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Abstract 
The multiple benefits of automating steering in agricultural vehicles have resulted in various autoguidance systems 
commercially available, most of them relying on satellite-based positioning. However, the fact that farm equipment is 
typically oversized, heavy, and highly powered poses serious challenges to automation in terms of safety and reliability. 
The objective of this research is to improve the reliability of front-wheel feedback signals as a preliminary stage in the 
development of stable steering control systems. To do so, the angle turned by each front wheel of a conventional tractor 
was independently measured by an optical encoder and fused to generate the Ackerman feedback angle. The proposed 
fusion algorithm analyzes the consistency of each signal with time and checks the coherence between left and right front 
wheels according to the vehicle steering mechanism. Field experiments demonstrated the benefits of using redundant 
sensors coupled through logic algorithms for estimating Ackerman angles as the harsh conditions of off-road 
environments often resulted in the unreliable performance of electronic devices.   
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1 Introduction 
Driving a tractor in the field can be especially hard and tedious due to the repetitive nature of agricultural operations. 
Harvesting, spraying, fertilizing, and planting are common tasks that require full attention of farm vehicles operators for 
long periods of time, usually leading to physical and mental fatigue in drivers. In addition to the benefits of avoiding 
stressful attention-demanding driving between rows of plants or trees, intelligent vehicles (i. e. vehicles endowed with 
artificial intelligence techniques) with automated steering allow operators concentrate on alternative tasks and vehicle 
functions. In general, driving assistance improves efficiency in the use of machinery when overlaps are reduced or 
eliminated, and it can also increase operation safety and performance of inexperienced drivers. However, the automation 
of agricultural equipment also induces the occurrence of serious risks that need to be taken into account. Machines that 
typically are very heavy, oversized, and run by powerful diesel engines must never operate without strict safety rules. The 
principal parameter providing feedback to the actuation of a front-axle guided vehicle is the measurement of the actual 
angle that the front wheels turn after executing computer-generated commands, as the vehicle patented by Mailer [1], which 
implemented a PID controller getting feedback information from a wheel-angle sensor. These traditional controllers have 
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been successful for driving assistance in the field; even when the four wheels of agricultural platforms are individually 
driven and steered, the control inputs for the steering motors have been computed using PID control laws [2]. When 
accurate steering is necessary, the traditional loop may be expanded as the double closed-loop PID control law proposed 
by Xiaopeng et al. [3]  to reduce steering overshoots and keep errors below 1º. In this approach, the wheel steering angle 
was used as the feedback for the inner loop, and the angular velocity of the wheel as the feedback for the outer loop. The 
advent of steer-by-wire systems allows the application of variable steering ratios. The steering ratio is the quotient between 
the steering wheel angle and the front wheel angle, and it is fixed for traditional steering systems. Jiang-Yun et al. [4]  
brought an alternative to traditional control methods based on feedback by implementing a steer-by-wire system in which 
the front wheel angle is controlled directly with the steering ratio. This option resulted in a simpler design. Regardless of 
the control law implemented, the actual response of the front wheels will be the major responsible for the vehicle position. 
Therefore, the real-time determination of the true angle turned by the steering wheels is a matter of great importance. 
However, conventional auto-steering systems tend to measure the angle of one of both front wheels and use the simplified 
bicycle model to emulate the dynamics of motion. The approach presented in this paper takes into account the special 
features of Ackerman steering and independently measures the angle of each wheel, using the properties of this geometry, 
and the redundancy of wheel angles, to make final estimations of Ackerman angles more robust and immune to sensor 
failure.             

