and insertion methods. Artificial mutations, mostly obtained by radiation and chemical 246 

methods, were used in plant breeding in the pre-genomics era, but new technologies are allowing the 247 

development of other types of collections [49]. For instance, the transferred DNA tagged lines and 248 

transposon tagged lines have been used to develop mutant collections in several species such as the model 249 

plant Arabidopsis (The Arabidopsis Information Resource; http://www.arabidopsis.org) or rice 250 

(International Rice Functional Consortium; http://irfgc.irri.org). Gene silencing technologies, using RNA 251 

interference, have also been used to create gene specific mutant collections in Arabidopsis, like the 252 

AGRIKOLA project (http://www.agrikola.org). The artificial mutant collections frequently contain 253 
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variability not present in the natural collections, and so are also very useful for the study and development 254 

of new traits.  255 

In order to facilitate the identification of the accessions of interest in these collections, a genetic 256 

reverse approach has been used. Targeting Induced Local Lesions in Genomes (TILLING) [50] is able to 257 

identify all allelic variants of a DNA region present in an artificial mutant collection. A similar procedure 258 

called ecotype TILLING (EcoTILLING) [51] can be used to identify allelic variants for targeting genes in 259 

natural collections. These two methods are based on the use of endonucleases, such as CEL I or Endo I, 260 

that recognize and cut mismatches in the double helix of DNA [52, 53]. Since the TILLING and 261 

EcoTILLING techniques identify all allelic variants for a certain genomic region, the phenotypic 262 

characterization effort can be concentrated in a reduced number of accessions with different variants. 263 

Obviously, the success of the identification of variation useful for breeding programmes will depend on 264 

the right selection of target genes. The availability of sequences coming from NGS sequencing projects 265 

and the information provided by gene expression studies is significantly increasing the number and 266 

quality of candidates for TILLING and EcoTILLING studies 267 

These procedures have been successfully used in many crops [54]. For example, TILLING has 268 

been applied to Arabidopsis [55], Lotus [56], barley [57], maize [58], pea [59], and melon [60]. Rice was 269 

the first crop for which EcoTILLING was applied [61]. Subsequently, EcoTILLING has been used in 270 

other crops and wild relatives, like barley [62], wheat [63], or the wild peanut Arachis duranensis [64], 271 

using both genebank collections and natural populations [65]. These assays used gene targets involved in 272 

different processes. Many studies have been focused on detecting allelic variants in genes most related to 273 

organoleptic quality [66, 67] or disease resistance [68, 69].  274 

 275 

Re-sequencing for SNPs discovery and use in genotyping platforms 276 

 277 

One of the most interesting applications of NGS for plant breeders is the discovery of genetic 278 

variation. Now it is possible to sequence rapidly multiple individuals within a species with limited 279 

technical expertise and at minimal cost. The parallel development of computational pipeline tools is 280 

greatly accelerating the accurate mining of these sequences for genetic variants that can be converted into 281 

genetic markers, mainly microsatellites or simple sequence repeats (SSRs) and SNPs [70]. SSRs and 282 

SNPs are now the predominant markers in plant genetic analysis. SNPs are more abundant, stable, 283 
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amenable to automation, and increasingly cost-effective, thus are fast becoming the marker system of 284 

choice in modern genomics research [71]. 285 

The genome-wide SNPs discovery by massive re-sequencing has been performed in model 286 

species with small genomes, such as Arabidopsis thaliana, where the 1001 Genomes project 287 

(http://www.1001genomes.org) [72] is attempting to unveil the whole-genome sequence variation in this 288 

reference plant. Similar re-sequencing efforts are becoming possible in rice, maize, grape, soybean, 289 

poplar etc. by sequencing sets of related genotypes, individually or pooled, within each species (elite 290 

cultivars, breeding lines, ecotypes, landraces, and/or weedy and wild relatives of a crop) [73, 74, 75, 76]. 291 

The higher complexity in architecture and repeat content of these genomes has made necessary the use of 292 

approaches for genomic complexity reduction that also reduce sequencing cost [77]. Identification of 293 

SNPs is also very challenging in species with high levels of heterozygosity and/or with complex ploidy 294 

levels, as pseudo-SNPs are identified by misassembly of paralogs [78, 79, 80]. 295 

Both Roche 454 and Illumina GA have been mostly used for genome re-sequencing. The 296 

aligment difficulties often associtated to the use of short Illumina GA reads (Table 1) are less problematic  297 

in species for which available reference genomes facilitates SNPs calling and genome positioning of 298 

genetic variation [81]. For most of these species, limited collections of SSRs and SNPs were available 299 

from early re-sequencing efforts, previous to the advent of NGS, but new genome-wide re-sequencing is 300 

enlarging the SNP pools and making them more representative of the range of natural variation. 301 

For an increasing number of species with high societal or economic value NGS genome re-302 

sequencing is providing the first SSRs and SNPs resources. Examples are the grain amaranths 303 

