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Abstract

Some industrial processes are modelled by parametric partial dif-
ferential equations. Integrating computational modelling and data as-
similation into the control process requires obtaining a solution of the
numerical model at the characteristic frequency of the process (real-
time). This paper introduces a computational strategy allowing to ef-
ficiently exploit measurements of those industrial processes, providing
the solution of the model at the required frequency. This is particu-
larly interesting in the framework of control algorithms that rely on a
model involving a set of parameters. For instance, the curing process
of a composite material is modelled as a thermo-mechanical problem
whose corresponding parameters describe the thermal and mechanical
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behaviours. In this context, the information available (measurements)
is used to update the parameters of the model and to produce new
values of the control variables (data assimilation). The methodology
presented here is devised to ensure the possibility of having a response
in real-time of the problem and therefore the capability of integrating
it in the control scheme. The Proper Generalized Decomposition is
used to describe the solution in the multi-parametric space. The real-
time data assimilation requires a further simplification of the solution
representation that better fits the data (reconstructed solution) and it
provides an implicit parameter identification. Moreover, the analysis
of the assimilated data sensibility with respect to the points where the
measurements are taken suggests a criterion to locate of the sensors.

Keywords: Proper Generalized Decomposition; Data Assimilation;
Model Order Reduction; Discrete Empirical Interpolation Method;
System Control; Parameter Identification

1 Introduction

Any computational model is characterized by a set of input parameters. Once
specific values are assigned to these parameters, the model is ready to be
solved and it can be used to predict the behaviour of a system and also to
select the corresponding input in order to produce the desired output (con-
trol problem). Numerical models for control must be capable of producing
online responses required to the system. The online response aims at pro-
viding the numerical solution in a time delay that is much smallerthan the
characteristic time of the phenomena described in the simulation. This com-
putational time constraint is referred as real-time solution in the remainder
of the paper. Thus, the modelling of systems for predictive control is much
more demanding than for predictive design.

Moreover, in this context there is a real need of complementing the math-
ematical models by incorporating information from empirical data. This idea
is frequently used in weather forecast simulations [1, 2, 3] and referred as data
assimilation techniques. For complex models with a large number of mate-
rial parameters involved, this leads to solving multi-parametric optimization
problems. These simulations of practical interest tends to be computation-
ally prohibitive for a standard model in computational mechanics. Different
alternative approaches based on Model Order Reduction (MOR) techniques
with basis constructed with the Proper Orthogonal Decomposition (POD)
[4, 5, 1, 2] or the Empirical Orthogonal Functions (EOF) [6, 7] have been
proposed in this framework for different physics as alternative to classical
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methods. These techniques require an offline sampling of the parametric
space, and appropriate enrichment procedures in order to ensure enough
precision. When addressing a nonlinear problem, techniques of this kind
are useful when the real time constraint is not a requirement. In the same
context, Herzog and Riedel [8] propose a greedy algorithm for the sensor
placement using the information of a POD solution with the purpose of re-
constructing the thermo-mecanical model in real time when all parameters
are a priori known. Other similar approaches, based on the POD, can be
found in [9, 10] and references therein for different problems. The basic idea
of these methods is, first, to obtain a reduced basis via POD, use it for the
sensors placement and, then to reconstruct the solution online making use
of the sensor measures. Chardon et. al. [11] proposed a methodology for
the Helmholtz problem that projects the data taken from a set of sensors to
a basis that is known a priori, constructed with Fourier-Bessel functions or
plane waves. In this case the projection is carried out with a least squares
based approach. Grepl et. al [12] introduced a methodology, based on the
Empirical Interpolation Method (EIM) [13] for the real time reconstruction
for nonaffine and nonlinear problems equipped with an a posteriori error es-
timation in order to control the quality of the reduced approximation. More
recently, Maday et. al. [14] proposed a methodology, making use of the
Generalized Empirical Interpolation Method (GEIM) [15]. This approach,
namely Parametrized-Background Data-Weak (PBDW), takes information
from both, the mathematical model and also from empirical data and it is
able to work under real time constraint for a certain number of unknown
parameters.

