
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1016/j.ijpe.2015.07.027

http://hdl.handle.net/10251/63118

Elsevier

Hatami, S.; Ruiz García, R.; Andrés Romano, C. (2015). Heuristics and metaheuristics for
the distributed assembly permutation flowshop scheduling problem with sequence
dependent setup times. International Journal of Production Economics. 169:76-88.
doi:10.1016/j.ijpe.2015.07.027.



Heuristics and Metaheuristics for the Distributed
Assembly Permutation Flowshop Scheduling Problem

with Sequence Dependent Setup Times

Sara Hatamia, Rubén Ruizb,∗, Carlos Andrés-Romanoa

aDepartamento de Organización de Empresas, Universitat Politècnica de València,
Camino de Vera s/n, 46021, València, Spain

bGrupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática,
Ciudad Politécnica de la Innovación, Edifico 8G, Acc. B. Universitat Politècnica de

València, Camino de Vera s/n, 46021, València, Spain.

Abstract
We consider a Distributed Assembly Permutation Flowshop Scheduling

Problem with sequence dependent setup times and the objective of makespan
minimization. The problem consists of two stages, production and assembly.
The first stage comprises f identical factories, where each factory is a flowshop
that produces jobs which are later assembled into final products through
an identical assembly program in a second assembly stage made by a single
machine. Both stages have sequence dependent setup times. This is a realistic
and complex problem and therefore, we propose two simple heuristics and
two metaheuristics to solve it. A complete calibration and analysis through
a Design Of Experiments (DOE) approach is carried out. In the process,
important knowledge of the studied problem is obtained as well as some
simplifications for the powerful Iterated Greedy methodology which results
in a simpler approach with less parameters. Finally, the performance of
the proposed methods is compared through extensive computational and
statistical experiments.
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1. Introduction1

An assembly production floor typically contains two differentiated stages;2

a production and an assembly section. In this paper we study a distributed3

assembly flowshop with many potential applications. Assembly flowshops4

have been widely studied recently and constitute a hot topic for research. The5

scheduling setting considered in this paper is composed of a production section6

that is a distributed flowshop problem in itself where jobs are manufactured7

in a set of machines that are disposed in series. After individual jobs are8

produced, they are assembled in a single assembly machine to form final9

products. These production systems are referred to as Assembly Flowshop10

Scheduling Problems (AFSP) according to [1]. The AFSP applications range11

from fire engine assembly (2) to personal computer manufacturing (3). As12

pointed out in [1], AFSP settings are capable of producing large product13

varieties by using modular structures at a controlled cost.14

We also consider several extensions to the studied problem so as to bring15

it as close as possible to the reality of production shops. For example, single16

factories are not common in practice and many companies operate several17

factories working as distributed production environments (4). Distributed18

production is key in modern manufacturing (5). Additionally, distributed19

manufacturing leads to high quality production and other benefits such as20

reduced production costs, decreased management risks and more (4, 6, 7, 8,21

among others). As a first extension we consider several distributed assembly22

flowshops to reap these benefits.23

The second extension considered is the addition of setup times. Unlike24

processing times, setups are non-productive periods of time in between the25

production of successive jobs in machines where cleaning, configurations,26

adjustments and other procedures are carried out. Setups are broadly classified27

into Sequence Independent Setup Times (SIST) and Sequence Dependent28

Setup Times (SDST). This last category is more realistic and general and29

appears when the amount of setup time depends on the job that has been30

finished by the machine and the job that is to be produced next. Scheduling31

with setup times is a very important area of research and a large number of32

review papers have been published, such as [9], [10, 11] or [12].33

More precisely, the flowshop problem consists of scheduling a set N of n34

jobs in a set M of m machines. Jobs have to visit a predetermined machine35

sequence which is, without loss of generality, {1, 2, . . . ,m}. The machines are36

disposed in series and a job is broken down into m tasks, one per machine.37
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The processing time of a given job at a machine is a known, deterministic and38

non-negative quantity referred to as pij, i ∈M, j ∈ N , which is furthermore39

usually an integer. The objective is to obtain a sequence of the products in40

the machines so that a criterion is optimized. There are n tasks per machine41

and any ordering is possible. Therefore, there are (n!)m possible solutions in42

this problem. In order to reduce the search space, the most studied variant of43

this problem is the so called Permutation Flowshop Scheduling Problem or44

PFSP. In this case, job passing is not allowed and once a production sequence45

of the jobs is determined for the first machine, it is maintained for all other46

machines, reducing the search space to n! solutions or sequences. The PFSP47

comes with some assumptions: A task from a given job can only start at a48

machine i when the processing of the task of the same job at the previous49

machine i−1 has finished and also only when machine i is free after processing50

the previous task in the sequence. No breakdowns are experienced by the51

machines and they are always available. Each machine can only process one52

job at a time and each job can only be processed by one machine at the same53

time. The first task of each job on machine 1 is ready for processing at time54

0. There is no preemption, i.e., once a task begins processing in a machine55

it cannot be stopped until completion. Finally, jobs can wait indefinitely in56

between machines and an infinite storage of in-process products exists (13). If57

we define by Cj the time at which job j ∈ N is completed at the last machine58

m, the most commonly studied criterion is the minimization of the maximum59

completion time, commonly referred to as makespan or Cmax. The PFSP with60

this criterion has been studied extensively in the scheduling literature. Some61

reviews are [14], [15], [16] and [17].62

The extension of the PFSP to distributed manufacturing, referred to as63

the Distributed Permutation Flowshop Problem (DPFSP) was studied for the64

first time in [18]. In this extension, we have a set F of f identical factories.65

Each factory is a PFSP. Each job has to be first assigned to one of the66

factories and the problem then consists of solving f PFSPs while minimizing67

the maximal Cmax among the f factories. It is assumed that once a job j ∈ N68

is assigned to a factory f ∈ F , it is completed there and no reassignments69

are possible. The authors of [19] recently studied the Distributed Assembly70

Permutation Flowshop Scheduling Problem or DAPFSP for the first time. In71

this problem, the first stage is a distributed flowshop and the second stage72

is a single assembly machine. The authors presented a Mixed Integer Linear73

Programming Model (MILP), several constructive heuristics and simple local74

search based Variable Neigborhood Descent (VND) methods. In this paper75
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we further generalize the DAPFSP with the addition of sequence dependent76