(Amaranthus sp.), important pseudocereals, appreciated for their nutritional quality and tolerance to 304 

abiotic stress [82], for which no prior genome information existed. In these cases the combination of 305 

several sequencing techniques, and the use of paired-end sequencing facilitates SNP discovery. Roche 306 

454 and Illumina GA were combined for high-throughput SNP discovery in common bean [83] and also 307 

Solid was used to sequence diploid wheat species, which are donors of the subgenomes of modern 308 

hexaploid bread wheat [84].   309 

Most of the effort in species lacking genomic resources is being made through transcriptome re-310 

sequencing, as an alternative way of genome complexity reduction. Targeted amplicon re-sequencing is 311 

another strategy for discovering SNPs in specific genes [78].  312 
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One of the first examples of deep transcriptome sequencing was a study with two maize inbred 313 

lines [85]. This first study was followed by a large and rapidly increasing number of projects using non-314 

model crops, some of them with large, complex, polyploid, and uncharacterized genomes, including 315 

forest trees, like Eucalyptus [86], oak [87], several polyploid crops, like oilseed rape [79], oats [80], 316 

coffee [88], and sweet potato [89], non-model grain legumes as chickpea and chickling pea [90], tomato 317 

[91], or several cucurbits, including Cucurbita spp. [21], cucumber [92], and melon [93].  318 

These studies employ normalized/non-normalized cDNA libraries generated from single or 319 

multi-tissues samples, and derived from single or pooled genotypes, combined or not with multiplex 320 

identifier barcodes that allow allele origin identification. Sequencing is often focused on selected 321 

genotypes subjected to specific conditions, to detect SNPs in candidate genes involved in complex 322 

biological processes of interest to plant breeders. For example, the transcriptomes of two resistant and one 323 

susceptible lines of water yam, a major staple crop in Africa, under anthracnose infection, were 324 

successfully sequenced detecting SNPs in genes putatively involved in pathogen response [94]. Also, two 325 

alfalfa genotypes contrasting for cellulose and lignin content were sequenced, which allowed selecting 326 

SNPs useful to improve alfalfa as a forage crop and cellulosic feedstock [95].  327 

The use of genome and transcriptome sequencing for SNP discovery has resulted in large SNPs 328 

collections in most of the crops. These large collections are being validated and applied for different 329 

purposes such as map construction, map saturation, genome-wide diversity studies, association mapping 330 

etc (Table 3). Some of the most important achievements will be described in later sections.    331 

There are many SNPs genotyping techniques, which are more or less appropriate for different 332 

scales of individuals/SNPs to be genotyped [107]. The implementation of marker-assisted breeding 333 

strategies often requires the generation of thousands of genotypes per population. Thus, one practical way 334 

of optimizing the use of these large SNPs collections is using them with cost-effective platforms for 335 

medium to high density genotyping. A large number of commercial platforms are available for 336 

semiautomated or fully automated SNP genotyping [108, 109]. Genotyping assays usually require a 337 

previous process of selection of a set of SNPs, among the hundreds/tens of thousands detected, that are 338 

appropriate for the assay objectives. 339 

The Illumina GoldenGate assays have been the most widely used for mid-throughput 340 

applications. SNPs platforms with 384, 768, or 1536 SNPs are available for a number of species (Table 341 

3). Popularity is also increasing for the Sequenom Mass array and the KASPar genotyping chemistry [82, 342 
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110]. Expanded arrays with tens of thousands SNPs for high-throughput applications have been also 343 

developed with the Infinium technology in maize, grape, tomato, pine, and poplar and are under 344 

development in soybean and several Rosaceae crops (apple, peach, and cherry) [74, 111]. 345 

 346 

Construction of high density genetic maps  347 

 348 

One of the main applications of genomic advances is the development of high density genetic 349 

maps. The high-density map construction involves the location of hundreds or even thousand markers in 350 

the different linkage groups. In these maps the coverage should be very high and no large gaps must be 351 

present. NGS technologies and high-throughput genotyping platforms have allowed the improvement of 352 

genetic maps by increasing markers density. Several works include the integration of new markers, 353 

basically SNPs derived from re-sequencing studies, into previously developed genetic maps, both in 354 

diploid and polyploidy species [80, 112]. Golden Gate has been the most widely used platform. It has 355 

been estimated that this genotyping platform is 100-fold faster than gel-based methods for increasing 2-3 356 

times maize map density [101]. Also Sequenom-based SNP-typing assays are starting to be applied. In a 357 

recent study, a total of 1.016 SNPs, identified via comparative next-generation transcriptomic sequencing, 358 

were successfully mapped by genotyping 297 maize recombinant inbred lines (RILs) [113]. Other 359 

genotyping strategies based on arrays hybridization, such as the single-feature polymorphisms (SFP), 360 

variants detected by a single probe in oligonucleotide arrays, are speeding up genetic map construction. 361 