The majority—perhaps the totality—of commercial autoguidance systems for agricultural vehicles rely on GPS 
positioning information, mainly after the suppression of GPS selective availability in 2000 by the US Department of 
Defense. The accessibility to global localization favored the development of Precision Agriculture (PA) techniques and 
the application of automation technology to agricultural production. Nevertheless, GPS cannot provide the level of 
accuracy and renewal obtained with local perception sensors such as digital cameras and laser rangefinders. Small local 
adjustments or the presence of unexpected obstacles has proved the beneficial use of multiple guidance sensors and fusion 
techniques the solution with highest potential for off-road vehicle automation [5]. Such sensor combinations as GPS and 
machine vision through the Kalman filter [6] and fuzzy logic [7], or 3D scanning lasers [8] have enhanced the performance of 
satellite navigation. Even the implementation of a video camera, a ladar, and an inertial measurement unit in a vehicle has 
been sufficient to achieve autonomous turnings in the headlands of citrus groves without the assistance of global 
positioning [9]. In any case, with or without GPS, automatic steering requires the design and implementation of a 
closed-loop control system, where the system to be controlled is often a hydraulic steering mechanism and the feedback 
signal is typically the front wheels turning angle. Given that fluid power actuators tend to behave nonlinearly, their 
characterization and control is usually intricate and complex [3, 10], what has led to various detailed studies [11-13]. However, 
much less attention has been devoted to the generation of reliable feedback signals, in spite of their crucial role within the 
control loop. Most of the conventional off-road vehicles used in agriculture incorporate Ackerman steering, either 
front-axle or inverse rear axle, which traditionally has been modeled following the bicycle model. A preliminary step 
towards navigational excellence starts with the optimization of the steering trapezium [14], but the real-time estimation of 
the angle turned by the front wheels is normally the essential parameter to determine. This measurement has been 
traditionally carried out with flowmeters, linear potentiometers, and optical encoders, although the latter alternative offers 
the advantage of the direct measurement of the angle turned by the wheel [15]. Current architectures tend to incorporate 
encoders and potentiometers only in one of the front wheels, where no redundancy for the angle estimation is possible, as 
the system developed by Dickson et al. [16] in which a rotary potentiometer aligned with the king pin of one of the front 
wheels was used to estimate the angles turned by a vehicle. Furthermore, although the bicycle model only considers one 
steering angle, denominated Ackerman angle, the actual vehicles have two front wheels which turn different angles 
according to the nonlinear law established by the linkage geometry. The objective of this investigation is to increase 
reliability and robustness in the estimation of the angles turned by front-axle off-road vehicles, with the final overall target 
of enhancing the stability of auto-steered vehicles. Field tests under different conditions have demonstrated that electronic 
devices such as optical encoders are subjected to harsh ambient conditions which many times result in sensor failures. 
Redundancy and signal conditioning at the feedback level offers a means to cope with sensor malfunctioning and, 
consequently, leads to strengthen the control of vehicles with automated guidance.          
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2 General architecture for sensing and controlling front-axle 
steering 
The vehicle used in the experiments is a conventional tractor (JD 5820, Deere & Co., Moline, IL, USA) equipped with a 
turbocharged diesel engine of 90 HP and hydrostatic steering. The tractor has been robotized with three types of sensors: 
localization, perception and control. Global positioning is available with a GPS receiver installed in the cabin of the 
tractor, and different digital cameras have been implemented in the vehicle to provide visual information of the tractor’s 
surroundings for alternative applications based on machine vision. The angles turned by the left and right front wheels of 
the tractor were the principal measurements tracked in this research, and were carried out with two optical encoders 
(Bourns, Riverside, CA, USA) installed in the kingpin of each front wheel as illustrated in Figure 1. The encoders provide 
a resolution of 256 steps to cover the 360º of the internal disk. 

 

Figure 1. Installation of optical encoders in the kingpin of the front wheels 

Given that the experimental vehicle uses front-axle steering, the angle turned by the left wheel is slightly different from 
that turned by the right wheel. The relationship between the turns executed by the front wheels is not linear and depends on 
the particular structure of the steering mechanism implemented in the vehicle. However, for small angles (under 10º) this 
relationship can be considered linear and vehicles with guided assistance often use a single feedback sensor to find the 
angle turned by one of the two wheels, since it is not difficult to calculate the other angle when the relationship between the 
rotations of both wheels is well known. To record the measurement of the angles with the computer onboard, the output of 
the encoders—a digital signal in the range 0 - 5 V— was acquired with a data acquisition board (NI-DAQmx, National 
Instruments, Austin, TX, USA) and input to the computer through one of its USB ports. Both encoders provided a direct 
measurement of the angle turned by the front wheels at a frequency of 10 Hz. Because the encoder shaft was mechanically 
attached to the kingpin of each front wheel, the number of cycles counted by each encoder was proportional to the angle 
rotated by the corresponding wheel. The encoders were powered by a secondary 12V battery that runs independently from 
the main battery of the vehicle. However, both batteries are charged by the tractor’s alternator and mutually connected to 
provide extra power if a peak demand occurs. The auxiliary battery allowed starting and halting the engine without 
interrupting the power supply to sensors and computers. As the encoders are powered by a direct current of 5 V, a voltage 
reducer was inserted in the electric circuitry. The angles output by each encoder were visualized and recorded through a 
customized C++ application whose graphic user interface is portrayed in Figure 2. This application allowed the recording 
of left and right wheel angles, the calculated Ackerman angle, the globally-referenced trajectory followed by the vehicle in 
East-North coordinates (Local Tangent Plane Coordinate System), and the heading and forward velocity of the tractor. The 
instantaneous acquisition of heading, speed, and position for every angle recorded is key to understand the behavior of the 
vehicle as well as the relationship between the angle turned by the front wheels and the resulting course traced by the 
vehicle for a given velocity.   
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Figure 2. Customized interface to record essential data 

