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1: Centro de Investigación en Ingenieŕıa Mecánica
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Abstract

This paper proposes a new formulation to impose Dirichlet boundary
conditions on immersed boundary Cartesian Finite Element meshes. The
method uses a recovered stress field calculated by Superconvergent Patch
Recovery to stabilize the Lagrange multiplier formulation of the problem.
The optimal convergence of the method and the convergence of the proposed
iterative procedure are demonstrated. The proposed method is also suitable
for problems with non-linear material behavior. Some numerical examples
are included to confirm the theoretical results.
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1. Introduction

The finite element method (FEM) makes use of a mesh of elements to per-
form the analysis that will provide the numerical solution to the problem
under consideration. In the standard version of the FEM the mesh must
conform to the geometry of the domain to be analyzed. At the same time,
the distortion of each of the elements with respect to the reference elements
in the normalized space must be kept sufficiently low, as high element dis-
tortion leads to inaccurate results. As a result, it is no simple task to create
an appropriate mesh for finite element analysis (FEA). According to [1], a
study at Sandia National Laboratories (USA) revealed that the generation
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of the finite element (FE) numerical model, including the process of creating
a geometry suitable for analysis by the FEM and the subsequent geometry
meshing, takes 80% of the total analysis time, whereas only 20% is devoted
to the numerical analysis itself, which provides the solution to the problem.
Under the umbrella term of finite elements in ambient space [2] we can clas-
sify a number of variants of the standard FEM which have recently gained
in popularity because they reduce the computational cost to generate the
FE model by making the mesh independent of the geometry of the prob-
lem. These techniques have been given several names in the literature, such
as Fictitious Domain, Implicit Meshing, Immersed FEM, Immersed Bound-

ary Method, Fixed grid FEM and Cartesian grid FEM (cgFEM). In these
techniques an auxiliary domain ΩE with a simple geometry that embeds the
problem domain Ω is used for the FE discretization. Because of the simple
geometry used to define ΩE (normally a square in 2D or a cube for the 3D
case) its subdivision into elements is very simple, thus reducing the meshing
burden. There are two main issues that clearly distinguish these methods
from the standard FEM: integration and imposition of boundary conditions,
in particular the Dirichlet boundary conditions.
Integration: As the mesh does not conform to the geometry of the domain
it is necessary to use special procedures to evaluate integrals. Different ap-
proaches have been considered in the bibliography to ensure that the integra-
tion in each element is only extended to the exact part of the volume (area in
2D), see for example references [3, 4, 5, 6]. In general terms the solution to
this problem consists of using two different meshes, one for interpolation and
another for integration. In order to maintain the optimal convergence rate
of the FE solution, the degree of approximation to the boundary must be at
least of the same order as the degree of the FE interpolation [7]. Transfinite
mapping techniques commonly used in the p-version of the FEM, or the in-
tegration techniques described in [8] to consider the exact geometry given by
a NURBS representation of the boundary, can be used in the elements cut
by the boundary to obtain an exact representation of the domain.
Boundary conditions : as the FE nodes do not generally lie on the boundary,
the procedures used in the standard FEM to apply the boundary conditions
cannot be used. The case of the Neumann boundary conditions can be eas-
ily tackled by simply taking into account that the integration surface can
cut the element and does not necessarily have to coincide with the element
faces. However, the case of the Dirichlet boundary conditions is much more
complex. To solve the problem, a common alternative is to use the Lagrange
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multiplier technique. It can be difficult to find compatible discretizations
of displacements and multipliers that satisfy the InfSup condition [9] but
2D [10] and 3D [11] methods of doing so can be found in the bibliography.
However, the naive choice for the multiplier interpolation based on the el-
ement edge intersection does not satisfy the InfSup condition. The main
problem appears because the number of Lagrange multipliers is too high,
which can cause undesired oscillations in the Lagrange multiplier field. One
of the alternatives is thus to stabilize the solution [12, 13].
One of the most popular methods to stabilize the solution is by Nitche’s
method, which can be derived from the Barbosa-Hughes stabilization [12].
For early implementations of the method in immersed boundaries see for
example [14, 15, 16], or for a comparison with other methods see [11, 17].
The stabilizing term in Nitsche’s method has an algorithmic constant to be
defined that affects the stability of the method. As pointed out in the bibli-
ography [11, 18, 19], this constant depends on how the boundary intersects
the underlying mesh and it can become unbounded for certain configura-
tions. At the same time very large values of the penalty constant result in
an ill-conditioned system [20]. This issue has been treated for interface and
X-FEM problems by choosing appropriate values for each intersected element
[21, 22, 23, 24]. In these works the stabilizing term is the finite element stress
field, like in the Barbosa-Hughes stabilization, but computed in a different
way. In [21] the stress is computed in the element partition with larger size.
In the weighted Nitsche’s method [22, 24] the stress field of both partitions
are weighted using the partition sizes.
Some variations of Nitsche’s method have been proposed in recent years to
overcome this problem for imposing Dirichlet constraints. In [18] the solution
of the internal elements is extended to the boundary elements with a very
small volume/area ratio. The same idea was exploited in [25]. In [19] and
[26] the flux jump across the boundary element edges is used to modify
the stabilized problem. In [27] the solution of a coarser mesh was used as
stabilizing stress. Other stabilizing techniques not directly derived from the
Nitsche’s method have also been proposed. In [28] the discontinuous-Galerkin
method was used. In [29] a polynomial stabilization first proposed in [30] was
applied for solving contact problems. Similar ideas where used in [31] where
the stabilizing term is a suitable projection of the Lagrange multiplier field.
In the method proposed in [32] the Lagrange multipliers field is defined in all
the domain of the boundary elements and an optimal value of the penalty
parameter is proposed regardless of mesh size.
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The aim of this work is to propose a stabilized formulation using a recov-
ered stress field (SPR-type recovered solution, Superconvergent Patch Re-
covery [33]) iteratively obtained from the finite element solution. We present
theoretical values for the stabilizing constant, for linear and quadratic dis-
cretizations, that ensure optimal convergence rate. The theoretical analyses
are done for the linear elastic case, although it will be also shown that the
proposed method can be used to impose Dirichlet boundary conditions in
problems with non-linear material behavior, such as plasticity. The paper
is organized as follows. Section 2 presents the linear elasticity problem and
its mixed finite element implementation. Section 3 presents the stabilized
formulation in the context of Cartesian grids. Section 4 describes the fi-
nite element interpolation. Section 5 describes the adaptation of the SPR
technique required by the proposed method and the evaluation of the stabi-
lization term. Section 6 demonstrates the convergence and stability of the
method. The numerical results are given in Section 7, followed by the main
conclusions of this work.

2. Statement of the problem

Let us consider the linear elastic problem. Let Ω ∈ R
d, with d = 2 or

d = 3 be a bounded domain with a sufficiently smooth boundary Γ. The
contour can be divided into two non-overlapping parts, ΓD and ΓN, where
Dirichlet and Neumann conditions are respectively imposed. The aim is to
find the displacement field u ∈ U that fulfills internal equilibrium equations
in the domain and the Dirichlet and Neumann boundary conditions on the
boundary, which can be written as follows:

∇σ (u) + tv = 0 in Ω

σ (u)n = ts on ΓN

u = g on ΓD

ǫ (u) = D σ (u)

(1)

In the above expression tv ∈ [L2(Ω)]d are the volume forces, ts ∈ [L2(Ω)]d the
tractions imposed on the Neumann boundary, g the displacements imposed
on the Dirichlet boundary and n the unit normal vector. U ≡ [H1(Ω)]d

is the Hilbert space of functions whose integral of the first derivative over
the domain is bounded. In linear elasticity, strain tensor is defined from
displacement field by

ǫ (u) =
(
∇u+∇Tu

)
/2 (2)
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The constitutive equation, which relates the strains with the stresses by
means of the tensor D , can be expressed using two material dependent con-
stants, the Young’s modulus E and the Poisson ratio ν, in the case of isotropic
behavior. This relationship can be written as

ǫ = (σ − ν (tr (σ) I− σ)) /E (3)

It is straightforward to show the following property concerning the constitu-
tive equation, which will be used below.