setup times both in the distributed flowshop production stage as well as in77

the single machine assembly stage. We improve on the previous VND and78

also present an effective Iterated Greedy (IG) method. IG has shown excellent79

performance in the regular PFSP (20) and also in the PFSP with SDST (21)80

and hence is chosen as a promising approach.81

This DAPFSP with sequence dependent setup times (DAPFSP-SDST) is82

now explained in detail. There is a set T of t (unrelated) products that are83

manufactured through an assembly of n jobs, each fabricated in the PFSP84

factories of the production stage. There is a defined assembly program for85

each product h ∈ T carried out on a single assembly machine, referred to86

as MA. Each product h ∈ T is assembled from a subset Nh, Nh ⊆ N of jobs87

that need to be assembled into product h. Therefore, product h consists of88

|Nh| jobs. Each job belongs to a single assembly program of a given product89

and therefore we have ∑t
h=1 |Nh| = n. A product h can be assembled at the90

single machine assembly stage only after all jobs in Nh have been completed91

in the f distributed factories. The assembly processing time in the single92

machine assembly stage is referred to as ph. Furthermore, Sijk denotes the93

sequence dependent setup time that is needed at machine i of any of the94

f factories after having processed job j and before processing job k. This95

setup time is separable from the processing time. There is also an initial96

setup time. As a result, a (n + 1 × n) setup time matrix is considered for97

each production machine. Setup time matrices do not change from factory to98

factory as factories are assumed to be identical. We also consider sequence99

dependent setup times in the single machine assembly stage. We denote by100

SAls the setup between the assembly of products l and s, l 6= s, l, s ∈ T . Note101

that an initial setup is also needed to prepare the assembly machine for the102

assembly of the first product h ∈ T , referred to as SA0h. Again, a (t+ 1× t)103

assembly setup time matrix is required. All setups are non-negative integers104

that are known in advance and deterministic.105

The paper is arranged as follows: Section 2 presents a brief literature106

review on previous and related research. Section 3 introduces two simple107

constructive heuristic methods for the considered problem. Sections 4 and 5108

describe the proposed VND and IG methods, respectively. In section 6, the109

proposed methods are calibrated. Section 7 presents a complete computational110

evaluation of the proposed algorithms. Finally, Section 8 concludes the paper111

and presents some future research questions.112
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2. Literature review113

The DAPFSP is a combination of the assembly (AFSP) and distributed114

(DPFSP) permutation flowshop problems. Together with the regular flowshop,115

the literature is extensive. The reader is again referred to the many existing116

reviews (14, 15, 16, 17).117

As regards the AFSP, there is also a significant amount of existing re-118

sults. In [2] a three-machine assembly-type flowshop scheduling problem119

with makespan minimization is presented. Each product consists of two jobs,120

each to be produced in the first and second machine respectively, where the121

third machine assembles the two jobs into a product. The authors present122

a branch-and-bound exact method and an approximate solution procedure.123

In [3] m parallel production machines in the first stage are considered. A124

compact vector summation technique to find approximated solutions with125

worse-case absolute performance guarantees is applied. In [22] a branch-and-126

bound algorithm for the same model is developed. A two-stage assembly127

scheduling problem is considered in [23]. A lower bound and a dominance128

criterion are developed and incorporated into a branch-and-bound procedure,129

this time with total weighted flow time minimization as an objective. A130

heuristic procedure to find an initial upper bound is also proposed. In [24] the131

same model is studied and metaheuristics such as simulated annealing (SA),132

tabu search (TS), and hybrid tabu search heuristics to solve the problem are133

proposed. In [25] a two-stage AFSP is considered and TS, particle swarm134

optimization (PSO), and self-adaptive differential evolution (SDE) are applied135

to minimize the weighted sum of makespan and maximum lateness. In [26]136

powerful heuristics for minimizing the makespan in a fixed three machine137

assembly-type flowshop problem are presented.138

The literature about the distributed permutation flowshop problem is139

comparatively small, especially when compared with that of the AFSP and140

PFSP. The DPFSP is introduced in [18] for the first time. They developed six141

different Mixed Integer Linear Programming (MILP) models and proposed142

two simple factory assignment rules and 14 heuristics based on dispatching143

rules, effective constructive heuristics and VND methods. More recently, in144

[27] a TS algorithm with a better performance when compared to previous145

algorithms presented by the same authors is presented. The authors of [28]146

have proposed an effective Iterated Greedy method and in [29] an Estimation147

of Distribution algorithm is proposed. The authors of [19] introduced for the148

first time the DAPFSP and proposed a MILP, three constructive algorithms149
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and a VND. To the best of our knowledge, the DAPFSP with a single assembly150

machine has not been studied by any other authors in the literature.151

Setup times are also considered in the non-distributed assembly flowshop152

literature (and much more in the regular flowshop). The authors of [30]153

presented a two-stage production system, where there is a single production154

machine with setup times that produces parts and a single assembly machine.155

A near-optimal schedule is obtained by using a pseudo-dynamic programming156

method and a tight lower bound is proposed to evaluate its accuracy. The157

objective function considered is the minimization of the mean completion158

time. The same author built upon the previous model in [31] by extending159

the single machine manufacturing stage to a flowshop with setup times. A160

pseudo-dynamic programming method and a branch-and-bound procedure are161

presented. The authors of [32] addressed the two-stage AFSP with sequence162

independent setup times. They derived a dominance relation and applied SDE,163

PSO, TS and Earliest Due Date heuristics to minimize the maximum lateness.164

The same model is considered in [33], where the authors presented a dominance165

relation and proposed three heuristics to minimize the makespan. The authors166

of [34] presented a three stage AFSP by considering a transfer stage as a167

middle stage and SDST in the first stage. They presented a mathematical168

model, a lower bound and two heuristics (TS and SA) to solve the problem. In169

[35] the authors also addressed the two-stage AFSP by considering multiple170

non-identical assembly machines and SDST in the first production stage.171

They developed a MILP and a hybrid VNS heuristic to minimize the weighted172

sum of makespan and mean completion time. Comprehensive reviews of the173

state-of the art of scheduling with setup times are carried out in [9], [12],174

[15] and [10, 11]. As can be seen, the DAPFSP with SDST considered in175

this paper has not been, to the best of our knowledge, studied before in the176

scheduling literature.177

3. Simple constructive heuristic methods178

The DPFSP is an NP-Hard problem if (n > f) (18). Therefore, the179

DAPFSP with sequence dependent setups is also NP-Hard as the DPFSP is180

a special case. As a result, the design of heuristic methods for obtaining good181

solutions in reasonable CPU times is necessary. In the following we present182

two simple constructive heuristics.183

We first present a simple example problem that will be used to illustrate184

the proposed heuristics. The example consists of eight jobs (n = 8), three185
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Job

Machine J1 J2 J3 J4 J5 J6 J7 J8

M1 46 48 94 2 4 47 50 33
M2 47 2 83 13 69 42 26 95

Product 1 Product 2 Product 3

MA 30 60 89

Table 1: Job and product assembly times for the
example.

