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ABSTRACT

Motivation: The widespread adoption of RNA-seq to quantitatively

measure gene expression has increased the scope of sequencing

experimental designs to include time-course experiments. maSigPro

is an R package specifically suited for the analysis of time-course gene

expression data, which was developed originally for microarrays and

hence was limited in its application to count data.

Results: We have updated maSigPro to support RNA-seq time series

analysis by introducing generalized linear models in the algorithm to

support the modeling of count data while maintaining the traditional

functionalities of the package. We show a good performance of the

maSigPro-GLM method in several simulated time-course scenarios

and in a real experimental dataset.

Availability and implementation: The package is freely available

under the LGPL license from the Bioconductor Web site (http://

bioconductor.org).

Contact: mj.nueda@ua.es or aconesa@cipf.es
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1 INTRODUCTION

The use of RNA-seq for transcriptome profiling as a replacement

for microarrays has triggered the development of statistical

methods to properly deal with the properties of these types of
count-based data. RNA-seq measurement of gene expression is

based on the number of reads mapped to transcripts, which re-

sults in discrete quantities and left-skewed distributions. In con-

trast, microarray signals are scanned fluorescence intensities, and

this translates into continuous and nearly normal expression

data. Although normality was typically assumed and linear

models (LMs) were applied to model microarray experiments,

other distributions such as Poisson and Negative Binomial

(NB) capture better the nature of count data. Hence, methods

such as edgeR (Robinson et al., 2010) and DEseq (Anders and

Huber, 2010) updated microarray analysis to RNA-seq by incor-

porating appropriate statistical models, whereas other methodol-

ogies were developed specifically for the new technology

(Roberts and Pachter, 2013; Tarazona et al., 2011; Trapnell
et al., 2012). Moreover, sequencing introduces specific biases to

gene expression quantitation and, therefore, dedicated normal-

ization methods exist for RNA-seq to correct for sequencing

depth, transcript length (Mortazavi et al., 2008), GC content

(Risso et al., 2011) and non-uniform transcript distributions

(Bullard et al., 2010; Robinson and Oshlack, 2010).
The first RNA-seq experiments were still constrained by the

relatively high costs of sequencing in comparison with micro-

arrays, which restricted experimental designs to case–control stu-

dies with low replication. As a consequence, the novel statistical

methods mostly addressed this analysis scenario. As the technol-

ogy became more affordable, other types of designs involving

more samples, such as time-course experiments, started to

appear. In a time-course study, the dynamics of gene expression

are evaluated at different time points after induction by a par-

ticular treatment or in relation to development. Statistical ana-

lysis of time-course data implies the identification of genes that

change their expression along time and/or follow a specific ex-

pression pattern. maSigPro is an R package designed for the

analysis of transcriptomics time courses (Conesa et al., 2006).

maSigPro models gene expression by polynomial regression

and identifies expression changes along one or across several

time series by introducing dummy variables in the model. The

method progresses in two regression steps: the first one selects

genes with non-flat profiles and the second step creates best

regression models for each gene to identify specific time or

series-associated changes. The package includes several clustering

algorithms and visualization tools to group and display genes

with the same expression patterns. maSigPro has been applied

in many different biological settings, such as biomedicine

(Hoogerwerf et al., 2008), biotechnology (Levin et al., 2007)

and plant research (Terol et al., 2007) to cite some, and also

has been implemented in several web services (Medina et al.,

2010; Nueda et al., 2010) and used in combination with multi-

variate statistics to analyze multifactorial designs (Nueda et al.,

2009) or as batch filtering technique (Nueda et al., 2012).

maSigPro was developed to treat continuous microarray inten-

sities and applies LMs to model gene expression. In this article,

we describe the update of maSigPro to deal with RNA-seq count

data by incorporating generalized linear models (GLMs;