Property 1. The scalar product of the tractions can be bounded by the energy
per unit volume with a constant CE, which depends on the material properties,
as

‖σ(u)‖2 ≤ CE (σ(u) : ǫ(u)) with CE =
E

1− 2ν
(4)

The weak variational formulation of the elastic problem allows two approaches
to imposing the Dirichlet boundary conditions. The most common procedure
is to impose a constraint in the space of virtual displacement V , i.e. the vir-
tual displacement is zero on the Dirichlet boundary. The virtual work of the
elastic forces is in equilibrium with the virtual work of the external forces
applied, as follow

a (u,v) = c (v) ∀v ∈ V

where

a (u,v) =

∫

Ω

σ (u) : ǫ (v) dΩ

c (v) =

∫

Ω

v · tv dΩ +

∫

ΓN

v · ts dΓ

(5)

This method is simple to implement and effective in the context of the stan-
dard finite element method in which the geometry boundary is properly rep-
resented by the mesh. However, for Cartesian meshes this method is not
valid, since it is very difficult to get a null field on the Dirichlet boundary if
the contour of the geometry does not match with the edge of the elements.
For this reason it seems more appropriate to seek another formulation, which
involves raising the elastic problem as a minimization with constraints. This
means finding the displacement field u that minimizes the total potential en-
ergy, subject to the constraints imposed by Dirichlet conditions. The problem
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can be expressed as

min
1

2
a (v,v)− c (v)

with v = g in ΓD

(6)

One approach to solving this minimization problem is to use the Lagrange
multiplier method. In addition to the displacement field, a new field of
Lagrange multipliers λ associated with the reaction forces is added. Formally,
the problem is to find the saddle point [u,λ] ∈ U × M of the following
Lagrangian

L (v,µ) =
1

2
a (v,v) + b (µ,v − g)− c (v) (7)

where the Lagrange multipliers belong to the Hilbert space M = [H−
1

2 (ΓD)]
d

and the following functional is defined

b (·, ·) : M × U → R b (µ,u) =

∫

ΓD

µ · u dΓ (8)

2.1. Finite element formulation

The domain is subdivided into finite elements by a Cartesian mesh in which
the boundary of the domain does not necessarily coincide with the edge of an
element, but can pass through it. The spaces of the finite element solution
are denoted as U h ⊂ U for displacements and M h ⊂ M for multipliers.
Substituting the finite element fields in Equation (7) and optimizing the
Lagrangian we find the following system:

a
(
uh,vh

)
+ b
(
λh,vh

)
= c

(
vh
)

∀vh ∈ U h

b
(
µh,uh

)
= b

(
µh,g

)
∀µh ∈ M h

(9)

where vh and µh are the variations of the displacement and multiplier fields
and [uh,λh] is the solution.
It is well-known [9, 34] that the finite element field of displacements and
Lagrange multipliers must fulfill two conditions (ElKer and InfSup) to obtain
an optimal convergence rate of the solution as the mesh is refined. The first
of these, ellipticity of a (·, ·) in the kernel of b (·, ·), is easy to fulfill and ensures
that there are enough multipliers to prevent rigid body motions. The second
prevents too many multipliers being introduced and it is more difficult to
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fulfill in practice. There are examples in the bibliography that satisfy the
InfSup condition, such as the ’vital vertex’ method in 2D [10] and 3D [11] for
linear discretizations. However, this method has the drawback of increasing
the number of unknowns of the problem. In addition, the coefficient matrix
of the system is indefinite, which can increase the computational cost as
compared to semi-definite positive systems.
The following norms that will be used throughout the text can be defined: the
L2-norm, the energy norm and a mesh dependent norm whose approximation
properties can be found in [35, 36]:

‖uh‖2L2,Ω =

∫

Ωh

uh · uh dΩ

‖uh‖2E =

∫

Ωh

σ(uh) : ǫ(uh) dΩ

‖uh‖2
U h =

∣
∣uh
∣
∣
2

H1,Ω
+
∑

e

h−1
e ‖uh‖2L2,Γe

D

‖λh‖2
Mh =

∑

e

he‖λ
h‖2L2,Γe

D

(10)

Note that the L2-norm can also be defined for the boundary ‖·‖2L2,Γ replacing
the integration domain. In the last norms, the summation extends to all
elements of the mesh that are intersected by ΓD and he is the size of the
element intersected by the contour.

3. Stabilized methods

In practice, the problem with the Lagrange multiplier formulation (Equation
(9)) is that most natural choices of the Lagrange multiplier field do not fulfill
the InfSup condition because they introduce too many constraints. The idea
behind stabilized methods is to impose additional conditions on Lagrange
multipliers without modifying the problem solution, at least at the limit
when the element size approaches zero, in order to have more freedom to
choose the Lagrange multiplier field.

3.1. Nitsche’s method

Nitsche’s method is one of the most widely used of the stabilization methods.
It is related to the stabilized formulation proposed by Barbosa and Hughes
[12, 13] to circumvent the Babuska-Brezzi condition. Its formulation is based

7



on using the tractions on the boundary as a stabilization term of the multi-
pliers. The original formulation using Lagrange multipliers can be obtained
from the following stabilized Lagrangian:

LN

(
vh,µh

)
= L

(
vh,µh

)
−

1

2

h

k

∫

ΓD

∥
∥µh + σ(vh)n

∥
∥
2
dΓ (11)

where L (v,µ) was defined in Equation (7) , h is the element size and k is
a positive constant having the same units as the Young modulus. In order
to use a dimensionless algorithmic constant we define k = κCE, using the
constant defined in Equation (4) depending on the material properties.
The saddle point of the Lagrangian (11) is [uh,λh] ∈ U h × M h such that:

a
(
uh,vh

)
+ b
(
λh,vh

)
−

h

k

∫

ΓD

(
λh + σ(uh)n

)
· σ(vh)n dΓ = c

(
vh
)

b
(
µh,uh

)
−

h

k

∫

ΓD

µh ·
(
λh + σ(uh)n

)
dΓ = b

(
µh,g

)
(12)

∀[vh,µh] ∈ U h × M h. Stenberg [36] shows that, for a suitable choice of
the multiplier space in L2, the Lagrange multiplier field can be eliminated
element by element from Equation (12) to obtain the classical formulation of
the Nitsche’s method:
Find uh ∈ U h such that:

a
(
uh,vh

)
− b

(
σ(uh)n,vh

)
− b

(
σ(vh)n,uh

)
+

k

h

∫

ΓD

uh · vh dΓ =

c
(
vh
)
+

k

h

∫

ΓD

g · vh dΓ− b
(
σ(vh)n,g

)
∀vh ∈ U

h

(13)

Nitsche’s method has been widely used in the context of immersed bound-
ary mesh to solve interface problems (see for example [16, 17, 23, 24, 37]).
However, the original Nitsche’s method has some limitations when imposing
Dirichlet boundary conditions, as has been pointed out in the bibliography
[18, 11, 20, 19]. The optimal convergence rate of the finite element solution
can only be achieved if the norm of the tractions on the contour can be
bounded by the energy norm, i.e.