Product Product

T1 T2 T3

T0 6 3 1
T1 0 4 5
T2 3 0 6
T3 7 2 0

Table 2: Assembly stage setup
time matrix for the example.

products (t = 3), two factories (f = 2) with a two machine flowshop each186

(m = 2). The assembly programs of the three products are: N1 = {1, 6, 7},187

N2 = {2, 5} and N3 = {3, 4, 8}. Tables 1 to 3 present job processing times at188

factories, product assembly times at the single machine assembly stage and189

production and assembly machine setup matrices, respectively.190

We introduce some necessary notation. π represents a product sequence,191

that is, a possible sequence for the assembly of the products, e.g., π = {1, 3, 2}.192

Each product h is composed of a number of jobs and a possible sequence for193

these jobs is referred to as πh, denoting the job sequence for product h, e.g.,194

π1 = {7, 6, 1}, π2 = {2, 5} and π3 = {8, 3, 4} are possible job sequences for195

the three products in the example. A Complete job sequence, πT , represents196

a possible sequence of the all jobs, and is the result of concatenating all197

job sequences for the products after the master product sequence π, e.g.,198

πT = {7, 6, 1, 8, 3, 4, 2, 5} following the example. To start processing the first199

job at each factory and for assembling the first product at the assembly stage,200

an initial setup is necessary. We use J0 and T0 to represent the first dummy201

job and product, respectively.202

Job Machine 1 Machine 2

J1 J2 J3 J4 J5 J6 J7 J8 J1 J2 J3 J4 J5 J6 J7 J8

J0 2 7 3 8 4 1 9 3 8 9 7 1 9 8 7 4
J1 0 5 9 4 9 1 3 2 0 1 8 8 9 2 6 4
J2 3 0 7 3 2 1 6 7 7 0 2 5 2 1 3 6
J3 4 4 0 5 5 8 3 4 5 9 0 4 9 1 6 9
J4 8 2 4 0 2 1 3 3 4 2 5 0 8 8 1 1
J5 5 3 3 4 0 3 7 5 1 4 3 2 0 6 1 5
J6 8 1 8 4 3 0 1 3 1 4 8 2 7 0 6 6
J7 5 5 8 3 7 4 0 3 7 7 5 7 4 2 0 5
J8 9 3 8 2 7 8 7 0 7 7 1 8 1 5 6 0

Table 3: Production stage setup time matrix for the example.
To assign jobs to factories, the two job to factory assignment rules presented203

in [18] are considered in this paper. The first one, referred to as (NR1), assigns204
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job j to the factory with the lowest current Cmax, not considering job j. The205

second rule (NR2) assigns job j to the factory with the lowest Cmax after206

scheduling job j.207

3.1. Heuristic 1208

The first heuristic obtains a complete job sequence πT and consists of three209

simple steps. The first obtains a product sequence (π) on the single assembly210

machine. The product with the minimum sum of initial setup and assembly211

time is scheduled first in π. The remaining h− 1 products are scheduled one212

by one, each time selecting the product with the smallest completion time213

after being scheduled, considering the sequence dependent setup time. Once214

all products are scheduled the second step in the heuristic determines the job215

sequence (πh) of each individual product h. The jobs of each product h are216

considered one by one. Initially all factories are empty. Therefore, the first f217

jobs with the minimum completion times (initial setup plus processing time)218

are the first f jobs on πh and occupy the first positions in the f factories. Of219

course, if |Nh| ≤ f , πh is equal to the the assembly program of product h, Nh.220

Otherwise, after f initial jobs are scheduled, the other |Nh| − f jobs from221

product h are considered. Among the remaining jobs of product h, the job222

that is scheduled next is the one resulting in the smallest completion time223

after applying either the NR1 or NR2 job to factory assignment rules. The224

process continues until all jobs of product h have been considered. This second225

step is applied to each product separately to determine the job sequence226

for each individual product. After all products have been considered, the227

third step constructs the complete job sequence πT by putting together all228

obtained πh, following the product order established in π. At this point there229

are two possibilities: to assign all jobs in πT to factories using the NR1 or230

NR2 rules. Depending on the case we have the proposed heuristic CH11 or231

CH12, respectively. The sequence of products in the assembly stage is simply232

determined by ordering the products by increasing completion time of all the233

jobs in the production stage. To better illustrate the heuristic, all steps are234

explained through the previous example.235

Product 1 is considered as the first product to be included into π. It is236

scheduled first in the single assembly machine which results in a completion237

time of 6+30=36 (considering the initial setup and the assembly times). The238

same procedure is carried out for the remaining products 2 and 3 which result239

in completion times of 3+60=63 and 1+89=90, respectively. Since product240

1 results in the shortest completion time, it is scheduled first in π. Now we241

8



have to reconsider products 2 and 3 in the single assembly machine. They242

are scheduled now after product 1 which has been already scheduled. The243

completion times are 36+4+60=100 (completion time of product 1 plus the244

setup time in the assembly stage between products 1 and 2 and processing245

time of product 2) for product 2 and 36+5+89=130 for product 3. Therefore,246

product 2 is scheduled after product 1. Finally, no additional calculations are247

needed for scheduling the last product 3 in the third position. As a result,248

the product sequence π is {1, 2, 3}. Note that this first step of the heuristic249

is carried out t(t+1)
2 − 1 times and therefore has a computational complexity250

of O(t2). The next step is to find a good job sequence for each product h,251

πh. Recall that there are |Nh| jobs that belong to product h. We consider252

product 1 as an example that consists of jobs {1, 6, 7} in the example.253

We begin by calculating the completion times of jobs 1, 6 and 7, separately.254

Since the two available factories are empty, we consider the initial setups and255

the completion times on the two machines at the flowshop of each factory. For256

example, the completion time of job 1 is 2 (initial setup at machine 1)+46257

(processing time at machine 1)+47 (processing time at machine 2)=95. Note258

that the initial setup of 8 units in machine 2 can be performed before job259

1 arrives to that machine. Applying the same procedure we calculate the260

completion times for jobs 6 and 7 which are 90 and 85, respectively. Since261

we have f = 2 factories, we select the f jobs with smallest completion times262

and schedule them. In this case jobs 7 and 6 are scheduled in factories 1 and263

2, respectively and occupy the first two positions of the product sequence264

for product 1 (π1). To schedule the remaining jobs in πh, each one should265

be tested at each factory using either the NR1 rule for CH11 or NR2 for266

CH12. The job resulting in the minimum completion time is scheduled next267

in πh. This process continues until all jobs in Nh have been scheduled and is268

repeated for all the product sequences. In this example only job 1 remains and269

therefore occupies the last position in π1. Therefore π1 is {7, 6, 1}. Applying270

the same procedure results in the job sequences for products 2 and 3 to be271

π2 = {2, 5} and π3 = {4, 8, 3}, respectively. Note that for each product h this272

second step requires |Nh|(|Nh|+1)
2 − f − 1 steps. It is difficult to calculate the273

computational complexity for this step as usually |Nh| is not expected to be274

orders of magnitude larger than f and therefore the term −f in the previous275

expression is important. However, if we assume that |Nh| � f and that there276

is a single product where |Nh| = n then the computational complexity of277

this second step is O(n2). Note however that this is a pathological worst case278
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Figure 1: Gantt chart with the result of CH11 for the example problem.