The relationship between the angles turned by the left and right wheels could be directly deduced from the bar linkage of 
the tractor, but the accessibility to the steering mechanisms is not always favorable, and consequently it results more 
convenient to carry out a calibration test. The calibration test consists of turning the wheels slowly to cover the entire range 
of values from full lock to the left (counterclockwise) to the maximum turn to the right (clockwise), acquiring as many 
intermediate angles as necessary. In the calibration test performed, the actual angle rotated by each front wheel was 
estimated with a heavy-duty goniometer with a circular scale placed under each wheel. The angles measured by the 
encoders and displayed in the screen of Figure 2 could, therefore, be compared to the actual angles directly measured with 
the goniometer. The availability of the angles turned by each tire at different positions of the steering wheel allowed for the 
calculation of a fit equation relating left and right turns. This equation has been normally simplified with a straight line, but 
the quadratic fit of Figure 3 shows the benefits of using a second order equation to relate left and right turns. Note the 
excellent adjustment of the trend curve with the actual data for extreme angles (over 30º), as these severe turns have 
typically been the origin of the largest deviations between prediction and measurement when linear regression is used. 
While not common for traversing crop rows, which usually run straight and parallel to each other, sharp turns are 
necessary over the headlands at the end of the rows, where vehicles need to change rows and negotiate turns of 180º. A 
quantitative definition of what can be considered a turn taken by a vehicle can be extracted from the methodology patented 
by Lindores [17], according to which a turn is a 30º change in heading over a distance of 100m. The quadratic fit that best 
related left and right angles for the tractor front wheels is depicted in Figure 3, and its mathematical expression is given in 
Eq. 1, where R(k) represents the angle turned by the right wheel and L(k) is the left wheel angle, both expressed in degrees.     

L(k) =  -0.0034⋅R2(k) + 0.9976 · R(k) + 0.2587; r2 = 0.9998                                           (1) 

 

Figure 3. Quadratic equation that relates left and right wheel angles of the experimental tractor 
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3 Philosophy for the robust estimation of Ackerman angles 
The objective of the data fusion algorithm is to determine the Ackerman angle that best represents the turning condition of 
a vehicle to model path-planning algorithms and auto-steering control loops. The accomplishment of this goal started by 
analyzing and comparing the consistency of the angles measured with each of the encoders simultaneously. Once the angle 
measured by one of the encoders is known, the other can be predicted by applying Eq. 1. In particular, the angle turned by 
the left wheel was directly measured with the left encoder and also predicted from the angle output by the right encoder 
after the application of the regression equation given in Eq. 1. If L(k) represents the angle measured by the left encoder at 
sample point k and R(k) is the corresponding angle recorded by the right encoder at the same point k, the principal 
measurement x(k) is defined coincident with L(k), that is, x(k) = L(k), but its prediction z(k) is calculated from the outputs 
of the right encoder after applying the regression equation of Fig. 3, as specified in Eq. 2.    

                      z(k) = -0.0034⋅R2(k) + 0.9976 · R(k) + 0.2587                                     (2)  