∥
∥σ(vh)n

∥
∥
L2,ΓD

≤
CN

he

‖vh‖E (14)
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with a constant CN independent of element size. In the case of immersed
boundary meshes, in general, CN cannot be bounded as the mesh is refined.
To illustrate this problem, Figure 1 shows an element of a 2D mesh cut by
the boundary of the problem domain. The shaded part indicates the internal
area of the element Ωe. If the boundary comes closer to the element edge
as the mesh is refined, the size of the area Ωe is reduced faster than the
size of the boundary Γe

D, and the expression (14) is fulfilled with unbounded
values of CN . High values of CN increase the condition number of the system
[20] and tend to overweight the boundary terms with respect to the domain
energy, thus resulting in a finite element solution with a large error [19] (see
numerical examples).

Node j
Ωe

Γe
D

ΓD

Figure 1: Cartesian element intersected by the geometry with small area.

Remark 1. In practice, the number of elements with very small internal
volume randomly changes between consecutive meshes or in different parts
of the boundary, so the effect of this problem is limited. Furthermore, this
problem can be minimized by the use of geometric tolerances that avoid the
presence of elements with small internal volume, and acceptable results can
be obtained from the engineering point of view [11].

3.2. Proposed method

In this paper we propose the traction computed from a recovered stress field
as the stabilization term. The method follows the ideas of extending the
solution from the internal elements to the boundary elements [18, 25], but
using the stress field instead of the displacement field. The smoothed stress
field is obtained from the stresses calculated by the finite element method
in the boundary elements and adjacent elements using the concept of the
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Superconvergence Patch Recovery [33] (see following section). The aim of
this choice is to avoid the problems arising from the condition of Equation
(14). As we shall see, this method allows the optimal convergence rate to be
obtained for predefined bounded values of the penalty constant k, regardless
of the boundary cutting pattern.
The proposed method is derived from the following Lagrangian:

LS

(
vh,µh

)
= L

(
vh,µh

)
−

1

2

h

k

∫

ΓD

∥
∥µh + T (ûh)

∥
∥
2
dΓ (15)

where T (ûh) is the smoothed traction that depends on the finite element
solution computed from a previous iteration, ûh. Again the penalty constant
can be defined as k = κCE.
The resulting saddle point problem reads as: Find [uh,λh] ∈ U h×M h such
that:

a
(
uh,vh

)
+ b
(
λh,vh

)
= c

(
vh
)

b
(
µh,uh

)
−

h

k

∫

ΓD

µh · λh dΓ = b
(
µh,g

)
+

h

k

∫

ΓD

µh · T (ûh) dΓ
(16)

To obtain Equation (16) from the Lagrangian (15) we considered that T (ûh)
is a predefined field, so that its variation is zero. As in Nitsche’s method, the
proposed formulation can be simplified by eliminating the Lagrange multi-
pliers. Assuming that the multiplier field is in L2 and following a method
proposed in [36] we can solve the second equation in (16) for each element,
to obtain the value of the multiplier λh

e as:

λh
e =

k

h

(
uh − g

)
− T (ûh) (17)

Substituting (17) in the first equation of (16) we obtain a modified penalty
method: Find the displacement field uh ∈ U h such that

a
(
uh,vh

)
+

k

h

∫

ΓD

uh · vh dΓ =

c
(
vh
)
+

k

h

∫

ΓD

g · vh +

∫

ΓD

T (ûh) · vh dΓ ∀vh ∈ U
h

(18)

The second term on the left hand side of (18) is a penalty term with a
constant k/h. The last term on the right hand side is the virtual work of
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reaction forces. It acts as a correction of the penalty term and is necessary for
the finite element solution to converge to the exact solution of the problem
as the mesh is refined.
As the traction field T depends on the finite element solution, an iterative
procedure is proposed to solve the problem. In the first iteration, we solve
the problem assuming that T = 0. Then the smooth stress field is calculated.
This stress field is used to update T in Equation (18) in order to solve the
next iteration. This process runs until convergence is achieved.
The advantages of the proposed method are:

• As in Nitsche’s method, the unknowns of the problem in the proposed
formulation are the displacement degrees of freedom as the multipliers
are condensed. Thus the size of the problem is not increased.

• Compared to Nitsche’s method (Equation (13)), fewer integral terms
are needed to compute the system. As we will see in the following
section, the proposed method is stable and convergent in spite of the
lacking of these terms.

• The method is stable for a mesh independent bounded value of the
penalty constant κ. In the following section we obtain the value of this
constant for 8-node linear and 20-node quadratic elements.

• The proposed method can be directly applied to solve problems with
non-linear constitutive material behavior (see section 3.4).

The obvious drawback is that multiple iterations are needed to get the solu-
tion. However, this disadvantage can be minimized taking into account that
the matrix to solve for each iteration is always the same for linear problems
(since it is only mesh dependent). Therefore it is only necessary to factorize
the matrix once and perform backward substitution every iteration.

3.3. Iterative Nitsche’s method

The proposed method can also be used to define another formulation, by
replacing the stabilizing smooth stress field T by the traction computed
from the finite element solution of a previous iteration σ(ûh)n instead of
the recovered tractions. This formulation is also compared in the numerical
results.
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3.4. Plasticity
Although the equations and all theoretical analysis in this paper are done for
the linear elastic case, the proposed method can be used to solve problems
with elasto-plastic material behavior. In this case, Equation (18) is still valid
if we replace the bilinear form a

(
uh,vh

)
by the virtual work of internal forces.

In the context of immersed boundaries, this term is computed in exactly the
same way as is done for the standard finite element method, provided that the
quadrature points are properly defined in the internal part of the elements.
The stabilizing terms depend on the displacement field and the stabilizing
stress T . As we shall see, the stress T is directly computed from the quadra-
ture points of the domain (not the boundary) thus there is no need to change
anything with respect to the linear elastic case. The method runs in two
loops, one to update the stabilizing stress T and another, with T remain-
ing constant, to solve the non-linear plasticity problem. In the numerical
examples a plasticity problem is included to show the performance of the
method.

4. Interpolation and numerical integration

In this work we use Cartesian meshes formed by 3D hexahedral elements
whose contours are parallel to the Cartesian planes and consider linear 8-
node L8 and quadratic 20-node Q20 hexahedral elements. For displacements
uh the usual finite element interpolation shape functions are defined using
degree p = 1 for L8 elements and degree p = 2 for Q20 elements.

ΓD

Figure 2: Examples of intersected linear elements in 2D. Segmentation of the boundary
ΓD based on the intersection of the boundary with the element edges (squares). The ’×’
symbols denote the quadrature points where the Lagrange multipliers are used to define
a piecewise discontinuous linear interpolation.

The boundary integrals in the proposed formulation (Equation (18)) are nu-
merically evaluated using Gaussian quadrature. This is equivalent to implic-
itly define a multiplier unknown at each quadrature point in the saddle point
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formulation (Equation (16)) and to eliminate it from the system of equations
at element level. This implicit definition was proposed in [38] and used in
[27]. A schematic representation of the interpolation is depicted in Figure 2,
which shows three 2D elements of the boundary. The quadrature points at
the boundary are used to define a polynomial in each boundary segment. A
piecewise discontinuous interpolation is then obtained. In practice there is
no need to explicitly define this polynomial, because we only need to evalu-
ate it by numerical integration at the quadrature points, where the value is
precisely that of the Lagrange multiplier.