This technique has been used for the construction of a high-density linkage map in species poorly 362 

characterized, like Eucalyptus [114]. The newly developed maps, enriched in sequence-based markers are 363 

facilitating comparative mapping. Recent examples are high density SNPs maps of barley compared with 364 

wheat and rice [98, 115].  365 

The decrease of sequencing costs is also allowing the detection of new types of genetic markers 366 

useful for increasing the density of genetic maps.In this respect, restriction-site associated DNA (RAD) is 367 

a kind of marker which detects genetic variation adjacent to restriction enzyme cleavage sites across a 368 

target genome. These markers are produced after NGS sequencing of genomic libraries obtained after 369 

digestion with different restrictases. As an example of the utility of this technique, a total of 445 RAD 370 

markers distributed across all seven barley chromosomes were located, which was very useful for linkage 371 

map construction in this crop [116]. 372 
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The markers derived from NGS can also be useful to position sequence scaffolds onto physical 373 

maps. In this respect, a new method combining deep sequencing and the bin mapping strategy has been 374 

described [117]. The SNPs identified by re-sequencing genomic libraries from selected progeny 375 

individuals, derived from a cross between two closely related diploid strawberry species, were used to 376 

anchor 92.8% of the Fragaria genome to the genetic map. Results highlighted the potential of this 377 

methodology to obtain a robust framework for the anchoring of the genome sequence without the 378 

requirement of a high density physical mapping or a well-saturated genetic map.  379 

Whole-genome re-sequencing at different coverage levels is being increasingly applied for map 380 

construction using different strategies. As an example, a genetic map for rice has been constructed using 381 

whole genome re-sequencing of 150 RILs [118]. These authors concluded that the sequencing-based 382 

method was approximately 35 times more precise in recombination breakpoint determination than PCR-383 

based markers maps. Also, the whole genome of 128 chromosome segment substitution lines (CSSLs) of 384 

rice was re-sequenced and used it for the construction of an ultra-high quality physical map in this crop 385 

[119]. Based on low coverage re-sequencing, a new mapping strategy that allows inferring the parental 386 

genotypes of the assayed RILs population has been proposed [120]. An ultra-high density linkage map 387 

was obtained with this method and the quality of the map was evaluated by using it to identify a QTL 388 

controlling grain width. Further applications of new sequence-based denser genetic maps to QTL 389 

discovery and marker assisted selection (MAS) will be discussed later. 390 

 391 

TOWARDS A GENOMICS-BASED PLANT BREEDING  392 

 393 

Genome-wide genetic diversity studies  394 

 395 

One of the main challenges in agricultural genetics is to access and use the tremendous genetic 396 

variation present in germplasm collections and in the wild relatives. A significant part of this variation 397 

remains untapped because of the difficulties in effectively identifying genetic differences in large 398 

collections. Some traits, with high heritability and of simple characterization, are easy to select for. 399 

However, desirable allelic variants and genetic combinations for complex traits are difficult to identify. 400 

Recent advances in genotyping are enabling genome-wide diversity studies capable of better capturing the 401 

spectrum of variability in natural and breeding populations.  402 
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 Most of the mid- to high-throughput genotyping platforms described above are being used for 403 

studies on diversity and population structure in the corresponding crops (Table 3). By using representative 404 

diversity panels, polymorphism rates for individual SNP markers, minor allele frequencies (MAFs), etc. 405 

are estimated, facilitating the selection of those SNPs with biological interest and highly polymorphic in 406 

the different groups. For example, the Infinium arrays developed in some of these crops are being used to 407 

create haplotype maps for vast germplasm collections, such as the 18,000 accessions of the USDA 408 

soybean germplasm collection [121].  409 

Haplotype maps (hapmap) of entire collections are useful to identify rare, potentially valuable, 410 

alleles. Hapmap projects are undergoing in a number of species such as the “rice diversity project” 411 

(http://www.ricehapmap.org/index.aspx) aimed to develop a 10,000 SNP chip for rice and create a 412 

haplotype map to document the differences in allelic variation within and between the different 413 

subpopulations of O. sativa and its progenitor O. rufipogon. Large-scale genetic diversity studies have 414 

also been accomplished in maize. Gore et al. [122] identified and genotyped several million sequence 415 

polymorphisms among 27 diverse maize inbred lines. This study allowed the discovery of regions with 416 

highly suppressed recombination that appear to have influenced the effectiveness of selection during 417 

maize inbred development and may be a major component of heterosis. Also, highly differentiated 418 

regions were found that probably contained loci that are key to geographic adaptation. Also in legumes, 419 

the Medicago HapMap Project, that consist in the sequencing the whole-genomes of 30 inbred lines, will 420 

explore the genetic basis of symbiosis, creating a robust platform for genome-scale association mapping 421 

