
i
i

i
i

i
i

i
i

Universidad Politécnica de Valencia
Departamento de Informática de Sistemas y Computadores

Metodología para hipervisores seguros
utilizando técnicas de validación formal

Tesis Doctoral Presentada Por:
Salvador Peiró Frasquet

Dirigida por:
Dr. Alfons Crespo i Lorente
Dr. Miguel Masmano Tello

Dr. José Simó Ten

Valencia, December 22, 2015

This page is intentionally left blank.

i
i

i
i

i
i

i
i

Acknowledgements

This words are dedicated to those that have provided his support to perform this work, specially,
to my supervisors, colleagues, friends and family.

3

This page is intentionally left blank.

i
i

i
i

i
i

i
i

Abstract

The availability of new processors with more processing power for embedded systems has raised
the development of applications that tackle problems of greater complexity. Currently, the
embedded applications have more features, and as a consequence, more complexity. For this
reason, there exists a growing interest in allowing the secure execution of multiple applications
that share a single processor and memory. In this context, partitioned system architectures based
on hypervisors have evolved as an adequate solution to build secure systems.
One of the main challenges in the construction of secure partitioned systems is the verification of
the correct operation of the hypervisor, since, the hypervisor is the critical component on which
rests the security of the partitioned system. Traditional approaches for Validation and Verification
(V&V), such as testing, inspection and analysis, present limitations for the exhaustive validation
and verification of the system operation, due to the fact that the input space to validate grows
exponentially with respect to the number of inputs to validate. Given this limitations, verification
techniques based in formal methods arise as an alternative to complement the traditional validation
techniques.

This dissertation focuses on the application of formal methods to validate the correctness of the
partitioned system, with a special focus on the XtratuM hypervisor. The proposed methodology
is evaluated through its application to the hypervisor validation. To this end, we propose a formal
model of the hypervisor based in Finite State Machines (FSM), this model enables the definition
of the correctness properties that the hypervisor design must fulfill. In addition, this dissertation
studies how to ensure the functional correctness of the hypervisor implementation by means of
deductive code verification techniques.

Last, we study the vulnerabilities that result of the loss of confidentiality (CWE-200 [CWE08b]) of
the information managed by the partitioned system. In this context, the vulnerabilities (infoleaks)
are modeled, static code analysis techniques are applied to the detection of the vulnerabilities,
and last the proposed techniques are validated by means of a practical case study on the Linux
kernel that is a component of the partitioned system.

5

This page is intentionally left blank.

i
i

i
i

i
i

i
i

Resumen

La disponibilidad de nuevos procesadores más potentes para aplicaciones empotradas ha permitido
el desarrollo de aplicaciones que abordan problemas de mayor complejidad. Debido a esto, las
aplicaciones empotradas actualmente tienen más funciones y prestaciones, y como consecuencia de
esto, una mayor complejidad. Por este motivo, existe un interés creciente en permitir la ejecución
de múltiples aplicaciones de forma segura y sin interferencias en un mismo procesador y memoria.
En este marco surgen las arquitecturas de sistemas particionados basados en hipervisores como
una solución apropiada para construir sistemas seguros.
Uno de los principales retos en la construcción de sistemas particionados, es la verificación del
correcto funcionamiento del hipervisor, dado que es el componente crítico sobre el que descansa
la seguridad de todo el sistema particionado. Las técnicas tradicionales de V&V, como testing,
inspección y análisis, presentan limitaciones para la verificación exhaustiva del comportamiento
del sistema, debido a que el espacio de entradas a verificar crece de forma exponencial con respecto
al número de entradas a verificar. Ante estas limitaciones las técnicas de verificación basadas
en métodos formales surgen como una alternativa para completar las técnicas de validación
tradicional.

Esta disertación se centra en la aplicación de métodos formales para validar la corrección del
sistema particionado, en especial del hipervisor XtratuM. La validación de la metodología se
realiza aplicando las técnicas propuestas a la validación del hipervisor. Para ello, se propone
un modelo formal del hipervisor basado en máquinas de autómatas finitos, este modelo formal
permite la definición de las propiedades que el diseño hipervisor debe cumplir para asegurar su
corrección. Adicionalmente, esta disertación analiza cómo asegurar la corrección funcional de la
implementación del hipervisor por medio de técnicas de verificación deductiva de código.

Por último, se estudian las vulnerabilidades de tipo information leak (CWE-200 [CWE08b])
debidas a la perdida de la confidencialidad de la información manejada en el sistema particionado.
En este ámbito se modelan las vulnerabilidades, se aplican técnicas de análisis de código para
la detección de vulnerabilidades en base al modelo definido y por último se valida la técnica
propuesta por medio de un caso práctico sobre el núcleo del sistema operativo Linux que forma
parte del sistema particionado.

7

This page is intentionally left blank.

i
i

i
i

i
i

i
i

Resum

La disponibilitat de nous processadors amb major potencia de còmput per a aplicacions empotrades
ha permès el desenvolupament de aplicacions que aborden problemes de major complexitat. Degut
a açò, les aplicacions empotrades actualment tenen més funcions i prestacions, i com a conseqüència,
una major complexitat. Per aquest motiu, existeix un interès creixent en per permetre la execució
de múltiples aplicacions de forma segura i sense interferències en un mateix processador i memòria.
En aquest marc sorgeixen les arquitectures de sistemes particionats basats en hipervisors com
una solució apropiada per a la construcció de sistemes segurs
Un dels principals reptes en la construcció de sistemes particionats, es la verificació del correcte
funcionament del hipervisor, donat que aquest es el component crític sobre el que descansa la
seguretat del sistema particionat complet. Les tècniques tradicionals de V&V, com són el testing,
inspecció i anàlisi, presenten limitacions que fan impracticable la seva aplicació per a la verificació
exhaustiva del comportament del sistema, degut a que el espai de entrades a verificar creix
de forma exponencial amb el nombre de entrades a verificar. Front a aquestes limitacions les
tècniques de verificació basades en mètodes formals sorgeixen com una alternativa per a completar
les tècniques de validació tradicional.

Aquesta dissertació es centra en la aplicació de mètodes formals per a validar la correcció del
sistema particionat, en especial d del hipervisor XtratuM. La validació de la metodología es
realitza aplicant les tècniques proposades a la validació del hipervisor. Per a aquest fi, es proposa
un model formal del hipervisor basat en màquines de estats finits (FSM), aquest model formal
permet la definició de les propietats que el disseny del hipervisor deu de complir per assegurar la
seva correcció. Addicionalment, aquesta dissertació analitza com assegurar la correcció funcional
de la implementació del hipervisor mitjançant tècniques de verificació deductiva de codi.

Per últim, s’estudien les vulnerabilitats de tipus information leak (CWE-200 [CWE08b]) degudes
a la pèrdua de la confidencialitat de la informació gestionada per el sistema particionat. En aquest
àmbit, es modelen les vulnerabilitats, s’apliquen tècniques de anàlisis de codi per a la detecció de
les vulnerabilitats en base al model definit, per últim es valida la tècnica proposada mitjançant un
cas pràctic sobre el nucli del sistema operatiu Linux que forma part de l’arquitectura particionada.

9

This page is intentionally left blank.

i
i

i
i

i
i

i
i

Contents

Cover 1

Acknowledgements 3

Abstract 5

Resumen 7

Resum 9

Contents 14

List of Figures 15

List of Tables 17

List of Listings 19

1 Introduction 21

1.1 Secure partitioned systems . 21

1.1.1 Secure hypervisors . 21

1.1.2 Validation and verification of secure hypervisors 22

1.1.3 Challenges on the validation of secure hypervisors 24

1.1.4 Terminology . 26

1.2 Motivation and main goals . 26

1.3 Contributions of this thesis . 26

1.4 Outline of this thesis . 27

1.5 Research Context . 28

11

12/89 CONTENTS

2 Secure Hypervisor Verification 29

2.1 Formal methods in secure hypervisors . 29

2.1.1 Deductive verification . 29

2.1.2 Theorem provers . 30

2.1.3 Static code analysis . 31

2.2 Formal methods in safety standards . 32

2.2.1 RTCA Standards . 32

2.2.2 IEC-61508 Standards . 33

2.2.3 ECSS Standards . 33

2.2.4 Common Criteria Framework . 34

2.3 Summary . 35

3 XtratuM foundations: A formalisation approach. 37

3.1 Introduction . 37

3.2 XtratuM Overview . 38

3.2.1 XtratuM Architecture . 38

3.3 Trustability enforcement . 39

3.3.1 Interrupt Model . 41

3.3.2 Fault Management Model . 42

3.3.3 System specification . 43

3.4 Hypervisor model . 45

3.4.1 Hypervisor state variables . 47

3.4.2 General properties . 48

3.4.3 Spatial isolation properties . 48

3.4.4 Temporal isolation properties . 49

3.4.5 Hypervisor state management . 50

3.4.6 Hypervisor pre- and post-conditions . 50

3.5 Conclusion . 51

4 Formal Validation of XtratuM Components 53

4.1 Introduction . 53

4.1.1 XtratuM Hypervisor core . 54

4.2 Deductive Formal Methods . 54

4.3 Proposed Approach . 55

12

i
i

i
i

i
i

i
i

13/89 CONTENTS

4.3.1 Method . 55

4.3.2 Contract Specification . 56

4.3.3 The Frama-C Framework . 56

4.4 Approach Evaluation . 57

4.4.1 Code Refactor . 57

4.4.2 Contract Annotation . 57

4.4.3 Proof Verification . 58

4.4.4 Proof Results . 58

4.4.5 Results . 58

4.5 Conclusions . 59

5 Analysing the Impact and Detection of Kernel Stack Infoleaks 61
5.1 Introduction . 61

5.2 Related Work . 62

5.2.1 Protection Mechanisms . 62

5.2.2 Protection Techniques . 63

5.3 Classification of Information Disclosure Vulnerabilities 64

5.3.1 The Anatomy Of An Infoleak . 64

5.3.2 Targets of Infoleaks . 65

5.3.3 Infoleaks Bug Causes . 65

5.3.4 Infoleaks Data Sources . 66

5.4 Analysis on the Impact of Stack Infoleaks . 67

5.4.1 The Anatomy of An Attack . 67

5.4.2 The Contents of the Kernel Stack . 68

5.4.3 Infoleak Based Attacks . 69

5.5 The Detection of Information Leak vulnerabilities 70

5.5.1 Infoleak Vulnerability Model . 70

5.5.2 Semantic Patch Preparation . 71

5.5.3 Filter and Rank of matches . 71

5.5.4 Infoleak Code Review and Correction . 71

5.6 Experimental Evaluation of the Detection Technique 72

5.6.1 Existing Infoleak Detection . 72

5.6.2 Discovery of Vulnerabilities . 72

5.6.3 Applications and Limitations of our Approach 73

5.7 Conclusions and Further Work . 73

13

14/89 CONTENTS

6 Conclusions and open research lines 75

6.1 Conclusions . 75

6.2 Research Lines . 76

6.3 Publications related to this thesis . 76

Bibliography 79

Acronyms 87

Glossary 89

14

i
i

i
i

i
i

i
i

List of Figures

1.1 V&V phases on V Model Software Development Cycle 23

1.2 Commercial-Off-The-Shelf (COTS) product components 25

1.3 Contributions along the Hypervisor Software Development Life Cycle 27

2.1 Formal methods applied to hypervisor verification. 30

3.1 XtratuM architecture. 39

3.2 Interrupt model. 41

3.3 XtratuM deployment. 44

3.4 Finite set of states. 47

3.5 State variables. 48

4.1 XtratuM architecture. 54

5.1 Identification and Classification of the Infoleak vulnerabilities. 65

5.2 Directions of data flow in kernel information leaks and writes. 67

5.3 Stack Layout on function call relative to ebp (x86-32). 69

5.4 Kernel stackframe infoleak window. 70

15

This page is intentionally left blank.

i
i

i
i

i
i

i
i

List of Tables

2.1 DO-178B/ED-12B Criticality Levels Overview 33

2.2 IEC 61508 Safety Integrity Level (SIL). 33

2.3 Common Criteria Evaluation Assurance Level 34

2.4 Common Criteria Assurance levels. 34

2.5 Safety-critical standards summary. 35

4.1 Coverage of contracts. 58

4.2 Proof verification results. 59

5.1 Stack Layout on function call() relative to %ebp (x86-32) 68

5.2 Statistical performance of stack infoleak detection per kernel version. 72

6.1 Listing of main publications of this dissertation 77

17

This page is intentionally left blank.

i
i

i
i

i
i

i
i

List of Listings

4.1 memset function annotated for verification. 57

4.2 XtratuM code properties verification . 58

5.1 Example of infoleak code from CVE-2013-2147 (edited to fit) 64

5.2 Semantic patch (SmPL) for stack based infoleak detection (edited to fit) 71

19

This page is intentionally left blank.

i
i

i
i

i
i

i
i

Chapter 1
Introduction

This chapter introduces the main topics addressed in this dissertation. First, the section 1.1
presents the topics of secure hypervisors construction and validation. Next, the section 1.2 details
the main motivation and objectives of the work followed by our contributions section 1.3. Last,
the section 1.4 defines the outline, and section 1.5 sets the research context where this work has
been performed.

1.1 Secure partitioned systems

The increasing complexity of current software systems complicates its exhaustive V&V by means
of traditional validation techniques, such as testing, analysis and inspection [D+09]. This is caused
by the fact that the size of the input space to validate grows exponentially with the number
of inputs, making impracticable the exhaustive validation of the input space as the number of
inputs to test increases. In this context, the V&V techniques based on formal methods arise as
an alternative that complements traditional V&V techniques, and, enable to reduce the input
space, by means of abstract execution and state-space reduction techniques.

The study of the security vulnerability history of current operating systems [CMW+11] provides
insight about the defects that affect the security and quality of current operating systems. These
defects can lead to: (1) Failures in critical systems, that affect the safety of humans. (2) Security
breaches in systems used by companies and government institutions. (3) Security issues in the
widespread consumer services and devices, such as: mobile phones, laptops, servers, routers, . . .

In the above scenario, this thesis focuses on the analysis of the secure hypervisors (subsection 1.1.1),
and, the application of formal validation methods (subsection 1.1.2) to improve the hypervisors
security.

1.1.1 Secure hypervisors

The availability of new processors for embedded applications has raised new possibilities for these
applications. Now, the embedded applications have more functionalities and, as consequence,
more complexity. There exist a growing interest in enabling multiple applications to share a
single processor and memory. To facilitate such a model the execution time and memory space of
each application must be protected from other applications in the system.

Partitioned software architectures represent the future of secure systems. They have evolved to
fulfill security and avionics requirements where predictability is extremely important [fAR12].

21

22/89 CHAPTER 1. INTRODUCTION

The separation kernel proposed by Rushby et al. [Rus81a] established a combination of hardware
and software to allow multiple functions to be performed on a common set of physical resources
without interference. The MILS initiative is a joint research effort between academia, industry,
and government to develop and implement a high-assurance, real-time architecture for embedded
systems. The technical foundation adopted for the so-called MILS architecture is a separation
kernel. Also, the ARINC-653 standard [Ai96] uses these principles to define a baseline operating
environment for application software used within IMA, based on a partitioned architecture.

The idea behind a partitioned system is the virtualization. This idea is present in current
operating systems: processor and memory are multiplexed to processes. A physical computer
is partitioned into several logical partitions, each of which looks like a real computer. Each
of these partitions can have an operating system installed on it, and function as if it were a
completely separate machine. Virtual machine technology can be considered a secure and efficient
way to build partitioned systems. A virtual machine (VM) is a software implementation of a
machine (computer) that executes programs like a real machine. Hypervisor (also known as
VMM [Gol74]) is a small layer of software (or a combination of software/hardware) that enables
to run several independent execution environments or partitions in a single computer. The key
difference between hypervisor technology and other kinds of virtualisation (such as Java virtual
machine or software emulation) is the performance.

The low overhead and the reduced size of the hypervisor can be considered as an appropriated
solution to achieve secure systems if it is designed following strict design criteria to meet security
requirements. Its correctness can be sufficient to ensure the security of the system as a whole or,
at least, the security of a set of trusted partitions. In a partitioned system, the partitions can
accommodate different kinds of applications: real-time, trusted, non trusted, etc.

The concept of partitioned software architectures [Rus01] was developed to address security and
safety issues. The central design criteria behind this concept consists in isolating modules of the
system in partitions. The temporal and spatial isolation properties of the partitioned software
architectures are the key aspects in partitioned systems. Therefore, the validation and verification
of the hypervisor properties are fundamental, and, are introduced in the next subsection 1.1.2.

1.1.2 Validation and verification of secure hypervisors

The V-Model software development cycle schedules phases [BF+14, §7] for the construction and
verification of the software product. The verification phases are counterparts of the construction
phases that verify that the outputs of each phase are correctly built using an incremental approach,
these are depicted in blue in Figure 1.1. In the V-Model, the traditional V&V phases are performed
by means of testing, inspection and analysis activities [BF+14, §10] to achieve the defined testing
objectives:

• Traditional System verification activities.
System testing activities consists in the specification and development of a testsuite that
checks the system specification (system requirements).

• Traditional Integration verification activities.
Integration testing activities consist in the specification and development of a testsuite that
checks the components specification (component contracts).

22

i
i

i
i

i
i

i
i

23/89 CHAPTER 1. INTRODUCTION

Figure 1.1: V&V phases on V Model Software Development Cycle

• Traditional Unit verification activities.

Unit testing activities consist in the specification and development of a testsuite that check
the units specification (function contracts).

For each testing activities, the testing objectives are defined based on risk, criticality and
prioritization analysis. Each of the testing objectives are defined in terms of: (1) Testing the
whole functionality offered by the component/unit, and, (2) Ensuring that the execution of
testsuite reaches a high structural code coverage value (typically above 90%). However, these
objectives alone are not considered sufficient to ensure high confidence on the robustness of the
software product being built [IH14].

In addition to the traditional V&V activities presented above, formal methods [BF+14, §4] arise as
an alternative to complement traditional V&V activities to address the limitations and challenges
of V&V (subsection 1.1.3). Formal methods can be applied along the V&V phases of the V-Model,
depicted in Figure 1.1:

• Formal System verification activities.

System verification activities consists in the use of formal methods to check the system
specification (system requirements) against a formal model.