Dobson, 2002; McCullagh and Nelder, 1989) into the package

and allowing a more flexible choice in the reference family dis-

tribution. We demonstrate the appropriateness of this adaptation

using simulated and real data and compare the method with

edgeR that also accepts time-course designs.*To whom correspondence should be addressed.
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2 METHODS

2.1 Model

Considering the case of a time-course experiment with T time points and

S experimental groups or series (e.g. different treatments, strains, tissues),

maSigPro uses polynomial regression to model the gene expression value

yi at condition i and time ti, and defines S – 1 binary variables (zs) to

distinguish between each experimental group and a reference group

(Conesa et al., 2006). For the sake of simplicity and illustration of the

model, we consider here a quadratic regression and an experiment with

two series. The polynomial model of yi is

yi=�0+�1ti+�2t
2
i +�3z1i+�4tiz1i+�5t

2
i z1i+"i

maSigPro originally supported only LMs, where the response variable is

modeled as a normal distribution. GLMs are a generalization of classical

LMs, which can accommodate a wider class of distributions named as

exponential family, providing great flexibility for modeling different types

of response variables. Normal, Poisson, Binomial, Gamma and NB are

examples of this family of distributions. These family classes have generic

definitions, which imply that a common maximum likelihood method for

estimating the parameters of the model can be applied to all of them.

Although explicit mathematical expressions can be found for estimators,

iterative numerical methods based on the Newton–Raphson are typically

used (Dobson, 2002; McCullagh and Nelder, 1989). In GLMs, hypothesis

testing and the goodness of fit of the model are based on the log-

likelihood ratio statistic, also denoted as deviance D:

D=2½lð�̂maxÞ � lð�̂Þ���2m�p

where lð�̂maxÞ is the maximized likelihood of a model with m, the max-

imum number of parameters that can be estimated, and lð�̂Þ denotes the

likelihood of the P-dimensional parameter �. The difference between the

deviance statistics of the model of interest, M1, and a model without

covariates, M0, is "=D0 �D1��
2
p, which can be used to evaluate the

significance of each gene fit. Within the GLMs definition, LMs are re-

covered when the normal distribution is followed.

To accommodate the GLMs, the existing p.vector() and T.fit() func-

tions of the maSigPro package that account, respectively, for first and

second regression steps of the method have been modified by replacing

the function lm() by glm(). A new argument, denoted counts, has been

added to select the type of modeling. The default setting is

counts=FALSE to keep the LMs and by setting counts=TRUE,

maSigPro will apply the GLMs option with NB distribution. NB is the

recommended family to use when dealing with RNA-seq as it allows

overdispersion of variance, which is related to the mean through the (�)

parameter:

Yi�NBð�i; �Þ; where EðYiÞ=�i and VarðYiÞ=�i+
�2
i

�

Theta (�) can be estimated using available software (for instance

edgeR, Robinson et al., 2010). When no estimation of � is possible, we

recommend to use the default value, �=10. Our experience indicates that

maSigPro results do not change much by using different values of �. The

package also includes the possibility of applying any other available ex-

ponential family through the additional argument family.

In the second step of maSigPro, the goodness of fit, R2, of each opti-

mized gene model is computed. This parameter is used for selecting genes

with clear expression trends. In LMs, R2 is defined from the residual sum

of squares, and in GLMs the goodness of fit is evaluated in terms of the

deviance: the percentage of deviance explained by the model. However,

for the sake of consistency with older maSigPro versions, the package

maintains the notation R2 for both LMs and GLMs. The remaining

functions of the package stay unchanged.

Note that no explicit normalization procedure is implemented within

the maSigPro methodology, and hence, data should be appropriately

normalized beforehand. Results presented in this article have been com-

puted by using TMM normalization (Robinson and Oshlack, 2010).

2.2 The evaluation strategy

To evaluate the performance of the updated maSigPro to identify differ-

entially expressed genes (DEGs) in RNA-seq time-course data, we have

created different synthetic datasets in which we consider several possible

experimental designs. Each dataset has been analyzed with maSigPro-

LM, maSigPro-GLM and edgeR. Comparison with maSigPro-LM was

included to highlight the limitations of this modeling with count data

when the number of replicates is low, even after normalization.