In 2D problems, such as the one depicted in Figure 2, ng is the number
of quadrature points at each element. To exactly integrate the product of
displacements (degree p) and multipliers (degree ng−1), if Gaussian quadra-
ture is used, we need to fulfill that 2 · ng − 1 > p+ ng − 1, so ng > p. In 3D
problems the part of the real boundary in each element is triangulated, and
a piecewise discontinuous polynomial interpolation is defined in each trian-
gle (see Figure 3). We use ng = 7 quadrature points, which means that a
polynomial of degree 5 can be exactly integrated. The implicit interpolation
of the multiplier has a complete degree q = 2.

Figure 3: Triangulation of the boundary used to perform the numerical integration. The
dots are located at the quadrature points (7 each facet). Complete domain and zoom at
a vertex.

The best approximation error of the finite element spaces measured in mesh-
dependent norms is discussed in [35, 36]. If the exact solution is smooth
enough, namely, if u ∈ Hp+1(Ω) and λ ∈ Hq+1(Γ) and the degree of dis-
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placement and multiplier interpolation are at least p and q respectively, it
can be proved that the chosen finite element fields fulfill

inf
vh∈U h

‖u− vh‖U h ≤ Chp‖u‖p+1

inf
µh∈Mh

‖λ− µh‖Mh ≤ Chq+3/2‖λ‖q+1,Γ

(19)

5. Recovered stress field

As mentioned above, the term T used to stabilize the Lagrange multipliers
is a recovered stress field obtained from the finite element solution. The
construction of the smoothing field is based on the SPR technique [33]. The
computation is performed as follows:

1. For each vertex node i of the boundary elements (those intersected by
the geometry), including the vertex nodes located outside the domain,
we construct a patch with all the elements that contain this node.
For illustration purposes, Figure 4 shows part of a 2D mesh close to
a boundary of the domain. The elements of the patch are used to
calculate the recovered stress at node i. In this case, two elements
of the patch are internal and two are divided by the boundary. The
shaded region is the part of the domain corresponding to the patch and
is denoted as Ωpatch.

ΓD

i

Figure 4: Elements used to compute the smooth stress field for node i.

2. Each component of the recovered stress field for node i is defined as a
complete polynomial of degree p (being p the degree of the displace-
ment interpolation) Sic = x · wic, where x = {1, x, y, z, xy, . . .} is the

14



polynomial basis and wic is the coefficient vector. Subindex c is intro-
duced to indicate the stress component c = xx, yy, zz, xy, yz, zx. These
coefficients are calculated by minimizing the L2-norm of the difference
between the polynomial and the finite element solution in the patch,
i.e. solving the following minimization problem:

wic =argmin
w

∫

Ωpatch

(σh
c − Sic) · (σ

h
c − Sic) dΩ ≈

argmin
w

∑

∀g∈Ωpatch

HgJg(σ
h
g − Sg) · (σ

h
g − Sg)

(20)

The integral is evaluated numerically with the same quadrature points
used to calculate the stiffness matrix. The subscript g indicates that
the variable is calculated at the quadrature point. Hg is the weight and
Jg the Jacobian of the element subtriangulation performed to compute
the volume integrals.

3. The recovered stress field in the domain Sc is an interpolation of the
nodal polynomials obtained in step 2, Sc =

∑

∀iNiSic, by using the
linear shape functions of the vertex nodes, Ni.

4. The stabilizing stress is the traction computed from the recovered stress
tensor: T = Sn, where n is the normal vector and S is the tensor whose
components are the Sc polynomials defined above .

The recovered stress polynomial Si at each patch depends on the solution
evaluated at both, boundary elements and internal elements. The integral
used to calculate the field Si gives weight to the integration points as a
function of the volume associated to each of them. Therefore, the smaller
the volume of the cut elements, the lower the weight and the smaller the
influence on the smooth stress field.
The above definition of the recovered field fulfills three properties that will
be used in the paper:

Property 2. The L2-norm of the recovered stress field, can be bounded by
the L2-norm of the finite element stress field in the solid domain Ω:

‖S‖2L2,Ω ≤ Cr

∥
∥σ(uh)

∥
∥
2

L2,Ω
(21)

with Cr = 8. Assuming a smooth enough exact solution Cr → 1 as the mesh
is refined.
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Proof: Taking the derivative in Equation (20) we obtain the following system
to evaluate the coefficient vector wi

(
∫

Ωpatch

xT x dΩ

)

wic =

∫

Ωpatch

xT σh
c dΩ

Multiplying the previous expression by the solution wT
ic we have:

‖Sic‖
2
L2,Ωpatch

=

∫

Ωpatch

Sic · σ
h
c dΩ

Taking into account the last expression and Equation (20) we obtain:

∫

Ωpatch

(σh
c − Sic) · (σ

h
c − Sic) dΩ ≥ 0

∥
∥σh

c

∥
∥
2

L2,Ωpatch
+ ‖Sic‖

2
L2,Ωpatch

− 2

∫

Ωpatch

σh
c · Sic dΩ =

∥
∥σh

c

∥
∥
2

L2,Ωpatch
− ‖Sic‖

2
L2,Ωpatch

≥ 0

As each nodal component Sic can be bounded by the stress norm in every
patch, the norm of the tensor is also bounded.
On the other hand, the recovered stress field (step 3) is the interpolation
of the nodal polynomials using the linear shape functions, whose value is
between 0 and 1. Then, using the Cauchy-Schwartz inequality and taking
into account that the number of nodes per elements is eight and that the
patches contain at most eight elements, we obtain that Cr = 8 from:

‖S‖2L2,Ω =
∑

∀e

∫

Ωe

(
8∑

i=1

NiSi

)2

dΩ ≤
∑

∀e

∫

Ωe

8∑

i=1

(Ni)
2

8∑

i=1

(Si)
2 dΩ ≤

∑

∀e

∫

Ωe

8∑

i=1

(Si)
2 dΩ =

∑

∀patch

‖Si‖
2
L2,Ωpatch

≤
∑

∀patch

∥
∥σh

∥
∥
2

L2,Ωpatch
= 8

∥
∥σ(uh)

∥
∥
2

L2,Ω

The value of Cr = 8 could be improved by taking into account the definition
of the linear shape functions.
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Considering that the exact solution is smooth enough, we can assume that the
recovered stress field tends to be uniform in each patch (each Si is constant)
as the element size becomes smaller. Under that assumption it follows that:

‖S‖2L2,Ω =
∑

∀e

∫

Ωe

(
8∑

i=1

NiSi

)2

dΩ ≤
1

8

∑

∀e

∫

Ωe

8∑

i=1

(Si)
2 dΩ =

∥
∥σ(uh)

∥
∥
2

L2,Ω

and the constant Cr = 1.
�

Property 3. Assuming that every boundary element is connected to at least
one internal element, the L2-norm of T in the boundary can be bounded by
the energy norm of the finite element solution with a constant Cp independent
of the mesh

‖T ‖2L2,ΓD
≤

CE Cr Cp

h

∥
∥uh

∥
∥
2

E
(22)

where h is the uniform element size, CE is a material dependent constant
defined in (4) and Cr is defined in property 2.
The value of the constant is Cp = 13 for L8 elements and Cp = 21 for Q20

elements.

Proof: First we want to bound the L2-norm of S on the boundary with its
norm in the domain. For a given boundary element (e), there exists at least
one internal element (ie) that shares an element face. We assume that the
worst case to bound Equation (22) occurs when the boundary of the domain
practically coincides with an element face. This is schematically depicted
in Figure 1 in 2D. Then we have to find the best value of Cp such that the
following inequality holds:

‖S‖2L2,Γe =

∫

Γie

S2 dΓ ≤ hCp ‖S‖
2
L2,Ωie = hCp

∫

Ωie

S2 dΩ.