• Formal Integration verification activities.

Integration verification activities consist in the use of formal methods to check the implemen-
tation of software components against a specification of the component contracts [Mey92].

23

24/89 CHAPTER 1. INTRODUCTION

• Formal Unit verification activities.
Unit verification activities consist in the use of formal methods to check the implementation
of software units against a specification of the unit (functions) contracts [Mey92].

This work addresses the use of formal methods for the Validation and Verification.

1.1.3 Challenges on the validation of secure hypervisors

This section analyses the main challenges and causes that difficult the validation of secure
hypervisors. Next, we discuss each of the identified challenges in a separate paragraph.

The Complexity of Secure Hypervisors

The Complexity of current software systems is a key challenge to overcome in the construction of
secure hypervisor systems [D+09], since complexity of software systems directly relates to the
validation complexity. The analysis of software complexity identifies two types of complexity that
contribute to the increase of the complexity [D+09, §A, p. 32]:

(1) Essential complexity: Complexity essential to the problem to solve.
(2) Incidental complexity: Complexity non-essential introduced by the approach selected to

solve the problem.

The analysis of incidental complexity [D+09, on COTS] notes that the use of COTS can contribute
to the complexity of software products. COTS components are used as a way to reduce costs and
risks by utilizing well-tested components. This is the trend of current hypervisors [Xen, Vxworks,
pikeos, . . .] which are designed as COTS components. However, for COTS components to remain
widely applicable need to remain highly adaptable and configurable to different application
contexts, to achieve this goal COTS feature multiple components. We can identify three main
state spaces that contribute to complexity depicted in Figure 1.2:

• Input state space, that comprises all the combinations of calls of the offered services, e.g.:
call service(parameters).

• Configuration space, that comprises all the combinations of build time configuration param-
eters.

• Environment space, that comprises all the combinations of environments where the system
runs.

Each of the above state spaces contribute to the Equation 1.1 of the complexity (C) of the system
depicted in Figure 1.2:

C(product) = C(application)× C(code× code_cfg)× C(hardware× hardware_cfg) (1.1)

The difficulties of exhaustive testing for validation purposes

Based on the above complexity analysis and performing some back-of-the-envelope calculations of
the size of the state space under test:

24

i
i

i
i

i
i

i
i

25/89 CHAPTER 1. INTRODUCTION

Figure 1.2: COTS product components

• Input API state space: Is the state space that consists of all the possible API call input
parameters combinations. For a typical 32-bit based CPU with an small API of 30-50
services each one receiving between 1 an 5 input parameters (Linux sports 300 system calls).
The total number of combinations to test exhaustively would yield a total of 50 ∗ (232)5

tests to be performed. Then assuming a rate of 1000 tests/second requires 8 ∗ 1046 seconds,
or 2 ∗ 1039 years, that is not feasible.

• System Configuration state space: Is the state space that consists of all the possible
configuration parameters that determine the behaviour of software, this configuration
parameters, refer mainly configuration parameters that are fixed at build time.

• Environment state space: Is the state space that consists of combinations of environments
where the system runs, that is, hardware platforms, etc.

Notice that we are not considering each of the state spaces separately, but the complete state
space is the Cartesian product of the state spaces: input× config × environment that results in
a greater state space.

The main conclusion drawn is that due to the great size of the state space 1 traditional validation
techniques alone can only test a subset of the state space, therefore, leaving untested areas of
the state space, that contribute to untested and potentially faulty behaviour in the program
space [And86]. Additionally, when considering traditional V&V testing is important to consider
that: “testing alone can only be used to show the presence of defects, however, it can never be
used to show the complete absence of defects” [DDH72].

1There exist testing techniques that enable to reduce the size of the input space, such as equivalence partitioning
[BF+14, §3.2.1], by considering only a subset of the input space to test. But this reduction comes at the cost of
assuming equivalence of behaviour for similar inputs as a justification to not test those inputs.

25

26/89 CHAPTER 1. INTRODUCTION

1.1.4 Terminology

The main topic of this work is the validation of secure hypervisors by means of formal methods.
Therefore, a common ground for terms used in this work is required. Where possible we have
employed definitions coming from standard bodies and institutions as the Institute of Electrical
and Electronics Engineers (IEEE), otherwise, we provide references to the research works that
define the terms we used. Through the rest of this work we use: (1) The dependability and
security definitions from by Avizienis taxonomy et al. [ALRL04]. (2) The software engineering,
specially validation and verification terminology refers to the IEEE Software Engineering Book
(SWEBOOK) [BF+14, oEE90]. Last, a glossary of the terms and acronyms used through this
work is available at section 6.3.

1.2 Motivation and main goals

The main challenges in the validation of secure hypervisors are identified in subsection 1.1.3, and
are the main motivation for our work, these are summarised below:

1. The increasing complexity of secure software systems subsection 1.1.3.
2. The difficulties of traditional validation techniques for the exhaustive validation of complex

software systems subsection 1.1.3.
3. The inevitability of failures in complex operating systems [LSM+98].

Main goals

The above challenges define the main objectives of the thesis, and, have encouraged us to
propose solutions that address them: (1) The use of formal models to define the correctness
properties of the hypervisor design. (2) The use of source code analysis techniques to verify the
functional correctness of the hypervisor implementation. (3) The definition of formal models to
detect information disclosure vulnerabilities (infoleaks) that compromise the confidentiality of
the information managed on a secure system.

1.3 Contributions of this thesis

This thesis proposes formal methods for hypervisors verification that complement traditional
V&V approaches. The contributions are presented in the order in which these apply through the
software development cycle (subsection 1.1.2) as depicted in Figure 1.3. The main contributions
of this thesis are:

1. At the integration validation (HLD).
The first contribution is the proposal of a formal model of the secure hypervisor, and the
definition of the properties that ensure its correctness in chapter 3.

2. At the component validation (LLD).
The second contribution is the proposal of an approach for the verification of the functional
correctness of the hypervisor components implementation, by applying deductive analysis
techniques to the components source-code in chapter 4.

26

i
i

i
i

i
i

i
i

27/89 CHAPTER 1. INTRODUCTION

3. At the unit validation (Coding)

The third contribution is the security analysis, characterization and detection of the vulner-
abilities that affect the confidentiality of the information managed by secure hypervisors in
chapter 5.

Figure 1.3: Contributions along the Hypervisor Software Development Life Cycle

1.4 Outline of this thesis

The contributions are presented in the order in which these apply through the V&V phases of
the software development cycle as depicted in Figure 1.3. With the above structure in mind, the
remainder of the thesis is organised as follows:

First, the chapter 2 surveys the current state of art in the V&V of secure hypervisors using formal
methods. Then, the chapter 3 proposes an approach to ensure the correctness of the hypervisor
based in the formal modelling of the hypervisor using FSM and the definition of the properties
that the secure hypervisor must meet.
Next, the chapter 4 applies deductive verification techniques to the hypervisor components source
code to ensure the functional correctness.
The chapter 5 analyses the security impact of the confidentiality vulnerabilities in the security of
the partitioned system, then proposes and evaluates source code static analysis techniques to the
detection of vulnerabilities that affect the confidentiality (information leaks) of the information
managed by the components of the partitioned system.

Last, the chapter 6 summarises the main contributions of this thesis, presents the final conclusions
and the open research lines that derive from this dissertation.

27

28/89 CHAPTER 1. INTRODUCTION

1.5 Research Context

This thesis has been developed in the context of the following research projects focused on the
industrialization of secure hypervisor technologies.

• DREAMS: Distributed REal-time Architecture for Mixed Criticality Systems.
The main goal is to develop a cross domain architecture and design tools for networked
complex systems where application subsystems of different criticality, executing on networked
multi core chips.

• MultiPARTES: Multi-cores Partitioning for Trusted Embedded Systems.
The main goal is the development tools and solutions for building trusted embedded systems
with mixed criticality components on multi core platforms.

• OVERSEE: Open Vehicular Secure Platform
The overall goal of OVERSEE is to contribute to the efficiency and safety of road transport
by developing the OVERSEE platform, which will provide a secure, standardized and
generic communication and application platform for vehicles.

• HI-PartES: High Integrity Partitioned Embedded Systems
The main goal of HI-PartES is the development of a execution platform providing virtuali-
sation, and the development of tools oriented to model the development of high integrity
partitioned systems.

In the above research context, the techniques presented in this dissertation have contributed to
improve the quality of the developed software products. In addition, the results of this thesis
have been presented in national and international publications, that are listed in chapter 6.

28

i
i

i
i

i
i

i
i

Chapter 2
Secure Hypervisor Verification

This chapter present the current state of the art in the construction of secure hypervisors using
formal verification techniques. First, the section 2.1 presents the approaches that are applied
currently to the formal verification of hypervisors. Next, the section 2.2 presents the application
of formal methods in safety critical standards. Last, the section 2.3 summarises the conclusions
of the chapter, that motivate the main contributions of this dissertation.

2.1 Formal methods in secure hypervisors

Formal validation of operating systems has been an on going research topic on operating systems
[Rus81b] to achieve the security and safety critical objectives mandated by the safety standards
[fAR92,Cri12, IEC10] to reach the assurance levels required for the industrial qualification of the
system. The exhaustive verification of software systems by means of formal methods, presents
various advantages over traditional validation techniques: (1) The formal verification enables the
exhaustive verification of software in an automated way. (2) The formal verification reduces the
number of defects found during after deployment. (3) The above two advantages lead to reduce
the development costs of validation and testing phases in software projects.

The wide adoption of the virtualisation technologies, and its implantation in critical systems
as solutions to provide fault isolation, has led to the application of formal methods for the
validation of hypervisors. Next, we review the use of formal methods for the validation of secure
hypervisors on the open literature. These are grouped in three main groups according to the
formal verification theories applied (Figure 2.1):

• subsection 2.1.1 Deductive verification
• subsection 2.1.2 Theorem provers
• subsection 2.1.3 Static code analysis

2.1.1 Deductive verification

Baumann et al. [BBBB10] perform the formal verification of the PikeOS microkernel to reach
Common Criteria (CC) qualification [Cri12]. The objective is the application of the source code
deductive techniques to verify the functional correctness of the PikeOS microkernel. The authors
achieve their objective by using the Verifying C compiler (VCC) [CDH+09] that enables the

29

30/89 CHAPTER 2. SECURE HYPERVISOR VERIFICATION

Formal
Methods

Finite State Machines
(FSM)

Theorem Provers

Deductive (Hoare)

Static Code Analysis

TAME

PVS

Isabelle

FRAMAC

VCC

Coccinelle

Coverity

Rushby

seL4

AirBus

Dassault

VerisoftXT

Linux_Kernel

Heitmeyer

Figure 2.1: Formal methods applied to hypervisor verification.

deductive verification of the microkernel code annotated with function contracts to ensure the
functional correctness.

Souyris et al. [SWDD09] present a methodology for the integration of formal verification techniques
in the development cycle of the avionics software products developed at AirBus. The objective of
the work is qualifying the software products for DO-178B [fAR92]. To achieve the objective the
authors apply source code deductive verification techniques [CKK+12] during the software V&V
phases of the Software Development Life Cycle (SDLC).

D. Pariente et al. [PL10] present the results and lessons learn on the application of source code
verification techniques [CKK+12] for the verification of Industrial C code developed at Dassault
Aviation.

Frama-C [CKK+12] is an open-source static analysis tool that targets ANSI C programs, con-
structed with a plugin architecture. That allows one to connect different kinds of analysis tools
together such that they can cooperate and provide precise results. Frama-C is based on the work
of Hoare [Hoa69].

2.1.2 Theorem provers

Klein et al. [KEH+09] perform the formal verification of the seL4 microkernel. The objective
of the work is to prove functional correctness of the hypervisor implementation with respect to
an abstract hypervisor specification. The target of the verification is a simplified version of the
seL4 hypervisor for the ARM architecture, that is comprised of 8700 C Source Lines of Code
(SLOC) and 600 assembly SLOC. The verification is performed using the Isabelle [Pau94] theorem
prover, to prove the functional correctness required to reach the Evaluation Assurance Level 7
(EAL7) of the CC standard [Cri12]. The presented approach makes the following assumptions:
(1) correctness of compiler, assembly code and hardware.

Heitmeyer et al. [HALM08] present the formal verification of security properties on the ED
(Embedded Device). The objective is to prove the security properties of the ED to reach CC
certification [Cri12]. To achieve the objective the authors present an innovative approach that
reduces the verification costs by means of code partitioning techniques based of the criticality of
the code to verify. This has the main benefit of reducing the amount of critical code to verify to

30

i
i

i
i

i
i

i
i

31/89 CHAPTER 2. SECURE HYPERVISOR VERIFICATION

the 10% of the total. Additionally, the approach presented enables the use of the theorem prover
PVS [ORS92] based on annotations of the security properties to verify on the source code.

2.1.3 Static code analysis

J. L. Lawall et al. developed Coccinelle [LBP+09] a tool that performs control-flow based program
searches and transformations in C code. Coccinelle is actively used to perform API evolutions
and identify defects on the Linux kernel [LBP+09].

Coverity Prevent [Cov02] is a source code static analysis tool developed by Coverity. The tool was
originated at Stanford META/xgcc project to find defects in source-code, the authors evaluate
the tool effectiveness on finding defects on open-source projects ranging from OpenSSL to the
Linux Kernel [CEH02].

31

32/89 CHAPTER 2. SECURE HYPERVISOR VERIFICATION

2.2 Formal methods in safety standards

This section surveys and analyzes the application of formal methods on safety-critical standards.
The survey targets the field of software development of safety-critical systems [ALRL04] and is
based on the work of J. Bowen [Bow93]. Due to the nature of safety-critical systems, the majority
of standards are safety related, however, security related standards as CC [Cri12] have also been
considered. The selection, which is summarized in Table 2.5, although incomplete (as there are
more than 170 safety standards [Bow93]), considers the current developments in the areas of
certification of secure hypervisors:

(1) Avionics: Requirements and Technical Concepts for Aviation (DO-178B).
(2) Space industry: European Cooperation for Space Standardization (ECSS).
(3) Industrial: International Electro-technical Commission (IEC).
(4) Information Technologies (IT) security: CC.

2.2.1 RTCA Standards

The US Radio Technical Commission for Aeronautics (RTCA) produced a guideline on Software
Considerations in Airborne Systems and Equipment Certification (DO-178A) [fAR85] and defines
five Safety Levels ranging from Level E (lowest) to Level A (highest) (see Table 2.1). Initially
DO-178A did not explicitly recognise formal methods as part of accepted practice. However,
the DO-178B [fAR92] guideline was updated in 1992 and completely rewritten to include a very
brief reference to formal methods in [fAR92, subsection 12.3.1] This gives a general introduction
to formal methods and mentions three levels of rigour: (1) formal specification with no proofs,
(2) manual proofs and (3) automatically checked or generated proofs. It is now possible for a
manufacturer following the DO-178B guideline to make use of formal methods in the context of
aircraft certification, although it is incumbent on the manufacturer to justify its use.

In the latest update to the DO-178C guideline the RTCA has also issued separate guideline that
specifically cover the use of formal methods DO-333 [fAR11]. Additionally, this update considers
other techniques for achieving certification, as the robust partitioning techniques Integrated
Modular Avionics (IMA) Development Guidance and Certification Considerations (DO-297)
in [fAR05].

Failure
Condition Description

A Catastrophic Failure may cause multiple fatalities, usually with loss of the airplane
(Extremely improbable) .

B Hazardous Failure has a large negative impact on safety or performance, causing
serious or fatal injuries (Extremely remote).

C Major Failure significantly reduces the safety margin or significantly increases
crew workload (Remote).

D Minor Failure slightly reduces the safety margin or slightly increases crew
workload (Probable).

E No effect Failure has no impact on safety, aircraft operation, or crew workload
(Not applicable).

32

i
i

i
i

i
i

i
i

33/89 CHAPTER 2. SECURE HYPERVISOR VERIFICATION

Failure
Condition Description

Table 2.1: DO-178B/ED-12B Criticality Levels Overview

2.2.2 IEC-61508 Standards

The IEC has issued a standard Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems (IEC-61508) [IEC10]. This is an international standard focusing on the
functional security of electrical/electronic/programmable devices. This is a generic international
standard (umbrella standard) which is designed to be applied to several industrial sectors, some
instantiations of the IEC-61508 are: (1) Automotive (ISO 26262), (2) Railway (EN/CELENEC
50128) and (3) Process Industry (IEC 61511). These standard was originally issued in 1989,
but have subsequently been updated and reissued. Is concerned with the functional safety of
programmable electronic systems in general.

The [IEC10] standard is organized in several parts covering the Functional Safety of Safety-Related
Systems, amongst them: (1) Generic requirements; (2) Requirements for electronic/electron-
ic/programmable systems; and (3) Software requirements. The formal methods CCS, CSP,
HOL, LOTOS, OBJ, Temporal Logic, VDM and Z are specifically mentioned in [IEC10] as
possible techniques to be applied in the development of safety-critical systems in an extensive
section [IEC10, B.30, pp. B-14 B-18].

SIL
Failure prob. per hour (systems
active>once per year)

Failure prob. per demand (systems
active<once per year)

SIL1 10−6 − 10−5 10−1 − 10−2

SIL2 10−7 − 10−6 10−2 − 10−3

SIL3 10−8 − 10−7 10−3 − 10−4

SIL4 10−9 − 10−8 10−4 − 10−5

Table 2.2: IEC 61508 SIL.

2.2.3 ECSS Standards

The European Space Agency (ESA) has issued guidelines for software engineering standards:
ECSS-E-40 [ECS09a] is the ECSS standard for software engineering. ECSS-Q-80 [ECS09b] is the
ECSS standard for software Product Assurance. They are both based on ISO/IEC 12207.

These suggests that formal methods such as Z or VDM should be considered for the specification
of safety-critical systems in the Software Requirement Document . A short section on formal
proof suggests that proof of the correctness of the software should be attempted if practicable.
Because of the possibility of human error, proofs should be checked independently. Methods
such as formal proof should always be tried before testing is undertaken. This the use of formal

33

34/89 CHAPTER 2. SECURE HYPERVISOR VERIFICATION

methods is strongly recommended, but not mandated by the document.