[123]. 422 

The diversity panels can include representatives of close or more distantly related species to 423 

check if these sequence-based SNP assays also work in related species [74, 82]. Sometimes sets of SNPs 424 

specifically developed for detecting genetic diversity among closely related cultivars are used in 425 

genotyping platforms. For example, despite the large amounts of SNPs available in rice obtained from the 426 

comparison of the two reference genomic sequences (one japonica and one indica variety) [124], 427 

extremely low levels of DNA polymorphism were detected within japonica cultivars. A whole-genome 428 

sequencing of an elite Japanese rice cultivar, closely related to the reference japonica variety, has been 429 

conducted and the SNP information obtained by comparison of the two japonica sequences was applied 430 

to develop a high-throughput genotyping array used for genotyping a set of representative Japanese 431 

cultivars [125]. These experiments are useful for understanding the role of selection and breeding in the 432 
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distribution of genetic variation across the crop genome. In fact, this assay led to the identification of 433 

several haplotype blocks which are inherited from traditional landraces to current improved varieties. 434 

Moreover, it was found that, as predicted, modern breeding practices have generally decreased genetic 435 

diversity. On the practical level, the distribution of genetic diversity in modern cultivars plays an 436 

important role in the choice of specific mapping and crop improvement strategies.  437 

Genome-wide survey of genetic diversity is useful to elucidate the causative genetic differences 438 

that give rise to observed phenotypic variation providing a foundation for dissecting complex traits 439 

through genome-wide association studies. However, its utility is limited if phenotypic data are not 440 

available. Not just genomics and transcriptomics, but the other 'omics' disciplines, like proteomics and 441 

metabolomics, are useful to understand how the changes in the genotype lead to differences in the final 442 

phenotype. Phenomics, which uses high-throughput technologies to characterize germplasm, is being 443 

developed and will help to deal with this issue [126]. 444 

 445 

Identification of molecular markers linked to single genes and QTLs 446 

 447 

NGS and high-resolution maps have led to a significant improvement in the identification of 448 

molecular markers linked to specific genes and to QTLs. The most important advantage comes from the 449 

dense genome coverage, which allows the identification of markers closely linked to any target genomic 450 

region, with the advantages that this tight linkage provides.  451 

Methods already used in the pre-genomics era to facilitate the identification of markers linked to 452 

single loci, such as bulked segregant analysis (BSA), are now optimized. For example, a GoldenGate 453 

assay has been combined with BSA to significantly accelerate mapping of the dominant resistance locus 454 

to soybean rust Rpp3 [127]. In this respect, there is an increasing number of reports on exploitation of 455 

NGS technologies to identify molecular markers tightly linked to major genes. For example, a fine 456 

genetic mapping of the single dominant scab resistance gene (Ccu) in RILs of cucumber (Cucumis 457 

sativus) has been conducted [128]. The resistant cucumber genome was sequenced with Solexa/Illumina 458 

NGS and compared with the susceptible cucumber genome. As a result, three insertion/deletion (indel) 459 

markers closely linked to the Ccu locus where obtained. A detailed study of the region delimited by 460 

markers revealed four resistance gene analogs as possible candidates for Ccu.  461 
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QTL detection has traditionally been conducted by linkage mapping. NGS technologies are 462 

significantly contributing to increase accuracy in detection of QTLs. They allow increases in many orders 463 

of magnitude of the number of markers mapped, ensuring high mapping resolution, and also aid in the 464 

development of mapping populations, such as RILs, near isogenic lines (NILs), and CSSLs, more 465 

appropriated for QTLs detection. These populations have conventionally been constructed and genotyped 466 

using a limited number of markers.  467 

There are increasing reports describing accurate QTLs mapping with different NGS or high-468 

throughput genotyping strategies. For example, a high density rice map constructed by whole-genome re-469 

sequencing of a RILs population, was used to identify four QTLs controlling plant height [90]. On a 470 

different study [129] an ultra-high density genetic map based on SNPs, obtained with Illumina GA, was 471 

compared with a linkage map based on RFLPs/SSRs in rice. The positions of several cloned genes, two 472 

major QTLs for grain length and grain width, and a QTL for pigmentation were evaluated in a RIL 473 

population, arising the expected result that the SNPs map detected more QTLs and more accurately than a 474 

RFLPs/SSRs based linkage map.  475 

QTL detection based on the linkage analysis method has the disadvantage that the number of 476 

recombination events is limited to the generations needed to develop the mapping population. Association 477 

mapping or linkage disequilibrium (LD) mapping is a new powerful approach to map complex traits. This 478 

method identifies genetic loci associated with phenotypic trait variation in a collection of individuals. 479 

Association mapping uses the natural diversity, which represents many more recombination events 480 

occurred in the history of the population, providing better resolution. Nowadays, two association mapping 481 

methodologies are in use: candidate gene association, where a good understanding of the biochemistry 482 

and genetics of the trait is needed, and whole genome scan, also called genome-wide association (GWA) 483 

studies. New genomic advances are providing the higher density of genetic markers required to ensure 484 

enough coverage to detect linkage between markers and a causal locus. Also the decrease of sequencing 485 

costs (Table 1) has allowed the use of whole genome sequencing in current studies [130]. 486 