S is the product of two polynomials: the smooth field of degree p and the
linear shape functions having terms of at most degree 1 in each direction.
Thus S2 has terms of degree 2(p+ 1). The above integrals can be evaluated
in the reference [−1, 1] element:

h2

∫

�,Γ

S2 dΓ ≤ Cp h
3

∫

�,Ω

S2 dΩ
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where the symbol�,Γ denotes the reference element face and�,Ω its volume.
We can use the Newton-Cotes quadrature with positive weights to exactly
evaluate the above integrals. The volume integral can be bounded as

∫

�,Ω

S2 dΩ = H1

nq∑

j=1

nq∑

k=1

HjHkS
2

︸ ︷︷ ︸
∫

�,Γ
S2 dΓ

+

nq∑

i=2

Hi

nq∑

j=1

nq∑

k=1

HjHkS
2

︸ ︷︷ ︸

positive

≤ H1

∫

�,Γ

S2 dΓ

where H1 is the weight of the first quadrature point and nq the number of
quadrature points. For linear elements, T 2 is a polynomial of degree 4 and
it results that nq = 5 and Cp = 13. For quadratic elements the degree of the
polynomial is 6, nq = 7 and Cp = 21.
Now, it holds that ‖T ‖2L2,Γe ≤ ‖S‖2L2,Γe . Adding the contribution of all
boundary elements, using Property 2 (Equation (21)) and taking into account
the relationship between the L2 norm of the stresses and the energy norm
(Equation (4)) the result follows.
�

Property 4. Let u be the exact solution of the problem. If u is assumed
to be regular enough, the recovered traction evaluated for the exact solution
T (u) fulfills the following property:

‖σ(u)n− T (u)‖2L2,ΓD
≈ O(hp+1) (23)

where h is the element size.

Proof: Let T (u) be the boundary tractions evaluated from (20) by replacing
σh by the exact stress. Therefore, T (u) is a polynomial approximation to
the exact traction in each patch. The result follows assuming that u can be
expanded in its Taylor series.

Remark 2. The SPR technique can be modified to fulfill certain equations,
such as equilibrium of stresses, compatibility equations, imposed boundary
conditions, etc. This modification improves the approximation of the recov-
ered stress field [7, 39].

Remark 3. Although we have chosen the SPR technique, any recovered stress
field that satisfies Properties 2, 3 and 4 could be used as the stabilizing term
and the results of the following section would hold.
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6. Convergence of the finite element solution

In this section the convergence of the finite element solution is analyzed.
We proceed in four steps: First we show that the bilinear form defining the
problem is coercive. Then we will analyze the conditions under which the it-
erative method converges. Finally we will show the stability and convergence
to the exact solution of the problem.

6.1. Coercivity

As pointed out above, problem (18) is iteratively solved with an initial value
of the stabilization field T = 0. The system can be expressed in matrix form
as

Adi = c+Bdi−1 (24)

where di is the vector of nodal displacements at iteration i, A is the matrix
on the left side of the Equation (18), B is the matrix obtained from the last
term on the right side of (18) which depends on the method used to calculate
the recovered stress field, and c is the vector derived from the other terms of
the right hand side in (18).
In order to check the convergence of the iterative method, we define the
residual of the equation as:

ri = Adi −Bdi−1 − c (25)

Convergence is achieved when the norm of the residual ‖ri‖ as well as the
norm of the difference between two consecutive solutions ‖di − di−1‖ are
lower than the given tolerances.

Remark 4. Problem (24) can be solved without explicitly defining matrix
B by directly computing the product Bd

i−1, which is easily computed as a
surface integral. This term corresponds to the equivalent nodal forces imposed
by the stabilization traction.

The bilinear form defined in Equation (18) from which the matrix A is ob-
tained is:

a
(
uh,vh

)
+

h

k

∫

ΓD

uh · vh dΓ

For any k > 0 the bilinear form is coercive since a (·, ·) is symmetric and
positive semi-definite, with a (v,v) = 0 only for rigid-body motions. The
penalty term ensures that rigid-body motions are not allowed. As a conse-
quence, matrix A is invertible.
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6.2. Convergence of the iterative method

The procedure set out to solve the problem can be considered as a Richard-
son’s iterative method of solving linear systems of equations. This method
is known to converge [40] if the spectral radius of the matrix A−1B is lower
than 1. We obtain the following result:

Proposition 1. The iterative procedure defined in (24) converges for a large
enough but bounded value of the penalty constant k > CECpCr/4 (or κ >
CpCr/4).

Proof: The spectral radius of the matrix A−1B is defined as the maximum
of its eigenvalue modulus. Any eigenvalue λ of this matrix fulfills

A−1Bd = λd → Bd = λAd

Premultiplying by dT on both sides of the equation it follows

dTBd = λdTAd

To prove that the modulus of λ is less than 1, we can see that the left side
of the equation corresponds to the stabilization term for a given vh, so that

dTBd =

∫

ΓD

vh · T (vh) dΓ (26)

Analogously, we can write:

dTAd = a
(
vh,vh

)
+

k

h

∫

ΓD

vh · vh dΓ (27)

Applying the Cauchy-Schwarz inequality to Equation (26), using Equation
(22) and considering that for two positive numbers x and y it holds that
2xy ≤ x2 + y2, we obtain:

λdTAd = dTBd ≤ ‖vh‖L2,ΓD
‖T ‖L2,ΓD

≤ ‖vh‖L2,ΓD

(
CE Cp Cr

h

)1/2
∥
∥vh

∥
∥
E

≤
∥
∥vh

∥
∥
2

E
+

CE Cp Cr

4h
‖vh‖2L2,ΓD

(28)

Comparing (27) with (28), it follows that if k >
CE Cp Cr

4
, the modulus of

any eigenvalue λ must be less than 1.
�
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6.3. Stability of the formulation

We define the following bilinear form associated to our problem (18):

Q(wh,vh) = a
(
wh,vh

)
+

k

h

∫

ΓD

wh · vh dΓ−

∫

ΓD

T (wh) · vh dΓ (29)

Here we prove the weak coercivity of the functional Q that will be used to
demonstrate the optimal convergence of the proposed method. Consider-
ing first the last term of Q, we apply the Cauchy-Schwartz inequality and
Equation (22) to obtain:

−

∣
∣
∣
∣

∫

ΓD

T (vh) · vh dΓ

∣
∣
∣
∣
≥ −‖vh‖L2,ΓD

‖T (vh)‖L2,ΓD
≥

− ‖vh‖L2,ΓD

(
CE Cp Cr

he

)1/2
∥
∥vh

∥
∥
E
≥ −

1

2

∥
∥vh

∥
∥
2

E
−

CE Cp Cr

2he

‖vh‖2L2,ΓD

(30)

Proposition 2. The bilinear form Q is weakly coercive if the penalty param-
eter is chosen as k > CE Cp Cr, that is:

sup
vh∈U h

Q(wh,vh)

‖vh‖U h

≥ β‖wh‖U h ∀wh ∈ U
h (31)

with β =
1

2
(k − CE Cp Cr).