The Proper Generalized Decomposition (PGD) [16] is an alternative tech-
nique to build a basis for MOR that allows a real-time reconstruction of the
solution and easily deals with multi-parametric models for industrial pro-
cesses. When comparing PGD and POD, the main difference is that PGD
is constructing an a priori reduced basis while solving the problem. On the
contrary, the POD constructs an a posteriori reduced basis, taking the in-
formation from a set of solutions of the problem. In the case of the POD,
the construction of the set of solutions is potentially problematic in the case
of high dimensional spaces. The interested reader is addressed to [17] for
a deeper analysis of this aspect. The PGD provides a multi-parametric so-
lution [18, 19], explicitly depending on the parameters to be identified and
avoids the curse of dimensionality issue when various parameters are consid-
ered. Accordingly, the PGD reduced order representation of the mathemat-
ical model under consideration produces not only a real-time solution, but
also the identification of the material parameters. Additionally, it is accom-
panied by an error assessment tool, indicating the quality of the reconstructed
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numerical solution.
The methods proposed in the present paper are based on the multi-

parametric PGD solution of the mathematical problem, which is a priori
evaluated offline. First, a reduced basis is extracted from this solution, which
is used to obtain online real-time solutions for fast and multiple simulation
queries. Secondly, a methodology is devised to find some smart sensor loca-
tions making use of the PGD-based reduced basis. This methodology is based
on the EIM [13] an its discrete counterpart, the DEIM (Discrete Empirical
Interpolation Method) [20] adapted to the PGD [19]. Thus, the third step
consists of using online the PGD-based reduced basis to solve a small-size pa-
rameter identification problem fitting experimental data, and providing the
estimated parameters and the reconstructed solution. This is accompanied
by an error estimate, which can be computed before the data assimilation
process, used to assess the number of terms in the selected reduced basis,
and an error indicator to control the accuracy of the solution obtained.

The remaining of the paper is structured as follows: section 2 states the
problems under consideration: (i) the boundary value problem, (ii) the solu-
tion reconstruction and parameter identification, and (iii) the sensor place-
ment. Section 3 provides the details of the PGD algorithm. Section 4 de-
scribes how to obtain the reduced basis, the reconstructed solution, and the
parameter identification procedure. Section 5 discusses the algorithm used
to place the sensors in smart positions. Section 6 is devoted to the analysis of
the proposed error indicators. Section 7 presents and discusses the numerical
results. Finally section 8 draws the main conclusions and perspectives.

2 Mathematical model and problem statement

Here, a methodology is proposed to obtain a real-time solution for a certain
boundary value problem (BVP) and to integrate the experimental data pro-
vided by a set of sensors. An algorithm to select the location of the sensors
is also derived. Thus, this section discusses both the model, which is the
convection diffusion equation, and the two specific problems under consider-
ation:

• data assimilation

• sensor placement.

This section describes the problems and presents the notation and the fol-
lowing sections detail the methodology proposed to solve them.
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2.1 Boundary value problem

The 2D quasi-static parametric convection-diffusion equation defines a bound-
ary value problem which is considered to model the thermal behaviour of the
system. The temperature field u is the primal unknown, the flux field is
denoted by q, and v is the velocity field, considered as input data. These
fields take values in the domain Ωx × Ωy = Ω ⊂ R2, of boundary ∂Ω (the
fact of considering a separable domain Ω = Ωx × Ωy is not essential in that
follows). Prescribed fluxes q̄ are imposed on ΓN ⊂ ∂Ω, while temperatures ū
are set on the complementary part ΓD ⊂ ∂Ω. Function f denotes the source
term.

Thus, the unknown function u(x, y) is such that

v · ∇u+∇ · q− f = 0 in Ω (1a)

q = −k∇u in Ω (1b)

q · n = q̄ on ΓN (1c)

u = ū on ΓD (1d)

where k, the diffusion coefficient, is considered to be an unknown parameter
uniformly distributed in space.

For each value of the parameter k, problem (1) is equivalent to the fol-
lowing weak form: find u ∈ (V + {w}) such that

a(u, v) = l(v), ∀v ∈ V

where a(u, v) :=

∫
Ω

v(v · ∇u) +∇v · k∇u dΩ

and l(v) :=

∫
Ω

v f dΩ +

∫
ΓN

v q̄ dΓ

(2)

where V = {v : v ∈ H1(Ω), v|ΓD
= 0} and w is a particular temperature

field satisfying the Dirichlet boundary conditions (1d). Note that in this case
the coefficient k has been taken as parameter. Actually, the time dependence
is accounted for in the model through the variation of f (and k).The model is
quasi-static in the sense that time does not appear explicitly in the problem
statement. However, loads and the material properties evolve in time and
hence the solution. This is equivalent to assume that the time scale for
thermal diffusion is much shorter than the characteristic time of the thermal
loads.

The aim of this contribution is to integrate computational modelling and
data assimilation into the control process. Thus, the real-time parameter
identification is an essential ingredient for the control strategy. Other pa-
rameters can also be included in the model, such as the intensity of the
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source term or the advection term (velocity field), but for sake of simplicity
they are not considered in the formulation considered in the present work.

