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DSIC, Universitat Politècnica de València, Camı́ de Vera s/n, 46022 València, Spain.
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Abstract

Identifying the balance between remembering and forgetting is the key to abstrac-
tion in the human brain and, therefore, the creation of memories and knowledge. We
present an incremental, lifelong view of knowledge acquisition which tries to improve
task after task by determining what to keep, consolidate and forget, overcoming the
stability-plasticity dilemma. Our framework can combine any rule-based inductive en-
gine (which learns new rules) with a deductive engine (which derives a coverage graph
for all rules) and integrates them into a lifelong learner. We rate rules by introducing
several metrics through the first adaptation, to our knowledge, of the Minimum Mes-
sage Length (MML) principle to a coverage graph, a hierarchical assessment structure
which handles evidence and rules in a unified way. The metrics are used to forget some
of the worst rules and also to consolidate those selected rules that are promoted to the
knowledge base. This mechanism is also mirrored by a demotion system. We evaluate
the framework with a series of tasks in a chess rule learning domain.

Keywords: Memory, forgetting, consolidation, knowledge acquisition, declarative
learning, MML, lifelong machine learning.

1 Introduction

Memory in artificial systems is usually understood as an encode-store-recall structure where
learned knowledge is placed, remaining static until recall. However, memory (as storage)
should be understood as an active cognitive component (Wood et al., 2011), where the
process of knowledge acquisition (automated process of abstracting knowledge from facts and
other knowledge) cannot be understood as a naive accumulation of what is being learned.
New knowledge must be checked to see whether it is redundant, irrelevant or inconsistent
with old one, and whether it may be built upon previously learned knowledge. We argue
that artificial intelligent systems should be developed for this purpose. This leads us to
the stability-plasticity dilemma (Carpenter and Grossberg, 1988). The basic idea is that
an adaptive cognitive system must be capable of learning new things (plasticity) without
losing previously learned concepts (stability). This has been a designing principle within the
perspective of neural computation over the last thirty years. Some of the proposed solutions
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include: (a) dual-memory systems simulating the presence of short and long-term memory
(French, 1997; Ans and Rousset, 1997), and (b) cognitive architectures such as the Adaptive
Resonance Theory (ART, Grossberg 2013) emulating how the brain processes information.
In both cases, those approaches can only incorporate new knowledge, without the ability of
re-organisation or forgetting.

From our point of view, “truly” cognitive systems that are able to acquire new knowl-
edge have to move towards more intelligent behaviours, thus being able to (a) support
incrementally knowledge acquisition without the need to have (one-shot) models discarded
and retrained repeatedly (which is not cost-effective), (b) integrate inductive and deduc-
tive reasoning algorithms for such a goal and guided by knowledge evaluation metrics (thus
having the knowledge integrated in the system rather than being an adjunct storage sys-
tem), and, finally, (c) focus on relevant knowledge (or discard what is not) by the use of
cognitive mechanisms that simplify the learning of new knowledge. These principles, being
the starting point for our knowledge acquisition approach, aim at generating adaptive be-
haviour in intelligent learning systems based on previously acquired knowledge. Following
these requirements, below we overview some prior work in the area of knowledge acquisition.

Over the last decades, there has been an extensive work on growing knowledge bases
from learned patterns and rules, in areas such as expert systems, machine learning, cognitive
science, nonmonotonic logics, information systems and inductive (logic) programming. For
instance, Lifelong Machine Learning (LML) (Thrun, 1996) is concerned with the persistent
and cumulative nature of learning, namely, to be capable of (a) retaining and using prior
knowledge, and (b) acquiring new knowledge over a series of prediction tasks. ELLA (Efficient
Lifelong Learning Algorithm, Eaton and Ruvolo 2013) and NELL (Never-Ending Language
Learner, Carlson et al. 2010) are two more recent approaches to LML, which are able to
integrate many capabilities. However, from these works it is not easy to export or derive
general principles to analyse a knowledge base and help in a general incremental knowledge
acquisition process. A more profound knowledge management takes place with concept drift
and theory revision (Rendell, 1995; Gama et al., 2014; Bragaglia and Ray, 2014), where
some rules are replaced by new rules that are consistent with new experience. The areas
of inductive logic programming (ILP) (Muggleton and De Raedt, 1994) or general inductive
programming (IP) (Kitzelmann, 2010) have seen several approaches for incremental (Ferri-
Ramı́rez et al., 2001) or cumulative systems (Henderson, 2014).

