INDEX

INDEX	5			
ABSTR	ACT 11			
RESUN	1EN 15			
RESUN	1 19			
1	INTRODUCTION 23			
1.1	Regenerative Medicine 30			
1.1.1	Wound Healing. 33			
1.1.2	Biodegradable Polymeric Micro-particles for controlled delivery and tissue repair/regeneration 36			
1.2 Tissue	1.2Nanotechnology for Controlled Drug Delivery Systems andTissue Engineering43			
1.2.1	Biodegradable Polymeric Membranes obtain by Electrospinning as scaffolds for tissue regeneration 46			
1.2.2	Composite Polymeric scaffolds with Nanofibrous			
	architecture 53			
1.2.3	Polymer therapeutics 56			
2	OBJECTIVES 80			
2.1	General Objective 80			
2.1	Specific Objectives 80			
3	MATERIALS AND EXPERIMENTAL TECHNIQUES 84			
3.1	Materials 84			

3.1.1	Polymers	84			
3.1.1	Model Drugs	89			
3.1.2	Model Protein	90			
3.1.3	Chemical react	ive and solvents		91	
3.2	Experimental T	echniques		93	
3.2.1	NMR Spectrosc	opy: 1H and 13	С	93	
3.2.2	UV Spectropho	tometer		94	
3.2.3	Gel Permeatior	n Chromatograp	hy (GPC)	95
3.2.4	Reverse Phase	High performan	ce liquic	l chroma	atography
	(RP-HPLC)	97			
3.2.5	Fast Protein Lic	uid Chromatogr	aphy (F	PLC)	97
3.2.6	Circular Dicroism (CD) Spectrophotometer		98		
3.2.7	Differential Scanning Calorimetry (DSC)			98	
3.2.8	Thermo Gravim	netric Analysis (T	GA)	98	
3.2.9	Particle Size An	alyzer	99		
3.2.10	Contact angle r	neasurements		99	
3.2.11	Mechanical Ter	nsile test		99	
3.2.12	Scanning Electr	on Microscopy (SEM)		100
3.2.13	Optical Microso	сору			100
3.2.14	Ultra-thin nanofibers microporous membranes made by				
	Electrospinning	5			100
3.2.15	Synthesis of Mi	cro-particles by	reverse	phase F	mulsion

3.2.15 Synthesis of Micro-particles by reverse phase Emulsion

technique 100

- 4. SYNTHESIS AND CHARACTERIZATION OF POLYMER
 PROTEIN CONJUGATES USING TRYPSIN AS MODEL
 PROTEIN 102
 4.1. Introduction 102
- 4.2. Methodology 109
- 4.2.1. Synthesis and Characterization of Polyacetals (PA) 109
- 4.2.2. Synthesis and characterization of Polyacetal-Trypsin conjugates 113
- 4.2.3. Study of PUMPT effect with PA-T conjugates 116
- 4.2.4. PEGylated systems 119
- 4.3. Results 127
- 4.3.1. Synthesis and Characterization of Polymer conjugates 127
- 4.3.2. Synthesis and characterization of PA-T conjugates 132
- 4.3.3. Study of PUMPT effect with PA-T conjugates 142
- 4.3.4. Synthesis and characterization of PEG-Trypsin
 - conjugates 150
- 4.4. Discussion 155
- 4.5. Conclusions 159
- 5. SYNTHESIS AND CHARACTERIZATION OF CURCUMIN POLY(ACETAL)S 161
- 5.1. Introduction 161

5.1.1.	Polyacetals as carriers	162		
5.1.2.	Chronic wounds and Curcumin a	163		
5.2.	Methodology	165		
5.2.1.	Synthesis and Characterization 165			
5.2.2.	Hydrolysis of PACur and Curcum	in Release kine	etics 168	
5.2.3.	Cytotoxicity of Cur and PACur	169		
5.3.	Results	171		
5.3.1.	Synthesis and Characterization	171		
5.3.2.	Hydrolysis of PACur and Release	kinetics	175	
5.3.3.	Cytotoxicity of Cur and PACur		176	
5.4.	Discussion		178	
5.4.1.	Synthesis and Characterization		178	
5.4.2.	Hydrolysis of PACur and Release	182		
5.4.3.	Cytotoxicity of Cur and PACur		186	
5.5.	Conclusions		188	
6.	SYNTHESIS AND CHARACTERIZATION OF HYALURONIC			
	ACID MICROPARTICLES	190		
6.1.	Introduction	190		
6.2.	Methodology	193		
6.2.1.	Synthesis of MPs and encapsulation of model			
	drugs and Polymer-drug conjuga	ates 193		
6.2.2.	Characterization of loaded and un-loaded MPs			

	systems		198		
6.2.2.1	L. Morphology by	y SEM	198		
6.2.2.2. Particle Size Distribution			198		
6.2.2.3. Encapsulation Efficiency an Total			tal Drug	Loading	198
6.2.3.	Drug Release Kinetic studies from loaded			led HA-MPs	200
6.3.	Results			201	
6.3.1.	Synthesis of MPs and encapsulation of model				
	drugs and Poly	mer-drug conju	gates	201	
6.3.2.	Characterization of loaded and un-loaded MPs systems 201				ns 201
6.4.	Discussion	223			
6.5.	Conclusions	225			
7.	POLYMERIC COMPOSITE SYSTEM DESIGNED TO PROMOTE A				
	LONG LASTING, STABLE, LOCALIZED AND CONTROLLED DRUG			D DRUG	
	RELEASE	227			
7.1.	Introduction	227			
7.2.	Methodology	230			
7.2.1.	Synthesis of Poly(L-lactic) acid membranes by				
	electrospinning and encapsulation of model drugs and				k
	polymer conju	gates	230		
7.2.2.	Synthesis of po	olymeric compo	site syst	ems: thin memb	oranes
	loaded with m	icroparticles	234		

7.2.3. Characterization of Poly(L-lactic) acid membranes

	and composite system	ns 238		
7.2.4.	Preliminary Biologic Ev	aluation thou	gh in vitro assays	241
7.3.	Results		244	
7.3.1.	Synthesis and characterization Poly (L-lactic) acid			
	membranes and comp	osite systems	244	
7.3.2.	Preliminary Biologic Evaluation though in vitro assays 292			292
7.4.	Discussion		302	
7.4.1.	Synthesis and characterization Poly (L-lactic) acid			
	membranes and comp	oosite systems	302	
7.4.2.	In vitro studies		309	
7.5.	Conclusions		311	
8.	GENERAL DISCUSSION		315	
9.	FINAL CONCLUSIONS		324	
REFERENCES		329		
ABBREVIATION LIST		359		
TABLE LIST		365		
FIGURE LIST		368		