The use of the standard FE framework for resolving the dependence on k
would require solving a problem for each value k. In order to circumvent this
issue, this work proposes the use of the PGD solver that is able to provide a
parametric solution depending on the diffusion coefficient in one shot. The
PGD solver for this problem is detailed in section 3.

2.2 Data assimilation

The interest is to obtain a solution to the problem (2) under real time con-
straint and integrating the data provided by a set of sensors. Thus, the data
assimilation problem reads as follows: given a set of nM different measures
provided by the sensors:

uM(si) for i = 1, . . . , nM (3)

placed at points si = (xi, yi), the objective is to obtain an assimilated solution
uA such that:

uA(si) ≈ uM(si) for i = 1, . . . , nM (4)

and also an estimation for the unknown parameter, in this case k, best fitting
the measures. The process to obtain the assimilated solution is described
in section 4. The accuracy and robustness of the assimilated solution is
sensitive not only to the number of measures nM but also to the placement
of the sensors si. Accordingly, the problem of finding the sensor placement is
stated in next section, minimising the sensitivity of the assimilated solution
to the sensor position.

2.3 Sensor placement

The input of the problem introduced in section 2.2 consists of experimental
data provided by a set of sensors. In the case the experiment can be designed
by setting the location of the measurement points (where to locate the sen-
sors), the question of identifying the sensor location in order to minimize
the influence of the measurement error should be addressed. The proposed
methodology, described later, provides a reconstructed solution which is ob-
viously affected by the measurement errors contained in the input data.

Thus, the objective of the sensor placement problem is to determine the
locations s1, . . . , snM

, of the nM sensors minimising the sensitivity of the
recovered solution with respect to the measurement errors.
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Moreover, in the case the algorithm used to place the sensors is based
on a greedy strategy, see for instance [8], the first sensors may be located
independently of the new ones to be added later. That is, new sensors do not
modify the position of the previous ones. Strictly speaking, this last property
is not required but, in practice, it eases the process of adding new sensors
and the implementation complexity of the algorithm. Section 5 contains a
full description of this problem and the techniques used to solve it.

3 Proper Generalized Decomposition

3.1 Parametric solution

As indicated before, the solution of equation (2) must be evaluated for each
value of the diffusion coefficient. This process leads to an unaffordable com-
putational cost. The PGD technology applied to solve PDEs allows to solve
the convection-diffusion problem, for any diffusion coefficient, in one shot.
Following former works (see [18, 21, 22, 19] and the references therein) one
could consider model parameters (as well as boundary conditions, initial
conditions and geometrical parameters) as extra-coordinates, in order to cal-
culate a multi-parametric solution. Thus, in order to compute the solution of
problem (2) for any value of the diffusion coefficient k, it suffices considering
k as an extra-coordinate (like x or y) and looking for u(x, y, k) as described
in [17]. The parametric solution reads:

un̂
PGD

(x, y, k) =
n̂∑

i=1

X̂i(x)Ŷi(y)K̂i(k) (5)

where n̂ is the number of modes of the approximated solution. The higher
the number of modes considered, the higher the quality of the solution will
be, but with an increase of the computational effort. In this work it is
considered that the number of modes used is sufficient to allow neglecting
the difference between the Finite Element and PGD solutions. However,
if required, different error estimators for the PGD solution are available in
literature [23, 24, 25] in order to guarantee that the PGD solution is accu-
rate enough. Note that the space domain has been represented as a tensor
product. This is a general case in which all spatial dimensions have been
separated. Space separation is of special interest for problems with distorted
geometries as in the case of plates and shells [26, 27] or flows into laminates
[28] in which the space separation (in-plane-out-of-plane) is highly recom-
mended. In these situations the PGD is able to provide a 3D solution at the
cost of 2D solutions. This increases the efficiency with respect to standard
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techniques and avoids the use of highly distorted 3D meshes. In any case
as previously indicated, the separated representation of space coordinates is
not necessary for deriving the strategy proposed in this work.

In order to evaluate each mode a greedy algorithm is used. At enrichment
step m of the PGD algorithm, the approximation m−1 is already computed:

um−1
PGD

(x, y, k) =
m−1∑
i=1

X̂i(x)Ŷi(y)K̂i(k) (6)

and the new one is obtained, i.e

um
PGD

(x, y, k) = um−1
PGD

(x, y, k) + X̂m(x)Ŷm(y)K̂m(k). (7)

An alternating direction iterative scheme is then used to solve the nonlin-
ear problem for X̂m(x), Ŷm(y) and K̂m(k). At iteration p, X̂p

m(x) is computed
from Ŷ p−1

m (y) and K̂p−1
m (k), then Ŷ p

m(y) from X̂p
m(x) and K̂p−1

m (k), and finally
K̂p

m(k) from X̂p
m(x) and Ŷ p

m(y). For further details of this method the inter-
ested reader is addressed to [17].