A crucial aspect relies on theory and knowledge evaluation. When the theory or hypoth-
esis is considered as a whole and separated from the evidence, we have many well-founded
proposals, such as the MML principle (Wallace and Boulton, 1968; Wallace, 2005) or the
similar (but posterior) MDL principle (Rissanen, 1999). However, for knowledge integration
and consolidation it is necessary to assess each part of the theory independently since dif-
ferent parts of the theory can have different degrees of validity, probability or reinforcement
(Hernández-Orallo, 2000; Hernández-Orallo and Garćıa-Varea, 2000). But even in this case,
there is still a separation between knowledge and evidence. It would be meaningful to fully
integrate knowledge and evidence into a hierarchical assessment structure (from specific facts
to more abstract rules). The perspective of a network or hierarchy of nodes that get support
from other nodes is more common in the area of link analysis in web graphs such as the
HITS algorithm (Kleinberg, 1999), PageRank (Brin and Page, 1998) or SALSA (Lempel and
Moran, 2000), or in infometrics.
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1.1 Forgetting

Knowledge acquisition and machine learning have much to learn from the study of human
cognition and behaviour (Raducanu and Vitri, 2008; Erbas et al., 2014; Hourdakis and Tra-
hanias, 2012; Leu et al., 2014). Cognitive factors, responsible for generating intelligent and
adaptive behaviour, need to receive full consideration in order to improve current AI systems
(not intelligent in human terms). In particular, there is a characteristic feature of intelligence
that is essential for knowledge development: forgetting. Remembering absolutely everything
prevents from having abstract thought (the process of generalisation). Forgetting can re-
fer to a complete and irreversible elimination of significant old knowledge while learning
new one; or it can denote that new learned knowledge is not always kept in the working
memory but abstractly encoded by identifying their relation to abstract concepts already
present in the knowledge base. This latter definition is the desired one: forgetting should
exist in knowledge bases and learning systems to avoid possible information overflow and
redundancy, and in order to preserve and strengthen important or frequently used rules and
remove (or forget) useless ones.

The ability to focus on what to discard what is not relevant is becoming more relevant
not only in cognitive science and neuroscience (Quiroga, 2012), but also in artificial intel-
ligence (e.g., reasoning, planning, decision making). Usually considered in biology to be a
combination of decay (to a lesser extent) and a proactive and retroactive interference (to a
major extent) (Wixted, 2004), forgetting has been frequently used in AI systems because of
performance and space constraints (Nuxoll et al., 2010; Alnajjar et al., 2009). Also known as
variable elimination, forgetting has been widely investigated in the context of classical logic
(Lin and Reiter, 1994; Lang and Liberatore, 2003; Lang and Marquis, 2010) and developed
under the notion of logical equivalence. A similar approach but for reasoning from inconsis-
tent propositional bases is proposed in (Lang and Marquis, 2010). Recently, the concept of
forgetting has been widespread in other non-classical logic systems such as in logic programs
(Zhang and Foo, 2006; Eiter and Wang, 2008; Wang et al., 2012) where a semantic forgetting
is used developing a number of criteria for forgetting atoms; in modal logic (Zhang and Zhou,
2009; Su et al., 2009; Liu and Wen, 2011), in description logics (DLs) (Wang et al., 2010)
and in planning (Erdem and Ferraris, 2007). Note that the forgetting mechanisms used in
the previous approaches are based either on decay or relevance-related measures rather than
interference. This is due to the symbolic nature for representing the information and the
encapsulation property of symbols, which makes a scalar comparison (i.e. determination of
the degree of overlap between discrete components) difficult (Wood et al., 2011). We argue
that this could be overcome by means of hierarchical assessment structures of knowledge (as
commented before) where relations between different individuals (pieces of knowledge) may
be better understood and measured.