2.2.4 Common Criteria Framework

The CC [Cri12] is a framework that allows the rigorous specification of security and assurance
requirements, that are implemented by vendors in their products, and evaluated by testing
laboratories to determine if the products meet their requirement claims. The CC defines seven
Evaluation Assurance Level (EAL), which range from EAL1 (lowest) to EAL7 (highest) assurance
level (see Table 2.4). The Table 2.4 presents the formal methods requirements at each assurance
level, where formal methods are mandated to achieve the certification of the highest levels: EAL6
and EAL7.

EAL Description

EAL1 Functionally tested, security threats not serious
EAL2 Structurally tested, low to moderate assurance
EAL3 Methodically tested and checked, maximum assurance without infringing sound
EAL4 Methodically designed, tested and reviewed, maximum assurance compatible with

good commercial practise
EAL5 Semi-formally designed and tested, maximum assurance with moderate security

engineering
EAL6 Semi-formally verified design and tested, protect high value assets against

significant risk
EAL7 Formally verified design and tested, extremely high risk situations and/or high

assets values

Table 2.3: Common Criteria Evaluation Assurance Level

CC Requirement Specification Design Implementation

EAL1 Informal Informal Informal Informal
EAL2 Informal Informal Informal Informal
EAL3 Informal Informal Informal Informal
EAL4 Informal Informal Informal Informal
EAL5 Formal Semi-formal Semi-formal Informal
EAL6 Formal Semi-formal Semi-formal Informal
EAL7 Formal Formal Formal Informal

Table 2.4: Common Criteria Assurance levels.

34

i
i

i
i

i
i

i
i

35/89 CHAPTER 2. SECURE HYPERVISOR VERIFICATION

2.3 Summary

This section analyses the information of the survey to conclude the position of the standards
regarding formal methods, which is summarized in table 2.5.

Standard
Formal
Methods Organization Sector Country Year

DO-178C Recommended RTCA Avionics USA 2012
IEC-61508 Recommended IEC Industrial Europe 2010
ECSS-E-40 Recommended ESA Space Europe 2009
CCV3.1R4 Recommended ISO/IEC IT International 2012

Table 2.5: Safety-critical standards summary.

• DO-178C: Formal methods are explicitly considered as a complement to dynamic testing,
that can be presented as evidences for certification. Additionally, formal methods (DO-
333) and robust partitioning techniques (DO-297) are specifically addressed on separate
guidelines.

• IEC 61508: Formal methods are “highly recommended” to achieve SIL4, while are
“recommended” to achieve the lower SIL2 and SIL3 safety levels [IEC10, part 3]

– EN 50128 (railway): Formal methods are “highly recommended” to achieve SIL3
and SIL4, while they’re “recommended” to achieve SIL1 and SIL2.

– ISO 26262 (automotive): Formal methods are “recommended” to achieve ASILB,
ASILC and ASILD.

• ECSS-E-40: Formal methods are “recommended” as supplementary or replacement of the
existing practices defined in [ECS09a].

• CCV3.1R4: Formal methods are “mandated” for EAL7 and semi-formal methods are
“mandated” for Evaluation Assurance Level 6 (EAL).

The main conclusion to be drawn is that the surveyed standards recommend the use of formal
methods to achieve the highest safety levels, and for highly critical applications formal methods
are mandatory.

35

This page is intentionally left blank.

i
i

i
i

i
i

i
i

Chapter 3
XtratuM foundations: A formalisation approach.

Partitioned software architectures represent the future of secure systems. They have evolved to
fulfill security and avionics requirements where predictability is extremely important.

The idea behind a partitioned system is the virtualization. A virtual machine (VM) is a
software implementation of a machine (computer) that executes programs like a real machine. A
Hypervisor (also known as virtual machine monitor) is a layer of software (or a combination of
software/hardware) that enables to run several independent execution environments or partitions
in a single computer. Hypervisor is a new and promising technology which can be designed to
meet safety and security properties. In order to achieve these properties, the hypervisor has to
follow strict design criteria and be modeled using a formal approach.

In this chapter first, the XtratuM hypervisor is presented, next, we present our contribution: an
attempt to extend the trusted environment from the hardware level to the hypervisor level on the
basis of preserving the temporal and spatial isolation properties.

3.1 Introduction

The availability of new processors for embedded applications has raised new possibilities for these
applications. Now, the embedded applications have more functionalities and, as consequence,
more complexity. There exist a growing interest in enabling multiple applications to share a
single processor and memory. To facilitate such a model the execution time and memory space of
each application must be protected from other applications in the system.

Partitioned software architectures represent the future of secure systems. They have evolved
to fulfill security and avionics requirements where predictability is extremely important. The
separation kernel proposed in [Rus81a] established a combination of hardware and software
to allow multiple functions to be performed on a common set of physical resources without
interference. The MILS (Multiple Independent Levels of Security and Safety) initiative is a
joint research effort between academia, industry, and government to develop and implement a
high-assurance, real-time architecture for embedded systems. The technical foundation adopted
for the so-called MILS architecture is a separation kernel. Also, the ARINC-653 [Ai96] standard
uses these principles to define a baseline operating environment for application software used
within Integrated Modular Avionics (IMA), based on a partitioned architecture.

Virtual machine technology can be considered the most secure and efficient way to build partitioned
systems. A virtual machine (VM) is a software implementation of a machine (computer) that
executes programs like a real machine. Hypervisor (also known as virtual machine monitor

37

38/89 CHAPTER 3. XTRATUM FOUNDATIONS: A FORMALISATION APPROACH.

VMM [Gol74]) is a small layer of software (or a combination of software/hardware) that enables
to run several independent execution environments or partitions in a single computer. The key
difference between hypervisor technology and other kind of virtualisation (such as java virtual
machine or software emulation) is the performance. In bare-machine hypervisors the overhead
can be very low maintaining the throughput of the virtual machines very close to the native
hardware. Hypervisor is a new and promising technology, but has to be adapted and customized
to the requirements of the target application.

The low overhead and the reduced size of the hypervisor can be considered as an appropriated
solution to achieve secure systems if it is designed following strict design criteria to meet security
requirements. Its correctness can be sufficient to ensure the security of the system as a whole
or, at least, the security of a set of trusted partitions. In a partitioned system, the partitions
can accommodate different kinds of applications: real-time, trusted, non trusted, etc. As
consequence, the partition’s operating system can be customised to provide the specific services
to its applications.

In this chapter we present a solution for partitioned based on a bare-metal hypervisor called
XtratuM. The XtratuM hypervisor has been designed specifically for critical real-time systems
following a set of requirements for secure space applications and a set of services to build
applications based on the ARINC-653 standard

In the next section, we present a review of the virtualisation techniques with special emphasis in
the real time characteristics. Section 3.2 presents the main design criteria. Also, we analyse the
processor dependencies and the virtualised services to the partitions. Section 3.2.1 describes the
hypervisor architecture and the services provided to the partitions. It also provides a model for
interrupt and fault management to the partitions. Finally some conclusions are enumerated.

3.2 XtratuM Overview

XtratuM [MRC05] has been designed to achieve temporal and spatial requirements of safety critical
systems. It is being used as TSP-based solution for payload on-board software, highly generic
and reusable, in space applications [AMGC09] by CNES using the LEON2 [Res05] processor.
TSP (Time and Space Partitioning) based architecture has been identified as the best solution
to ease and secure reuse, enabling a strong decoupling of the generic features to be developed,
validated and maintained in mission specific data processing [AM08].

LEON2 processor is a 32-bit processor core based on the SPARC V8 architecture suitable for
system-on-a-chip (SOC) designs, which can be synthesized in an FPGA. It is used by the European
Space Agency and has successfully been used in various commercial and research endeavors.

3.2.1 XtratuM Architecture

Figure 3.1 depicts the complete system architecture. The main components of this architecture
are:

XtratuM is in charge of virtualisation services to partitions. It is executed in supervisor processor
mode and virtualises the cpu, memory, interrupts and some specific peripherals. The inter-
nal XtratuM architecture includes: memory management, scheduling (fixed cyclic scheduling),
interrupt management, clock and timers management, partition communication management

38

i
i

i
i

i
i

i
i

39/89 CHAPTER 3. XTRATUM FOUNDATIONS: A FORMALISATION APPROACH.

Figure 3.1: XtratuM architecture.

(ARINC-653 communication model), health monitoring and tracing facilities. Three layers can be
identified:

• Hardware-dependent layer: It implements the set of drivers required to manage the strictly
necessary hardware: processor, interrupts, hardware clocks, hardware timers, paging, etc.
This layer is isolated from the rest through the Hardware Abstraction Layer (HAL). Thus,
the HAL hides the complexity of the underlying hardware by offering a high-level abstraction
of it (for instance, a ktimer is the common abstraction to all the hardware timers).

• Internal-service layer: Those services are not available to the partitions. This layer includes
a minimal C library which provides the strictly required set of standard C functions (e.g.
strcpy, memcpy, sprintf) and a bundle of data structures. The system boot is also part of
the internal services.

• Virtualization-service layer: It provides the services required to support the para-
virtualisation services, which are provided via the hypercall mechanism to partitions. Some
of these services are also used from other XtratuM modules.

3.3 Trustability enforcement

In this section we provide a set of principles that permit to achieve a high secure hypervisor.

• Strong spatial isolation: Hypervisor has to be executed in privilege processor mode whereas
partitions are executed in user processor mode. Partitions are allocated in independent
physical memory addresses. Partitions can not access to other partition memory addresses.

• Strong temporal isolation: Hypervisor enforces the temporal isolation by using the appro-
priated scheduling policies to execute partitions. The policies can be cyclic scheduling or
fixed priority scheduling based on the server concept.

39

40/89 CHAPTER 3. XTRATUM FOUNDATIONS: A FORMALISATION APPROACH.

• Partition management: Partitions are executed in user mode, thus guaranteeing that they
have not access to processor control registers. Any partition access to a processor device is
detected and handled by the hypervisor.

• Supervisor partitions: Some partitions can use special services provided by the hypervisor.
These services include: partition management, access to system logs, etc.

• Robust communication mechanisms: Partitions can communicate with other partitions
using the specific services provided by the hypervisor. The basic mechanism provided to the
partitions is the port based communication. The hypervisor implements the link (channel)
between partitions. Two types of ports are provided: sampling a queuing as defined in [
Ai96].

• Interrupt Model: The hypervisor provides an interrupt model to the partitions. Partitions
can not interact with native traps. All the interrupts are detected handled by the hypervisor
and propagated to the partitions according to the interrupt model.

• Fault management model: Faults are detected and handled by the hypervisor. The detection
of a fault can be the occurrence of a system trap or the occurrence of an event generated by
the hypervisor code. The hypervisor code includes a set of assertions to verify the properties
of the system. All hypervisor services have a set of pre- and post- conditions that assert
the system properties. A Health Monitor module in the hypervisor implements the fault
management model. Actions associated to the Health Monitor depend on the partition or
hypervisor fault generator.

• Non-preemptible: In order to reduce the design complexity and increase the reliability of the
implementation, the hypervisor is designed as a monolithic kernel to be non-preemptible.

• Resource allocation: Fine grain hardware resource allocation is specified in the system
configuration file. This configuration permits to assign system resources (memory, I/O
registers, devices, memory, etc.) to the partitions.

• Minimal entry points: the hypervisor has to clearly identify the execution paths and the
entry points.

• Small: The level of difficulty and complexity of validation and formal verification increases
in an exponential manner with the number of analyzed lines of code. The hypervisor code
shall provide the minimum services in order to be as minimal as possible. XtratuM has
around 5 MLOCs.

• Deterministic hypercalls: All services (hypercalls) shall be deterministic and fast.

The hardware protection mechanisms imposes strong limitations in the hypervisor design:

• Partition allocation restrictions (1) Each partition is allocated in one non overlapping
memory region. (2) A partition has to be multiple of 64 Kbytes.

• On-chip peripherals are handled exclusively by the hypervisor and virtualised to the
partitions.

• IO ports are handled exclusively by the hypervisor due to the protection mechanisms (1
bit). Partitions have to use specific services (hypercalls) to access to IO ports.

• Window registers are handled by the hypervisor providing a flat stack model to the partitions.

40

i
i

i
i

i
i

i
i

41/89 CHAPTER 3. XTRATUM FOUNDATIONS: A FORMALISATION APPROACH.

3.3.1 Interrupt Model

Different manufacturers use terms like exceptions, faults, aborts, traps, and interrupts to describe
the processor mechanism to receive a signal indicating the need for attention. Also, different
authors adopt different terms to their own use. In order to define the interrupt model, we provide
the definition of the terms used in this work.

A trap is the mechanism provided by the processor to implement the asynchronous transfer of
control. When a trap occurs, the processor switches to supervisor mode and unconditionally
jumps into a predefined handler.

A software trap is raised by a processor instruction and it is commonly used to implement the
system call mechanism in the operating systems.

An exception is an automatically generated interrupt that occurs in response to some exceptional
condition violation. It is raised by the processor to inform about a condition that prevents the
continuation of the normal execution sequence. There are basically two kind of exceptions: those
caused by the normal operation of the processor (like register window under/overflow in Sparc
architecture), and those caused by an abnormal situation (like an memory error).

A hardware interrupt is trap raised due to an external hardware event (external to the CPU).
These interrupts generally have nothing at all to do with the instructions currently executing and
informs the CPU that a device needs some attention.

In a partitioned system, the hypervisor handles these interrupts (native interrupts) and generates
the appropriated virtual interrupts to the partitions.

Figure 3.2: Interrupt model.

Figure 3.2 depicts the interrupt model. A partition have to deal with the following virtual traps:

• virtual traps are generated by the hypervisor to the partitions as consequence of a native
trap occurrence.

• virtual exceptions are the exceptions propagated by the hypervisor to the partitions as
consequence of a native exception occurrence. Not all the native exceptions are propagated

41

42/89 CHAPTER 3. XTRATUM FOUNDATIONS: A FORMALISATION APPROACH.

to the partition. For instance, a memory access error that is generated as consequence of a
space isolation violation is handled by the hypervisor which can perform a halt partition
action or can generate another different virtual exception (like memory isolation fault). On
the other hand, a numeric error is propagated directly to the partition. Virtual exceptions
are a superset of the native exceptions which include additional exceptions generated by
the hypervisor (virtual processor). Some of them are: memory isolation error, IO isolation
error and temporal isolation error.

• virtual hardware interrupts are directly generated by the real or the virtual hardware. The
real hardware corresponds to external devices (dedicated devices technique) or peripherals
and the virtual hardware includes the different virtual devices associated to the virtualisation.
Some of these virtual devices are:

– Virtual hardware and global and local clocks and timers
– New message arrival. The communication mechanism (channel) implemented by

XtratuM is seen as a hardware device.
– Partition slot execution. In a partitioned system the partition is aware of the partition

scheduling, this interrupt informs to the partition that a new slot has been scheduled.

Only virtual hardware interrupts can be enabled or disabled by partitions.

We will use in the next paragraphs the terms trap and vtrap as the main mechanism to deal
with any kind of interrupt at native or virtual level. Four strategies have been used to prevent
partitions to jeopardise temporal isolation:

• Partitions have no access to the trap table. Thus, partitions are unable to install their own
trap handlers. All traps are directly handled by XtratuM and, when required, propagated
to partitions which define its own virtual trap table.

• Partitions cannot interact with native traps. Partitions are executed in user mode, thus
guaranteeing that they have not access to control registers.

• A partition can not enable/unmask those virtual hardware interrupts not allocated to the
partition.

• When a partition is scheduled, the hardware interrupts associated to other partitions are
disabled. When a partition context switch occurs, the hypervisor detects the hardware
interrupts pending for the next partition to be executed and raise them depending on the
partition interrupt mask.

3.3.2 Fault Management Model

The Health Monitor (HM) is the part of XtratuM that detects and reacts to anomalous events
or states. The purpose of the HM is to discover the errors at an early stage and try to solve or
confine the faulting subsystem in order to avoid or reduce the possible consequences.

HM is executed as result of a HM_event occurrence. Next scenarios can raise a HM_event:

• An exception has been raised by the CPU. The exception handler generates the associated
HM_event.

42

i
i

i
i

i
i

i
i

43/89 CHAPTER 3. XTRATUM FOUNDATIONS: A FORMALISATION APPROACH.

• A native interrupt has been received and the temporal or spatial properties are not validated.

• A trap has been received and the temporal or spatial properties are not validated.

• A partition detects an abnormal internal situation and raises a HM_event. For instance,
the operating system inside of a partition detects that the application is corrupted.

• When the partition request a hypervisor service (hypercall), the spatial or temporal prop-
erties are verified as pre- and post-conditions. If these validations fail, a HM_event is
generated.

Previous cases cover all entry points to the hypervisor. As result of enforcing the isolation of the
partitions, XtratuM performs a check of the temporal and spatial properties each time that it is
invoked.

The HM_event occurrence is the manifestation of an error. XtratuM reacts to the error providing
a simple set of predefined actions to be done when it is detected.

XtratuM HM subsystem is composed by four logical components:

• HM configuration: to bind the occurrence of each HM event with the appropriate HM
action. This bind is specified in the configuration file.

• HM event detection: to detect abnormal states, using logical assertions in the XtratuM
code.

• HM actions: a set of predefined actions to recover the fault or confine the error.

• HM notification: to report the occurrence of the HM events.

Once a HM event is raised, XtratuM performs an action that is specified in the configuration file.

XtratuM provides a mechanism to store and retrieve the traces generated by partitions and
XtratuM itself. Traces can be used for debugging, during the development phase of the application,
but also to log relevant events or states during the production phase. In order to enforce resource
isolation, each partition (as well as XtratuM) has a dedicated trace log stream to store its own
trace messages. Trace streams are stored in buffers (RAM or FLASH). Only supervisor partitions
can read from a trace stream.

3.3.3 System specification

Deploying a partitioned system presents many challenges related to the system specification,
configuration, resource allocation and validation. This configuration process involves two different
type of roles: the system integrator and the partition developers. The integrator, jointly with the
partition developers, have to define the resources allocated to each partition. Figure 3.3 depicts
the deployment process.

In XtratuM, the system specification is detailed in a XML file which contains the five main
elements:.

• XMHypervisor: Specifies the board resources and the hypervisor health monitoring table.
It includes:

43

44/89 CHAPTER 3. XTRATUM FOUNDATIONS: A FORMALISATION APPROACH.