Both maSigPro and edgeR methods are based on the GLMs but with a

different approach. The major difference between the maSigPro and

edgeR methods is that maSigPro is specialized in the estimation of

serial data, i.e. when the independent variable is quantitative such as

time. This is achieved by providing an easy way to define a polynomial

model for the data. Another important difference is that maSigPro fol-

lows a second stepwise regression that obtains the best model for each

gene and retains only significant coefficients in each model, whereas

edgeR applies the same model to each gene.

2.2.1 Simulated data Simulations have been created using NB distri-

butions with a parametrization based on the mean � and size �. In each

sample i, where the targeted total number of reads is N, and the relative

abundance of each gene g is pgi, the expected gene counts, �gi, can be

computed as

�gi=N� pgi

Note that, as gene counts are randomly drawn from a NB distribution,

the simulated count values of each gene will slightly vary among samples

and so will the total number of reads Ni of the sample i.

Simulated datasets were designed to contain genes that belong to one

of the K=4 gene expression level classes, which are defined by a fixed

reference value at time 1 (vk1) and a given size (nk, number of genes) in

each k level as indicated in Table 1.

To model time-associated gene expression changes we considered the

following linear expression:

vgi=vk1+bgvk1ti;
bg=0; if g is not DEG

bg 6¼ 0 if g is DEG
i=2; . . . ;T

8<
:

where 5% genes have bg values different from zero and are differentially

expressed. Furthermore, we modeled three different data scenarios by

assigning different values to the bg parameter to subsets of genes: (A)

In this scenario, all DEGs increase their expression linearly with bg=0.2;

(B) In this scenario, half of the DEGs increase bg=0.2 and half decrease

with bg=� 0:2, and we added, when needed, a positive value to vg1 to

avoid negative means; (C) Genes follow a strong upregulation in the

second time-point followed by decrease with bg=� 0:2.

Datasets were modeled either with one or two time series. In the two

series case, one series was modeled as described and the second was

modeled as a flat profile. For each scenario and series number, datasets

Table 1. Reference vk1 values for K=4 groups

Expression Reference value vk1 Number of genes nk Genes (%)

Low 5 10 000 50

Median 50 8000 40

High 500 1900 9.5

Very high 5000 100 0.5

20 000 100

2599
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were simulated with 1, 2, 3 or 5 replicates. Finally, genes were considered

to have constant length equal to 1 kb in all datasets and no length cor-

rection was applied in the data.

Following this simulation scheme, the relative proportion of counts of

gene g in sample i is

pgi=vgi=
X
g

ðvgiÞ

This approach provides the way to take into account not only the

expression level, but also the composition of the RNA population in

the sample, as gene proportions are computed a posteriori and are af-

fected by the gene expression changes modeled in each scenario.

2.2.2 Experimental data The maSigPro-GLM and compared meth-

ods were evaluated on a real dataset that describes the transcriptional

response of inmunocompromised Arabidopsis thaliana lines to the barley

powdery mildew fungus Blumeria graminis (Bgh) (Hacquard et al., 2013;

Maekawa et al., 2012). In this study, pen2 pad4 sag101 Arabidopsis

plants harboring (pps) or without (B12) the MLA1-HA construct were

challenged with either the Bgh isolate K1 expressing the cognate AVRA1

effector for MLA1 or the Bgh isolate A6 expressing other AVRA ef-

fectors. Three independent biological replicates per condition were har-

vested at 6, 12, 18, 24h post-inoculation. The experimental design of this

study has therefore 4 time points, 2 covariates with 2 levels each one:

MLA1 (pps or B12) and Bgh isolate (A6 or K1), 3 replicates and 6477

genes. Initial analysis of these data revealed little effect of the MLA1

construct covariate, which was then eliminated from the model for sim-

plicity. Therefore, in the maSigPro formulation, this experiment corres-

ponds to a replicated 4 time points course with two series (Bgh isolate

A6 or K1). Data are available at http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE43163.