The corresponding strong form related to the problems involving the space
functions results in a one-dimensional convection-diffusion-reaction equation
with a source term, for which quasi-optimal stabilization methods exist [29]
if needed. The interested reader can refer to [30] for a deeper analysis of this
topic and numerical tests proving the performance of this approach.

3.2 PGD compact solution

When solving non-symmetric problems by using the separated representa-
tion constructor just described, the solution contains more modes than those
provided by the Singular Value Decomposition (SVD) (or its multidimen-
sional counterpart in the multi-dimensional case, the High Order Singular
Value Decomposition (HOSVD)) applied to the problem solution computed
by using a standard discretization technique. The decomposition provided
by the PGD constructor is not optimal. This means that some modes do not
have and important contribution to the solution reconstruction, thus being
not necessary in the reduced approximation basis.

Therefore, a post-compression should be envisaged for expressing the so-
lution in a more compact form. The post-compression is carried out by
solving the following problem:

∫
Ωx×Ωy×Ωk

v(un
PGD
− un̂

PGD
) dx dy dk = 0, ∀v ∈ L2(Ωx)×L2(Ωy)×L2(Ωk).

(8)
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With this aim, as described in chapter 3 of [17], the PGD is applied for
approximation purposes. Since, in this case, the problem solved is symmetric,
the separated solution is optimal in the sense that it approaches the one
obtained by involving the SVD (when considering two coordinates) or its
HOSVD counterpart when considering more than 2 coordinates. In the last
case (more than two coordinates) there is not optimal decomposition, but
our experience indicates that PGD and HOSVD leads to a similar number of
modes in the decomposition. Thus, the solution of (8) can be used to define
the reduced basis.

The solution un
PGD

=
∑n

i Xi(x)Yi(y)Ki(k) approximates un̂
PGD

with n ≤ n̂
terms. The accuracy level of un

PGD
, even with fewer terms, is similar to the

one of un̂
PGD

. This means that this compression algorithm gets a better basis
for the solution. The approximation basis resulting of this post-compression
process defines the reduced basis to be considered for identifying parameters
and reconstructing solutions.

4 Data assimilation. Reconstruction of the

solution

In this section, as indicated in section 2.2, the proposed algorithm to obtain
a real-time reconstructed solution from the data provided by the sensors
is introduced. It is supposed that the parametric PGD solution un

PGD
is

available. In order to obtain an assimilated solution it is possible to proceed
in two different ways. The first one considers the full PGD solution and only
adjusts the parameter k to the data provided by the sensors. The second
option, the one used in this work, only uses a reduced part of the PGD
solution as a basis to project the data provided by the sensors.

4.1 Option 1. Considering the full PGD basis

This first option assumes that the PGD solution perfectly describes the phys-
ical phenomena. This approach uses the full PGD solution and evaluates the
parameter k which makes that the full PGD solution best fits to the measures
in a least squares sense. That is:

uA(x, y) = un
PGD

(x, y, kA) (9)

where kA is obtained minimizing the following functional:
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J0(k) =

nM∑
j

(
uM(sj)− unPGD

(xj, yj, k)
)2
. (10)

The minimization of the functional defined in (10) leads to a nonlinear
equation to be solved in real time. Moreover, this methodology assumes that
both the mathematical model and the PGD solution of the model accurately
describe the physical phenomena. In some practical situations this assump-
tion could be strong since the physical phenomena could not be perfectly
modelled with the mathematical equation [14]. Additionally, in complex sit-
uations, the solution is extremely sensitive to the value of the parameter.

4.2 Option 2. Considering a subset of the PGD spatial
basis

In order to increase the efficiency of the previous approach, a new reduced
basis is used, consisting in the space modes of the PGD solution, ignoring
the parametric function Ki(k) for i = 1, . . . , n. The solution is sought as
the linear combination of the elements of this basis better fitting the data
provided by the sensors. This strategy is adopted in this work and is con-
ceptually divided in two steps: 1) the construction of the reduced basis and
2) the characterization of the best fitted approximation to the data.