– PhysicalMemoryAreas: List of memory regions allocated to XtratuM.
– HwDescription: Defines the main characteristics of the processor and the target board
(memory layout).

– Processor: Specifies the processor frequency and the scheduling plan
– ResidentSoftware: This is an optional element which describes (provides information

to XtratuM) about the resident software.

• PartitionTable: This is a container element which holds all the partition elements. A
partition elements specifies:

– PartitionId: Defines the partition identifier.
– MemoryAreas: List of memory allocated to the partition.
– HwResources: Contains the list of interrupts and IO ports of the partition.
– PortTable: Contains the list of communication ports (queuing and sampling ports) of

the partition.

Figure 3.3: XtratuM deployment.

44

i
i

i
i

i
i

i
i

45/89 CHAPTER 3. XTRATUM FOUNDATIONS: A FORMALISATION APPROACH.

– Trace: Configuration of the trace facility of the partition.
– Device: List of the devices used by this partition.
– TemporalRequirements: Contains the period and the capacity of the partition.
– Flags: Boolean flags that permit specify if a partition will be booted by XtratuM, is a

supervisor partition, uses the floating point unit, etc.

• Channels: A list of channels which define the port connections. For each channel, the
following information is specified: channel identifier, type, input and output ports, maximum
message size, maximum number of messages (queuing channels).

• Devices: Contain the configuration of virtualised devices.

The XML file is parsed and validated against the main system properties of a partitioned system.
The result of this validation process is a set of automatically generated data structures (XM_CT)
that will be compiled in the deployment phase, jointly with the binaries of the partitions and the
hypervisor, to generate the system container to be loaded in the target.

3.4 Hypervisor model

In order to model the hypervisor, some aspects have to be initially considered:

• It is non preemptible. When any of the entry-point is invoked, it is executed with disabled
interrupts returning the control to a partition.

• It has three entry points and one return point to partition.

• The system configuration is specified using a UML model and compiled generating a set of
static data structures (XM_CT) used by the execution environment.

• Only the hypervisor can access to the processor registers and virtualised services.

• Internal code of partitions is not relevant from the hypervisor point of view

Additionally, we assume that the underlaying hardware is trusted. It means that the internal
processor registers will work properly if they are used in the correct way. For the temporal and
spatial isolation purposes, we assume:

• The access to the processor registers is only allowed when the processor is in privileged
mode. The processor mode can set/unset by accessing the control processor status (PMS).

• The processor memory protection registers (WPR) will raise an exception when a instruction
tries to write in the protected area.

• A specific timer is exclusively used by XtratuM to control the slot duration.

• The IOP bit in the control processor status permits to enable/disable the access to the IO
ports. This bit is unset when any partition is in execution.

• The interrupt vector is handled exclusively by XtratuM. Its access/modification can be
done only when the processor is in privileged mode.

45

46/89 CHAPTER 3. XTRATUM FOUNDATIONS: A FORMALISATION APPROACH.

Based on the hardware mechanisms (PRegs) and its used by XtratuM, we try to extend the
trusted environment to the hypervisor level.

A partitioned system can be described in terms of a tuple (Σ = (H,HM,∆,Ω,Π)), where Θ
is the hypervisor, Π a set of partitions, ∆ is a set of devices and Ω is the set of channels to
inter-partition communications.

The hypervisor H is defined by H = (Λ, ρ). Λ is, in general, a set of memory area regions
which are defined in terms of initial address and size. These memory areas specify the memory
allocations of the hypervisor. In this work, we assume that Λ is restricted to one memory region
due to the absence of the MMU unit and the constraints of the memory protection mechanisms.

ρ is the cyclic scheduling plan to be executed by the hypervisor.

HM is the set of health monitor events. Each HMevent has associated a default action depending
on the execution context.

∆ is a set of devices (non virtualised) available in the system. Each device is defined as a
IO-memory area region.

Ω is the set of channels for partition communication. Each channel (γi) is defined as the channel
type (sampling or queuing), an input and output port, the number of messages (queuing channels)
and the maximum message size.

Π is a set of partitions. Each partition πi is described as: πi = (Λ, HMA,Dev, Ports), where Λ
is the memory region where the partition is allocated,

HMA is the set of the specific HM actions to be executed when a HM_event occurs for this
partition, Dev is a sub-set of ∆ (set of devices) used by this partition and Ports is the set of
visible ports for this partition.

XtratuM can be defined as a finite state machine [AHU74] given by (Ω, α, S, S0, θ, F) where:

• Ω is the system configuration. It is automatically generated from the system specification
(XM_CT).

• α is the input alphabet described by the set of events that accept the hypervisor (hardware
interrupts, exceptions and traps).

• S is a finite, non-empty set of states. These finite states are result of the scheduling plan.
Each state corresponds to the execution of a partition in the scheduling plan and has
associated a relative initial and final time with respect to the origin of the MAF. From the
temporal and spatial isolation properties only three events are significant: next_slot, an
exception that can perform a system halt (HM action), and a trap (system halt hypercall).

• S0 is the initial state which correspond to the hypervisor state after booting and partition
loading.

• θ is the state-transition function given by δ : S × Σ→ S. A function fΩ(Si) extracts the
set of hardware parameters associated to the Si state.

• F is the final states which correspond to a system halt.

Figure 3.4 shows the set of states of the hypervisor generated from the static scheduling plan
defined in the specification. Each state Si models the status of the hypervisor when a partition Pi

46

i
i

i
i

i
i

i
i

47/89 CHAPTER 3. XTRATUM FOUNDATIONS: A FORMALISATION APPROACH.

Figure 3.4: Finite set of states.

is under execution. The transition from one state to the next one, is consequence of the next_slot
occurrence which is the slot duration defined in the scheduling plan. This event is the hardware
interrupt associated to the slot duration timer. After the arrival of this event (interrupt), the
hypervisor, stores the context of the previous partition, selects the next partition to be executed,
extracts from the XM_CT table the hardware context to guarantee the spatial and temporal
isolation, and then the control is transfered to this partition if the partition status is in ready
state.

During the execution of a partition, the hypervisor can be invoked as consequence of an interrupt,
exception or hypercall (trap). However, the hypervisor invocation have not effect from the
temporal and spatial isolation point view because of the hypervisor state remains in the same
state until the arrival of the next_slot event. Anyway, a pre- and post condition validation of the
temporal and spatial properties is performed each time the hypervisor is invoked. A violation of
these properties will raise the appropriated HM_event.

Figure 3.5 depicts a view of the hypervisor model and the state variable used to extend the
trustability.

3.4.1 Hypervisor state variables

The hypervisor state is defined by a set of variables that specify:

• The partition identifier (p ∈ Π)

• The absolute time of current MAF origin (ATMAF)

• The current clock value (current_clock).

47

48/89 CHAPTER 3. XTRATUM FOUNDATIONS: A FORMALISATION APPROACH.

Figure 3.5: State variables.

• the processor registers: memory protection registers (WPR), interrupt vector (IV), mode
processor status (MPS), IO protection bit (IOP).

3.4.2 General properties

General properties are applicable at any system execution time and refers to basic properties
that have to guarantee.

Property 1 Partitions are executed in user processor mode whereas hypervisor is executed in
privilege mode.

3.4.3 Spatial isolation properties

The basic concern of spatial isolation is to detect and avoid the possibility that a partition can
access to another partition for reading or writing. Hardware provides some basic mechanisms to
guard against violations of spatial isolation.

Spatial isolation properties are conditions that permit to guarantee that the hardware mechanisms
are set to the appropriated values when a partition is under execution. These conditions have to
compare the memory area region of the current partition against the processor memory protection
registers in the LEON2 architecture.

The spatial isolation property states that data processing in any partition i can not access to
any memory address outside of the its address memory region. This is granted if the hardware
mechanisms are used according the principles announced previously.

48

i
i

i
i

i
i

i
i

49/89 CHAPTER 3. XTRATUM FOUNDATIONS: A FORMALISATION APPROACH.

Property 2 Suppose the hypervisor is in state Si and the next state will be Sj as consequence
of the event next_slot ∈ α occurrence. In this situation, at the entry of the hypervisor: PRegs =
fΩ(Si), and at the output of the hypervisor PRegs← fΩ(Sj)).

Where fΩ(Si) the function that extracts the PRegs values from a XM_CT and PRegs are the
hardware registers.

For ∀e 6= next_slot ∈ α the state is not changed.

Also, the spatial isolation refers to the IO memory access. In the LEON2 processor, the IO
memory access protection is a global mechanism. To guarantee the isolation, IO memory access
is forbidden to partition and provided through specific hypercalls that control the IOmemory
addresses to each partition. The hypervisor has to validate that the hardware mechanism is
enabled.

Property 3 Independently of the initial and final states, when an event e ∈ α occurs, the IO
memory protection (IOP ∈ PRegs) bit is set to 1 at the entry of the hypervisor IOP = 1 and
again IOP = 1 when the control is transferred to the partition. During the execution of the
hypervisor IOP = 0.

3.4.4 Temporal isolation properties

Temporal isolation refers to the system ability to execute several executable partitions guarantee-
ing:

• the timing constraints of the partition tasks

• the execution of each partition does not depend on the temporal behaviour of other
partitions.

The temporal isolation enforcement is achieved designing a schedulable plan and guaranteeing that
it is executed as specified. The hypervisor scheduling is responsible of the correct execution of the
plan. XtratuM implements a static (cyclic) scheduling following the ARINC 653 specification [
Ai96] which defines a cyclic scheduling for the global scheduler and a preemptive fixed priority
policy for the local scheduler (partition level).

The concern of temporal isolation is to guarantee that a partition is executed only in the intervals
specified in the scheduling plan. Moreover, interrupts allocated to other partitions shall not
impact on the partition execution.

If the execution plan is guaranteed, there is not possibility for any partition to monopolise the
CPU or crash the system. Other scenarios that can cause a partition to fail to relinquish the
CPU on time include simple schedule overruns are detected and handled properly.

Slot duration is controlled by a processor register (timer) that is used exclusively by the hypervisor
and can not be influenced by the partitions timers which are attached to a second timer which is
virtualised to the partitions.

The temporal isolation properties can be defined as:

Property 4 At any instant of the state Si, the clock value is in the interval specified by the slot
interval. current_clock ∈ fΩ

clk(Si)

49

50/89 CHAPTER 3. XTRATUM FOUNDATIONS: A FORMALISATION APPROACH.

where fΩ
clk(Si) is the function that return the interval of the slot associated to Si).

Property 5 In a Si state executing a partition i, this state will not accept hardware interrupts
from devices that are not managed by partition i. At the entry of the hypervisor the interrupt
vector has to be bitmap associated to this partition. At the output of the hypervisor, the mask
has to be set to the value of the next or same partition depending on final state. At the input:
IV = πiv

i . At the output: IV ← πiv
i IV = πiv

i .

3.4.5 Hypervisor state management

The hypervisor has the following behavior.

State transition: Si → Sj

Entry action: Performed when entering the state. Raises a HM_event if some pre-conditions
are not validated.

Pre-conditions General properties; Spatial properties for Si; Temporal properties for Si;

Service action Actions executed if the pre-conditions are validated.

Exit action: Performed when exiting the state. Raises a HM_event if some post-conditions
are not validated.

Post-conditions General properties; Spatial properties for Sj ; Temporal properties for
Sj ;

Service actions perform the appropriated actions:

• Hardware interrupts:

– Generated by slot timer: perform the partition context switch.
– Generated by virtualised devices: handle and propagate if enabled and unmasked to

all partitions.
– Generated by dedicated devices: propagate the interrupt to the partition if enabled

and unmasked.

• Exceptions: raises the appropriated HM_event.

• Trap: Validate the hypercall parameters and execute the hypercall service. If the hypercall
parameters are not validated an error is returned to the partition.

3.4.6 Hypervisor pre- and post-conditions

Each time the hypervisor is invoked a pre- and post-conditions are evaluated. These conditions
validate the correct status of the hardware mechanism (temporal and spatial isolation properties)
If any of these conditions are not validates a HM_event is raised.

50

i
i

i
i

i
i

i
i

51/89 CHAPTER 3. XTRATUM FOUNDATIONS: A FORMALISATION APPROACH.

3.5 Conclusion

Complexity of embedded systems within satellites is growing dramatically. Payload software
in that context have evolved during the past 10 years from simple data processing, mainly
formatting and transferring to ground, into complex data processing and autonomous treatments.
In this context, TSP (Time and Space Partitioning) based architecture has been identified as
the best solution to ease and secure reuse, enabling a strong decoupling of the generic features
to be developed, validated and maintained, XtratuM is used as enabling technology for TSP
developments.

In this chapter we have presented a hypervisor specifically designed for safety critical applications.
XtratuM has been designed following strict criteria to guarantee the temporal and spatial isolation
properties as defined in the ARINC 653 standard and the MILS approach. XtratuM defines a
virtual machine very close to the native where the main resources are virtualised. The executable
entities (partitions) are executed on top of a virtual machine. The virtual machine defines an
interrupt model to the partitions which is a superset of the system interrupts. The hypervisor
defines its own virtual interrupts which are delivered to the partitions. Also, there is a Fault
Management model which is directly related to the health monitor included in the internal
architecture. This health monitor is in charge of the fault detection and error isolation through a
set of action that are directly related to the partition under execution.

Finally, it has been presented an extension of the trusted environment from the hardware platform
to the hypervisor limits. The presented model is based in the hardware mechanisms provided
by the specific processor (LEON2) and an exclusive use of these mechanisms by the hypervisor.
This model is based on finite state machine as formalism.

The hypervisor solutions are efficient solutions for partitioned systems. For space reasons, we
have not included performance evaluation of XtratuM. In [MRC+09] can be found an evaluation
of this proposal. In this evaluation the overhead measured is lower then 1% for slot duration
higher than 1 millisecond.

51

This page is intentionally left blank.

i
i

i
i

i
i

i
i

Chapter 4

Formal Validation of XtratuM Components

This work presents the experiences on the application of formal methods for the validation and
verification of the selected components of the XtratuM hypervisor. The goal is to use deductive
verification techniques to verify the functional correctness of the XtratuM XM2 hypervisor.
XtratuM is a “Type 1” hypervisor specially designed for real-time embedded systems. In order
to achieve a highly dependable and secure hypervisor, the use of formal methods is increasingly
being mandated by the highest assurance levels of regulatory standards.
The presented approach begins with (a) First, The analysis of the XtratuM hypervisor code base
to identify the core components and their interfaces. (b) Next, the components are validated
using deductive verification techniques using the Frama-C software analysis framework. Shorty,
Frama-C provides support for deductive verification of function ACSL contracts annotated in the
source code. (c) Last, the results obtained by the presented method are reviewed.

4.1 Introduction

This section sets the context of this work and justifies the interest in the deductive program
verification applied to the XtratuM hypervisor from the standpoint of product certification.
Secure and dependable software systems are required by regulatory authorities to achieve accept-
able failure rates, dependent on the criticality of the software systems. Acceptable failure rates are
accomplished by adhering during the whole software process to regulatory standards [ALRL04]
such as DO-178B [fAR92] and IEC-61508 [IEC10] for safety resp. Common Criteria [Cri06] for
security. Safety standards define complete validation and verification plans that cover all the
phases of the software development life-cycle of the software product.
The V Life Cycle model [Pre01] defines several development phases, each of them having its
validation and verification counterpart. These phases include the unitary component validation
phase that consists in the validation of each of the interfaces provided by each component. This
phase is typically achieved by unitary testing. However, besides unit testing, safety standards
increasingly recognise and mandate the use of formal methods as evidence for validation purposes.
Formal methods are defined by Rushby et al. [Rus00] as: “The idea behind formal methods is to
construct a mathematical model of a software or system design so that calculations based on the
model can be used to predict properties of the actual system, where the ‘calculation’ is performed
by so-called ‘formal deduction’ ”.
Among the plethora of existing formal methods, recently the deductive program verification
has become an active research area, that is providing static analysis solutions for industrial

53

54/89 CHAPTER 4. FORMAL VALIDATION OF XTRATUM COMPONENTS

use, to cite some of the solutions: VCC [CDH+09], Frama-C [CKK+12], Polyspace [Mat09],
Coverity [BBC+10]. Amid these solutions, there is Frama-C, which is precisely the framework
selected for the deductive verification of the XtratuM hypervisor core.

4.1.1 XtratuM Hypervisor core

XtratuM [MRCM09] is a “Type 1” hypervisor specially designed for real-time embedded systems.
XtratuM provides a framework to run several operating systems (or runtime environments) in a
robust partitioned environment ensuring strong temporal and spatial isolation properties.
Figure 4.1 shows the complete system architecture. The main components of this architecture
are: the XtratuM hypervisor core and the partitions executing on top of the hypervisor.

Figure 4.1: XtratuM architecture.

The XtratuM hypervisor core offering the minimum services to enforce TSP isolation, The core
is comprised of 7K SLOC (Source Lines of Code) of C code, and 1K SLOC of assembly code.
The core can be decomposed in components to be validated separately and then composed
(Unit/Integration proofs)

4.2 Deductive Formal Methods

Formal validation of operating systems has been an on going topic for secure operating systems
(Rushby) [Rus81b] in order to achieve the assurance levels required by critical systems. With the
increasing adoption of virtualisation technologies, formal validation of virtualisation technologies
has also been performed.
Klein et al. [KEH+09] achieved the formal verification of the seL4 microkernel, which comprises
8,700 lines of C code and 600 lines of assembler. The verification was performed using the Isabelle

54

i
i

i
i

i
i

i
i

55/89 CHAPTER 4. FORMAL VALIDATION OF XTRATUM COMPONENTS

theorem prover to ensure functional correctness required to obtain EAL7 level of the Common
Criteria.
Baumann et al. [BBBB10] performed the formal verification of the PikeOS microkernel. The
verification was performed using the VCC (the Verifying C compiler) which perform deductive
program verification based on function contracts to ensure the functional correctness required by
the Common Criteria framework.
Heitmeyer [HALM08] presented an innovative approach which reduces the cost of the verification
by partitioning the code to be verified in categories, reducing the amount of verified code to the
10%. And allowing the use automated theorem provers (PVS) based on annotating the source
code with the properties to be verified.
The work performed by Souyris [SWDD09] at Airbus, presents the integration of the Frama-C
formal verification techniques into the development on of the avionics software products in order
to comply with DO-178B.
This short survey serves to show the increasing application of formal methods, specifically of
deductive program verification techniques to ensure functional correctness.