and the empirical complexity is expected to be much lower. Finally, in the279

third step the complete job sequence πT is completed by concatenating all280

job sequences following the product sequence π. This sequence is therefore281

πT = {7, 6, 1, 2, 5, 4, 8, 3}. In order to calculate the maximal makespan among282

the factories, the individual jobs in πT are assigned to factories in the order283

they appear in πT , using the rules NR1 or NR2 for heuristics CH11 and284

CH12, respectively. This last step has a computational complexity of O(nf).285

Therefore, considering that n � f , the overall worst case computational286

complexity of this first heuristic is O(n2). In the considered example, we287

obtain the makespan value of 386 for CH11 and 387 for CH12. The solution288

given by CH11 is represented as a Gantt chart in Figure 1.289

3.2. Heuristic 2290

This heuristic is based on the second constructive method presented in291

[19]. The idea is to consider the production stage and to sequence all jobs of292

each product and construct the different πh sequences so that priority is given293

to products whose jobs have small completion times. In this way, the single294

assembly machine is occupied as soon as possible. In order to obtain good295

job sequences πh for all products, the second step of the previous heuristic296

1 is used. After all jobs for a given product h are scheduled, we calculate297

the earliest assembly start time for product h, denoted by Eh which is equal298

to max|Nh|j=1 {Cj}. After all individual product job sequences are determined,299

the product sequence π, is formed by sorting all t products according to300

ascending values of Eh. Finally, the complete sequence πT is obtained after301

concatenating all job sequences πh following the product sequence established302

in π. Similarly to heuristic 1, jobs in πT are assigned to factories using303

NR1 or NR2 which results in heuristics CH21 and CH22, respectively. The304

sequence of products for the assembly stage is obtained as in heuristic 1.305
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The computational complexity of this second heuristic is dominated by the306

second step, which corresponds to the second step of the previous heuristic307

1. Therefore, the computational complexity is the same in the worst case:308

O(n2).309

Following the job sequences obtained for the three products in the example310

of the previous heuristic, the earliest assembly start times of the products311

are E1 = 157, E2 = 78 and E3 = 191. Therefore the product sequence π is312

{2, 1, 3} by sorting all Eh in ascending order. The complete sequence πT is313

therefore {2, 5, 7, 6, 1, 4, 8, 3}. After assigning each job to factories we obtain314

makespan values of 387 for heuristic CH21 (NR1 rule) and 391 for heuristic315

CH22 (NR2 rule).316

The four proposed heuristics will be tested later on as seed solutions of317

the other proposed approaches for solving the DAPFSP-SDST problem.318

4. A simple Variable Neighborhood Search319

Variable Neighborhood Descent (VND) is the simplest variant of the320

more general Variable Neighborhood Search (VNS) of [36]. Starting from an321

initial solution, VND explores different neighborhood structures, N1, . . . , Nq.322

These are usually explored in increasing cardinality starting with the smallest323

neighborhood N1. The search continues with N2 only after a local optimum324

has been obtained in N1. If the local optimum obtained after exploring N2 is325

different from the one obtained after analyzing N1, the search goes back to326

exploring N1. The process ends when all neighborhoods, including Nq, have327

been searched and the final solution is a local optimum with respect to all328

neighborhood structures. VND is very simple yet it performs well for the329

distributed flowshop and DAPFSP problems as shown in [18] and in [19]. In330

the following we summarize the proposed VND which employs two different331

solution representations and two neighborhood structures.332

4.1. Solution representation333

In this work, and differently from [19], we consider two different solution334

representations. The base encoding is a permutation of all jobs, i.e., we work335

with the complete job sequence πT . Using this encoding we define the full336

permutation solution representation or (Pr1) as the ordering of the n jobs337

regardless of the products to which they belong. Hence, n! different job338

permutations are possible with this representation.339

Pr1 is a relaxation of the more restricted representation given in [19]. This340
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second representation, referred to as multi-permutation or Pr2 is also a341

complete job sequence but the jobs belonging to the same product are never342

separated and intermingled with jobs belonging to other products. Following343

the previous example, if we have a product sequence π = {2, 3, 1}, two344

possible representations could be {2, 5, 8, 3, 4, 7, 6, 1} or {5, 2, 4, 8, 3, 7, 1, 6}.345

However, {2, 8, 5, 3, 4, 7, 6, 1} is not valid as job 8, which belongs to product 3346

is scheduled before job 5 which belongs to product 2 and the product sequence347

π forces all jobs of product 2 to be scheduled before all jobs of product 3.348

Note that Pr2 is smaller than Pr1 as in total Pr2 contains t! × ∏t
h=1 |Nh|!349

possible solutions.350

4.2. Pr1 neighborhoods351

Two neighborhoods are considered after the work of [18], the first one,352

referred to as LS1, works at each factory by extracting each job and reinserting353

it in all possible positions of the PFSP at that factory. The process continues354

until all jobs have been examined with no improvements in the Cmax for355

all factories. The second neighborhood, LS2, takes all jobs assigned to each356

factory and inserts them at all possible positions in all other factories looking357

for a makespan improvement at the involved factories. For more details, the358

reader is referred to [18].359

4.3. Pr2 neighborhoods360

Again two neighborhoods are employed. These are based on the VND361

proposed in [19]. The first neighborhood is referred to as LSP and works362

over the product sequence π. It extracts and reinserts each product into all363

possible t− 1 positions of π. Note that this is equivalent to extracting and364

inserting the block of consecutive jobs that correspond to each product h in365

πT . The second neighborhood is referred to as LSJ . It is also an insertion366

neighborhood but in this case all jobs that make a product are extracted and367

inserted into all possible positions of the job sequence for product h, i.e., all t368

products are considered and all of their |Nh| jobs are extracted and inserted369

into all job sequences. After each insertion and in both neighborhoods we370

obtain a complete job sequence πT , therefore, all jobs need to be assigned to371

factories using the NR1 or NR2 assignment rules. More details are given in372

[19].373
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5. Iterated Greedy algorithm374

Iterated Greedy (IG) was first applied to the regular permutation flow-375

shop problem by [20] with the objective of minimizing makespan. The good376

results obtained have encouraged the application of the IG methodology to377

other scheduling problems. Regular flowshops with blocking constraints were378

approached by [37]. No-wait flowshop was successfully solved with IG algo-379

rithms by [38]. IG showed excellent performance in no idle and mixed no-idle380

flowshops recently in [39]. The SDST PFSP was tackled with IG methods in381

[21]. Also, other objectives apart from makespan have been considered, like382

tardiness (40) and total flowtime (41). Multiobjective flowshops have also383

been adequately solved with IG techniques in [42] or even with the addition of384

setup times in [43]. Finally, and as commented in Section 2, the DPFSP has385

been also solved with IG methods by [28]. Given all these previous successes,386

applying IG to the DAPFSP-SDST seems promising.387

The most relevant characteristic of the IG methodology is its simplicity which388

does not preclude obtaining competitive results for most tested scheduling389

settings. IG has very few parameters and does not employ specific problem390

knowledge. As with most metaheuristics, IG starts from a high-quality initial391

solution. This starting solution is initially equal to both the incumbent and392

the best solution. Then, usually four phases are iteratively applied to the393

incumbent solution until a user set termination criterion is reached. The first394

phase is a partial destruction of the incumbent solution where some elements395

of it are (usually randomly) removed. The second phase consists of the re-396

construction of the incumbent solution. The removed elements are reinserted397

in the solution following a greedy heuristic. The result is a new complete398

solution. The third phase is a local search where the complete solution is399

improved. The fourth and last operator is the application of an acceptance400

criterion to decide if the new solution replaces the incumbent one.401

In the proposed IG we will test which one of the four proposed heuristics402

(CH11, CH12, CH21 or CH22) will serve as a method to construct the initial403

solution. In the following sections we explain the four phases of the proposed404