Closely related with the above concept we found memory consolidation, namely, the neu-
rological process of converting information from short-term memory into long-term memory.
Some studies about episodic memory in humans (Shastri, 2001; Dere et al., 2008) claim that
memory traces in the hippocampus are not permanent and are occasionally transferred to
neocortical areas in the brain through a consolidation processes. Recent cognitive models of
memory have given great importance to consolidation procedures (Della Sala, 2010).
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1.2 Research objectives

The development of a new learning system for knowledge acquisition that is meant to be
cumulative is not an easy task. In fact, this research started when developing our system
gErl (Mart́ınez-Plumed et al., 2013, 2014). We were looking on a proper foundation for
detailed knowledge assessment metrics and criteria for forgetting. The need of making general
principles that were available for our system but also for any other system motivated the
current work. In this work we take a most general approach by considering that we start
with an off-the-shelf inductive engine (e.g., a rule learning algorithm, an ILP system or an
IP system) and an off-the-shelf deductive engine (e.g., a coverage checker, an automated
deduction system or a declarative programming language) and, over them, we construct a
lifelong knowledge acquisition system where the taxonomy of memory follows the division
imposed on human memory which separates processes for short and long-term recall (Hebb,
1949). For this purpose, several issues have to be addressed:

1. The inductive engine can generate many possible hypotheses and patterns. Once
brought to the working memory (short-term memory system) we require metrics to
evaluate how these hypotheses behave and how they are related to previous knowl-
edge. Also, at any time new evidence can be added to the working space.

2. As working memory and computational time are limited, we need a forgetting criterion
to discard some rules which are considered irrelevant in terms of informativeness. For-
getting should, therefore, follow a proactive interference principle (rather than decay
or relevance) where new information may be more likely to be forgotten because of
already existing information covering or overlapping the former.

3. The deductive engine checks the coverage of each hypothesis independently, using the
background or consolidated knowledge as auxiliary rules, but not other working rules.
As a result, only when new knowledge is consolidated (long-term memory system) we
can use it for new problems or for more difficult examples of the same problem. This
means that deduction is “modulo the background knowledge”.

4. The promotion of rules into consolidated knowledge must avoid unnecessarily large
knowledge bases and the consolidation of rules that are useless, too preliminary or
inconsistent. That is, rules must be promoted and demoted to keep a powerful, but
still manageable knowledge base.

The idea of coverage graph is used as the basis for structuring knowledge (and, thus, their
relations) and is delegated to the deductive engine. The generation of new rules is delegated
to the inductive engine. The crucial part is the definition of appropriate metrics to guide the
way knowledge develops. For this purpose, the MML principle is used as a sound theoretical
ground for the metrics. Note that the use of both linking structures with complexity and
compression metrics helps determine the degree of overlap between individuals. Therefore,
the ability to remember (consolidation) can be disrupted by what has been previously learned
(existing information).

The following section introduces the notion of coverage graph, our setting for a knowledge
base, over which we introduce an adaptation of the MML principle and related metrics in

4



section 3. Section 4 deals with knowledge structuring, how rules are forgotten, promoted and
demoted. Section 5 includes several experiments that illustrate how knowledge consolidation
and forgetting works. Finally, section 6 closes the paper with the contributions and some
future work.

2 Coverage graph

We consider that ‘rules’ (expressions that define relations or functions in a declarative way)
are used for representing examples, hypotheses and background knowledge. Rules are de-
noted by lower case Greek letters where class(ρ) = c, c ∈ C and C is the set of classes, such
as {false, true}. The set of all possible rules is denoted by R, where W ⊂ R is the working
space or memory, and K ⊂ R is the background or consolidated knowledge base.