4.3 Proposed Approach

The proposed approach is to annotate the code of the XtratuM core with function contracts
specified in ACSL [BCF+11] that can be verified by automated theorem provers (ATP).
The use of the Frama-C static analyzers together with ACSL contracts annotated on the source
code restricts us to the validation of the C code. For the validation of code, the code must be
strictly C99 compliant, this means that the code has to be simple and free of complex code
constructs, such as: function pointers, complex casts, dynamic memory allocation, etc. For the
same reason, assembler code present must be verified by other means as it is not covered by
Frama-C/ACSL, in this case correctness of assembler code can be proved using unitary tests.
This restrictions require the XM 2 core code to be first adapted and restructured.

4.3.1 Method

The method for annotating the XM 2 source code with ACSL contracts follows a bottom-up
approach, that is, start annotating the leaf functions and proceeds from the bottom to the
intermediate functions calling the leaf functions.
This method begins with the preparation of a call graph of the code (DOT diagram) showing
the dependences between the functions of the XM 2 code base. From here a DSM (Dependency
Structure Matrix) is built that shows all functions dependences grouped by component. This
allows to identify three types of functions:

1. The leaf functions that do not depend on other functions are identified and annotated with
contracts.

2. The unused functions that are not called by other functions are identified and removed.

3. The intermediate functions, that is functions that call other functions are annotated once
after annotating their callee.

55

56/89 CHAPTER 4. FORMAL VALIDATION OF XTRATUM COMPONENTS

In order to ensure that the completeness of method covers all the functions, a Frama-C plugin is
written in OCaml to obtain the coverage of which functions are annotated and the results of the
proof verifications.

4.3.2 Contract Specification

The contracts [Dij75] are written using a machine readable format named ACSL which stands for
“ANSI/ISO C Specification Language” [BCF+11], in order to generate proof predicates that are
processed by a Automated Theorem Prover to discharge the predicates and prove the correctness
of the contracts.
An example of a contract can be: P {statement}Q, where:

• {statement}: source code to verify.
• P : pre-conditions that are required to hold before statement.
• Q: post-conditions that are ensured to hold after statement.

The conditions P and Q are annotated directly on the source code using ACSL.

4.3.3 The Frama-C Framework

Frama-C [CKK+12] is an open-source static analysis tool that targets ANSI C programs, con-
structed with a plugin architecture. This allows one to connect different kinds of analysis tools
together such that they can cooperate and provide precise results. Currently, the following plugins
are provided with Frama-C:

• RTE (Run Time Errors): this is the core module that computes for a given function, let
main(), an abstract interpretation of the code and returns a set of alarms. Each alarm is a
potential error and relates to a given location within the code and a set of local and global
variables.

• Value-analysis: For each variable and each location, the value-analysis provides an over-
approximation of the set of values taken by this variable at the indicated location. The
domain of values computed is guaranteed to be correct, i.e. contains the real set of values
taken by the variable during any execution. Over-approximations might therefore lead to
false alarms.

• Jessie/WP: this module implements a deductive verification tool, based on Hoare Logic
[Hoa69]. Each C function must be annotated by extra predicates (pre-, post-conditions,
loop and data-types invariants, assertions, etc.) written in the ACSL [BCF+11]) and that
builds up its specifications. The Jessie module proves that the code is correct w.r.t this
specification. To reach this goal, some verification conditions (VC) are computed using the
WP calculus and are handed over to some automatic or semi-automatic theorem provers.
The code is correct iff all VC are satisfied.

56

i
i

i
i

i
i

i
i

57/89 CHAPTER 4. FORMAL VALIDATION OF XTRATUM COMPONENTS

4.4 Approach Evaluation

The above verification method has been already applied to a small component of the XM2 code
base. Namely the klibc library, which is a reduced libc providing the memset, memcpy, strcpy,
strlen, printf, . . . functions, consisting of 1K SLOC, extensively used by all the core services of
the hypervisor.
This allows the application of static analysis and formal methods and yet be representative subset
which allows to extract conclusions on the results obtained to serve as ground for more thorough
following verification approaches.
In order to present the process of verifying code function, here we show an example of the steps
performed to verify the memset function.

4.4.1 Code Refactor

As mentioned above, before attempting the deductive verification of the klibc component first the
klibc has been simplified, and remove all complex code constructs not supported by the Frama-C
static analyser, such as function pointers. This has further reduced the klibc code size to be
verified to 0.5K SLOC.
This refactor has the further benefit of reducing the functionality to the minimum required, and
hence reducing as well the verification efforts.

4.4.2 Contract Annotation

The functions to verify are annotated using ACSL. This includes pre-conditions (requires
annotations) and post-conditions (ensures annotations) as well as code assertions such as
asserts and loop invariants. Listing 4.1 depicts the source code of the memset function together
with its contract annotated in ACSL.

1 /*@
2 requires count >= 0;
3 requires \valid_range((char*)dst, 0, count-1);
4 assigns ((char*)dst)[0 .. count-1];
5 ensures \forall integer k; 0 <= k < count && (((char*)dst)[k] == s);
6 @*/
7 void ∗memset(void ∗dst, xm_s32_t s, xm_u32_t count) {
8 register xm_s8_t ∗a=dst;
9 count++;
10 /*@
11 loop invariant count >= 0;
12 loop invariant \forall integer k; 0 <= k < (\at(count, Pre)-count) && ((char

*)dst)[k] == s;
13 @*/
14 while (−−count)
15 ∗a++ = (xm_s8_t)s;
16 return dst;
17 }

Listing 4.1: memset function annotated for verification.

57

58/89 CHAPTER 4. FORMAL VALIDATION OF XTRATUM COMPONENTS

4.4.3 Proof Verification

Run the static analysis tools on the selected code base. In this case the WP (Weakest Precondition)
plugin of the Frama-C analyser is run which generates Proof Obligations (PO) in a language
suitable for the selected theorem prover from the \ensures annotations. Then the ATP uses
the \required annotations to obtain the weakest pre-conditions that satisfy the post-conditions
(WP) and concludes if the proof obligations can be proved assuming the pre-conditions.

4.4.4 Proof Results

Review of static analysis results obtained. The listing 4.2 shows the summary report of the
automated theorem prover, which shows the attempts to prove each of the proof obligations for
the memset function, for each proof obligation the status of the proof attempt is shown on the left,
with: Valid, if the ATP could automatically prove the proof obligation or Unknown otherwise.

1 Properties for Function memset:
2 [Valid] memset ensures \forall integer k;
3 ((0 <= k) && (k < \at(count,Old))) &&
4 (((char ∗)\at(dst,Old))[k] == \at(s,Old))
5 [Valid] memset requires (count >= 0)
6 [Partial] memset requires \valid_range((char ∗)dst, 0, count−1)
7 [Partial] memset assigns ((char ∗)dst)[0..count−1];
8 [Partial] memset loop invariant count >= 0;
9 [Partial] memset loop invariant \ forall integer k; ((0 <= k) && (k < \at(count,Pre)−count)

) && ((char ∗)dst)[k] == s;

Listing 4.2: XtratuM code properties verification

4.4.5 Results

The Table 4.1 and Table 4.2 present a summary of results of the klibc verification, including the
coverage of the functions verified along with the results of the proof verification.

Contracts per file Annotated Missing Percentage%

klibc/string.c 16/19 3/19 84%
klibc/stdio.c 10/17 7/17 58%
klibc/mpool.c 10/54 44/54 81%
klibc/stdlib.c 5/10 5/10 50%
klibc/sparcv8/string.c 11/12 1/12 91%

Table 4.1: Coverage of contracts.

The Table 4.1 shows in the column Annotated the number of functions that have been annotated
with function contracts over the total of functions defined in the source code file, while the
Percentage column provides the latter number as a percentage ratio.

58

i
i

i
i

i
i

i
i

59/89 CHAPTER 4. FORMAL VALIDATION OF XTRATUM COMPONENTS

Proofs per file Proved Missing Percentage%

klibc/string.c 83/116 33/116 71%
klibc/stdio.c 89/095 6/95 93%
klibc/mpool.c 85/087 2/87 97%
klibc/stdlib.c 68/069 1/69 98%
klibc/sparcv8/string.c 64/067 3/67 95%

Table 4.2: Proof verification results.

The Table 4.2 shows in the column Proved the number of proof obligations have been proved
by the ATP over the total of proof obligations generated for the source code file, while the
Percentage column provides the latter number as a percentage ratio.

4.5 Conclusions

This work has presented the formal verification of a small component of the XtratuM hypervisor
core, namely the klibc in order to prove its functional correctness. This method can be used to
provide evidences to achieve the higher assurance levels of certification standards such as the
Common Criteria [Cri06] and DO-178B [fAR92] standards.
The above listed benefits come at a expense of an additional effort during the coding phase to
produce simple code that can be verified, as well as the efforts during the unit validation phase
for the contracts annotation and verification.

59

This page is intentionally left blank.

i
i

i
i

i
i

i
i

Chapter 5
Analysing the Impact and Detection of Kernel Stack Infoleaks

The Linux kernel has become a fundamental component of mainstream computing solutions, now
being used in a wide range of applications ranging from consumer electronics to cloud and server
solutions. Being expected to continue its growth, especially in the mission-critical workloads.
Parallel to the Linux adoption has increased its misuse by attackers and malicious users. This
has increased attention paid to kernel security through the deployment of kernel protection
mechanisms. Kernel based attacks require reliability, where kernel attack reliability is achieved
through the information gathering stage, where the attacker is able to gather enough information
about the target to succeed. The taxonomy of kernel vulnerabilities includes information leaks
(CWE-200), that are a class of vulnerabilities that permit access to the kernel memory layout
and contents. Information leaks can improve the attack reliability enabling the attacker to read
sensitive kernel data to bypass kernel based protections.
In this work we aim at the analysis and detection of stack based information leaks to harden the
security of the kernel. First, we analyse the problem of kernel infoleaks in [Section 5.3], next,
we examine the impact of infoleaks attacks on the security of the kernel in [Section 5.4]. Then,
we present a technique for detecting kernel based infoleaks through static analysis [Section 5.5].
Next, we evaluate our technique by applying it to the Linux kernel [Section 5.6]. Last, we discuss
the applications and limitations of our work [Section 5.6.3] and finally we drawn our concluding
remarks.
Keywords
- Confidentiality, Information Security, Information Disclosure (Infoleak), Operating System,
Kernel

5.1 Introduction
The Linux kernel has become a fundamental component of mainstream computing solutions,
now being used in a wide range of applications ranging from consumer electronics to cloud
and server solutions. And is expected to continue its growth, especially in the mission-critical
workloads. Parallel to this growth the Linux kernel has become an interesting target for attackers.
Recent advances in hardening userland with protection mechanisms as ASLR [Tea01], StackGuard
[CPM+98] and DEP [Cor07, 5.13] have increased the difficulty of userland based attacks, moving
the attacker focus to the kernel. The main difference between userland and kernel based attacks
is the consequence of the attack failure that leads to system panic/halt on kernel attacks, while
on userland attacks, failure is more benign as implies a process crash/restart. Therefore, the
reliability of the attack is critical when targeting the kernel, kernel attack reliability is achieved
through the information gathering stage where the attacker is able to gather enough information
about the target to succeed in its purposes.

61

62/89 CHAPTER 5. ANALYSING THE IMPACT AND DETECTION OF KERNEL STACK
INFOLEAKS

Among the taxonomy of kernel vulnerabilities [CMW+11] are information leaks vulnerabilities
(infoleaks), identified as CWE-200 by MITRE [CWE08b], that allow to access kernel data from
malicious user process. Information leaks are often underestimated as they can improve the attack
efficiency allowing the attacker to access sensitive kernel data to bypass kernel based protection
mechanisms.
In this work we aim at the detection of stack based information leaks to harden the security of
the kernel. First, we analyse the problem of kernel infoleaks in [Section 5.3]. Next, we examine
the impact of infoleaks attacks on the security of the kernel in [Section 5.4]. Then, we present
a technique for detecting kernel based infoleaks through static analysis [Section 5.5]. Next, we
evaluate our technique by applying it to the Linux kernel [Section 5.6]. Last, we discuss the
applications and limitations of our work [Section 5.6.3] and drawn our concluding remarks in
[section 6.1].
Motivation for our work. We analyse the security of current kernel protection mechanisms
[CPM+98,Tea01]. Discuss how these protection mechanisms can be circumvented by leveraging
on information disclosure vulnerabilities [CWE08b] to access sensitive data of the protection
mechanisms. This motivates our work on the detection stack based kernel information leaks.
Contributions. The overall contribution is a systematic approach for the detection of stack
based infoleak vulnerabilities, in more detail, we make the following contributions:
- Analysis of kernel information leak vulnerabilities, focusing on its impact on the security
of kernel protection mechanisms [Section 5.2.1 and 5.4].
- Classification of kernel information leaks, based on our analysis we perform a classification
of information leaks vulnerabilities [Section 5.3].
- Detection of kernel stack based information leaks present and evaluate a technique for
the detection of stack based information leaks [Sections 5.5, 5.6].

5.2 Related Work
Two main topics are addressed here:

• The current security protection mechanisms implemented by the Linux Kernel.
• The current techniques to address security vulnerabilities on the Linux Kernel.

5.2.1 Protection Mechanisms
We start reviewing the kernel protection mechanisms against memory corruption vulnerabilities.
StackGuard. StackGuard [CPM+98] is a compiler technique that thwarts buffer overflows
[CWE08a] vulnerabilities by placing a “canary” word next to the return address on the stack. If
the canary is altered when the function returns a smashing attack has been attempted, and the
program responds by emitting an intruder alert.
Address Space Layout Randomization. The goal of Address Space Layout Randomization
(ASLR) [Tea01] is to introduce randomness into addresses used by a given task. This will make a
class of exploit techniques fail with a quantifiable probability and also allow their detection since
failed attempts will most likely crash the attacked task.
Data Execution Prevention Data Execution Prevention, also known as No Execute (NX), is
a capability of x86 processors to prevent data pages from being used by malicious software to
execute code [Cor07, Part 1, Sec 5.13].

• NX features: Non executable and writable pages present WˆX, known as NX Intel technology.
Carefully controlling the protection bits of the memory pages the OS can reduce the number

62

i
i

i
i

i
i

i
i

63/89 CHAPTER 5. ANALYSING THE IMPACT AND DETECTION OF KERNEL STACK
INFOLEAKS

of pages that are RWX, since these can be used to write code into a writable page and
jump to the written code (execute). By setting the protection bits of the kernel memory
pages to WˆX, write or execute, but never both, hence mitigating this kind of attack.
Still the kernel allows the user to mmap() user pages with RWX protection, therefore,
enabling the user to define a exploitable mapping, and redirecting the execution to the user
mmap()ed memory pages. A common kind of attack is mmap()ing the NULL page, and
causing NULL page dereference from the kernel.

• Supervisor Mode Execution Prevention (SMEP). SMEP introduces security checks to
prevent the CPU to fetch user memory pages while the CPU is in CPL 0. This technique
blocks the NULL page dereference attacks used to gain code execution. SMEP goes together
with SMAP that controls when the CPU can access userland data pages:

– SMEP detects when kernel is fetching instructions from userland
– SMAP detects when kernel accessing data from userland.

Still writes from kernel to user still must be enabled at controlled points for the kernel to
provide information to the userland and vice-versa (eg. ioctl interfaces), therefore, faults at these
controlled points is still possible and its the sole responsibility of the kernel to prevent them, in
case the kernel fails to prevent them, we can have two kinds of vulnerabilities:

• Arbitrary kernel memory write (kernel write), affecting the integrity of the kernel
• Arbitrary kernel memory read (infoleaks), affecting the confidentiality of the kernel.

The effectiveness of these protection mechanisms relies on the protection secrets remaining
unknown to the attacker, i.e., canary value in the case of StackGuard and the randomized
base address to load executable code in case of ASLR. Otherwise, revealing these secrets leads
to circumvent these protection mechanisms [ea13b, ea09]. The confidentiality property of the
operating system is required for the protection mechanisms to remain effective, confidentiality
is achieved through the hardware processors paging and memory management units [Cor07].
However, in the last stage is the task of the OS to ensure the confidentiality of its memory.

5.2.2 Protection Techniques
The detection of software vulnerabilities is a classic topic of computer security, various techniques
have been applied to the vulnerability detection. Next, we review and compare related approaches
for the detection of infoleaks.
Static and Data flow Analysis Sparse [Tor06] is a Semantic Checker/Parser for C used
for kernel code checking and static analysis. The C programming language has some
unsafe/unspecified/compiler-dependent behaviours. To solve this limitation Sparse provides C ->
AST and then allows the developer to write code analyses to verify the kernel security properties,
such as: kernel/user pointers, locks, integer over/under flows, endianness. Smatch [Dan13] is a
rewrite of the Standford Checker (MC) using sparse, to provide the static analysis checks at the
Linux kernel. Coccinelle [LBP+09] is a tool for performing control-flow based program searches
and transformations in C code. Coccinelle is actively used to perform API evolutions of the
Linux kernel [LBP+09] as well as finding defects in Linux and open source projects [Stu08].
Type Inference Taint Analysis and Type Inference [JW04] as a variants of static analysis have
also been performed on kernel. Fuzzing Kernel API fuzzing [Jon13] is actively used to test the
kernel API for unexpected vulnerabilities. Real-time detection: Real-time Intrusion detection
techniques (IDS) are prevalent as attack prevention technique [ea13a]. Operating system

63

64/89 CHAPTER 5. ANALYSING THE IMPACT AND DETECTION OF KERNEL STACK
INFOLEAKS

level techniques PAX security features [Tea01] provide GCC compiler stackleak plugin that
zeroes all automatic user structs that are allocated on the stack, providing an effective protection
against infoleaks. Coding standards The safety critical MISRA-C standard [MIS13] mandates
the initialization of all automatic variables: “Rule 9.1: All automatic variables shall have been
assigned a value before being used.” However, checking of the mandatory rules requires code
reviews to enforce the coding standard, however this can be effective but time consuming and
non exhaustive. Hardware protection techniques Hardware techniques such as DEP/SMAP
(subsection 5.2.1) provide partial protection against infoleaks.