Nevertheless, association mapping is just rising in model species and major crops. Maize is the 487 

most widely studied crop regarding association analysis. Many candidate genes have been successfully 488 

associated to morphological or quality traits. As an example, candidate genes Dwarf8, Vgt1 and 489 

ZmRap2.7 were successfully associated to flowering time [131]. Other candidate genes have been 490 

associated, among others, to forage quality, carotenoid content, oil content and kernel quality [132, 133, 491 



18 
 

134, 135]. GWA studies have been more limited, probably due to the large genome of maize (2300 Mbp) 492 

and the great number of markers needed to cover it. The first study identified a fatty acid desaturase gene 493 

(fad2) associated with increased oleic acid levels [99]. More recently, other authors found 32 QTLs 494 

associated with southern leaf blight disease resistance [100]. 495 

Examples of association mapping approaches in other crops are more limited. Studies based on 496 

the candidate gene approach have been reported in some crops, like grape, or conifers [102, 106]. 497 

However, GWA studies have only been developed either in the model species A. thaliana [136] or in 498 

major crops such as rice [96], barley [97], or wheat [104]. Some articles also describe successful mapping 499 

processes combining classical linkage mapping and association mapping [137]. Although genetic 500 

association mapping is in its early steps, it is a promising tool for the dissection of complex traits in crop 501 

plants. 502 

 503 

Marker assisted selection  504 

 505 

Marker assisted backcross selection 506 

 507 

Marker assisted selection (MAS) is an indirect process where selection is carried out on the basis 508 

of a marker instead of the trait itself. The successful application of MAS relies on the tight association 509 

between the marker and the major gene or QTL responsible for the trait. As we have described before, the 510 

new genomic tools accelerate the identification of markers tightly linked to target genomic regions. On 511 

the other hand, the new dense genotyping platforms available today accelerate the genotyping of large 512 

amounts of samples during the MAS process in a rapid and economically feasible manner. MAS can take 513 

benefit from these technologies, speeding up the release of new varieties. 514 

In spite of the close linkage between the marker and the gene, the possibility of recombination 515 

limits the use of MAS. The use of intragenic markers, also called functional markers, can help to 516 

overcome this limitation [138]. NGS sequencing projects produce large collections of functional markers. 517 

These markers enhance real gene assisted breeding, reducing the possibility of losing the desirable trait 518 

due to recombination. This is today feasible in many crop species in which NGS cDNA sequencing is 519 

being conducted. Some of these studies perform expression profiling, identifying candidates and 520 

associated gene targeted markers.  521 
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MAS is also frequently applied to perform background selection in the context of backcrossing 522 

programmes. Background selection consists in the identification of plants with lower contents in donor 523 

genome to continue the breeding scheme, in order to achieve the recovery of the recipient genome. The 524 

use of background markers facilitates the quick recovery of the recurrent parent genome [139]. 525 

Background selection is being used extensively in rice breeding. High-density genome maps are being 526 

effectively used in background analysis. For example, background selection integrated with foreground 527 

selection of bacterial blight resistance (xa13 and Xa21 genes), amylose content (waxy gene) and fertility 528 

restorer gene has been performed in order to identify superior lines with maximum recovery of Basmati 529 

rice genome along with the quality traits and minimum non-targeted genomic introgressions of the donor 530 

chromosomes [140]. 531 

 In some cases, the problem of recovering the genetic background of the recurrent parent arises 532 

because of the linkage drag, that is, the introgression of chromosome regions with deleterious effects 533 

which are tightly linked to the gene or QTL of interest. The detection of QTLs responsible of the negative 534 

effects and the localization of molecular markers tightly associated to them can be an efficient way to 535 

break the genetic drag. A well known example concerns canola (rapeseed) breeding, which began with 536 

the discovery of germplasm with low erucic acid content in seeds of a spring forage cultivar in the 1950’s. 537 

The problem arose because a high association between low erucic acid content and low seed oil content 538 

exists. The recent availability of high-density molecular maps has allowed the detection of several QTLs 539 

associated to both traits. Moreover, the identification of molecular markers very tightly linked to the 540 

QTLs made possible to break the linkage drag between the low oil content and erucic acid concentration 541 

in seeds in the process for breeding new high seed oil content canola cultivars [141].  542 

Frequently, current breeding programmes involve the introgression of more than one gene or 543 