4.2.1 Reduced basis construction

The reduced basis of nR terms BnR
is built with the first nR < n space modes

of the full PGD solution. That is, the procedure consists of:

1. Choosing the modesXi and Yi, i = 1, 2, . . . , nR, from the post-compressed
PGD solution.

2. Defining the reduced basis, BnR
(x, y) as:

BnR
(x, y) = [X1(x)Y1(y) X2(x)Y2(y) ... XnR

(x)YnR
(y)] . (11)

Once the reduced basis BnR
is built, the next step is to obtain the as-

similated diffusion coefficient kA, and also the linear combination of the
functions involved in the reduced basis to build the assimilated solution:
uA(x, y) = BnR

(x)α, α ∈ RnR . The data assimilation process incorporates
the information provided by the sensors, uM, in order to determine kA and
uA(x, y).
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4.2.2 Data assimilation

When the reduced basis BnR
is available, the online process that identifies,

in real-time, the model parameter and reconstructs the solution starts by
evaluating the coefficients of the reduced basis and also the model parameter
from the data provided by the sensors. In order to get the coefficients for
the reduced basis, a classical approach could be a least squares fitting to the
data provided by the sensors, minimizing the following functional:

J1(α) =

nM∑
j

(
uM(sj)−

nR∑
i

Xi(xj)Yi(yj)αi

)2

. (12)

The coefficients α obtained fit as best as possible, in a least square sense,
the data provided by the sensors. This approach ignores the mathematical
model (1) because it only constitutes a simple data fitting. Since the PGD
solution is available, (12) is modified by introducing the functions Ki(k) in
the minimization problem, according to:

J2(ε, k) =

nM∑
j

(
uM(sj)−

nR∑
i

Xi(xj)Yi(yj)(Ki(k) + εi)

)2

. (13)

In this last expression the coefficients αi have been substituted by a new
expression:

αi = Ki(k) + εi (14)

where k is the material parameter and εi takes into account the possible dis-
crepancies with the model. This allows evaluating the assimilated material
parameter kA at the same time as ε. Compared with (10), this last func-
tional provides more flexibility with the measurements, since the material
parameter is not the only unknown.

Additionally, a weighted regularization term is added to the functional
(13):

J (ε, k) =

nM∑
j

(
uM(sj)−

nR∑
i

Xi(xj)Yi(yj)(Ki(k) + εi)

)2

+ τ

nR∑
i

ε2i . (15)

The value of τ plays an important role and depends on the application.
Large values of τ provide an assimilated solution closer to the solution pro-
vided by the PGD. On the contrary, small values of τ penalize the discrepancy
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with the measures. Therefore, the choice of τ depends on the degree of con-
fidence associated with the PGD solution or with the measures. Introducing
τ > 0 in the formulation, allows using nR > nM. This is not possible with-
out the regularization term. In order to obtain the values of ε and kA the
functional defined in (15) is made stationary, first with respect to ε, leading
to a linear system of equations of size nR, defined as follows:

Aε = b (16)

with:

A =

nM∑
j

BT
R(sj)BR(sj) + τIR, (17)

IR being the identity matrix of size nR, and

b =

nM∑
j

(
BT

R(xj)uM(sj)− BT
R(sj)BR(sj)K(k)

)
(18)

with K(k) = [K1(k) K2(k) ... KR(k)]T and secondly, with respect to k, lead-
ing to a scalar nonlinear equation:

nM∑
j

(
BR(sj)

dK(k)

d k

)
(uM(sj)− BR(sj) (K(k) + ε)) = 0 (19)

whose resolution can be carried out with any standard nonlinear solver. Thus,
a linear system of equations of size nR has to be solved complemented by a
nonlinear scalar equation. This is solved with an iterative staggered fixed-
point scheme.

5 Sensor placement

Most of the industrial processes require a control system in order to update
the working parameters of the process. For instance, in an oven it is in-
teresting to control the temperature at certain critical points, by adjusting
the power of the heaters. During the construction of any industrial device
such as an oven, the placement of the sensors controlling the process is cru-
cial in order to get an accurate feedback of the process and to guarantee
a proper monitoring. Sometimes physical or practical constraints may pre-
clude placing the sensors in the desired locations. However, in the current
investigation, no physical constraints have been considered. But, they can
be easily introduced in the method by restricting the search space.
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In this section the methodology used to evaluate the position for the sen-
sors is detailed as indicated in section 2.3. It is assumed that systematic
measurement error, δ = −u + uM, is independent of the magnitude of the
measure. As an illustrative example, we consider the case in which the solu-
tion could be expressed in one single PGD mode. Correspondingly, a single
sensor is also taken into account, uM(s1) at point s1 = (x1, y1). The objective
is to evaluate the material parameter kA such that the error of measure has
the minimum influence. For that purpose the mode of the PGD solution is
used and since it represents the measure uM(s1)− δ:

uM(s1) = X(x1)Y (y1)K(kA) + δ (20)

from which the function K(kA) can be evaluated:

K(kA) =
uM(s1)− δ
X(x1)Y (y1)

. (21)

As it can be deduced from (21), the larger is the value of X(x1)Y (y1),
the smaller influence the measure error has. Therefore, the most convenient
location of the sensor corresponds to taking s1 maximizing X(x1)Y (y1). The
idea behind of the previous academic example is equivalent to use EIM and
its discrete counterpart the DEIM: once the reduced basis has been defined,
the EIM/DEIM places the sensors in the locations providing the maximum
amount of information.