The analysis of consistency and further validation of the information acquired by the encoders was conducted in real time 
according to two fundamental concepts: integrity and continuity. There is integrity for a given time step k if measurement 
x(k) and prediction z(k) do not differ, in absolute value, more than a predefined threshold. This threshold was considered 
7º in the experiments conducted in the field and described in the following section; so, for instance, if |x(345) – z(345)|<7º, 
there was integrity for point 345. Continuity, on the contrary, affects to each series of data independently in such a way that 
two consecutive angles, either from R(k) or L(k) are considered continuous only if their absolute difference remains below 
a certain threshold, which in this particular project varied from 3º to 12º. The continuity of angles was conceived as a 
Boolean variable taking a value of one when there was continuity and zero otherwise. The lack of continuity in one 
encoder indicated a jump in the data series, usually caused by noise or a physical problem in the encoder. The calculation 
of the Ackerman angle is usually defined as the average of left and right wheel angles, but spurious angles, such as those 
induced by a deficient continuity or integrity, invalidate that simple calculation. For such cases, alternative equations must 
be applied in the calculation of Ackerman angles, keeping the most reliable information and discarding doubtful data. The 
application of the bicycle model to vehicles with frontal Ackerman geometry —front axle steering through a mechanical 
linkage that approaches perfect turns by making both wheels turn a different angle— necessarily leads to the combination 
of left and right angles into a theoretical turning angle that fits the dynamic (bicycle) model and eventually the 
implemented control system. When both angles are available, the Ackerman angle is typically their average.    

Continuity may fail either for both encoders or, more likely, for just one of them for a certain value of k. Integrity, on the 
other hand, involves the data of both sensors. When there is no integrity and a jump is detected in the right encoder—i.e. 
there is no continuity for right angles although left angles are correct, the Ackerman angle A(k) can be estimated with Eq. 
3, where only data coming from the left encoder is taken into account, specifically the average of the current value and the 
previous one. Likewise, when continuity problems are found for the left encoder, A(k) is the average of the current angle 
measured by the right encoder and the previous angle as given by Eq. 4.   

A(k) = (x(k-1) + x(k)) / 2                                                                        (3)  
  A(k) = (R(k-1) + R(k)) / 2                                                                       (4) 

When there exists integrity between measurement and prediction for value k but previous values of the series are not 
continuous in the last three angles (up to k-2), only current values (k) of both encoders are averaged as indicated by Eq. 5. 
However, when there is integrity and continuity during the last three angles for both encoders, the smoothest value of A(k) 
is provided by the moving average of Eq. 6, which obviously is the optimal situation for a stable performance of steering 
controllers and navigation planners.  

A(k) = (R(k) + x(k)) / 2                                                                        (5) 
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 A(k) = (R(k) + x(k)+ R(k-1) + x(k-1)+ R(k-2) + x(k-2)) / 6   (6) 

The philosophy of the algorithm proposed is represented in Figure 4 as a block diagram. It is important to keep in mind that 
all the calculations and filtering checks are executed in real time, and therefore, 3-point moving matrices for every variable 
tracked need to be implemented in the code. Apart from left, right, and Ackerman wheel angles, integrity and continuity 
matrices were also recorded in text files for further analysis. 

 

Figure 4. Flow chart of the algorithm proposed to enhance the calculation of Ackerman angles 

4 Field tests and experimental results 
The objective of the field tests was the general verification of the algorithm in real conditions found in citrus orchards and 
wine vineyards. Three different situations were detected in the field: one of the encoders suddenly stopped measuring as a 
consequence of mechanical or electrical failure (case 1), one of the encoders drifted over time (case 2), and both encoders 
behaved normally as expected (case 3). A detailed explanation for each case follows below.   

Case 1: Electromechanical failures in the wheel encoders 
The plots represented in Figure 5 show the angles turned by both front wheels measured by their respective encoders 
together with the Ackerman angle calculated with the algorithm outlined in Figure 4. The vehicle was driven through 
several rows of a citrus grove, turning in the headland at the end of each row as indicated by the large angles represented in 
the plot by peaks over 30º followed and preceded by near-zero angular corrections. According to the top plot representing 
the steering maneuvers of the left wheel, the left encoder supplied reasonable values along the runs traveled in the orchard; 
however, the right encoder (central plot) shows a large jump short after point 14000 that invalidates the sensor readings 
after that value. The artifact created by the malfunctioning encoder was of such a great magnitude that the scale needed to 
represent its value flattened the peaks corresponding to the headland turns registered before the faulty point. The jump 
occurred around point 14000 fired the integrity filter that discarded the readings of the right encoder after the jump. As a 
result, the calculation of A(k) averaged x(k) and R(k) before the jump as defined in Eq. 6, but only used the left angle 
values (Eq. 3) after the jump. Overall, the final Ackerman angle A(k) output by the algorithm during the entire test was not 
affected by unrealistic noisy estimates, as represented in the bottom graph of Figure 5, where the magnitude of the angles 
is bounded by ± 50º.    
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Figure 5. Ackerman angles with electromechanical failures in one of the encoders 