QTL controlling traits of interest into one genetic background, in a process that is called pyramiding. The 544 

most useful application of MAS in the process of pyramiding is related to the introgression of different 545 

genes or QTLs whose effect on the phenotype is undistinguishable. The accumulation of genes from 546 

different sources which confer resistance against the same disease is an example, and is indeed one of the 547 

most widespread applications of gene pyramiding [142]. The main advantages of recent advances in plant 548 

genomics incorporated into gene pyramiding will be related to two different aspects. On one hand, the 549 

number of plants to be analyzed in a gene pyramiding programme must be increased as the number of loci 550 

of interest is higher, to ensure with a reasonable likelihood that the genotype combining favorable alleles 551 
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is present in the population [143]. In this sense, the availability of genotyping platforms will provide the 552 

possibility to screen larger generations. On the other hand, the efficiency of the process strongly depends 553 

on the tightness of the linkage between markers used and the target genes or QTLs. Again, identification 554 

of functional markers will circumvent this limitation.  555 

 556 

‘Breeding by design’ 557 

 558 

The possibility to predict the outcome of a set of crosses on the basis of molecular markers 559 

information is known as ‘breeding by design’ [6]. The process includes three steps: mapping loci 560 

involved in all agronomically relevant traits, assessment of the allelic variation at those loci, and, finally, 561 

breeding by design. In the method as initially described by Peleman and van der Voort [6], the first step 562 

was proposed to be completed by either using mapping populations segregating for the trait of interest or 563 

based on a candidate gene approach (mainly exploiting information from model plant species and 564 

increasing understanding of gene function). Also linkage disequilibrium (LD) mapping was suggested, 565 

focused on the region previously identified as related to the trait (‘targeted LD mapping’). Currently, as 566 

previously discussed, other possibilities such as GWA studies allow a more efficient way to accomplish 567 

this first step, avoiding limitations of biparental populations. The second step of the process consists in 568 

the identification of allelic variation for the locus of interest and the assignation of the phenotypic value to 569 

each of them. This step cannot be based on biparental populations, given that only two alleles per locus 570 

are segregating in this case. The analysis should then include plant materials representing the variability 571 

of the species. Genotypic and phenotypic data for each plant are required.  572 

As previously stated, high level of saturation with markers is not the limiting factor in most 573 

cases, and so currently the restrictions mostly come from the phenotyping step. Strictly speaking, 574 

‘breeding by design’ exploits information obtained in the previous steps: once the loci of interest have 575 

been mapped, and the contribution of each allelic variant has been determined, crosses can be established 576 

to generate superior genotypes which combine all favourable alleles. Application of this breeding strategy 577 

has been used for different crops and with different objectives, such as breeding for heading date in rice 578 

[144] or seed length in soybean [145]. This procedure has also been used in patent applications; as an 579 

example, ‘breeding by design’ has been reported as part of the development of higher quality maize 580 

varieties. However, the most effective application of the ‘breeding by design’ approach will come from 581 
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the incorporation of the most advanced genomic tools into the process, which will allow the improvement 582 

of the predictions.  583 

 584 

Genomic selection 585 

 586 

MAS strategies described so far require the identification of markers associated to the traits of 587 

interest. This represents one of the weaknesses of traditional MAS approaches [146]. Nevertheless, MAS 588 

can also be applied eluding this step, using an approach known as genomic (or genome-wide) selection 589 

(Figure 1). The method was first described in 2001 [147], as an attempt to exploit information generated 590 

from emerging genotyping technologies. Genomic selection is based on simultaneous estimation of 591 

effects on phenotype of all loci, haplotypes, and markers available. The difference with other MAS 592 

methods relies on the fact that no previous selection of markers with effects on phenotype is developed 593 

[148]. Genomic selection requires the availability of phenotypic and genotypic data for the reference 594 

population. This data set will allow estimating the parameters for the model, so that the differences at the 595 

phenotype level are explained by the markers analysed. Once the model is established, application to 596 

breeding populations makes possible to determine the genomic value of each individual, i.e., the expected 597 

phenotype based on the genotypic data. The requirement is the availability of enough molecular markers 598 

to provide good genome coverage [5, 146]. 599 

Simulation studies carried out using maize proved the usefulness of genomic selection applied to 600 

an initial cross between an adapted line and exotic germplasm. With 512 markers and a reference 601 

population of 288 F2 plants evaluated in six different environments, it was possible to obtain good 602 

selection response after 7-8 generations. [149]. Also with maize, simulations showed that response to 603 

selection was 18 to 43% larger for genomic selection than for marker assisted recurrent selection [150]. 604 

Response obtained when using genomic selection can be lower than response by phenotypic selection. 605 

However, the reduction in cycle length due to early MAS results in an increase of gain per time unit. This 606 

reduction is even more accused for species with a long generation interval, such as tree species [148]. 607 

The availability of phenotypic databases for different crops has allowed the comparison of 608 

predictions about the genotypic value obtained using genomic selection with the true genotypic value as 609 

shown by the phenotypic manifestation of the trait. In a study developed with phenotypic and genotypic 610 

data from Arabidopsis, maize and barley, results obtained were more accurate when genome-wide 611 
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selection was carried out, if compared with results derived of previous selection of markers with effects 612 

on the phenotype [151].  613 

Although when applying genomic selection there is no need to previously identify QTLs 614 

controlling a certain trait, the utilization of this approach allows detecting the chromosome regions 615 

involved in a given trait, as markers with greater effect on the phenotype will indicate the presence of a 616 