In the general case of placing nM sensors, the first nM modes of the solu-
tion are considered. The first sensor is situated where the first mode reaches
its maximum:

(x1, y1) = arg max
(x,y)
|X1(x)Y1(y)| . (22)

Once the first position is obtained, the second sensor is placed where the
following residual is maximum:

(x2, y2) = arg max
(x,y)
|R2(x, y)| (23)

where R2(x, y) = X2(x)Y2(y) − d1,2X1(x)Y1(y). The scalar d1,2 is obtained
as follows:

d1,2 =
X2(x1)Y2(y1)

X1(x1)Y1(y1)
. (24)

By construction, R2(x, y) maximizes the information that the first mode
cannot describe. For the other sensors (j = 3, 4, ..., nM), provided the location
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of the previous ones, the position of each new sensor is obtained in a similar
way:

(xj, yj) = arg max
(x,y)
|Rj(x, y)| (25)

where Rj(x, y) = Xj(x)Yj(y) −
∑j−1

i=1 di,jXi(x)Yi(y). The values di,j are ob-
tained, for each sensor j, by solving the following linear system:

Rj(xk, yk) = 0 ∀k = 1, 2, ..., j − 1. (26)

With this algorithm, the locations of the nM sensors are sequentially
obtained. This means that the proposed algorithm does not provide a global
optimal location1 for the sensors due to its high computational cost, but a
restricted optimal in a greedy sense for the given basis, as other proposed
approaches do [9, 8]. As shown in the following, the number of sensors is not
crucial in the quality of the solution as in other techniques [8] if the model
solution is accurately represented with the PGD solution.

6 Quantifying the accuracy of the reduced

basis

In section 5 the EIM/DEIM has been adapted to the PGD environment to
predict in advance the best placement of the nM sensors. At this point the
interest is assessing the size of the reduced basis nR to reach some given level
of accuracy. As a first approach, the proposal is to use the following safe
upper bound error measure to predict the size of the reduced basis, which
can be evaluated before starting the data assimilation process. Note that,
because of the use of the regularization term in expression (15), nR can be
smaller, equal or larger than nM and the minimization problem is in all cases
well-posed.

EUB(nR) = max
k

∥∥∥∥∥
n∑
i

Xi(x)Yi(y)Ki(k)−
nR∑
i

Xi(x)Yi(y)Ki(k)

∥∥∥∥∥
2

. (27)

Expression (27) represents the difference between the full PGD solution
and the solution with only the first nR terms. Following this error measure,
when aiming at a prescribed error η, the criterion to decide upon the size of

1In this context optimal locations refers to the locations where the error is decreased as
much as possible or, equivalently, where the amount of information captured is maximized.
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the reduced basis consists in enforcing

EUB(nR) < η. (28)

As indicated before, the expression (27) corresponds to an error upper
bound. This is because, it considers the maximum for any possible value of
k. However it would be more interesting obtaining a relation between this
upper bound and the assimilated solution uA. Let us assume that the full
PGD solution with n terms exactly represents the measures. The following
expression defines the error for the solution provided by the reduced basis:

EEX =

∥∥∥∥∥
n∑
i

Xi(x)Yi(y)Ki(kex)− uA(x, y)

∥∥∥∥∥
2

. (29)

The previous expression accounts for the exact error of the reduced so-
lution but, in practice, it is not possible to evaluate it because the exact
parameter value kex is not known. A computable error indicator is readily
introduced as:

E =

∥∥∥∥∥
n∑
i

Xi(x)Yi(y)Ki(kA)− uA(x, y)

∥∥∥∥∥
2

(30)

where the material parameter obtained from the minimization problem, kA,
is used. As it is demonstrated in the following, the error committed in
the evaluation of the parameters is much lower than the error due to the
truncation of the PGD basis. Thus, the indicator E provides a proper error
assessment. Additionally, in the particular case of τ = 0, it is easily proven
that:

E ≤ EUB(nR). (31)

The coefficients α affecting the functions of the reduced basis are selected
to minimize the error. Any other choice, such asKi(kA), provides larger error.
In the case where τ 6= 0, the upper bound property, which holds in practice,
cannot be strictly guaranteed.