Rules are presented as vertexes or nodes V (as determined by the deductive engine) in a
directed acyclic graph G(V,A) we call coverage graph (which is the DAG representation of a
specific working space) because the directed edges A represent the coverage relation between
the different rules. A rule ρa is covered by another rule ρb if (K ∪ ρb) |= ρa. The precise
understanding of the semantic consequence operator |= will depend on the rule representation
language used and the deductive engine. Hence, given an edge a = (µ, ν) (or µ→ ν), we say
that ν is directly covered by µ using K1. The set of ancestors and successors of a node ν are
defined as anc(ν) = {µ|µ→ ν} and suc(µ) = {ν|µ→ ν} (respectively). Also, we distinguish
two subsets of nodes: leaves, nodes without successors (|suc(ν)| = 0), where leavesc denotes
the set of leaves of class c; and roots, nodes without ancestors (|anc(ν)| = 0).

Figure 1: Coverage Graph of the family relations problem. Green and red nodes refer to positive and
negative examples respectively. The graph shows rule IDs according to Table 1.

Figure 1 shows an example of Coverage Graph of a well-known ILP problem (Muggleton
and De Raedt, 1994): the family relationship (rules in Table 1). In this problem, the task
is to define the target relation daughter(X, Y ), which states that person X is daughter of
person Y . W consists of three positive examples (rules 1, 2 and 5), two negative ones (rules
3 and 4), and seven selected rules that try to generalise and solve the problem (Table 1
right), whereas K is composed of the relations female and parent (Table 1 left). Note that
the rules in K have not been included in the graph for clarity, although they belong to the
initial “consolidated knowledge”.

1For simplicity, the coverage graphs do not include the edges for the transitive closure of the covering
relation, i.e., if a node µ covers nodes ν and γ, but ν also covers γ, only the edges µ → ν and ν → γ are
included in the graph.
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Table 1: Left: Background Knowledge for the family relations problem. Right: Rules of this problem in
Prolog notation.

Background Knowledge Rules
ID Rule ID Rule
k1 parent(ann, mary). 1 daughter(mary,ann).
k2 parent(ann, tom). 2 daughter(eve,tom).
k3 parent(tom, eve). 3 daughter(tom,ann).
k4 parent(tom, ian). 4 daughter(eve,ann).
k5 female(ann). 5 daughter(cris,tom).
k6 female(mary). 100 daughter(X,Y):- female(Y),parent(Y,mary).
k7 female(eve). 59 daughter(eve,tom):- female(eve),parent(tom,eve).

20 daughter(eve,tom):- female(eve).
35 daughter(eve,Y):- female(eve).
73 daughter(X,tom):- female(X),parent(tom,X).
110 daughter(X,Y):- female(X),parent(Y,X).
138 daughter(V,W):- female(X),parent(Y,Z).

3 Basic metrics for acquired knowledge assessment

In order to select and arrange the set of rules in the working space, various measures of
usefulness, relevance and consistency have to be derived from the coverage graph. Based on
the idea that the relevance or usefulness of a rule can be stated by the relationship between
its own complexity and the complexity of the rules it covers, a general criterion such as the
Minimum Message Length (Wallace and Boulton, 1968) (MML) can be used as a starting
criterion from which to derive new metrics.

3.1 Minimum Message Length

The relationship between complexity, inference and compression underlies the Minimum
Message Length (MML) principle. MML is one of the most popular selection criterion
in inductive inference and provides an interpretation of the Occam’s Razor principle: the
model generating the shortest overall message is most likely. For a formal justification and its
relation to Kolmogorov complexity and the related MDL principle, see Li and Vitányi (2008);
Wallace and Dowe (1999); Wallace (2005). Using Shannon’s information theory, MML re-
states the length of the message as a probability in a Bayesian interpretation (Wallace and
Boulton (1968)) asserting that the best conclusion to draw from data is the theory with the
highest posterior probability. We quantify this immediately below.