IG. Note that there are differences depending on the solution representation405

Pr1 or Pr2.406

5.1. Destruction, reconstruction and local search for Pr1407

After the initial solution has been obtained we have a starting complete408

job sequence πT along with a list of all jobs assigned to each factory. Let409
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us denote by πf the sequence of jobs assigned to a factory f ∈ F . In the410

destruction phase, a percentage of the n jobs (d%) jobs are randomly selected,411

without repetition, removed from the factories and inserted into a list in the412

order in which they were selected. Note that according to [18], no factory413

must be left empty when minimizing makespan. Therefore, a selected job will414

not be removed from a factory if it is its last job. The destruction procedure,415

explained in Pseudocode 1, returns the list of removed jobsD and all sequences416

of jobs assigned to factories, after the removal of the jobs.417

Pseudocode 1 Destruction_Pr1(d)
i← 0;
while i < (d · n/100) do

a← Job randomly selected among the remaining n− i jobs;
f ← Factory where job a is assigned;
if |πf | > 1 then

D ← Insert job a;
πf ← Remove job a from πf ;
i← i+ 1;

end if
end while
return D and all πf , f ∈ F ;

In the construction phase, jobs inD are selected, one by one, and reinserted418

into all possible positions in all factories. Among all positions, the one resulting419

in the sequence with the smallest Cmax is chosen for the job. This process is420

repeated d · n/100 times until D is empty. The local search operator used421

in the IG is the LS1 procedure explained in section 4.2. In this local search,422

for each factory f , jobs are removed from πf and reinserted into all |πf | − 1423

possible positions in factory f .424

5.2. Destruction, reconstruction and local search for Pr2425

The destruction operator is different from Pr1 in a small but important426

respect. Each one of the d · n/100 removed jobs belong to a product h and427

we do not allow job sequences for any product h (πh) to be empty, so at least428

one job must remain in the job sequence of products. In the reconstruction429

procedure, each job is inserted into all positions of its corresponding job430

sequence. To decide the best placement for each job in D, all job sequences431

πh are coalesced into a complete job sequence πT and jobs are assigned to432

factories following the NR1 or NR2 job to factory assignment rules. The433
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process is finished when D is empty and all product job sequences contain all434

the jobs. For the local search we use a product inter-exchange variant of the435

aforementioned LSP local search of Pr2. We denote this local search by LSPI436

and all t× (t− 1) pairs of products are interchanged in the product sequence437

π. Duplicate moves are ignored and the inter-exchange resulting in the best438

improving Cmax is carried out. The process is repeated until all movements439

result in non-improving makespan values.440

5.3. Acceptance criteria441

Similar to most existing IG literature, including the previously cited pa-442

pers, once the first three phases (destruction, reconstruction and local search)443

are carried out over the incumbent solution, we obtain a possibly different444

schedule and must determine if it replaces the incumbent one. It is known445

that a simple descent acceptance criterion, i.e., accepting new solutions only if446

they improve the best found Cmax value, results in IG methods that are prone447

to stagnation and premature convergence. In the initial work of [20] it was448

proposed that a simple simulated annealing-like type of acceptance criterion449

with a constant temperature, based on the earlier work of [44] is enough to450

avoid premature convergence. This acceptance criterion is as follows. Let451

us denote by π′T to the incumbent complete solution after the first three452

phases have been applied and by πT to the previous solution. Obviously if453

Cmax(π′T ) < Cmax(πT ) then the new solution π′T is directly accepted. If this454

is not the case, then solution π′T is probabilistically accepted following the455

expression random ≤ e−
Cmax(π′

T
)−Cmax(πT )

Temp where random is a random number456

uniformly distributed between 0 and 1. Note that Temp is another expression457

that was proposed originally by [44] as Temp = T ·
∑m

i=1

∑n

j=1 pij

n·m·10 where T is458

a factor that needs to be calibrated. This constant temperature simulated459

annealing-like type of acceptance criterion has been extensively used in the460

IG literature. For example [21] used the same acceptance criterion albeit461

their problem considered sequence dependent setup times. There are at least462

three potential improvements to this acceptance criterion when applying463

it to our DAPFSP-SDST problem. First, Temp is not correctly calculated464

as it does not consider the distributed factories, assembly stage, number of465

products or setup times. It is not clear how to extend this calculation to466

obtain a sensible parameter. Second, as shown in [20], [21] and other authors,467

the T factor inside the calculation of Temp proved not to be statistically468

significant in a wide range of values in extensive calibration tests. Third, in469
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the temperature calculation of [44], the final probability of accepting a worse470

solution basically depends only on the difference Cmax(π′T )− Cmax(πT ). Let471

us examine this in detail. The expression Temp = T ·
∑m

i=1

∑n

j=1 pij

n·m·10 can be472

reduced to just Temp = T · 5, this is because processing times pij, as we will473

detail later, are commonly obtained from a uniform distribution in the range474

1, 99 in most of the scheduling literature. The average of such a uniform475

distribution is (1+99)/2 = 50, therefore, we have that the numerator of Temp476

approximates to n ·m · 50. Considering the denominator, Temp = T · n·m·50
n·m·10477

reduces to the stated T · 5. There is a potential problem in this approach.478

The final probability of accepting a final solution depends on the size of the479

instance and on the magnitude of the Cmax value. Take two instances A and480

B with corresponding Cmax values of the incumbent and new solutions as481

Cmax(πTA) = 100, Cmax(πT ′A) = 110, Cmax(πTB) = 1000 and Cmax(πT ′B) = 1010.482

Both new solutions for A and B are worse than the incumbent by 10 units.483

However, for instance A these 10 units translate into a 10% solution quality484

deterioration whereas for instance B, the same 10 units are only a 1% dete-485

rioration. The problem with the calculation given in [44] is that both cases486

have the same probability of acceptance.487

488

To remedy these three potential shortcomings, and as an additional contri-489

bution of this paper, we propose two additional acceptance criteria. The first490

one, and similarly to the one of [44] is very simple. We basically substitute491

the difference Cmax(π′T ) − Cmax(πT ) for the Relative Percentage Difference492

(RPD) between the makespan value of these two solutions which is calculated493

as RPD = Cmax(π′T )−Cmax(πT )
Cmax(πT ) × 100. This results in an acceptance criterion494

calculation as random ≤ e−
RPD
Temp .495

The second proposed acceptance criterion, and in order to avoid the statisti-496

cally insignificant T factor is further simplified as follows: random ≤ e−RPD.497