QTL for this trait [152]. Some studies go one step farther and propose the application of MAS prior to 617 

phenotyping. This approach involves the use of prior indices, i.e., marker selection indices which have 618 

been constructed from a given phenotyped and genotyped population and are applied to different 619 

populations which have not been phenotyped [129]. The decrease in the costs of genotyping provides the 620 

appropriate scenario for this strategy to become cost-effective. 621 

In any case, even the identification of the QTLs responsible for a certain trait does not imply the 622 

identification of the gene or genes controlling the trait itself or the understanding of the mode of action. 623 

Models applied in genomic selection are useful to predict breeding values and, in some cases, detect 624 

regions associated to a trait, but further work is necessary from this point to identify the gene or genes 625 

responsible for the phenotypic variability observed. From plant breeders’ perspective, the availability of 626 

molecular markers which allow MAS to be applied is generally sufficient. However, development of the 627 

new high throughput -omics technologies has provided breeders with new strategies to search for 628 

candidate genes, mainly based on microarray for differential gene expression, being the possibility to 629 

explore more genes the most important advantage. Future exploitation of these strategies could facilitate 630 

the identification of candidate genes underlying the traits of interest and make MAS more efficient. 631 

 632 

CONCLUSIONS 633 

 634 

For some major crops the pace experimented for genetic gains in yield and other complex traits 635 

in the 20th century will be difficult to be maintained if only existing pre-genomics technologies are used 636 

[153]. However, plant breeding is a dynamic science and, fortunately, genomics resources and tools are 637 

already available and are helping to give another quantitative leap in plant breeding. In this respect many 638 

advances are already taking place, and the superdomestication, i.e., “the processes that lead to a 639 

domesticate with dramatically increased yield that could not be selected in natural environments from 640 

naturally occurring variation without recourse to new technologies” [10], will require the combination of 641 
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conventional breeding with crop genomics. Also, genomic tools and approaches will help conventional 642 

breeding in achieving important advances in the breeding of crops that from the point of view of genetic 643 

improvement have remained either orphaned or neglected [8]. Therefore, while conventional pre-644 

genomics plant breeding has been, is, and will be successful at improving our crops, the application of 645 

genomic tools and resources to practical plant breeding will push forward the genetic gains obtained by 646 

breeding programmes. New genomic advances, many of which are already being developed, will make 647 

easier for breeders to obtain new cultivars with improved characteristics, either by facilitating selection or 648 

by improving the variation available for breeders by using precision breeding approaches. In particular, 649 

the present and new genomics tools are of great value for the genetic dissection and breeding of complex 650 

traits. 651 
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ABBREVIATIONS 659 
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AFLP = Amplified Fragment Length Polymorphism 661 

BED = Browser Extensible Data 662 
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CSSL = Chromosome Segment Substitution Line 664 

DArT = Diversity Arrays Technology 665 

EcoTILLING = Ecotype TILLING 666 

EST = Expressed Sequence Tag 667 

GFF = General Feature Format 668 

GWA = Genome Wide Association 669 

LD = Linkage Disequilibrium 670 

MAF = Minor Allele Frequency 671 
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MAS = Marker Assisted Selection 672 

MPSS = Massively Parallel Signature Sequencing 673 

NGS = Next Generation Sequencing 674 

NIL = Near Isogenic Line 675 

QTL = Quantitative Trait Locus 676 

RAD = Restriction-Site Associated DNA 677 

RIL = Recombinant Inbred Line 678 

RNA-seq = Sequencing of RNA Transcripts 679 

SAGE = Serial Analysis of Gene Expression 680 

SAM = Sequence Alignment and Modelling 681 

SPF = Single-Feature Polymorphism 682 

SNP = Single Nucleotide Polymorphism 683 

SSR = Simple Sequence Repeat 684 

TILLING = Targeting Induced Local Lesions on Genomes 685 

VCF = Variant Call Format 686 
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Table 1. Comparison of the main characteristics of the conventional Sanger and some of the most 1196 

currently used next generation sequencing (NGS) technologies and approximate sequencing cost (in US $ 1197 

per Mbp).  1198 

Technology Read length (bp) Mbp per run Cost ($/Mbp) 

Sanger 1000 0.001 3000.00 

454 Roche 450 450 66.00 

Illumina Hi-Seq2000 100 270000 0.07 

Solid 5500xl 50 270000 0.07 

 1199 

1200 
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Table 2. Some important databases and repositories of genomic information of interest for breeders. 1201 