5.3 Classification of Information Disclosure Vulnerabilities

Information disclosure vulnerabilities [CWE08b] are the consequence of other kinds of vulnera-
bilities that lead to disclose the memory layout or contents of the running program. Infoleaks
are relevant as they allow for the undesired disclosure of information that circumvents the con-
fidentiality enforced by the operating system [Tan07, Security Threats 9.1.1]. The failure to
protect confidentiality can be used by an attacker to increase the attack efficiency, an example of
the latter are stackjack attacks [RO11] where infoleak vulnerabilities are employed to selectively
control the stack values/contents disclosed in order to build a kernel read primitive. The kernel
data read primitive is used afterwards to gain knowledge about the kernel protection mechanisms
in place, for example as stack pointers, canary values and ASLR base addresses that lead to
effective exploits [ea13b, ea09].
In this section we analyse the problem of infoleaks to understand it as the first step towards
its solution, we begin our discussion with a real-world infoleak example [Section 5.3.1], next a
classification of the different types of infoleaks [Section 5.3.2]. We summarize the classification of
infoleak vulnerabilities in figure 5.1, where the type of infoleaks we target appear grayed out.

5.3.1 The Anatomy Of An Infoleak
To focus our discussion we start off with the discussion of a real world infoleak vulnerability
CVE-2013-2147 [MIT13]. The CVE-2013-2147 [MIT13] is a kernel stack infoleak that enables an
attacker to read 2 bytes of uninitialised memory after field ->buf_size of the IOCTL_Command_Struct
where the memory contents are leaked from the kernel stack of the process. The relevant code
displaying the vulnerability is depicted in listing 5.1, along with an explanation of the vulnerability
details.

1 static int cciss_ioctl32_passthru(
2 struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg) {
3 IOCTL_Command_struct arg64;
4 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5 int err;
6 err |= copy_to_user(p, &arg64, sizeof(arg64));
7 if (err)
8 return -EFAULT;

Listing 5.1: Example of infoleak code from CVE-2013-2147 (edited to fit)

The listing 5.1 contains an excerpt of function cciss_ioctl32_passthru() where the arg64 local
variable is declared at line 3 without explicit initialisation. At the compiler level the effect is that
memory from the kernel stack is reserved for the arg64 variable, however, the arg64 memory is left
uninitialised containing the data already present on the stack. This memory is afterwards copied

64

i
i

i
i

i
i

i
i

65/89 CHAPTER 5. ANALYSING THE IMPACT AND DETECTION OF KERNEL STACK
INFOLEAKS

to user space through the copy_to_user() at line 6 that allows an attacker to read the memory
contents of the kernel stack.

Infoleak
Vulnerabilties

Bug Causes

Data Sources

Data Sinks

Targets

Missing data initialisation

Missing checks on user reads

Hardware infoleaks

Other bug classes

Exceptions

Stack based

Heap based

Kernel Segment based

User system calls

Kernel Code

Application Code

Hypervisor Code

Compiler alignment pad holes

Missing fields initialisation

Implicit Compiler initialisation

Figure 5.1: Identification and Classification of the Infoleak vulnerabilities.

5.3.2 Targets of Infoleaks
The previous example introduced kernel based infoleaks, however, infoleaks are also present in
systems ranging from application to hypervisor level. The following examples give an idea of the
targets of infoleaks:

• Application infoleaks: A common case of application infoleak is the disclosure of sensitive
data by a server process to a remote client CVE-2012-0053 [MIT12].

• Kernel infoleaks: These disclose kernel memory as in CVE-2013-2147 [MIT13].
• Hypervisor infoleaks: Disclose hypervisor data to guest CVE-2010-4525 [MIT10].

In the case of kernel code, infoleaks have a high impact as disclose sensitive kernel data to user
processes breaking the data confidentiality property enforced by the OS [Tan07, 9.1.1]. The above
reasoning motivates us to focus on kernel infoleaks as we consider these the most critical case.

5.3.3 Infoleaks Bug Causes
As defined in [Section 5.3], infoleaks are the consequence of other kinds of vulnerabilities that
lead to disclose the memory layout or contents of the running program. This section analyses the
causes that lead to information disclosure.

• Compiler padding holes. Compilers align data structures for performance reasons, this
leads the compiler to introduce padding holes between structure fields in order to improve
their memory access times [Cor07]. Therefore when copying data to the userland the
uninitialised struct holes leak kernel information. Padding holes in structures allow data to
pass between user-kernel land without explicit checks, this can happen in both directions.
Depending on the direction of the information flow, we can identify two situations:

– Writes from kernel to user: Results in an infoleak to userland as depicted in
sub-figures 5.2A and 5.2B, and is the case we target in our study.

65

66/89 CHAPTER 5. ANALYSING THE IMPACT AND DETECTION OF KERNEL STACK
INFOLEAKS

– Writes from user to kernel: Results in a kernel write from userland as depicted
5.2C. This can be regarded as a critical vulnerability, as represents a kernel write
from user land, giving an attacker the ability to alter the contents of kernel memory.
However, in this case the contents of the padding holes are usually discarded by the
kernel and, are out of the scope of this work.

• Missing memory initialisation. When a local variable is declared on a kernel function
without explicit initialization, according to the C99 Standard [ISO99, Sect. 6.7.8/10] its
contents are indeterminate. In practice, however, the variable gets allocated on the stack,
and its value is determined by the memory contents already present on the stack, that
remain uncleared for performance reasons. When the variable is copied afterwards to
userland it leads to an information leak of kernel memory, as depicted in sub-figure 5.2B.

• Missing checks on user reads. Missing or incorrect checks on buffer bounds (start, size)
when copying data to user enable the user to read memory contents outside of the buffer.
That kind of vulnerability named buffer overreads [ea09] allow to read data that was not
intended to be accessed.

• Hardware based infoleaks. Hardware infoleaks belong to the kind of infoleak provided
by the environment, this type of infoleaks is provided by sensitive instructions [PG74], i.e. in-
structions that modify or reveal CPU machine state to the user, break the confidentiality,
and, enable to detect if a system is running under VM/VMM (pills). Examples of sensitive
instructions on the x86 architecture are: sidt/sgdt/sldt/smsw/str [RI00], that enable to read
supervisor related information, such as, the physical address of kernel interrupt descriptor
tables.

• Other bug classes leading to infoleaks. Other sources of infoleaks not explored in
this work, are those related to information already available in the environment, say for
example the kernel pointer addresses provided by the /proc/, /sys/ and /boot/ file-systems
that are secured in Linux Kernel by the kptr_restrict mechanism [Ros10]. A broader
source of information disclosure flaws are covert and side channels, such as cache and TLB
timing attacks [ea13b] that exploit the shared nature of these hardware resources to infer
information regarding memory addresses.

• Exceptions. There are exceptions to the infoleak bug causes discussed above, for example,
variable declarations followed by a partial initialization, e.g. with var = {0} all fields get
initialized with zeros. The behaviour mandated by the C99 Standard [ISO99, Sect. 6.7.8/19]
is implemented by the compiler we have used during our analysis GCC [Pro14] The GCC
performs the implicit variable zeroing preventing the occurrence of infoleaks, even in the
above cases of padding holes or missing initialisation.

5.3.4 Infoleaks Data Sources
Information leaks disclose kernel memory contents, therefore, depending on the memory section
affected, a leak can disclose different kinds of information. We focus on the three main sources
from where kernel memory is allocated [Gor04].

• Data segment. The kernel data segment is the area that contains global kernel variables
fixed during compilation time. A data segment leak can disclose the contents of static kernel
symbols such as configuration variables.

66

i
i

i
i

i
i

i
i

67/89 CHAPTER 5. ANALYSING THE IMPACT AND DETECTION OF KERNEL STACK
INFOLEAKS

(2C) Infoleak kernel write into padding hole by user process

struct in userspace: struct in kernelspace:

(2B) Infoleak kernel read missing field initialise by user process

struct in userspace:struct in kernelspace:

(2A) Infoleak kernel read from padding hole by user process

struct in userspace:struct in kernelspace:

field1

field2 hole

field3

field1

field2 hole

field3

copy_from_user()

field1

field2

field3

field1

field2

field3

copy_to_user()

field1

field2 pad

field3

field1

field2 pad

field3

copy_to_user()

Figure 5.2: Directions of data flow in kernel information leaks and writes.

• Stack section. The kernel stack is allocated at runtime and its operation is defined by the
kernel C procedure call convention (ABI). Stack content leaks contain valuable information,
as they can reveal return addresses, stack pointer, and other data contained in the stack;
such as function call parameters, passed on through stack on x86-32 architecture. Other
data that is kept on the stack are kernel protection mechanism secrets, such as canary values
for StackGuard [CPM+98] protection. In addition, with non-randomized kernel process
stacks, the stack layout remains unchanged and provides a predictable stack layout when
the same kernel path is called repeatedly [RO11].

• Heap section. The kernel heap is managed by memory allocators employed by kernel
subsystems when dynamically allocated memory is required. Due to the nature of kernel
allocators, heap leaks can disclose memory around the object being allocated and its nearby
objects, this can include leaks of object the type and contents, i.e., the values of its fields.

5.4 Analysis on the Impact of Stack Infoleaks
To understand why infoleak vulnerabilities are important to kernel security, we analyse the role
played by infoleaks in the attack process, we start with the steps that compose a kernel attack
[subsection 5.4.1], then, analyse the contents of the stack in [subsection 5.4.2] and last infoleak
based attacks [subsection 5.4.3].

5.4.1 The Anatomy of An Attack
Kernel attacks have the goal of increasing the privilege level of the code run by the attacker. To
do so, the attacker must gain controlled code execution capabilities to increase its privilege level,
code execution is achieved by exploiting kernel vulnerabilities. An attack scenario with current
kernel protection mechanisms [subsection 5.2.1] in place involves the following steps to break
kernel security:

1) Perform identification of the system.

67

68/89 CHAPTER 5. ANALYSING THE IMPACT AND DETECTION OF KERNEL STACK
INFOLEAKS

2) Bypass the kernel protection mechanisms: Find canary, return address.
2.1) Find a kernel memory read vulnerability (infoleak).

3) Transfer kernel execution control to injected attacker code: Write canary, return address.
3.1) Find an arbitrary kernel memory write vulnerability.

An attacker targeting the kernel performs the above steps, among them, the step (2.1) is required
to gain enough information to ensure attack success, otherwise, the result of a failed attack is
panic/halt the system. To succeed the attacker must find a way learn the canary value and
return address. In user land attacks this is achieved using brute force to guess the secrets, where
failed probe causes the server process to be restarted without major interference to the system.
However, this no longer happens in kernel land, where a failed canary overwrite leads to a kernel
panic.

5.4.2 The Contents of the Kernel Stack
The target of this work are kernel stack based infoleaks, to analyse the impact of infoleaks we
examine the contents of the kernel stack when a kernel system call is performed in order to identify
what kinds of information can be obtained by an attacker. The contents of the kernel stack on a
function call are defined by the C API function call procedure which in our case is defined in the
Intel x86-32 architecture [Cor07], and implemented by the C compiler GCC x86-32 [Pro14]. The
Table 5.1 details the contents of the kernel process stack when a kernel system call is invoked,
three main groups of data can be identified, starting from the top:

• The callee arguments to the function call: callee(param1, param2, param3, . . .)
• The saved CPU registers stored by the caller to restore on return: EIP, EBP, canary.
• The local variables of the callee: local1, local2, local3, . . .

Address Value Description

ebp+ 8 params Function parameters
ebp+ 4 SEIP Saved EIP
ebp+ 0 SEBP Saved EBP (optional)
ebp− 4 PAD GCC Stack padding
ebp− 8 CAN Saved Stack Canary
ebp− 12 locals Local variables

Table 5.1: Stack Layout on function call() relative to %ebp (x86-32)

All kernel memory dumps are a security issue, however, the kernel stack dumps are more relevant
due to the nature of stack, and the C99 language [ISO99] calling conventions, the following
contents can be found:

• params: The argument/parameters passed to the function.
• SEIP: The return addresses to kernel code, enable to find the kernel load address.

68

i
i

i
i

i
i

i
i

69/89 CHAPTER 5. ANALYSING THE IMPACT AND DETECTION OF KERNEL STACK
INFOLEAKS

– Kernel address reveal the load address of the kernel image.
– Module address reveal the load address of the module address.

• SEBP: The saved stack base pointer (optional).
• CAN: The saved canary (per kernel process thread).
• locals: The local variables allocated by the function.

5.4.3 Infoleak Based Attacks
After an analysis of the contents of the stack in subsection 5.4.2, we outline the possible uses of
the information obtained by an infoleak.

• Precise system identification
Perform the identification of the system. Being able to leak kernel addresses, enables effective
system identification of the exact kernel version running on the system, by fingerprinting
the kernel function addresses, and building a table of tuples (address, kernel_version).
This fact should not be overlooked since effective identification of the running kernel target,
is the first step towards effective attacks.

• StackGuard protection bypass
Obtain the canary values to bypass the kernel StackGuard [CPM+98] protection. As seen
in Table 5.1, the canary value (CAN) resides on the stack, therefore, an info leak reveals
the canary value of the current kernel thread process allowing to bypass the StackGuard.

• KASLR protection bypass
Obtain the kernel text return addresses to bypass the kernel KASLR [Coo13] protection.
As seen in Table 5.1, the return address value (SEIP) resides on the stack, therefore, an
info leak reveals the SEIP (aslr_ktext_addr) value of the current kernel thread process
allowing to bypass KASLR. Since both aslr_ktext_addr and ktext_addr are known, the
randomised kernel text section load offset introduced by the KASLR can be computed as:
aslr_ktext_offset = aslr_ktext_addr − ktext_addr [Byp09].

• Stack trace
Full stack-trace of the call leading to info leak.

Figure 5.3: Stack Layout on function call relative to ebp (x86-32).

5.4.3.1 Infoleak Attacks Variations

The stack infoleaks disclose only the uninitialised part of the current stack frame, therefore, acting
as a window that enables to look at the contents of the stack. The infoleak window is described
as W = (offset, size, contents):

69

70/89 CHAPTER 5. ANALYSING THE IMPACT AND DETECTION OF KERNEL STACK
INFOLEAKS

• offset: The offset is measured from the top of the stack and its value fixed by the function
call stack frame 1.

• size: The size is fixed and defined by the size of uninitialised stack frame section disclosed.
• contents: The contents of the stack revealed by the infoleak window. These can be influenced

by the attacker, since calling different system calls, leaves the contents of the syscall() stack
frame, that can be later retrieved by triggering the infoleak.

Figure 5.4 depicts this scenario where the contents of the kernel process stack are shown
after performing different syscalls: In Figure 5.4(a) after syscall1() the kernel stack con-
tains W.contents = 0x11111111. In Figure 5.4(b) after syscall2() the kernel stack contains
W.contents = 0x22222222. The scenario depicts how different W.contents can be disclosed
depending on the syscall invoked by the attacker. This case is important for system calls that
leave security critical information on the kernel stack, as well as, for small infoleaks.

Figure 5.4: Kernel stackframe infoleak window.

5.5 The Detection of Information Leak vulnerabilities
In this section we present our technique, the main steps of the technique are outlined here:
(5.5.1) Analysis of the attack and vulnerability model. (5.5.2) Design a semantic patch of the
vulnerability model. (5.5.3) Filter and rank the code matches to remove false positives. (5.5.4)
Review and correct the vulnerabilities detected.

5.5.1 Infoleak Vulnerability Model
We analyse infoleaks vulnerabilities in order to model them as a first step towards the detection
of infoleaks. In our model of stack based kernel infoleak vulnerabilities we adopt the notions of
taint analysis [DD77]. We focus on infoleaks of privileged kernel memory to userland as depicted
in figure 5.2, and start with the identification of data sources, data sinks, and taint property:

• Data Sources: The interesting data sources for our analysis are the uninitialised kernel
stack memory contents. As discussed in [Section 5.3.1] on source kernel data are uninitialised
local variables declared on kernel functions.

• Data Sinks: The type of data sinks we are interested are those reachable from userland,
these are part of the kernel API exposed through the system call interface. Examples of
these are file-system read() operations these are interesting sinks for our analysis as they
allow data to flow from kernel to user, here we focus on the copy_to_user() calls data sinks.

1The analysis of attacks that enable to control offset is on going.

70

i
i

i
i

i
i

i
i

71/89 CHAPTER 5. ANALYSING THE IMPACT AND DETECTION OF KERNEL STACK
INFOLEAKS

• Taint Property: The taint property we are interested in is the flow of uninitialised data
from the identified kernel space sources to user space sinks.

5.5.2 Semantic Patch Preparation
Based on the vulnerability model developed in our previous analysis, we prepare a semantic
patch [LBP+09] to perform control-flow program static analysis to detect vulnerable code sites
matching the vulnerability model. To this end we select Coccinelle [LBP+09] that is an open-
source developer-friendly static analysis tool widely used in open source projects to perform
automated API evolutions.

1 handler(...) {
2 <...
3 T ID;
4 ... when != memset(&ID, 0, ...)
5 when != ID = ...
6 * copy_to_user(EV, &ID, EN)
7 ...> }

Listing 5.2: Semantic patch (SmPL) for stack based infoleak detection (edited to fit)

For our analysis we develop a Coccinelle semantic patch depicted at listing 5.2 that matches the
infoleak vulnerability model discussed above.

• Data Source: The local variable ID of handler() declared at line 3.

• Data Sink: The local variable ID is copied to the user pointer EV at line 6.

• Taint Property: The property we want to ensure is that memory contents of ID remain
uninitialised, therefore, we restrict to the situations where no memset() or initialisation
operations occur at line 4.

5.5.3 Filter and Rank of matches
The results of the execution of the semantic patch discussed at the step 5.5.2 contain the potential
vulnerabilities ranked according to its likelihood of being a real vulnerability. The ranking is
performed to reduce the amount of required manual work during code audits of the infoleak
detection results to increase the vulnerability detection rate. For each code location matched by
the semantic patch, the following fields are extracted from the match to identify each vulnerability
vuln = (function, variable, struct). The filtering function in equation 5.5.3 calculates the size of
the infoleak in bytes as the size of the padding holes in the struct. The equation 5.5.3 determines
the relevance of the infoleak and allows to order the results giving a higher relevance to those
leaking more bytes.

leaksize(struct) = sizeof(struct)−
∑

f∈struct

sizeof(struct.f) =
{

= 0 No leak.
> 0 Leak.