498

In total we will test three different acceptance criteria. The original in [44]499

as described, denoted as AC1 and the two newly proposed ones, referred to as500

AC2 and AC3, respectively. We will later use sound statistical techniques to501

test if the two new proposed ones result in better solutions for the DAPFSP-502

SDST problem.503
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6. Calibration of the proposed VND and IG methods504

505

We proceed with the calibration of the proposed methods. We are not506

interested in a high quality and fine tuned process. Instead, we will use some507

statistical tools to achieve a coarse calibration. The technique of choice is508

the Design Of Experiments (DOE) approach (45) where we will basically509

be using screening factorial designs which are sound statistical techniques510

but still result in an exploratory calibration. The literature on calibration511

methodologies for metaheuristic methods is slowly gaining traction. Much512

more advanced methods are given in [46]. We decide to use simpler approaches513

in order to have a clearer picture of the performance of the proposed methods.514

Should an advanced tuning methodology be used, it would be difficult to515

conclude if the proposed methods behave well because they are good for the516

problem studied or just because a fine tuning calibration has been carried out.517

The results of the experimental designs are examined by means of the Analysis518

of Variance technique (ANOVA). ANOVA is a robust parametric tool and at519

least three main hypotheses must be checked. Some are less important but520

others are crucial. From more to less important the hypotheses are; indepen-521

dence of the residuals, homoscesdasticity of the factor’s levels (homogeneity522

of variance) and normality in the residuals. All these hypotheses are satisfied523

in all the following tests but it must be noted in any case that ANOVA has524

been proven to be extremely robust as stated in [47]. Other authors, like [48]525

study ANOVA in detail and test it against other non-parametric approaches526

with data that significantly departs from the three main hypotheses and527

conclude that ANOVA is preferable to non-parametric approaches most of528

the time. Furthermore, the most important hypothesis, the independence of529

the residual, is easy to satisfy in a controlled computational experimentation530

environment according to [49]. Therefore, the calibration methodology em-531

ployed should give us a fair, not over-tuned and at the same time sound result.532

533

A set of instances is generated to calibrate the proposed VND and IG.534

Calibrating methods with the same test instances that will be used in the535

computational evaluations is ill-advised. When a given method is calibrated536

with the same test instances later used for comparisons there is a big risk537

of having a bias in the results (over-fitting). There is no guarantee that538

with a different benchmark results will hold. Therefore, we calibrate the539

proposed methods with a different calibration benchmark. 60 instances are540
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generated randomly with the following combinations of number of jobs (n),541

machines (m), factories (f), products (t) and distributions for the setup times542

of production and assembly machines. More specifically, n is tested at two543

levels (100, 200), m at three (5, 10, 20), f and t are also tested at three544

levels each, (4, 6, 8) and (30, 40, 50), respectively. Job processing times at545

the distributed flowshops in the production stage are generated according546

to a uniform distribution in the range [1, 99] as is common in the scheduling547

literature. Finally, the product assembly times in the single machine assembly548

stage depend on the number of jobs assigned to each product h and follow549

a uniform distribution in the range [1 × |Nh|, 99 × |Nh|]. Finally, for the550

setup times we test two uniformly distributed intervals, [1, 50] and [1, 125] for551

production and assembly setups. All the calibration instances are available at552

http://soa.iti.es.553

The response variable studied in the experiments is the Relative Percent-554

age Deviation (RPD), where RPD = SOLALG−BESTTOTAL
BESTTOTAL

× 100. BESTTOTAL555

is the best known solution obtained over the course of this research for each556

calibration instance and SOLALG is the makespan value obtained by any557

algorithm tested over the same instance. Experimentation is performed in a558

scientific computation cluster with 30 blades. Each one with 16 GBytes of559

RAM memory and two Intel XEON E5420 2.5 GHz processors. Each processor560

has 4 physical computing cores (8 per blade) but no parallel computing is561

employed in this paper as the 30 servers are only used to split the experimen-562

tation work and reduce the total time to obtain results. At each blade we use563

Windows XP virtual machines with one virtual processor with two cores and564

2 GB of RAM memory.565

6.1. VND calibration566

The proposed VND mainly has three factors or algorithm features that567

should be tested. The first is the type of solution representation. This factor568

will be referred to as Pr and is tested at two variants, which correspond to569

the two different proposed solution representations of Section 4.1 (Pr1 and570

Pr2). The second factor is the two different job to factory assignment rules571

(NR) which is tested at two variants NR1 and NR2. The third and last factor572

is the simple constructive heuristic used for initialization (INI), tested at573

four variants (CH11, CH12, CH21 and CH22). The response variable is the574

RPD and we carry out a multifactor ANOVA to analyze experiments. The575

number of treatments is the result of all the combinations of all previous576

factors (2× 2× 4 = 16) and each treatment is tested with all 60 calibration577
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Figure 2: Means plot and 99% confidence level Tukey’s HSD intervals for the type of solution
presentation Pr, job assignment rules NR, and initial solutions INI for the proposed VND
methods.

instances so the total number of experiences is 16 × 60 = 960. There is no578

need for replicates as the proposed VND methods are deterministic.579

The analysis and ANOVA table shows that, all studied factors (Pr,NR and580

INI) are statistically significant. The most significant is the representation581

(Pr), then job to factory assignment rule (NR) and lastly the initial solution582

(INI). The means plot and 99% confidence level Tukey’s Honest Significance583

Differences (HSD) intervals for all three factors are given in Figure 2.584

The second solution representation, as well as the second job to factory585

assignment rules result in statistically better performance. As regards the586

solution representation, the larger cardinality of the solution space in the587

first representation deteriorates performance, possibly indicating that more588

neighborhoods or larger neighborhoods are needed. Our experiments confirm589

that the second job to factory assignment rule works better, which is in line590

with previous findings (18, 19). However, this assignment rule does not have an591

effect on the constructive heuristics which only depend on the representation.592

In the end we select Pr= 2, NR = 2 and INI = CH21.593

6.2. Experimental parameter tuning of the IG594

IG has three factors in common with VND to calibrate (Pr, NR and INI).595

These are tested at the same variants as before. Furthermore, there are three596

additional factors: percentage of jobs to destruct in the destruction phase (d),597

type of acceptance criterion (AC) and the value of T used in the calculation of598

Temp (T ). As explained in Section 5.3, we propose three different acceptance599
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criteria. The first two (AC1 and AC2) do depend on the aforementioned600

parameter T , whereas the third (AC3) does not have a T factor. As a result,601

we have to carry out two different experiments. In the first one we test two602

variants for Pr (Pr1 and Pr2), two variants for NR (NR1 and NR2), four603

variants for initial solution (CH11, CH12, CH21 and CH22), three levels for d604

(5, 10, 15)%× n, two levels for acceptance criterion (AC1 and AC2) and three605

levels for T : (0.5, 1, 2.5). This results in 2× 2× 4× 3× 2× 3 = 288 algorithm606

configurations. Each one of the 60 calibration instances is run for five different607

replicates in each configuration resulting in 288× 5 = 1, 440 treatments as608

IG is an stochastic algorithm. Since each treatment is tested with all 60609

calibration instances the total number of experiences is 1, 440× 60 = 86, 400.610