3 RESULTS

3.1 Simulation studies

The simulation experiment contained 24 datasets obtained by

combining three secenarios (A, B and C), one or two time series

and one of the four replication levels. Datasets were created with

�=10, and 6 time points. Here, we show results from data with

20 000 genes. Simulations with a smaller dataset of 6000 genes

gave similar results.

One of the challenges in the development of the maSigPro-

GLM methodology was to establish an appropriate cutoff value

for the R2 parameter in the second regression step. We analyzed

False Discovery Rate [FDR : false positives (FP)/Selection] and

False Non-discovery Rate [FNR: false negatives (FN)/Non-

selected] for varying R2 values at fixed FDR=0.05 (Fig. 1).

We observed that as the number of replicates increase, FDR

and FNR drop and that the two series scenario is slightly

better than the one series case. In general, for R2=0.7 the

method achieves a good control of FDR with negligible FNR.

However, in designs with three replicates and two series, and

when five replicates are available, FDR is also controlled by

R2=0.5. Taking this result into account, we applied a

R2=0.7 cutoff value to obtain performance metrics in our simu-

lation study. Table 2 shows the number of selected genes, FP and

FN for the three methods at a FDR=0.05. Several conclusions

can be drawn from these results:

(1) Absence of replication is clearly insufficient for appropri-

ate time-course modeling. maSigPro-LM is unable to find

Table 2. Simulated experiments results with scenarios A, B and C for

maSigPro-LM, maSigPro-GLM and edgeR

(Scenario)

# Series

Rep maSigPro-LM maSigPro-GLM edgeR

Sel FP FN Sel FP FN Sel FP FN

(A)

1 Series 1 1 0 999 2210 1496 286

2 533 25 492 976 52 76 1135 135 0

3 589 5 416 975 2 27 1173 173 0

5 515 0 485 997 0 3 1170 170 0

2 Series 1 471 34 563 1969 972 3

2 981 5 24 1001 1 0 1267 267 0

3 985 1 16 1000 0 0 1278 278 0

5 995 0 5 1000 0 0 1219 219 0

(B)

1 Series 1 0 0 1000 1592 741 149

2 723 46 323 990 34 44 1158 158 0

3 750 2 252 978 1 23 1155 155 0

5 751 0 249 994 0 6 1136 136 0

2 Series 1 253 14 761 1351 411 60

2 672 4 332 951 1 50 1240 240 0

3 592 0 408 963 0 37 1225 225 0

5 538 0 462 978 0 22 1138 138 0

(C)

1 Series 1 0 0 1000 1427 764 337

2 284 14 730 972 37 65 1166 166 0

3 433 3 570 945 0 55 1125 125 0

5 357 0 643 963 0 37 1134 134 0

2 Series 1 222 12 790 1458 471 13

2 684 9 325 996 2 6 1284 284 0

3 378 0 322 999 0 1 1201 201 0

5 681 0 319 998 0 2 1209 209 0

Note: Number of replicates (Rep), number of selected genes (Sel), false positives

(FP) and false negatives (FN).
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Fig. 1. FDR and FNR for maSigPro-GLM at different levels of R2 with

1 and 2 series
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DEGs and maSigPro-GLM calls too many FP. edgeR is
not recommended for unreplicated data and, therefore, not

used in this case.

(2) In general, maSigPro-LM performs poorly on RNA-seq
data in all scenarios and conditions.

(3) Given two or more replicates, maSigPro-GLM succeeds in

controlling FDR 55%, whereas edgeR tends to give
moreFP, ranging between 11 and 20% false calls.

(4) FNR is properly controlled both by maSigPro-GLM and

edgeR. This last method has a zero false call rate in our
simulations, whereas maSigPro-GLM shows FNR51%.