5.5.4 Infoleak Code Review and Correction
The last step is to review the detected vulnerabilities, to triage the real bugs out of the potential
vulnerabilities. This is the only step requiring manual intervention, but, can be partially automated
by zeroing all the detected local variable declarations thus preventing the detected infoleaks,
however, requires a compromise between performance impact and security implications.

71

72/89 CHAPTER 5. ANALYSING THE IMPACT AND DETECTION OF KERNEL STACK
INFOLEAKS

5.6 Experimental Evaluation of the Detection Technique
To evaluate our approach we select the Linux kernel sources as the target for the detection
potential infoleaks. First, we evaluate our approach using an experiment aimed at detecting
already known vulnerabilities [Section 5.6.1]. Last, we study how our approach applies to discovery
of new vulnerabilities [Section 5.6.2].

5.6.1 Existing Infoleak Detection
To evaluate the performance of our detection technique, we prepare an experiment targeting
known infoleak vulnerabilities present in the Linux kernel v3.0 series. For this we first review
the MITRE Vulnerabilities CVE database, and select several stack based infoleak vulnerabilities
in Linux kernel, such as CVE-2013-2147 [MIT13]. With this set of infoleak vulnerabilities we
prepare a kernel source tree containing the unpatched vulnerabilities, then target our detection
approach towards it to verify the approach detects the infoleak vulnerabilities introduced. With
this we can evaluate the detection performance of our technique.

Measure/Kernel ver v2.6 v3.0 v3.2 v3.4 v3.8 v3.14

Vulns Detected/Present 13/8 14/8 12/6 12/6 11/4 9/4
True Positive (TPR%) 100.0 100.0 100.0 100.0 100.0 50.0
True Negative (SPC%) 99.2 99.2 99.3 99.3 99.4 99.5
Positive Pred (PPV%) 61.5 57.1 50.0 50.0 36.3 22.2
False Positive (FPR%) 0.8 0.8 0.7 0.7 0.6 0.5

Table 5.2: Statistical performance of stack infoleak detection per
kernel version.

The table 5.2 shows the statistical performance measures of the infoleak detection for stack based
kernel infoleaks with leaksize(struct) > 0, i.e., those where the bug cause are compiler padding
holes. The detection performance presents a high sensitivity (TPR) and high specificity (SPC)
both close to 100%, while the false positive rate (FPR) is close to zero. This enables analysts to
perform security code audits to verify and correct the vulnerabilities detected.

5.6.2 Discovery of Vulnerabilities
We have applied our detection technique to the Linux kernel v3.12, as a result five new infoleak
vulnerabilities have been uncovered disclosing between two and four bytes of the kernel stack
contents to userland. The affected device driver files are: net/wan/{farsync.c,wanxl.c}, tty/{synclink
.c,synclink_gt.c}, and net/hamradio/yam.c. After preparation of the corresponding patches that
correct the infoleaks have been applied to the kernel development tree [Pei14].
During 2015 we performed a second infoleak analysis to the Linux kernel v4.0, applying our
detection technique that uncovered three new infoleak vulnerabilities that disclose between 16
and 200 bytes of kernel stack contents to userland, the corrections have been applied to the
kernel development tree [Pei15]. Among the vulnerabilities we found [Pei15, CVE-2014-1739]
that caused 200 bytes of kernel stack to be read by a local user on devices using the Linux media
subsystem, and affected desktop and Android devices using Linux video devices and cameras

72

i
i

i
i

i
i

i
i

73/89 CHAPTER 5. ANALYSING THE IMPACT AND DETECTION OF KERNEL STACK
INFOLEAKS

(V4L).

5.6.3 Applications and Limitations of our Approach
We believe that our approach improves kernel security, we base our discussion on the Linux
kernel, however, the approach is applicable to systems presenting a similar vulnerability model.
The main application of our technique is on conducting security audits at different stages of the
development cycle: (a) At Release stage to ensure that less bugs get into the product release.
(b) At Development stage to avoid introducing errors in early development stage. (c) At
Regression stage to ensure a known bug is not re-introduced.
Similar to other methods for the discovery of security flaws, our approach cannot overcome the
inherent limitations of vulnerability identification, i.e., vulnerability detection is an undecidable
problem that stems from Rice’s theorem [Hop08]. Our technique aims at finding known vulner-
abilities at the source code level, therefore unknown flaws not matching the vulnerable model
remain undetected, for example our model only considers infoleaks at a single function level,
therefore,infoleaks involving multiple functions are not covered by our approach. The result
derives from the limitations of black-listing as a security measure [SS75, Fail-safe defaults], where
blacklist detects only a subset of unallowed patterns. Therefore, a better approach is to enforce a
white-list to detect all unallowed patterns.

5.7 Conclusions and Further Work
In this work, we presented an analysis and classification of information leaks causes and their
impact on the security of the kernel. Then, we proposed a technique for the detection of the
class of stack based kernel information leaks. Last, we evaluated our technique applying it to the
Linux kernel, our evaluation results showed that the detection technique is effective to improve
operating system security. We focused on infoleaks at operating system level, however, infoleaks
are present in hypervisors as well, where a malicious guest virtual machine can use infoleaks to
compromise the security of the remaining guests. Further work covers detection of infoleaks in
hypervisor to improve the confidentiality of the guest virtual machines [SPM+12] and overcome
our approach limitations [Section 5.6.3].

73

This page is intentionally left blank.

i
i

i
i

i
i

i
i

Chapter 6
Conclusions and open research lines

This chapter summarizes the main conclusions of this dissertation, the section 6.1 summarizes
the main contributions, the section 6.2 presents the research lines open by this study. Last, the
section 6.3 lists the national and international publications in conferences and research journals
that relate to this work.

6.1 Conclusions
The availability of new processors with more processing power for embedded systems has raised
the development of applications the tackle problems of greater complexity [D+09]. Currently,
the embedded applications have more features, and as a consequence, more complexity. For this
reason, there exists a growing interest in allowing the secure execution of multiple applications
that share a single processor and memory. In this context, partitioned system architectures based
on hypervisors have evolved as an adequate solution to build secure systems.
One of the main challenges in the construction of secure partitioned systems is the verification
of the correct operation of the hypervisor, since, the hypervisor is the critical component on
which rests the security of the partitioned system. Traditional approaches for V&V, such as
testing, inspection and analysis, exhibit limitations that make impractical its application for
the exhaustive verification of the system operation, due to the fact that the input space to
validate grows exponentially with respect to the number of inputs to validate. Given this
limitations, verification techniques based in formal methods arise as an alternative to complement
the traditional validation techniques.
This dissertation has analysed the current state of art in the verification and validation of secure
hypervisors, focusing in the application of formal methods for the hypervisor validation and
verification. The analysis of the state of art has identified the open problems to solve, we proposed
the following solutions to the open problems that result in the main contributions of this work:

• The formal model of the hypervisor and the definition of the properties that ensure the
correctness of the hypervisor operation.

• The verification of the functional correctness of the hypervisor components source code.
• The analysis and detection of the vulnerabilities that affect the confidentiality of the

information managed by the hypervisor and the rest of the components of the partitioned
system.

As concluding remarks, the main contributions of this thesis contribute to a bigger goal, that is, the
application of formal methods as a tool to unambiguously and precisely define the exact behaviour
of a secure software system. This application enables to bridge the gap between natural language
based requirements specification and the implementation. Thereby, providing a mathematical

75

76/89 CHAPTER 6. CONCLUSIONS AND OPEN RESEARCH LINES

specification of the behaviour of the software systems to use as basis for the design, implementation
and validation phases. The main benefits of this application being the identification of security
issues, design and implementation flaws in early stages of the development.

6.2 Research Lines
The work performed in this dissertation opens various research lines. Some of these research lines
are briefly detailed next:

• This dissertation deals exclusively with the confidentiality of the information managed
by the hypervisor. This work can be extended by considering the remaining aspects that
compose the information security, namely: the information integrity and availability.

• The wide adoption of multi-core CPU architectures in consumer electronics [PGPC15,
TCAP14] present new challenges to the V&V of multi-core systems. The key point to
address is the exponential growth of the program state space as the number of concurrent
CPUs executing increases. Formal methods can be applied to model the concurrent aspect
of multi-core systems, in order to verify security properties, such as: absence of deadlocks,
or absence of race conditions.

• Another research line is the improvement of the compilers used to build secure systems to
overcome the limitations of the C99 standard [ISO99], such as, undefined and unspecified
behaviours present in the C99 standard, that have been analysed in this dissertation
(chapter 5).

6.3 Publications related to this thesis
The Table 6.1 classifies the main publications related with this dissertation, that are detailed
below according to the publication type:

• Identifier: The identifier of the publication.
• Type: The type of publication (Conference/Journal).
• Ranking: The ranking of the publication based on the following rankings:

– CORE: Conference publication according to the Computing Research Education
(CORE) ranking.

– JCR: Journal Classification according to the Journal Citation Reports (JCR) ranking.

Identifier Type Ranking Scope

[PMC15] Journal Factor: 0.52 International
[PGPC15] Journal Factor: 1.35 International
[PMMC14] Conference Core B International
[CMC+14] Conference Core C International
[SPM+12] Conference _ International
[SP13] Conference _ National

76

i
i

i
i

i
i

i
i

77/89 CHAPTER 6. CONCLUSIONS AND OPEN RESEARCH LINES

Identifier Type Ranking Scope

[CEPP12] Conference Core B International
[MPS+12] Conference _ International
[MPS+11] Conference _ National
[MRCP10] Conference _ International
[RCM+10] Conference _ International
[CRMP10] Conference Core C International

Table 6.1: Listing of main publications of this dissertation

77

This page is intentionally left blank.

i
i

i
i

i
i

i
i

Bibliography

[Ai96] Airlines Electronic Engineering Committee . Avionics Application Software Standard
Interface (ARINC-653), March 1996. Airlines Electronic Eng. Committee. 22, 37,
40, 49

[AFOTH06] Jim Alves-Foss, Paul W. Oman, Carol Taylor, and Scott Harrison. The mils
architecture for high-assurance embedded systems. IJES, 2(3/4):239–247, 2006. 89

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974. 46

[ALRL04] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy
of dependable and secure computing. Dependable and Secure Computing, IEEE
Transactions on, 1(1):11–33, 2004. 26, 32, 53

[AM08] P. Arberet and J. Miro. IMA for space : status and considerations. In ERTS 2008.
Embedded Real-Time Software., Jannuary. Toulouse. France 2008. 38

[AMGC09] P. Arberet, J.-J. Metge, O. Gras, and A. Crespo. TSP-based generic payload on-
board software. In DASIA 2009. DAta Systems In Aerospace., May. Istanbul 2009.
38

[And72] Anderson, James P. Computer Security Technology Planning Study. Volume 2.
Technical report, Electronic Systems Division (ESD) of the United States Air Force,
1972. 89

[And86] Stephen J Andriole. Software validation, verification, testing and documentation: a
source book. Petrocelli Books, Inc., 1986. 25

[BBBB10] Christoph Baumann, Bernhard Beckert, Holger Blasum, and Thorsten Bormer. Ingre-
dients of Operating System Correctness: Lessons Learned in the Formal Verification
of PikeOS. In Emb. World Conf., Nuremberg, Germany, 2010. 29, 55

[BBC+10] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines
of code later: using static analysis to find bugs in the real world. Commun. ACM,
53:66–75, February 2010. 54

[BCF+11] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliatre, Claude Marche, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification
Language Version 1.5. none, 2011. 55, 56

[BF+14] Pierre Bourque, Richard E Fairley, et al. Guide to the Software Engineering Body
of Knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press, 2014.
22, 23, 25, 26

79

80/89 BIBLIOGRAPHY

[Bow93] J. Bowen. Formal methods in safety-critical standards. In Software Engineering
Standards Symposium, 1993. Proceedings., 1993, pages 168–177. IEEE, 1993. 32

[Byp09] Bypassing PaX ASLR protection. Tyler Durden, 2009. http://www.phrack.com/
issues.html?issue=5&id=9. 69

[CDH+09] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal,
Thomas Santen, Wolfram Schulte, and Stephan Tobies. Vcc: A practical system for
verifying concurrent c. In Theorem Proving in Higher Order Logics, pages 23–42.
Springer, 2009. 29, 54

[CEH02] Benjamin Chelf, Dawson Engler, and Seth Hallem. How to write system-specific,
static checkers in metal. In Proceedings of the 2002 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, PASTE ’02,
pages 51–60, New York, NY, USA, 2002. ACM. 31

[CEPP12] Hakan Cankaya, Thomas Enderle, Salva Peiro, and Andreas Platschek. OVERSEE:
Investigation of Requirements and Analysis of Solutions for an In-Vehicle Open and
Secure Platform. In 19th ITS World Congress, Vienna, Austria, 22/26 October 2012,
2012. 77

[CKK+12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. Frama-c: a software analysis perspective. In Proceedings
of the 10th international conference on Software Engineering and Formal Methods,
SEFM’12, pages 233–247, Berlin, Heidelberg, 2012. Springer-Verlag. 30, 54, 56

[CMC+14] Alfons Crespo, Miguel Masmano, Javier O. Coronel, Salvador Peiró, Patricia Balbas-
tre, and Jose Simo. Multicore partitioned systems based on hypervisor . In 19th
IFAC World Congress to be held in Cape Town, Africa, August 2014. . Instituto
de Automática e Informática Industrial, Universitat Politècnica de València, Spain,
2014. 76

[CMW+11] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and M Frans
Kaashoek. Linux kernel vulnerabilities: State-of-the-art defenses and open problems.
In Proceedings of the Second Asia-Pacific Workshop on Systems, page 5. ACM, 2011.
21, 62

[Coo13] Kees Cook. Linux Kernel ASLR (KASLR). In Linux Security Summit, October
2013. 69

[Cor07] Intel Corp. IA-32 Architecture Software Developer’s Manual - Volume 3A, 2007. 61,
62, 63, 65, 68

[Cov02] Coverity. Prevent, 2002. Online: http://www.coverity.com. 31

[CPM+98] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stackguard:
Automatic adaptive detection and prevention of buffer-overflow attacks. In Usenix
Security, volume 98, pages 63–78, 1998. 61, 62, 67, 69

[Cri06] Common Criteria. Common Criteria for Information Technology Security Evaluation
v3.1. Release 3, 2006. 53, 59

80

http://www.phrack.com/issues.html?issue=5&id=9
http://www.phrack.com/issues.html?issue=5&id=9
http://www.coverity.com

i
i

i
i

i
i

i
i

81/89 BIBLIOGRAPHY

[Cri12] Common Criteria. Common Criteria for Information Technology Security Evaluation
v3.1. Release 4, September 2012. CMB-2012-09-001, CMB-2012-09-002, CMB-2012-
09-003. 29, 30, 32, 34

[CRMP10] A. Crespo, I. Ripoll, M. Masmano, and S. Peiro. Partitioned Embedded Architecture
based on Hypervisor: the XtratuM approach. In 8th European Dependable Computing
Conference, 2010. 77

[CWE08a] MITRE. Common Weakness Enumeration. CWE-121: Stack-based Buffer Overflow.,
2008. http://cwe.mitre.org/data/definitions/121.html. 62

[CWE08b] MITRE. Common Weakness Enumeration. CWE-200: Information Exposure., 2008.
http://cwe.mitre.org/data/definitions/200.html. 5, 7, 9, 62, 64

[D+09] Daniel Dvorak et al. Nasa study on flight software complexity. NASA office of chief
engineer, 2009. 21, 24, 75

[Dan13] Dan Carpenter. Smatch, Static analysis for C, 2013. 63

[DD77] Dorothy E Denning and Peter J Denning. Certification of Programs for Secure
Information Flow. Communications of the ACM, 20(7):504–513, 1977. 70

[DDH72] Ole-Johan Dahl, Edsger Wybe Dijkstra, and Charles Antony Richard Hoare. Struc-
tured programming. Academic Press Ltd., 1972. 25

[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18:453–457, August 1975. 56

[ea09] R. Strackx et al. Breaking the Memory Secrecy Assumption. In Proceedings of the
Second European Workshop on System Security, EUROSEC ’09, pages 1–8, New
York, NY, USA, 2009. ACM. 63, 64, 66

[ea13a] A. Herrero et al. RT-MOVICAB-IDS: Addressing real-time intrusion detection.
FGCS ’13, 29(1):250–261, 2013. 63

[ea13b] R. Hund et al. Practical Timing Side Channel Attacks Against Kernel Space ASLR.
In IEEE SSP, 2013. 63, 64, 66

[ECS09a] ECSS: European Cooperation for Space Standardization. ECSS-E-ST-40C Space
Engineering - Software. ESA-ESTEC, Requirements & Standards Division, March
2009. 33, 35

[ECS09b] ECSS: European Cooperation for Space Standardization. ECSS-Q-ST-80C - Software
Product Assurance. ESA-ESTEC, Requirements & Standards Division, March 2009.
33

[fAR85] US Radio Technical Commission for Aeronautics (RTCA). RTCA DO-178: Software
Considerations in Airborne Systems and Equipment Certification. RTCA, January,
1985. 32

[fAR92] US Radio Technical Commission for Aeronautics (RTCA). RTCA DO-178B: Software
Considerations in Airborne Systems and Equipment Certification. RTCA, December
1, 1992. 29, 30, 32, 53, 59

81

http://cwe.mitre.org/data/definitions/121.html
http://cwe.mitre.org/data/definitions/200.html

82/89 BIBLIOGRAPHY

[fAR05] US Radio Technical Commission for Aeronautics (RTCA). RTCA DO-297: Integrated
Modular Avionics (IMA) Development Guidance and Certification Considerations.
RTCA, 2005. 32, 89

[fAR11] US Radio Technical Commission for Aeronautics (RTCA). RTCA DO-333: Formal
Methods Supplement to DO-178C and DO-278A. RTCA, December 13 2011. 32