Additionally, as IG is a metaheuristic with a stopping criterion, we set the611

elapsed CPU time as a termination criterion, which is fixed at n ·m · f · 45612

milliseconds. This way of setting the termination criterion as a function of the613

size of the instance helps in decoupling the effect of the instance size in the614

results. Additionally, all algorithm configurations have the same CPU budget.615

Not doing so would result in a calibration biased for more time consuming616

configurations. We employ the same computers for this test as before. With617

this first experiment, the idea is to set the value of the parameter T for618

the first two levels of the acceptance criterion only (AC1 and AC2). Once T619

is fixed, we will be able to analyze the three different acceptance criterion620

together in a second experiment. The results of the first experiment (not621

shown here due to reasons of space) indicate that the only non-significant622

factor is T with a p-value very close to 1. However, the interaction between623

T and the type of acceptance criterion (AC) is significant with a p-value of624

0.0004. Both means plots, for the single factor as well as for the interaction625

are given in Figure 3.626

As we can see, the single factor T is not significant as the three levels in the627

means plot completely overlap. The interaction is significant as the behavior628

of the T factor greatly depends on the type of acceptance criterion. For AC1,629

which recall is the original [20] type of acceptance criterion, increasing the630

value of T results in better solutions. Originally, [20] tested values of T of 0, 0.1,631

0.2, 0.3, 0.4 and 0.5. Here we have tested larger values but the three intervals632

overlap, meaning that even though solutions improve, the improvement is not633

consistent enough so as to be statistically significant. The situation is just634

the opposite for the second acceptance criterion AC2 as increasing the value635

of T deteriorates solutions. This together with the fact that overall T is not636

significant and the previous studies into the IG methodology where T has637
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Figure 3: Means plot and 99% confidence level Tukey’s HSD intervals for the temperature
T parameter and the interaction between the temperature T parameter and acceptance
criterion (AC) for the first calibration experiment for the proposed Iterated Greedy methods.

been shown to be statistically insignificant reinforces our idea that T should638

be removed from the acceptance criterion. For the next experiment we set T639

at 2.5 for AC1 and to 0.5 for AC2.640

The second experiment involves all previous factors and all three accep-641

tance criteria but having fixed T as mentioned for the first two acceptance642

criteria. Therefore, the total number of experiences is now 43,200. The ANOVA643

results indicate that the interaction between the solution representation (Pr)644

and the job to factory assignment rule (NR) factors is the most significant645

effect. This interaction is shown in Figure 4.646

Similar to VND, for the proposed Iterated Greedy method the second647

solution representation and the second job to factory assignment rule result in648

the best performance by a significant margin. Actually, with the exception of649

the percentage of jobs to destruct in the destruction phase (d), all other factors650

are not significant. The initial solution INI is not statistically significant with651

a p-value close to 0.25. However, this is across all instances. Some statistically652

significant differences are found in some instance groups when using CH21 or653

CH22. Therefore, and again similar to VND, INI is set to CH21. Of particular654

interest is the statistical insignificance of the type of acceptance criterion655

factor (AC) with a very large p-value of more than 0.85. This means that656

there are very little (if any) differences between the three proposed acceptance657

criteria. The third proposed criterion does not employ a temperature factor.658

21



NR

2.2

2.4

2.6

2.8

3

3.2

R
el

at
iv

e 
Pe

rc
en

ta
ge

 D
ev

ia
tio

n 
(R

P
D

)

1 2

Pr

1

2

Figure 4: Means plot and 99% confidence level Tukey’s HSD intervals for the interaction
between the solution representation (Pr) and the job to factory assignment rule (NR)
factors in the second calibration experiment for the proposed Iterated Greedy methods.

As a result, it is preferable to employ AC3 as it is equivalent performance659

wise and at the same time simpler with one less parameter. In any case, for660

the final experiments we will also test the original [20] acceptance criterion661

(AC1) to conclude in a sound way if our new acceptance criterion is actually662

equivalent or not. Finally, d is marginally significant, offering different results663

when related with the instance factors (n, m, f and t). Since we want to664

avoid an instance-specific factor level, we finally settle for d = 5% regardless665

of instance size.666

7. Computational evaluation667

We are now ready to computationally test the proposed approaches. We668

are going to compare first the four proposed simple constructive heuristics669

CH11, CH12, CH21 and CH22. These are very fast methods and take very little670

CPU time. We employ the same computing platform used for the calibration671

in the tests.672

As mentioned, the benchmark of test instances is different from the673

previous calibration instances. Recall that in the calibration instances we674

have 60 random combinations of number of jobs (n), machines (m), factories675

(f), products (t) and distributions for the setup times of production and676

assembly machines. In the test instances we consider all possible combinations677

(2× 33 × 2 = 108). For each combination we generate five different instances678
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resulting in a total of 540 test instances. For all tested methods we calculate679

the Relative Percentage Deviation from the best solution known. This solution680

is the best obtained throughout the course of this paper. All instances as well681

as the best solutions are available at http://soa.iti.es.682

Table 4 shows the results of the four tested heuristics. There are 540683

instances and four tested heuristics. Therefore, the total number of results684

is 2,160. We have grouped these by instance characteristics. CPU times are685

not reported as they are extremely small. As a matter of fact, among the686

2,160 observed CPU times in the results, the maximum reported is just 0.079687

seconds. The average observed CPU time in all results is only 0.008 seconds.688

It can be concluded that the reported heuristics are almost instantaneous689

even for the largest tested instances of 200 jobs, 20 machines, 8 factories and690

50 products.691

RPD

CH11 CH12 CH21 CH22

n 100 21.17 20.02 22.36 22.12
200 13.11 12.24 13.22 13.31

5 16.01 14.82 18.04 17.94
m 10 16.95 16.24 18.06 17.94

20 18.46 17.34 17.27 17.25

4 18.69 17.66 18.65 18.41
f 6 16.89 15.47 17.55 17.53

8 15.83 15.27 17.16 17.19

30 15.58 14.58 14.53 14.47
t 40 17.92 16.77 18.37 18.37

50 17.92 17.04 20.47 20.30

Setup U [1, 50] 12.70 12.11 10.43 10.31
interval U [1, 125] 21.58 20.15 25.15 25.11

Average 17.14 16.13 17.79 17.71

Table 4: Average Relative Percentage Deviation (RPD) over the best known solution,
grouped by instance characteristics of the proposed constructive heuristics.