Case 2: Encoder drift 
This situation also involves a malfunction in one of the encoders, but unlike the previous case, the failure is more subtle 
this time; it occurs slowly, small when it appears but growing with time. The output for the left encoder (top plot) 
represented in Figure 6 indicates that the average angle, when the vehicle moves straight ahead, is approximately zero as 
expected. The right encoder (center plot) also shows the same trend at the beginning, but after point 6000 its average value 
starts to deviate from the logical zero degrees angle. In this situation, continuity is not helping to issue the initial warning 
because drift is a steady deviation that grows continuously. However, the values of integrity point at increasing differences 
between measured and predicted values that lead to discard drifting values after point 6000, using thereafter only the 
estimates coming from the left encoder. As depicted in the bottom plot of Fig. 6, the final angle A(k) is not affected by the 
erroneous behavior of the right encoder, and the algorithm returns angles close to 0º when the vehicle moves following 
straight rows. The origin of the drift in the right encoder was found long after the tests were carried out. It was caused by a 
current derivation in the wiring of the tractor cabin originated by the lack of ground pin in the computer plug. This problem 
was solved by using independent power sources so that the 5 V DC needed by the encoders was not affected by the power 
of computer and monitors aboard.    

 

Figure 6. Ackerman angles with signal drift in one of the encoders 
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Case 3: Encoder redundancy 
When the information collected with the encoders is coherent, what happens most of the times, the task of the algorithm is 
to smooth the values of the final steering angle by implementing a three-point moving average. The three plots of Figure 7 
are very similar among them, and the small differences noticed during large turns at the field headlands obey to the 
geometry of the steering linkage. The final output, depicted in the bottom plot of Figure 7 as the Ackerman angle, is stable 
and shows logical values for A(k). This stability is assured by the concepts of integrity and continuity. However, apart 
from filtering outliers and noisy estimates of the wheel angles, these concepts provide valuable information on the 
dynamics and behavior of the vehicle in its motion, especially when conducting automated tasks. The integrity plot of Fig. 
8 demonstrates that the actuation of one of the wheels can be accurately predicted with the redundant measurement of the 
other; furthermore, deviations can be bounded by 6º, and in most of the cases are below 3º. The continuity values 
determined independently for each wheel, as depicted in Figure 9, show that variations in angles between consecutive 
points are insignificant when the vehicle follows straight rows but can reach 10º in the 180º turns needed to change 
consecutive rows. To fully understand these values, it is necessary to know the trajectory traced by the tractor, the distance 
between points, and the velocity reached by the vehicle at any point of its trajectory. Figure 10 provides the course 
followed by the vehicle among rows of a winery vineyard, and Figure 11 plots the instantaneous velocity at any point 
registered by the onboard computer. 

 

Figure 7. Left and right front-wheel angles and resulting Ackerman angle 

 

Figure 8. Integrity plot: quantitative differences between measurements and predictions 
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Figure 9. Continuity plots for left and right encoders 

 

Figure 10. Trajectory traced by the vehicle along the vineyard rows 

 

Figure 11. Forward velocity registered by the vehicle in its motion 
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5 Conclusions 
The high-level requirements of safety for automating off-road vehicles demand reliability for key components of the 
control system. The proper measurement of steering feedback signals is essential for achieving smooth autonomous 
navigation. The system proposed implements two optical encoders, one for each front wheel, and a fusion algorithm to 
enhance the estimation of the feedback angle. The presence of redundant sensors and the application of the fusion 
algorithm resulted in more stable angle measurements, as proved in field tests conducted in orchards and vineyards. Future 
upgrades of the algorithm will try to further elaborate on the concepts of continuity and integrity to get more solid 
responses during large turns at the end of rows. The ultimate stage in the development of this system will include its 
integration and evaluation in a complete auto-steered vehicle. The information retrieved from both encoders, the 
application of stability concepts such as integrity and continuity, and the availability of global positioning systems, when 
properly combined, allow the investigation of the correlation between the angles turned by the front wheels of an off-road 
vehicle and the final position reached by that vehicle when traveling at a certain speed, which still remains an unsolved 
problem in spite of its high interest for roboticists and engineers devoted to the automation of off-road vehicles.      
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