[fAR12] US Radio Technical Commission for Aeronautics (RTCA). RTCA DO-178C: Software
Considerations in Airborne Systems and Equipment Certification. RTCA, January 5,
2012. 21

[Gol74] R.P. Goldberg. Survey of virtual machine research. IEEE Computer Magazine,
7(6):34–45, 1974. 22, 38, 89

[Gor04] Mel Gorman. Understanding the Linux virtual memory manager. Prentice Hall
Upper Saddle River, 2004. 66

[HALM08] Constance L. Heitmeyer, Myla Archer, Elizabeth I. Leonard, and John McLean.
Applying Formal Methods to a Certifiably Secure Software System. IEEE Trans.
Software Eng., 34(1):82–98, 2008. 30, 55

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12:576–580, October 1969. 30, 56

[Hop08] J. E Hopcroft. Introduction to Automata Theory, Languages, and Computation.
Pearson Education, 2008. 73

[IEC10] IEC. IEC-61508: Functional Safety of Electrical/Electronic/Programmable Elec-
tronic Safety-related Systems, 2010. 29, 33, 35, 53

[IH14] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated with
test suite effectiveness. In Proceedings of the International Conference on Software
Engineering, 2014. 23

[ISO99] ISO. The ANSI C standard (C99). Technical Report WG14 N1124, ISO/IEC, 1999.
66, 68, 76

[Jon13] D. Jones. The Trinity system call fuzzer, Linux Kernel, 2013. 63

[JW04] Rob Johnson and David Wagner. Finding user/kernel pointer bugs with type
inference. In USENIX Security Symposium, volume 2, page 0, 2004. 63

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: Formal verification of
an os kernel. In ACM SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES,
pages 207–220. ACM, 2009. 30, 54

[LBP+09] Julia L Lawall, Julien Brunel, Nicolas Palix, René Rydhof Hansen, Henrik Stuart,
and Gilles Muller. WYSIWIB: A declarative approach to finding API protocols and
bugs in Linux code. In Dependable Systems & Networks, 2009. DSN’09. IEEE/IFIP
International Conference on, pages 43–52. DSN’09, IEEE, 2009. 31, 63, 71

82

i
i

i
i

i
i

i
i

83/89 BIBLIOGRAPHY

[LSM+98] Peter A Loscocco, Stephen D Smalley, Patrick A Muckelbauer, Ruth C Taylor, S Jeff
Turner, and John F Farrell. The inevitability of failure: The flawed assumption of
security in modern computing environments. In Proceedings of the 21st National
Information Systems Security Conference, volume 10, pages 303–314, 1998. 26

[Mat09] MathWorks. The Polyspace verification tool , 2009. 54

[Mey92] Bertrand Meyer. Applying Design by Contract. IEEE Computer, 25:40–51, 1992.
23, 24

[MIS13] MISRA. MISRA C:2012. Guidelines for the use of the C language in critical systems,
March 2013. 64

[MIT10] MITRE. CVE-2010-4525. kvm: x86: zero kvm_vcpu_events->interrupt.pad infoleak,
2010. CVE-2010-4525. 65

[MIT12] MITRE. CVE-2012-0053: Apache information disclosure on response to Bad HTTP
Request, 2012. CVE-2012-0053. 65

[MIT13] MITRE. CVE-2013-2147. fix info leak in cciss_ioctl32_passthru()., 2013.
https://git.kernel.org. 64, 65, 72

[MPS+11] M. Masmano, S. Peiro, J. Sanchez, J. Simo, and A. Crespo. Device Virtualization in
a Partitioned System: the OVERSEE Approach. In Jornadas de Tiempo Real (JTR-
2011). Instituto de Automática e Informática Industrial, Universitat Politècnica de
València, Spain, 2011. 77

[MPS+12] M. Masmano, S. Peiro, J. Sanchez, J. Simo, and A. Crespo. IO Virtualisation in
a Partitioned System . In ERTS2012: Embedded Real Time Software and Systems
2012. Instituto de Automática e Informática Industrial, Universitat Politècnica de
València, Spain, 2012. 77

[MRC05] M. Masmano, I. Ripoll, and A. Crespo. Introduction to XtratuM. 2005. 38

[MRC+09] M. Masmano, I. Ripoll, A. Crespo, J.J. Metge, and P. Arberet. Xtratum: An open
source hypervisor for TSP embedded systems in aerospace. In DASIA 2009. DAta
Systems In Aerospace., May. Istanbul 2009. 51

[MRCM09] M. Masmano, I. Ripoll, A. Crespo, and J.J. Metge. Xtratum: a hypervisor for
safety critical embedded systems. In Eleventh Real-Time Linux Workshop, Dresden
(Germany), 28-30 September 2009. 54

[MRCP10] M. Masmano, I. Ripoll, A. Crespo, and S. Peiro. XtratuM for LEON3: an
OpenSource Hypervisor for High-Integrity Systems . In Embedded Real Time
Software and Systems ERTS2010. Toulouse, France, May 2010. 77

[oEE90] Institute of Electronical and Electronics Engineers. IEEE Standard Glossary of
Software Engineering Terminology (IEEE-610.12-1990). Office, 121990(1):1, 1990.
26, 89

[ORS92] Sam Owre, John M Rushby, and Natarajan Shankar. Pvs: A prototype verification
system. In Automated Deduction—CADE-11, pages 748–752. Springer, 1992. 31

[Pau94] Lawrence C Paulson. Isabelle: A generic theorem prover, volume 828. Springer
Science & Business Media, 1994. 30

83

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4525
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-0053
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=58f09e00ae095e46ef9edfcf3a5fd9ccdfad065e

84/89 BIBLIOGRAPHY

[Pei14] S. Peiró. CVE request: Assorted Kernel infoleak security fixes, 2014. CVE-2014-1444.
72

[Pei15] S. Peiró. CVE Request: Linux Kernel ioctl infoleaks fixes, 2015. CVE-2015-7884
and CVE-2014-1739. 72

[PG74] Gerald J Popek and Robert P Goldberg. Formal requirements for virtualizable third
generation architectures. Communications of the ACM, 17(7):412–421, 1974. 66

[PGPC15] Héctor Pérez, Javier Gutiérrez, Salvador Peiró, and Alfons Crespo. Distributed
architecture for developing mixed-criticality systems in multi-core platforms. In
Journal of Systems and Software (JSS) , 2015. (pending publication). 76

[PL10] D. Pariente and E. Ledinot. Formal Verification of Object-Oriented Software. Karl-
sruhe Institute of Technology, Faculty of Informatics, Paris, France, June 28-30 2010.
30

[PMC15] S. Peiró, M. Muñoz, and A. Crespo. Analysing the Impact and Detection of Kernel
Stack Infoleaks . In Logic Journal of the IGPL. Springer, 2015. (pending publication).
76

[PMMC14] S. Peiró, M. Muñoz, M. Masmano, and A. Crespo. Detecting Stack based kernel
Information leaks . In CISIS’14. Springer, 2014. 76

[Pre01] Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill
Higher Education, 5th edition, 2001. 53

[Pro14] The GNU Project. The GNU C Compiler Collection (GCC) gcc-4.7, 2014. http:
//gcc.gnu.org/gcc-4.7/. 66, 68

[RCM+10] I. Ripoll, A. Crespo, M. Masmano, V. Brocal, P. Balbastre, S. Peiró, P. Arberet, and
J.J. Metge. Configuration and Scheduling tools for TSP systems based on XtratuM.
In DASIA 2010. DAta Systems In Aerospace., May. Budapest 2010., 2010. Instituto
de Automatica e Informatica Industrial, Universitat Politècnica de València, España.
http://www.fentiss.com/documents/dasia2010.pdf. 77

[Res05] Gaisler Research. Leon2 processor user’s manual, version 1.0.30.
http://www.gaisler.com, 2005. 38

[RI00] John Scott Robin and Cynthia E. Irvine. Analysis of the Intel Pentium’s Ability
to Support a Secure Virtual Machine Monitor. In Proceedings of the 9th USENIX
Security Symposium, pages 3–4, 2000. 66

[RO11] D. Rosenberg and J. Oberheide. Stackjacking: A PaX exploit framework, 2011.
https://github.com/jonoberheide/stackjacking/. 64, 67

[Ros10] Dan Rosenberg. kptr_restrict for hiding kernel pointers, 2010. http://lwn.net/
Articles/420403/. 66

[Rus81a] J. M. Rushby. Design and verification of secure systems. In Proceedings of the Eighth
ACM Symposium on Operating Systems Principles, SOSP ’81, pages 12–21, New
York, NY, USA, 1981. ACM. 22, 37

84

http://www.openwall.com/lists/oss-security/2014/01/15/3
http://seclists.org/oss-sec/2015/q4/115
http://www.openwall.com/lists/oss-security/2014/06/15/1
http://gcc.gnu.org/gcc-4.7/
http://gcc.gnu.org/gcc-4.7/
http://www.fentiss.com/documents/dasia2010.pdf
https://github.com/jonoberheide/stackjacking/
http://lwn.net/Articles/420403/
http://lwn.net/Articles/420403/

i
i

i
i

i
i

i
i

85/89 BIBLIOGRAPHY

[Rus81b] J. M. Rushby. Design and verification of secure systems. In Proceedings of the eighth
ACM symposium on Operating systems principles, SOSP 81, pages 12–21, New York,
NY, USA, 1981. ACM. 29, 54

[Rus00] J. Rushby. Partitioning in avionics architectures: Requirements, mechanisms, and
assurance. Technical report, DTIC Document, 2000. 53, 89

[Rus01] John Rushby. Security requirements specifications: How and what? In Symposium
on Requirements Engineering for Information Security (SREIS), Indianapolis, IN,
mar 2001. 22

[SP13] A. Crespo S. Peiró, M. Masmano. Formal Validation of XtratuM Components .
In Jornadas de Tiempo Real (JTR-2013). Instituto de Automática e Informática
Industrial, Universitat Politècnica de València, Spain, 2013. 76

[SPM+12] J. Sánchez, S. Peiró, M. Masmano, J. Simó, and P. Balbastre. Linux porting to
the XtratuM Hypervisor for x86 processors. In 14th Real Time Linux Workshop,
October 2012. 73, 76

[SS75] Jerome H Saltzer and Michael D Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278–1308, 1975. 73

[Stu08] Henrik Stuart. Hunting Bugs with Coccinelle. PhD thesis, Diku, 2008. 63

[SWDD09] Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny. Formal verification
of avionics software products. In Ana Cavalcanti and Dennis Dams, editors, FM
2009: Formal Methods, volume 5850 of Lecture Notes in Computer Science, pages
532–546. Springer Berlin / Heidelberg, 2009. 30, 55

[Tan07] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, Upper Saddle River,
NJ, USA, 3rd edition, 2007. 64, 65

[TCAP14] Salvador Trujillo, Alfons Crespo, Alejandro Alonso, and Jon Pérez. Multipartes:
Multi-core partitioning and virtualization for easing the certification of mixed-
criticality systems. Microprocessors and Microsystems, 38(8):921–932, 2014. 76

[Tea01] PAX Team. PaX address space layout randomization (ASLR), 2001. http://pax.
grsecurity.net/docs/aslr.txt. 61, 62, 64

[Tor06] Linus Torvalds. Sparse: A semantic parser for C, 2006. http://sparse.wiki.kernel.org.
63

85

http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://sparse.wiki.kernel.org

This page is intentionally left blank.

i
i

i
i

i
i

i
i

Acronyms

API Application Programming Interface. 25, 31, Glossary: API

ARINC-653 ARINC-653. 22

ARM Acorn RISC Machines. 30

CC Common Criteria. 29, 30, 32, 34

CORE Computing Research Education. 76

COTS Commercial-Off-The-Shelf. 15, 24, 25

DO-178A Software Considerations in Airborne Systems and Equipment Certification. 32

DO-178B Requirements and Technical Concepts for Aviation. 32

DO-297 Integrated Modular Avionics (IMA) Development Guidance and Certification Consider-
ations. 32

DO-333 Formal Methods Supplement to DO-178C and DO-278A. 32

EAL Evaluation Assurance Level 6. 35

EAL Evaluation Assurance Level. 34

EAL7 Evaluation Assurance Level 7. 30, 34, 35

ECSS European Cooperation for Space Standardization. 32, 33

ESA European Space Agency. 33, 35

FSM Finite State Machines. 5, 9, 27

IEC International Electro-technical Commission. 32, 33, 35

IEC-61508 Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related
Systems. 33

IEEE Institute of Electrical and Electronics Engineers. 26

IMA Integrated Modular Avionics. 22, 32, 87, Glossary: IMA

ISO/IEC ISO/IEC. 35

87

88/89 Acronyms

IT Information Technologies. 32, 35

JCR Journal Citation Reports. 76

MILS Multiple Independent Levels of Security. 22, Glossary: MILS

Partitioning Robust partitioning. Glossary: Partitioning

Reference monitor Reference Monitor. Glossary: Reference monitor

RISC Reduced Instruction Set Computers. 87

RTCA US Radio Technical Commission for Aeronautics. 32, 35

SDLC Software Development Life Cycle. 30

Separation kernel Separation kernel. Glossary: Separation kernel

SIL Safety Integrity Level. 17, 33

SLOC Source Lines of Code. 30

SWEBOOK Software Engineering Book. 26

TCB Trusted Computing Base. 75, Glossary: TCB

V&V Validation and Verification. 5, 7, 9, 15, 21–27, 30, 75, 76

VM virtual machine. 22

VMM Virtual Machine Monitor. 22, Glossary: VMM

88

i
i

i
i

i
i

i
i

Glossary

API An Application Programming Interface (API) is a particular set of rules and specifications
that a software program can follow to access and make use of the services and resources
provided by another particular software program that implements that API. 87

Complexity The measure of how difficult software is to understand, and thus to analyse, test,
and maintain [oEE90]. . 24

IMA "Integrated Modular Avionics is defined as a shared set of flexible reusable, and interoperable
hardware and software resources that create a platform that provides services, designed
and verified to a defined set of safety and performance requirements, host applications
performing aircraft related functions" [fAR05]. 87

MILS Multiple Independent Levels of Security, see Rushby et al. [AFOTH06]. 88, 89

Partitioning Refers to Rushby "Gold standard" for robust partitioning [Rus00].

"A partitioned system should provide fault containment equal to an idealized sys-
tem in which each partition is allocated an independent processor and associated
peripherals and all inter-partition communications are carried on dedicated lines.
"

- Spatial partitioning must ensure that software in one partition cannot change the software
or private data of another partition (either in memory or in transit) nor command the
private devices or actuators of other partitions.
- Temporal partitioning must ensure that the service received from shared resources by the
software in one partition cannot be affected by the software in another partition. This
includes the performance of the resource concerned, as well as the rate, latency, jitter, and
duration of scheduled access to it.. 88

Reference monitor Defined by Anderson et al. in [And72].. 88

Separation kernel See MILS.. 88

TCB Trusted Computing Base, see Rushby et al. [AFOTH06]. 88

VMM Virtual Machine Monitor, see Goldberg et al. [Gol74]. 88

89

90/89 Glossary

90

	Cover
	Acknowledgements
	Abstract
	Resumen
	Resum
	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Secure partitioned systems
	1.1.1 Secure hypervisors
	1.1.2 Validation and verification of secure hypervisors
	1.1.3 Challenges on the validation of secure hypervisors
	1.1.4 Terminology

	1.2 Motivation and main goals
	1.3 Contributions of this thesis
	1.4 Outline of this thesis
	1.5 Research Context

	2 Secure Hypervisor Verification
	2.1 Formal methods in secure hypervisors
	2.1.1 Deductive verification
	2.1.2 Theorem provers
	2.1.3 Static code analysis

	2.2 Formal methods in safety standards
	2.2.1 RTCA Standards
	2.2.2 IEC-61508 Standards
	2.2.3 ECSS Standards
	2.2.4 Common Criteria Framework

	2.3 Summary

	3 XtratuM foundations: A formalisation approach.
	3.1 Introduction
	3.2 XtratuM Overview
	3.2.1 XtratuM Architecture

	3.3 Trustability enforcement
	3.3.1 Interrupt Model
	3.3.2 Fault Management Model
	3.3.3 System specification

	3.4 Hypervisor model
	3.4.1 Hypervisor state variables
	3.4.2 General properties
	3.4.3 Spatial isolation properties
	3.4.4 Temporal isolation properties
	3.4.5 Hypervisor state management
	3.4.6 Hypervisor pre- and post-conditions

	3.5 Conclusion

	4 Formal Validation of XtratuM Components
	4.1 Introduction
	4.1.1 XtratuM Hypervisor core

	4.2 Deductive Formal Methods
	4.3 Proposed Approach
	4.3.1 Method
	4.3.2 Contract Specification
	4.3.3 The Frama-C Framework

	4.4 Approach Evaluation
	4.4.1 Code Refactor
	4.4.2 Contract Annotation
	4.4.3 Proof Verification
	4.4.4 Proof Results
	4.4.5 Results

	4.5 Conclusions

	5 Analysing the Impact and Detection of Kernel Stack Infoleaks
	5.1 Introduction
	5.2 Related Work
	5.2.1 Protection Mechanisms
	5.2.2 Protection Techniques

	5.3 Classification of Information Disclosure Vulnerabilities
	5.3.1 The Anatomy Of An Infoleak
	5.3.2 Targets of Infoleaks
	5.3.3 Infoleaks Bug Causes
	5.3.4 Infoleaks Data Sources

	5.4 Analysis on the Impact of Stack Infoleaks
	5.4.1 The Anatomy of An Attack
	5.4.2 The Contents of the Kernel Stack
	5.4.3 Infoleak Based Attacks

	5.5 The Detection of Information Leak vulnerabilities
	5.5.1 Infoleak Vulnerability Model
	5.5.2 Semantic Patch Preparation
	5.5.3 Filter and Rank of matches
	5.5.4 Infoleak Code Review and Correction

	5.6 Experimental Evaluation of the Detection Technique
	5.6.1 Existing Infoleak Detection
	5.6.2 Discovery of Vulnerabilities
	5.6.3 Applications and Limitations of our Approach

	5.7 Conclusions and Further Work

	6 Conclusions and open research lines
	6.1 Conclusions
	6.2 Research Lines
	6.3 Publications related to this thesis

	Bibliography
	Acronyms
	Glossary