Results were basically similar considering one or two series
and different expression patterns for DEGs.

3.2 Experimental study

We applied both edgeR and maSigPro-GLM to the A.thaliana
time-course data considering the two series defined by the Bgh

isolate. An R2 threshold of 0.5 was chosen for the second
maSigPro-GLM step, according to the results presented in

Figure 1. Genes with5100 reads in all samples were discarded,
resulting in a dataset containing 5838 genes. edgeR identified

2870 DEGs across the different time points, whereas
maSigPro-GLM selected 2158 DEGs (FDR=0.05). There

were 1629 genes in common between the two methods, 529 spe-
cifically found by maSigPro and 1241 identified only by edgeR.

Out of these 1241 edgeR exclusive DEGs, 1194 were identified as
significant in the first maSigPro but finally not selected in the

second regression step because their R250.5, while the remaining
47 genes were not preselected by maSigPro in the first step. To

better understand the gene expression patterns associated to
similarities and differences between the two methods, we ran-

domly selected three genes belonging to each of these sets
(Fig. 2). These examples suggested that genes selected by both

methodologies and exclusively by maSigPro (A and B) have
good regression models, clean expression trends and strong ex-

pression changes. Genes selected by edgeR and not preselected
by maSigPro (C) show little fold change and high variance, and

genes that edgeR calls significant but do not pass the second
regression step in maSigPro (D) used to display time-point-spe-

cific variances and expression differences.

4 DISCUSSION

In this work, we describe and justify the modifications intro-

duced in the maSigPro package to deal with RNA-seq data.
We have incorporated GLMs into the first and second regression

steps of the algorithm and add the parameter counts into the
p.vector() function to select the type of statistical modeling.

Setting counts=TRUE chooses the GLMs and applies the NB
distribution, whereas counts=FALSE selects the Linear Model

as previously. The remaining functions for defining the polyno-
mial model, selecting genes, clustering and visualization

remained unchanged, making maSigPro a unified package for
the analysis of both microarray and RNA-seq time-course data.
maSigPro applies GLMs to model RNA-seq as do other dedi-

cated statistical packages such as edgeR, included for

comparison in this study. The major difference between

maSigPro and edegR methods is that maSigPro is specialized

in parameter estimation of serial data, i.e. when the independent

variable is quantitative such as time. This is achieved by provid-

ing an easy way to define a polynomial model for the data that

have the flexibility to fit different time-course patterns. In con-

trast, edgeR treats time not as a continuous variable but as multi-

factor. Another important difference is that maSigPro follows a

second step that obtains the best model for each gene such that

only significant coefficients are retained in each model, whereas

edgeR applies the same model to each gene under the multifactor

consideration. This results in models with more variables that

might be prone to give false calls. Moreover, we apply in the

second step a filter on gene selection that takes into account the

R2 of the regression model, implying that only genes with a good

fit to the model will be selected. The consequences of the differ-

ent implementations are clear in the results of the simulation

study and the experimental data. Basically, we observed a

better control of FDRs in maSigPro and that genes selected by

maSigPro have not only significant models but also well-fitted

models. Finally, the maSigPro package also provides clustering

and visualization of significant genes.
One important aspect that we considered in our simulation