Additionally, in order to check the behaviour of the proposed technique,
the following error measure defined:

EEX,FEM = ‖uFEM(x, y; kex)− uA(x, y)‖2 . (32)

This error measure indicates the total difference between the Finite El-
ement solution for the exact value of the parameter, kex, which is taken as
reference solution in the numerical results, and the assimilated solution, uA.
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7 Numerical results

In order to check the proposed method, several numerical tests on a convection-
diffusion problem have been carried out in quasi-static conditions. The online
use in transient models is a work in progress where parameter identification
and control strategies must be carefully addressed. The space domain is
Ωx × Ωy = (0, 2) × (0, 1) and the domain associated with the diffusion co-

efficient is Ωk = (0.01, 0.1). A constant velocity field v = (1, 1)T has been
also considered. The Dirichlet boundary conditions, that induce a boundary
layer in the vicinity of the boundary, are:

u(0, y) = 0 ∀y ∈ Ωy

u(x, 0) = 0 ∀x ∈ Ωx

u(2, y) =
y

2
∀y ∈ Ωy

u(x, 1) = x ∀x ∈ Ωx

(33)

and the source term:

f(x, y, k) = 20e−100(x−1)2e−100(y−0.5)2 (34)

Figure 1 shows the reference solution, obtained with the Finite Element
Method with a mesh of 104 bilinear rectangular elements with a size of 0.02
in the x and 0.01 in the y direction, for a value of the diffusion coefficient
kex = 0.037. From now on, this solution will be taken as reference. Moreover,
the measures will be taken from this solution. Note that in practice the
measures provided by the sensors will be taken from the physical component.

In what follows, the different bricks constituting the proposed approach
are addressed. First, the sensor placements for a different number of sensors
is defined. Next, the reconstruction of the solution for different number of
sensors and also for different size of the reduced basis is considered. To
conclude, an error analysis with the proposed error indicators is presented.

7.1 Sensors placement

In section 5, it was proposed how to obtain the location of the sensors in
the framework of the EIM/DEIM technique. Note that, in case the sensors
were already placed in the device, this step could be omitted. Figure 2 shows
the position of a different number of sensors (3, 5, 10, 20 and 30). It can be
observed that the sensors are located in the first quadrant of the domain (top-
right zone). The solution shown in figure 1, in the area where the sensors are
placed, contains most of the information since in the rest of the domain the
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Figure 1: Reference solution obtained with the FEM for a diffusion coefficient
kex = 0.037.

solution is almost constant and close to zero. Note that the addition of a new
sensor does not modify the location of the previous ones when considering
the DEIM-based strategy.

Figure 3 shows the error between the Finite Element solution and the
assimilated solution obtained with τ = 1 for different number of sensors
located at the positions dictated by the DEIM-based procedure. Figure 3
also considers the same number of sensors, but randomly distributed. In this
case, 5 different random positions have been considered in each situation. The
plot shows the mean value of the relative error of the assimilated solution.
When considering 2 and 4 measures and the DEIM and random locations, the
associated errors are denoted by E2,DEIM

EX,FEM , E4,DEIM
EX,FEM , E2,Rand

EX,FEM and E4,Rand
EX,FEM .

The figure shows that the error associated with the DEIM-based approach
is smaller in all situations and moreover it is almost independent of the
number of sensors when considering τ = 1. However, when random positions
are considered, the mean value of the error is higher than the value obtained
when the sensor placement procedure is used, specially in the case of 2 sensors
whose mean value remains almost constant. However, it is expected that the
accuracy with the random approach improves for a high number of sensors.
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Figure 2: Placement of the sensors into the problem domain using the DEIM
algorithm. The different number of sensors are represented with different
marks.
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Figure 3: Relative error indicator associated with the difference between the
Finite Element solution and the reduced solution for 2 and 4 sensors placed
randomly (Rand) and dictated by the DEIM-based procedure (DEIM) for
τ = 1.

7.2 Reconstruction of the solution

Figure 4 shows the relative error between the FEM solution with the exact
value of the parameter and the reconstructed solution with different size of
the reduced basis and 9 sensors. It can be observed that with 5 terms the
quality of the solution is acceptable, i.e. the maximum local error is smaller
than 7 %. Note that the parameter inverse identification and the solution
reconstruction are performed online and in real time. This is possible because
the procedure only requires minimizing the functional defined in (15), which
yields a small nonlinear system of equations with size nR + 1, in which only
one equation is nonlinear.