Proof: It suffices to show that the inequality holds for a certain value of
vh = wh. Using (30) and the definition ofQ (Equation (36) ), and considering
the mesh dependent norm defined in (10), we have:

Q(vh,vh) = a
(
vh,vh

)
+

k

h

∫

ΓD

vh · vh dΓ−

∫

ΓD

T (vh) · vh dΓ ≥

a
(
vh,vh

)
+

k

h

∫

ΓD

vh · vh dΓ−
1

2

∥
∥vh

∥
∥
2

E
−

CE Cp Cr

2he

‖vh‖2L2,ΓD
≥

1

2
(k − CE Cp Cr) ‖v

h‖2
U h

(32)
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6.4. Optimal convergence

Let [u,λ] be the exact solution of the problem (7) and [uh,λh] the solution of
the discretized problem (16). Taking variations in (7), a system is obtained
that must be fulfilled ∀[v,µ] ∈ U × M . In particular, it will also be true
for vh ∈ U h ⊂ U and µh ∈ M h ⊂ M , and we can write:

a
(
u,vh

)
+ b
(
λ,vh

)
= c

(
vh
)

b
(
µh,u

)
= b

(
µh,g

) (33)

Adding the stabilization term
h

k

∫

ΓD

µh ·(σ(u)n+ λ) dΓ, (which is zero since

for the exact solution λ = −σ(u)n), to the second equation and subtracting
(16) it follows that:

a
(
u− uh,vh

)
+ b
(
λ− λh,vh

)
= 0

b
(
µh,u− uh

)
−

h

k

∫

ΓD

µh ·
(
λ− λh

)
dΓ =

h

k

∫

ΓD

µh ·
(
σ(u)n− T (uh)

)
dΓ

(34)

In (16) the solution upon completion of the iterative procedure has been
considered, so that the traction T is calculated for the same uh as the energy.
Operating as in the previous section, the multipliers can be eliminated to
obtain the following orthogonality property of our formulation:

a
(
u− uh,vh

)
+

k

h

∫

ΓD

(
u− uh

)
· vh dΓ−

∫

ΓD

(
σ(u)n− T (uh)

)
· vh dΓ = 0

(35)

Adding and subtracting the polynomial approximation of the traction in the
Dirichlet boundary T (u) into the last integral of Equation 35 we obtain:

Q(u− uh,vh)−

∫

ΓD

(σ(u)n− T (u)) · vh dΓ = 0 (36)

Taking into account the stability of functional Q (Equation (31)) and using
Equation (36) it follows that for any wh ∈ U h:

‖uh −wh‖U h ≤
1

β

Q(uh −wh,vh)

‖vh‖U h

=
1

β

Q(uh − u,vh) +Q(u−wh,vh)

‖vh‖U h

≤
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1

β

∣
∣
∣

∫

ΓD

(σ(u)n− T (u)) · vh dΓ
∣
∣
∣+Q(u−wh,vh)

‖vh‖U h

Now we use the Cauchy-Schwartz inequality and the continuity of functional
Q with constant C to obtain:

‖uh −wh‖U h ≤
C

β
‖u−wh‖U h +

1

β
‖σ(u)n− T (u)‖L2

‖vh‖L2

‖vh‖U h

≤

C

β
‖u−wh‖U h +

h1/2

β
‖σ(u)n− T (u)‖L2

(37)

Finally we obtain the optimal convergence result:

Proposition 3. Let uh be the solution of problem (18) with k > CECpCr

(κ > CpCr) and u the exact solution. Then it holds that

‖u− uh‖U h ≤ O(hp) (38)

p being the degree of the polynomial interpolation.

Proof: Let wh be any function in the finite element space U h. We can write

‖u− uh‖U h = ‖u−wh − uh +wh‖U h ≤ ‖u−wh‖U h + ‖uh −wh‖U h

Now we use Equation (37), the best approximation property of the finite
element space (Equation 19) and property 4 of the smooth stress field T

(Equation (23))

‖u− uh‖U h ≤ ‖u−wh‖U h +
h1/2

β
‖σ(u)n− T (u)‖L2 ≤ O(hp) +O(hp+3/2)

7. Numerical examples

In this section we illustrate the capabilities of the proposed formulation and
explore the limitations of the methods. Three numerical examples with exact
solution were solved and used to check the convergence of the Richardson
iterations, the convergence rate of the finite element solution as the mesh is
refined and the effect of the stability constant k on convergence. They were
also used to compare the proposed method with Nitsche’s method showing
that, in general, both methods have similar behavior. The third example
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highlights the robustness of the proposed method in cases where Nitsche’s
method fails to provide the desired accuracy, i.e., when the boundary of the
domain comes close to the element faces. An additional example shows the
behavior of the proposed method, without any modifications, when elasto-
plastic behavior of the material is considered. This example is particularly
interesting as, to the authors’ knowledge, Nitsche’s method has not been
used to solve these type of problem because the formulation of the method
required for plasticity has not been derived. Linear (L8) and quadratic (Q20)
elements are used in the examples.

7.1. Example 1: Tilted hexahedron

In the first example we consider an infinite domain subjected to 4th order
polynomial displacements and plain strain conditions. The exact solution
reads as:

E = 1000, ν = 0.3

ux = −
25

192
+

75

64
x2

−
25

24
x4

−
25

4
y+

25

4
x2y −

25

8
y2 +

25

8
x2y2

uy =
20

3
x+

65

12
x3 +

65

12
x3y − 10xy2 −

10

3
xy3

uz = 0

tvx =
−E

1 + ν
(1 + y)

tvy =
−E

1 + ν
(1− x)

tvz = 0

σxx =
5

2
x− 3x3 + 8xy + 4xy2

σyy =
5

8
x+

14

3
x3

− 18xy − 9xy2

σxy =
1

6
+ 9x2

−
5

2
y + 9x2y − 4y2 −

4

3
y3

σzz = −0.3 (σxx + σyy)

σyz = σzx = 0

A finite portion of the infinite domain defined by a tilted hexahedron was
considered for the analysis. The known values of the displacements were im-
posed as Dirichlet boundary conditions on the entire external surfaces of the
domain. Figure 5 shows the exact geometry of the problem embedded in the
Level 3 Cartesian grid. The same figure also shows the surface triangulation
used to evaluate numerically the contour integrals.
The problem was solved using a sequence of Cartesian meshes obtained by
element subdivision starting from a Level 2 mesh having 64 hexahedral ele-
ments (Level 0 has a single element and Level 1 has eight elements).
In order to test the influence of the stability constant on the convergence
of the proposed iterative method and on the discretization error, the same
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Figure 5: Example 1. Left: Geometry embedded in a Level 3 Cartesian mesh. Right:
Triangulation of the surface in a Level 4 Cartesian mesh.

mesh was analyzed with κ ranging from 0.04 to 4 · 106. We also considered
Nitsche’s method in the convergence analysis for comparison purposes.
The convergence of the normalized residual (Equation (25)) is plotted in
Figure 6 for different values of κ using linear and quadratic elements of the
Level 2 Cartesian mesh. As predicted, small values of the penalty constant
can cause very slow convergence or even loss of convergence in the iterative
method. The greater the value of κ the faster the convergence, but very
large values of the penalty constant can increase the discretization error of
the finite element solution. To illustrate this the energy norm of the error
is plotted in Figure 7 for different values of the penalty constant considering
the Level 2 and 3 meshes (similar behavior was obtained for the rest of the
mesh levels), and compared with the results obtained with Nitche’s method.
It can be seen that the proposed technique gave a wide range of κ values,
from 4 to 4 ·103, for which the level of the error remains essentially unaffected
for both L8 and Q20 elements. However, the values of κ for which the error
level remains unaffected is narrower in Nitche’s method, ranging from only
κ = 40 to κ = 4 · 103 for L8 elements and from κ = 400 to κ = 4 · 103 for
Q20 elements. It can also be observed that both techniques provide similar
error levels for high levels of κ (κ ≥ 40 for L8 elements and κ ≥ 400 for Q20

elements).
In Figure 8 the energy and the L2 norms of the discretization error are plot-
ted as a function of the mesh size for L8 and Q20 elements, and for both the