Database Description URL 

Genbank General public sequence repository  http://www.ncbi.nlm.nih.gov/genbank/

EMBL General public sequence repository  http://www.ebi.ac.uk/embl/ 

DDBJ General public sequence repository  http://www.ddbj.nig.ac.jp 

UniProt Protein sequences and functional information http://www.uniprot.org/ 

NCBI Biomedical and genomical information http://www.ncbi.nlm.nih.gov/ 

Gene Index Project Transcriptome  repository http://compbio.dfci.harvard.edu/tgi/ 

GOLD Repository of genomes databases http://genomesonline.org/cgi-

bin/GOLD/bin/gold.cgi 

Phytozome Genomic plant database http://www.phytozome.net/ 

Plantgdb Genomic plant database http://www.plantgdb.org 

CropNet Genomic plant database http://ukcrop.net/ 

SGN Solanaceae information resource http://solgenomics.net/ 

Gramene Grass information resource http://www.gramene.org/ 

MaizeGDB Maize infornation resource http://www.maizegdb.org/ 

Tair Arabidopsis information resource http://www.arabidopsis.org/ 

CotthonDB Cotton information resource http://cottondb.org/ 

CPGR Phytopathogen genomic resource http://cpgr.plantbiology.msu.edu/ 

 1202 

 1203 

1204 
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Table 3.Some examples of the utility of molecular markers developed by means of high-throughput 1205 

genomics techniques for the breeding of important crops.  1206 

Crop Markers Plant material Use for breeding Reference 

Rice (Oryza sativa) ~3.6·106  

SNPs 

517 rice landraces Association studies for 14 

agronomic traits 

[96] 

Barley (Hordeum 

vulgare) 

1,536 SNPs 768 breeding lines 

 

Association studies for 

Fusarium head 

blight resistance 

[97] 

 3,072 SNPs 336 DH lines and 

213 germplasm 

selections 

High-density genetic map 

construction and MAF 

estimation 

[98] 

Maize (Zea mays) 8,590 SNPs 

 

553 elite maize 

inbred lines 

Association studies for oleic 

acid content  

[99] 

 1,106 SNPs 5,000 RILs Association studies for  

resistance to southern 

leaf blight 

[100] 

 1,536 SNPs 154 maize inbred 

lines 

Diversity studies [101] 

Grapevine (Vitis 

vinifera) 

94 SNPs and 7 

indels 

148 grape varieties 

 

Association studies for muscat 

flavor candidate gene VvDXS 

[102] 

 9000 SNPs 10 cultivated Vitis 

vinifera and 7 wild 

Vitis spp. 

Diversity and 

population structure studies 

[74] 

Pea (Pisum sativum) 384 SNPs 91 RIL mapping 

population and 373 

Pisum accessions 

Linkage map construction and 

diversity studies. 

[103] 

Wheat (Triticum 

aestivum) 

874 DArT 

markers 

winter 

wheat core 

collection of 96 

accessions 

Association studies for 20 

agronomic traits 

[104] 
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 1,536 SNPs 478 spring and 

winter wheat 

cultivars 

Diversity studies [105] 

White spruce  (Picea 

glauca) 

944 SNPs 492 individuals 

 

Association studies with 

549candidate genes and 25 

wood quality traits 

[106] 
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 1225 

Figure 1. Genomic selection scheme. Information on phenotype and genotype for a reference population 1226 

allows estimating parameters for the model. This model explains phenotype based on all markers 1227 

analyzed. The model predicts the phenotype of plants in a breeding population on the basis of the 1228 

genotyping results: this is the genomic estimated breeding value (GEBV), used to select the desired 1229 

phenotypes. 1230 

 1231 

REFERENCE POPULATION 

phenotype genotype 

AACATCTAGGCTATATAAGCT
CCATAAAAATAAGTTCACAATT
CATATGCACTTACTTAAGGCAT
GATGGATATATGTTCTCAAAC
ACATAGCTCCATTTTAGAAAT 

AACAGCTAGGCTATATAAGCT
CCATAAAAATAAGTTCATAATT
CATATGCACTTACTTAAGGCAT
GATGGATATATGTTCTCAAAC
ACATAGCTCCATTTTAGAAAT 

AACAGCTAGTCTATATAAGCT
CCATAAAAATAAGTTCACAATT
CATATGCACTTA···AAGGCATG
ATGGATATATGTTCTCAAACAC

AAAGCTCCATTTTAGAAAT 

AACACCTAGGCTATATAAGCT
CCATAAAAATAAGTTCACAATT
CATATGCACTTACTTAAGGCAT
GATGGATATATGTTCTCAAAC
ACATAGCTCCATTTTAGAAAT 

PARAMETERS OF THE MODEL 

BREEDING POPULATION 

genotyping GEBV SELECTION 

AACAGCTAGTCTATATAAGCT
CCATAAAAATAAGTTCACAATT
CATATGCACTTA···AAGGCATG
ATGGATATATGTTCTCAAACAC

AAAGCTCCATTTTAGAAAT 

Phenotype explained by 
all markers 

1 2 3 4
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