7.3 Convergence analysis

Figure 5 shows how the number of modes of the reduced solution increases
when the prescribed error decreases. This value is obtained with expression
(27), modifying the size of the reduced basis. This value will provide, offline,
the number of modes that the reduced solution needs.

Figure 6 shows the error evolution (29) measured with the 2-norm and
with the ∞-norm. It shows that the dependency of the solution error with
the number of measures is small. This is one important advantage of the
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(d) Reduced solution with 20 modes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

 

−6

−4

−2

0

2

4

6

8

10

x 10
−3

(e) Reduced solution with 30 modes

Figure 4: Relative error of the reconstructed solution with the reduced basis
and the information of the sensors for different size of the reduced basis. The
number of sensors is 9 and τ = 1.
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Figure 5: Evolution of the size of the reduced basis with prescribed error.

proposed method since it includes all the knowledge provided by the PGD
solution in the minimization problem. Therefore, the results are accurate
with only few measures.

Figure 7 show the error evolution (29), in 2-norm and in∞-norm respec-
tively, for different values of the parameter τ . It can be noticed that the
size of the reduced basis has a considerable influence on both, the local and
the global accuracy, however, the influence of τ is negligible. Note that the
convergence of the PGD solution in the ∞-norm is not ensured [31], but the
experimental results prove that it converges in this particular case.

Figure 8 shows the evolution of the error in the parameter identification
with the size of the reduced basis. It clearly shows that, when the size
increases, the accuracy in the inverse identification also increases for any
value of τ ∈ [0.001, 9]. It is important to notice that the accuracy of the
error estimator is very high in the problem here addressed even considering
few modes (3 or 5). However, as it can be clearly appreciated in the figure,
for the firsts initial modes the error slightly increases. This fact is due to the
value of kA is obtained by minimizing (15). The minimization process tries
to obtain simultaneously α and kA with the given data and this process does
not strictly guarantee the monotonic convergence of only of one of them.

Figure 9 shows the effect of τ when considering a small number of sensors.
In this case the size of the reduced basis is equal to 2. When the size of the
basis is high enough, the effect of τ is negligible. Figure 9 also shows that
when the number of sensors in high enough (around 10), the influence of
τ is small. This is due to the fact that the information provided by the
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Figure 6: Evolution of the error with the number of sensors with nR = 7 and
τ = 1.
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Figure 7: Evolution of the relative error in 2-norm and n ∞-norm with
respect to the size of the reduced basis with respect to the full PGD solution,
when considering 20 sensors. Note that the influence of τ is negligible.
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Figure 8: Relative error in the evaluation of the parameter whose exact
value is kex = 0.037. 20 sensors are considered. Note that the influence of τ
is negligible.

sensors is rich enough. However, when only few sensors are used (e.g. 2),
the regularization plays an important role, and then the solution improves
by increasing τ .

The final analysis is to check the quality of the proposed error upper
bound measure. Figure 10 shows the evolution of the error upper bound
(blue line) with respect to the size of the reduced basis. A comparison is also
provided with the error indicator proposed in this work (red line). It can
be observed that effectively the upper bound property holds. Note that the
error upper bound is evaluated for all parameter values, thus sub-optimal
upper error bounds are obtained. Additionally the exact error in 2-norm
is also represented in brown. In particular the difference between the PGD
solution with the exact value of the parameter (in brown) and the assimilated
solution (29). Both curves almost overlap for a reasonable size of the reduced
basis (in red), therefore the error indicator (30) is providing accurate error
measures.
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8 Conclusions

The techniques presented in this work are able to operate under the con-
straint of online decision making. These techniques allow to reconstruct in
real-time the solution of a parametric partial differential equation from both,
the data provided from the sensors and also from the mathematical model
of the problem. Additionally, the current approach is also able to identify
the model parameters, such as the diffusion coefficient, with a high level of
accuracy. Therefore, these techniques could certainly account in real-time
for the temporal evolution of material properties or any other parameter of
the model. Consequently, this is a valuable tool to control loops of industrial
processes aiming at preserving the quality of the products. Moreover, since
the full PGD parametric solution is available, it is possible to determine, a
priori, the size of the reduced basis for a certain level of accuracy. Further-
more, an error indicator in order to control the quality of the reconstructed
solution is also introduced. The results prove that a small number of sensors
is enough to fulfil efficiently both tasks: the inverse identification of model
parameters and the solution reconstruction. Future research will aim at ex-
tending the present approach to deal with more realistic material models
exhibiting nonlinear behavior and transient effects.
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