study was the number of replicates and the complexity of the

0
40

80
12

0

bgh04113

time

ex
pr

es
si

on
 v

al
ue

6 12 18 24

A

0
50

15
0

bghG005298000001001

time

ex
pr

es
si

on
 v

al
ue

6 12 18 24

10
0

40
0

bgh04997

time

ex
pr

es
si

on
 v

al
ue

6 12 18 24

A6
K1

20
0

50
0

80
0

bgh00414

time

ex
pr

es
si

on
 v

al
ue

6 12 18 24

A6
K1

B

0
20

0
40

0

bgh03734

time

ex
pr

es
si

on
 v

al
ue

6 12 18 24

0
40

80
12

0

bghG004983000003001

time

ex
pr

es
si

on
 v

al
ue

6 12 18 24

0
20

40
60

bgh02188

time

ex
pr

es
si

on
 v

al
ue

6 12 18 24

C

40
80

12
0

bgh00528

time

ex
pr

es
si

on
 v

al
ue

6 12 18 24

0
40

80

bgh00479

time

ex
pr

es
si

on
 v

al
ue

6 12 18 24

10
0

20
0

30
0

bgh05485

time

ex
pr

es
si

on
 v

al
ue

6 12 18 24

D

10
0

20
0

bgh01280

time

ex
pr

es
si

on
 v

al
ue

6 12 18 24

0
10

30

bgh00304

time

ex
pr

es
si

on
 v

al
ue

6 12 18 24

Fig. 2. Random examples from genes selected with (A) maSigPro and

edgeR, (B) maSigPro and not with edgeR, (C) with edgeR and not pre-

selected with maSigPro and (D) with edgeR and not with maSigPro be-

cause R250.5
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time-course experiment (one or two comparing series). Our re-
sults indicate that one replicate is clearly not sufficient for the
proper control of the FDRs. While initial RNA-seq took advan-
tage of the accuracy of the technology to avoid replication,

recent studies highlight the importance of appropriate replication
for a sound RNA-seq data analysis (Liu et al., 2014; Sims et al.,
2014; Tarazona et al., 2011). Within the parameter settings of the

simulation experiment, we show that maSigPro-GLMs controls
FDR and FN from two replicates and that the performance
improves as the number of replicates and series increase.

Related to this, it is also interesting to comment results of the
maSigPro-LM analysis on the synthetic data. While it might be
obvious that LMs are not appropriate to model count data, one

could speculate that after data normalization, discretization
would be removed and the normalized data could be treated as
continuous data. However, transformed data are not normally
distributed, and right asymmetry still holds. Although trans-

formed data do not necessarily conserve the probability distribu-
tion of the untransformed data, the GLMs fitting process mainly
depends on the assumed variance-to-mean relationship. Linear

transformations of the data do not change these relations and
link functions such as the logarithm are not exclusive for discrete
data. This becomes evident when looking into the maSigPro-LM

results on the simulated data: the linear model performs poorly
in most scenarios. However, the central limit theorem suggests
that models developed for normal data can be applied to non-
normal data if the available sample is large enough. We show

that maSigPro-LM can achieve good FDR control when five
replicates per condition are used in the two series scenario, al-
though still suffering from a significant rate of false-negative

calls. The versatility of the maSigPro package to choose the
LMs or GLMs with one simple argument option allows easy
adaptation of the methodology to the types of data and experi-

mental design.
Finally, although significance thresholds in maSigPro-GLM

maintain their statistical meaning, the goodness of fit, which is

used in the second step of maSigPro to select genes with well-
fitted models, is evaluated in GLMs in terms of the deviance: the
percentage of deviance explained by the model. We conducted
experiments with simulated data to understand how this param-

eter behaves in different experimental settings. Our results indi-
cated that similar to the recommended threshold in the LM
version of maSigPro, a cutoff value of 0.7 is valid in most scen-

arios. However, when data are abundant, i.e. triplicated meas-
urements and multiple series, this threshold could be lowered to
0.5. Indeed, this value was used in the analysis of the real

Arabidopsis dataset. The comparison with edgeR, which solely
selects genes on the basis of a significant P-value, showed that
the maSigPro filtering based on a R2 cutoff value resulted in
genes with consistent models. Genes that were significant with

both methods but discarded by maSigPro because of a R250.5
used to have outliers or highly variable measurements (Fig. 2).
In conclusion, we show that maSigPro-GLM is suitable for the

identification of DEGs from time-course RNA-seq data under a

wide range of experimental settings. The updated package suc-

cessfully controls both false-positive and false-negative detection

rates.
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