25



0 5 10 15 20

10−10

10−8

10−6

10−4

10−2

100

Iteration

Normalized residual

L8 κ = 0.04 L8 κ = 0.4 L8 κ = 4

L8 κ = 40 L8 κ = 400 L8 κ = 4 · 104

Q20 κ = 0.04 Q20 κ = 0.4 Q20 κ = 4

Q20 κ = 40 Q20 κ = 400 Q20 κ = 4 · 104

Figure 6: Example 1. Convergence of the residual in the Richardson iterations for the
Level 2 mesh and different values of κ using linear and quadratic elements.
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Figure 7: Example 1. Discretization error in energy norm and L2-norm (%) for different
values of the penalty constant κ. Results for Level 2 Cartesian mesh using linear and
quadratic elements. The proposed method is denoted as iRec and Nitsche’s method as
Nit.
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proposed technique (iRec) and Nitsche’s method (Nit). The triangles in this
figure show the theoretical optimal convergence rate that can be achieved.
Three different values of κ were considered, taking into account the theo-
retical value κ > CpCr that provides optimal convergence (Cp = 13 for L8

and Cp = 21 for Q20 elements, assuming that Cr = 1), κ = 4, κ = 40 and
κ = 400.
As κ = 4 is lower than CpCr, the optimal convergence rate is not ensured.
Indeed it is only achieved using the proposed method for L8 elements. The
expected behavior in terms of convergence rate is observed in the numerical
results for κ = 40 using the proposed method both for linear and quadratic
elements, whereas Nitsche’s method was only able to recover the optimum
convergence rate for κ = 400 and linear elements. A reduction of the conver-
gence rate for Nitsche’s method can be seen in the last refinement step for
Q20 elements. Nitsche’s method would therefore require a κ higher than 400
to be able to successfully recover the optimum convergence rate during the
entire refinement process for Q20 elements.
This example showed that, if a sufficiently high value of κ is used, the pro-
posed technique provides results similar to those obtained with Nitsche’s
method. However, it is able to provide accurate results, with the optimal
convergence rate, for considerably lower values of the stabilization parame-
ter κ than Nitsche’s method.

7.2. Example 2: Spherical domain

The second example uses a sphere as the exact geometry of the problem.
Figure 9 shows the Level 3 and Level 4 meshes. The exact solution of the
problem considered in this domain is a fourth-order polynomial defined in an
infinite domain, which is imposed as a Dirichlet boundary condition on the
surface of the sphere. The exact solution of the problem reads as:

27



10−1 100

10−1

100

101

102

Mesh size, h

E
rr
or

(%
)

κ = 4, ‖u− uh‖E

10−1 100

10−2

10−1

100

101

Mesh size, h

E
rr
or

(%
)

κ = 4, ‖u− uh‖L2

10−1 100

10−1

100

101

102

Mesh size, h

E
rr
or

(%
)

κ = 40, ‖u− uh‖E

10−1 100

10−3

10−2

10−1

100

101

Mesh size, h

E
rr
or

(%
)

κ = 40, ‖u− uh‖L2

10−1 100

10−1

100

101

102

Mesh size, h

E
rr
or

(%
)

κ = 400, ‖u− uh‖E

iRec,L8 iRec,Q20

Nit,L8 Nit,Q20

10−1 100

10−3

10−2

10−1

100

101

Mesh size, h

E
rr
or

(%
)

κ = 400, ‖u− uh‖L2

iRec,L8 iRec,Q20

Nit,L8 Nit,Q20

Figure 8: Example 1. Discretization error in energy norm as a function of the mesh size
for L8 and Q20 elements. The triangles show the optimal convergence rate.
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E = 1000, ν = 0.3

A =
E

(2 ν − 1) (ν + 1)

ux = x4 + 3 y x3
− 2x z2 + y x z

uy = 7x2 y + y4 − 2 z y3

uz = −3x2 z2 + 2 y x z + z3

bx = A

[

(1− ν)
(

12x2 + 18 y x
)

+ ν (14x+ 2 y − 12x z) +

(

ν −
1

2

)

(−2 y + 12x z − 10x)

]

σxx = −A
[

ν
(

7x2 + 4 y3 − 6 z y2 − 6x2 z + 2 y x+ 3 z2
)

− (ν − 1)
(

4x3 + 9 y x2
− 2 z2 + y z

)]

σyy = −A
[

ν
(

−6x2 z + 2 y x+ 3 z2 + 4x3 + 9 y x2
− 2 z2 + y z

)

− (ν − 1)
(

7x2 + 4 y3 − 6 z y2
)]

σzz = −A
[

ν
(

7x2 + 4 y3 − 6 z y2 + 4x3 + 9 y x2
− 2 z2 + y z

)

− (ν − 1)
(

−6x2 z + 2 y x+ 3 z2
)]

σxy =
E

2 (1 + ν)

(

14x y + x z + 3x3
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Figure 9: Spherical geometry embedded in a Cartesian mesh. Level 3 and Level 4 meshes.

In this example we use a technique that considers the exact geometry of
the problem in the evaluation of volume and surface integrals. These inte-
grals will be exactly evaluated up to the numerical integration errors [41].
Whatever the method used to impose Dirichlet boundary conditions in im-
mersed boundary methods, considering the exact geometry of the domain
in the evaluation of volume and surface integrals is necessary to achieve the
optimal convergence rate for both linear and quadratic elements. This is
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Figure 10: Example 2. Discretization error in energy norm for L8 and Q20 elements using
κ = 40. The triangles show the optimal convergence rate.

because approximations to the actual geometry, for example by a faceted
representation of the surface, could lead to geometrical modeling errors that
could spoil the convergence rate of the numerical method. Figure 10 shows
the discretization error in energy and L2 norms. The optimal values of the
error convergence rates, represented by the triangles shown in the graphs,
are obtained in all cases. We recall that the theoretical rate of convergence
for linear elements is 1 in energy norm and 2 in L2-norm. For quadratic
elements it is 2 in energy norm and 3 in L2-norm. The exact slopes of the
finite element solution for L8 elements are 0.69, 0.97 and 0.97 in energy norm
and 1.13, 1.79 and 1.96 in L2-norm, whilst for Q20 elements the values are
1.89, 1.78 and 1.96 in energy norm and 2.67, 2.77 and 2.95 in L2-norm. The
value of the penalty constant was κ = 40.

7.3. Example 3: Cubic domain parallel to the Cartesian grid

Let us consider the exact solution of the fourth-order polynomial given in the
second example, in a hexahedral domain with faces parallel and equidistant
to the faces of the embedding mesh. This solution was used to impose the
Dirichlet boundary condition on the surface. Figure 11 shows two Cartesian
meshes of Level 3 corresponding to two different bounding boxes that could
be used to analyze this geometry. Let η represent the ratio of the volume
of domain contained in the boundary elements to the total volume of these
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elements (η = 10% in Figure 11 left and η = 90% in Figure 11 right). We
will use η to represent the different relative positions of the surface in the
intersected boundary elements.

Figure 11: Example 3. Cartesian meshes with different values of the parameter η.