As can be seen, all four heuristics provide similar results. The average692

deviations are between a little more than 16% and below 18%. Although not693

detailed here, there is a large variability in the results as well. The minimum694

observed RPD is just 3.59% and the maximum 51.51%. In order to closely695

analyze these results, we carry out an ANOVA statistical test on the obtained696

results. We consider all instance factors (n, m, f and t) as non-controllable697

factors as well as a single factor which is the heuristic, at four variants. The698

results of the ANOVA, which are not shown here due to reasons of space,699
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indicate that three non-controllable factors n, t and f are very significant, in700

this order. This is expected as with more jobs and products the instances701

are harder to solve. Note, however, that a larger number of factories results702

in easier instances as there are less jobs per factory. As for the algorithms,703

the result is that CH12 is statistically better than the rest, followed by CH11704

which is in turn better than CH21 and CH22. There are no statistically705

significant differences between these last two methods. Note that this is not a706

contradictory result. While in the heuristic testing, CH12, is the best heuristic,707

the calibration experiments for VND and IG resulted in CH21 being the best708

initialization method. We should not assume that the best heuristic should709

be used as an initialization for a metaheuristic as the initialization interacts710

with all other algorithm parameters.711

In a separate experiment we test the more time consuming methods. The712

algorithms to compare are the VND with the parameters obtained in the713

calibration (Pr= 2, NR = 2 and INI = CH21) and two similarly configured714

IG methods also from the calibration result. These differ only in the acceptance715

criterion. The common parameters are Pr= 2, NR = 2, INI = CH21 and716

d = 5%. In the first tested IG, referred to as IG1, we employ the original [20]717

acceptance criterion, AC1 (which is, in turn, based on the criterion of 44).718

Since we need a value for T in this acceptance criterion, we use T = 2.5 as719

per the result of the calibration. The second tested IG, referred to as IG3,720

uses the third proposed acceptance criterion AC3 which does not have a T721

parameter.722

The two Iterated Greedy methods need a termination criteria which is723

tested at two levels: n ·m · f · 30 and n ·m · f · 60 milliseconds elapsed CPU724

time (ρ = 30, 60). Additionally, since IG is stochastic, we run it five times for725

each instance and CPU time termination. Conversely, VND is deterministic726

and does not have a termination criterion and is therefore run only once with727

each instance. In total we have 540 results for the VND and 2,700 for each728

IG method and termination criterion (10,800 results). We first present the729

average Relative Percentage Deviation over the best solutions known for each730

instance. Table 5 shows these results, grouped by instance characteristics,731

among other information regarding CPU times.732

As can be seen, VND results in relatively good solutions which average733

a RPD of 5.33% in all tests. The average CPU time needed is a little more734

than 37 seconds. Note how the CPU times clearly depend on the size of the735

instance (number of jobs n, number of machines m and number of products736

t). The proposed Iterated Greedy methods are tested at two termination737
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RPD CPU times (sec.)

IG1 IG3 IG1/3 IG1/3
ρ = 30 ρ = 60 ρ = 30 ρ = 60 VND ρ = 30 ρ = 60 VND

n 100 2.39 1.33 2.23 1.26 8.02 210 420 18.04
200 0.73 0.43 0.67 0.37 2.64 420 840 56.87

5 1.77 0.97 1.66 0.93 5.35 135 270 23.12
m 10 1.54 0.88 1.44 0.82 5.45 270 540 32.91

20 1.36 0.79 1.26 0.69 5.20 540 1080 56.33

4 1.43 0.77 1.33 0.72 4.37 210 420 37.44
f 6 1.60 0.88 1.50 0.83 5.49 315 630 39.26

8 1.64 0.99 1.52 0.89 6.14 420 840 35.65

30 0.65 0.49 0.58 0.41 3.18 315 630 15.42
t 40 1.41 0.85 1.32 0.79 5.59 315 630 33.11

50 2.61 1.30 2.45 1.24 7.23 315 630 63.82

Setup U [1, 50] 0.93 0.53 0.89 0.49 3.12 315 630 37.55
interval U [1, 125] 2.18 1.23 2.01 1.14 7.55 315 630 37.35

Average 1.56 0.88 1.45 0.81 5.33 315 630 37.45

Table 5: Average Relative Percentage Deviation (RPD) over the best known solution,
grouped by instance characteristics and average CPU times of the proposed algorithms.
Bold values indicate the best obtained average relative percentage deviations.

criteria and it is clear that with double the CPU time, the results improve.738

An interesting conclusion is that the third acceptance criterion (AC3), albeit739

simpler and with one less parameter, gives better results when compared with740

the regular acceptance criterion. It is safe to conclude that IG3, a simpler741

version with only one main parameter compared to the original version of742

[20], works better for the studied problem.743

We also carry out a multi-factor ANOVA to check if the observed average744

differences from Table 5 are indeed statistically significant. Once again we745

consider all instance characteristics as non-controllable factors. Preliminary746

tests indicate that VND is clearly not statistically better than the IG methods.747

Therefore, to avoid lack of normality in the residuals and to have a clearer748

picture of the performance of the IG methods, VND is removed from the749

final statistical test. We control two factors, the type of IG at two variants750

(IG1 and IG3) and the termination time ρ at two levels (30 and 60). The751

results of the ANOVA indicate that IG3 is statistically better than IG1 in752

most instances except for the easy ones, this is further illustrated in Figure 5.753

From the results we have shown that the proposed heuristics provide754

reasonable results almost instantaneously whereas the presented VND method755

gives much better results which deviate, on average, about a 5% from the best756
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Figure 5: Means plot and 99% confidence level Tukey’s HSD intervals for the type of
Iterated Greedy method in the final test experiments.

known solutions. When doing so they require a larger, but still acceptable757

CPU time. The presented Iterated Greedy algorithms are of a much higher758

quality but need more CPU time. This time, however, can be set by the759

decision maker. With all these tools, plant managers have a wide range of760

algorithms with different CPU time demands and solution qualities to suit761

the needs of each moment.762

8. Conclusions and future research763

We have addressed the addressed Distributed Assembly Permutation764

Flowshop Scheduling Problem with the additional consideration of sequence765

dependent setup times at both production and assembly stages. This results766

in a considerably more realistic and applicable problem setting. The objective767

is the minimization of the makespan at the assembly stage.768

We have presented two constructive heuristics, which are combined with769

two existing job to factory assignment rules. Furthermore, a simple and770

relatively fast metaheuristic based on Variable Neighborhood Descent (VND)771

is proposed, calibrated and analyzed. Additionally, we present an Iterated772

Greedy (IG) algorithm that has also been extensively analyzed. While IG is773

a very simplistic metaheuristic, we have simplified it further by proposing774

an acceptance criterion that does not consider a simulated annealing-like775

temperature as is common in the IG literature (20). The result is a parameter-776

less acceptance criterion.777
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Sound and detailed statistical techniques have been employed to calibrate778

and to analyze the performance of all presented methods. The result is779

a battery of approaches that range from very fast (almost instantaneous)780

constructive heuristics that produce reasonably good results to more time781

consuming methods like VND or IG that reach close to optimality performance.782

Given the applicability of the researched problem and the range of proposed783

approaches, this work represents a solid step forward in solving more realistic784

distributed scheduling problems.785

Future research includes the consideration of additional characteristics786

in the problem setting to make it even more realistic. For example, a trans-787

portation time or stage in between the production and assembly stages might788

prove useful. Additionally, heterogeneous distributed factories could account789

for more complex scenarios. Furthermore, the assembly stage could be made790

more complex with parallel machines, for example. Of course, more elaborate791

solution approaches could further improve the results obtained in this paper.792
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