In order to test the influence of η on the error of the solution, sequences of
uniformly refined meshes of L8 and Q20 elements were generated by adjusting
the bounding box and the mesh level to keep the parameter η constant. The
values of η selected for the analyses were 50%, 25%, 10%, 5%, 1%, 0.5%,
0.1% and 0.05%. This is a challenging problem for Nitsche’s method, as the
constant that provides stability CN (Equation (14)) increases as η is reduced
and cannot be bounded for η → 0.
With the numerical analyses of this problem we try to show that the proposed
method is able to provide accurate solutions even when Nitsche’s method fails
to do so, i.e. for small values of η, but is numerically equivalent to Nitsche’s
method for larger values of η. In fact we compared three techniques, denoted
as iRec - the iterative method proposed in this paper, iNit - the iterative
method described in Section 3.3 and Nit - the Nitsche’s method.
The magnitude used to compare the results obtained from these three tech-
niques is the exact L2-norm error of the tractions on the Dirichlet boundaries
∥
∥σ(u)n− σ(uh)n

∥
∥
L2,ΓD

. Figure 12 shows in logarithmic scale the evolution

of this magnitude for meshes of Level 3 and Level 4. The graphs for this
example show that, in general terms, reducing η has a negative effect on the
results obtained by all three techniques, but especially in the case of Nitsche’s
method. For η = 0.05%, the best results obtained with Nitsche’s method,
which were for the highest value of the stabilization parameter (κ = 4 · 103),
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are unacceptable (
∥
∥σ(u)n− σ(uh)n

∥
∥
L2,ΓD

= 46258.6% for the Level 3 mesh

and
∥
∥σ(u)n− σ(uh)n

∥
∥
L2,ΓD

= 7786.7% for Level 4). Reducing η leads to

increasingly higher required values of κ. On the one hand the use of these
high κ values gives a high weight to the satisfaction of the Dirichlet bound-
ary conditions and leads to an improvement of the magnitude considered in
the comparisons in this example. However, on the other hand it increases
the condition number of the system matrix, and might overweight the im-
position of the Dirichlet BC on the surface at the expense of reducing the
weight of the terms that account for the energy in the volume (similar ideas
have already been put fordward by [19]). This implies high error levels in the
results obtained in the elements cut by the Dirichlet boundary. This problem
would be critical if the results obtained in these elements were magnitudes
of interest to the analyst.
The iNit curves show a slightly better performance than the Nit curves for
κ = 4 · 103, and more significantly for κ = 400. However, further reducing
the value of κ prevents the convergence of the iterative process in the full
range of values of the volume ratio η (convergence was only obtained when
κ = 4 for η ≥ 10% and, when κ = 40, for η ≥ 1% for the Level 3 mesh
and for η ≥ 0.5% in the case of Level 4). The results given in figure show
that the best results are obtained with the proposed method (iRec curves).
These curves are similar to the Nit and iNit curves for κ = 4 · 103, but show
a considerable improvement when κ is reduced. The optimum performance
shown in the graphs for the iRec curves is at κ = 4 with the highest error
levels around 30% and 26% (only obtained for η ≤ 0.1%) respectively for the
Level 3 and Level 4 meshes, i.e. several orders of magnitude smaller than
with the other two methods.

7.4. Example 4: Plasticity

In this last example we check the performance of the proposed technique when
used to analyze a mechanical component considering elasto-plastic behavior
of the material. The component analyzed is a rectangular plate with a central
hole subjected to uniaxial monotonic traction, as represented in Figure 13.
The highlighted 1/8 of the plate with the appropriate symmetry boundary
conditions was used in the analyses. The material behavior is a von Mises
plasticity bilinear model with yield stress Sy = 24 units of pressure and
slope of the plastic zone H = 225 units of pressure. The Young modulus is
E = 1000 units of pressure and the Poisson’s ratio ν = 0.3. The maximum
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Figure 12: Example 3. Fourth-order polynomial in a cube. L2-error of the traction field
on the Dirichlet boundary for Level 2 and Level 3 meshes.
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Figure 13: Example 4. Plate under traction. Geometrical model and finite element models.
Centre: mesh of the reference model. Right: Level 5 Cartesian grid mesh.

traction applied is σmax = 0.9 ·Sy. We use the proposed method to apply the
Dirichlet boundary conditions on the symmetry boundaries. Although the
theoretical analysis done in the paper to obtain the value of k is only valid for
linear elasticity, we use the same values for non-linear problems, such as, the
present example. Therefore, the value of the stabilizing constant is κ = 40
(k = 100 using the elastic material properties).
The reference solution was evaluated using ANSYS R©[42]. We compared the
displacement of Point I (shown in Figure 13) as a function of the load and the
final distribution of the plastic zone, using the reference and the Cartesian
grid methods. A sequence of analyses using mesh levels 2, 3, 4 and 5, with
element faces not coplanar to the symmetry surfaces, was run to test the
convergence of the solutions obtained by the Cartesian grid method to the
reference. The size of the elements in the reference model was similar to that
of the Level 5 mesh, although the Ansys model gave smaller element sizes
around the hole. The number of degrees of freedom of the Cartesian grid
models was 396, 1935, 10392 and 65058, whereas the reference model had
92904 degrees of freedom. A comparison between the reference mesh and the
Cartesian grid for Level 5 is shown in Figure 13.
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Figure 14: Example 4. Comparison of the FE models. Left: mesh of the reference model
(Ansys). Right: Level 5 Cartesian grid mesh.

Figure 14 compares the zone of the models that underwent plasticity (shown
in gray) evaluated by Ansys and by our Cartesian grid implementation. It
can be observed that both zones are similar, even though different graphical
representation techniques are used by each of the codes.
Figure 15 shows the load-displacement curves obtained from the different
analyses. It can be clearly observed that the curves obtained with the Carte-
sian grid smoothly converge to the reference curve, thus showing that the
technique of imposing Dirichlet boundary conditions proposed in this paper
can be used to provide similar results to those obtained with standard finite
element implementations.

8. Conclusions

This paper describes a novel method of imposing Dirichlet boundary condi-
tions suitable for immersed boundary Cartesian meshes in an approach based
on the stabilized Lagrange multipliers method. This approach allows the La-
grange multipliers to be condensed element-by-element during the assembly
process. The stabilization term is evaluated by using a smoothed stress field
obtained from the Superconvergent Patch Recovery technique. An iterative
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Figure 15: Example 4. Load-displacement curve: Convergence of the Cartesian grid
solution to the Ansys solution with mesh refinement.

procedure is defined to update the stabilizing term and the global conver-
gence of the procedure is proved for a sufficiently large value of the stabilizing
parameter κ. The numerical examples show the influence of κ both on the
finite element error and on the convergence of the Richardson iterations. In
the examples given, the finite element solution remains unchanged for a wide
range of values of κ (κ ∈ [40−4 ·103]) and the convergence of the Richardson
iteration is verified for κ > 4.
The numerical results show that the optimal convergence rate of the finite
element solution is obtained for both linear and quadratic elements, provided
that the geometry of the problem is accurate enough. In particular, if the
geometry is approximated using a linear subtriangulation the solution using
linear element has an optimal convergence rate whilst the convergence using
quadratic elements is suboptimal.
The numerical comparisons with Nitsche’s method showed that in the gen-
eral case, and especially for high values of the penalty parameter of the
stabilization term κ, both techniques provide similar results. However, the
proposed technique proved to be robust in providing accurate results even
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when the boundary of the domain comes very close to the element faces,
where Nitsche’s method is not robust. Moreover, the results obtained with
the proposed technique improve as κ is reduced consequently with less like-
lihood of obtaining high condition numbers.
The proposed technique with no modifications was successfully applied to an-
alyzing a problem with non-linear material behavior. Despite the fact that
the plasticity covered a large area of the Dirichlet boundary, applying the
proposed technique provided similar results to those obtained by the stan-
dard finite element method. Although further improvements could be gained
by adapting the recovery technique to account for plastic deformations, the
preliminary results of this work open up the possibility of obtaining the ben-
efits of embedded domain methods in this type of non-linear problem.
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