Given a hypothesis H and an observed learning problem E (evidence), we can express
the posterior probability P (H|E) by the application of Bayes’s Theorem as:

P (H|E) =
P (H) · P (E|H)

P (E)
(1)

where P (H) is the prior probability of model H, P (E|H) is the likelihood, and P (E) is
the probability of evidence E. The information-theoretic interpretation of MML is that
a given evidence E of probability P (E) can be coded by a message of length L(E) =
−log2P (E) (Shannon, 1948). Therefore, taking the negative logarithm of the expression
1 and according to the MML philosophy, the length of a hypothesis H given a fixed evidence
E, L(H|E), is defined as the sum of three simple heuristics: a complexity-based heuristic
which measures the complexity of H (L(H)), a coverage heuristic which measures how much
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extra information is necessary to express the evidence given the hypothesis H (L(E|H)) and
the length of the evidence (L(E)) which equal for all competing hypotheses:

L(H|E) = L(H) + L(E|H)− L(E) (2)

By minimising equation 2 we maximise the posterior probability, which means searching for
the model with the shortest message.

Apart from its connection with Kolmogorov complexity and Solomonoff induction (Li
and Vitányi, 2008), which gives additional support for its use, the MML principle (and the
similar MDL principle) has been successfully applied in many areas of machine learning,
AI and cognitive science. However, to our knowledge, the MML principle has always been
applied to select between hypotheses w.r.t. some given evidence. In our case, we have a
coverage graph where rules cover other rules, so they become H and E at the same time.
With this in mind , the MML principle can be adapted to be hierarchically applied: instead
of measuring the length of a hypothesis H given fixed evidence E, we want to measure the
length of each rule ρ in W with respect to the rest of rules in W (which includes examples
and hypotheses) because ρ can model not only examples, but also other rules. Therefore,
L(ρ|W ) is defined as the sum of the length of ρ (L(ρ)), and the length necessary to express
the rules in {W − ρ} not modelled by ρ (L(W |ρ)), minus the length of the total rules in W
(L(W )). Formally:

L(ρ|W ) = L(ρ) + L(W |ρ)− L(W ) (3)

Apparently, it just seems a notational change wrt. equation 2. This is only true for the first
term, which is estimated in the same way as the original MML principle.

The term L(ρ) can be defined in different ways depending on the rule representation
language. For instance, if we are using logical or functional rules (as in the family example),
we could use the following approximation. Given Σ a set of mΣ functor symbols of arity ≥ 0
(functions or constants), and X a set of mX variable symbols, we could define the length of
a rule ρ containing nΣ functors and nX variables as (note that we promote variables over
functors):

L(ρ) , mΣ log2(nΣ + 1) +
mX
2

log2(nX + 1) (4)

Table 2 (columns L(ρ) and class) shows the length in bits and the class for the rules in the
graph in Figure 1.

3.2 MML goes hierarchical: Support

Following with equation 3, we are going to reunderstand the terms L(W |ρ) and L(W ) to be
adapted to coverage graphs and multiclass settings. Roughly speaking, these terms capture
the “net profit” of the rules both in terms of support or coverage. More formally, we define
the support of a rule ρ ∈ W as:

S(ρ,W ) , L(ρ)− L(ρ|W ) = L(W )− L(W |ρ) (5)
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where L(W ) − L(W |ρ) represents the coverage of a rule ρ expressed in bits, that is, the
length of all the rules in W minus the length of the rules not covered by ρ. Therefore, the
support of a rule ρ represents the length of the rules it covers:

S(ρ,W ) =
∑
ν:ρ|=ν

L(ν) (6)

leading to a formulation of equation 3 in terms of support:

L(ρ|W ) = −S(ρ,W ) + L(ρ) (7)

which establishes that maximising S(ρ,W ) and minimising L(ρ) reduces L(ρ|W ), which
means searching for the rule ρ that covers the maximum number of rules and has the lowest
length.

The following step adapts equation 7 to be used in coverage graphs taking into account
that the edges for the transitive closure of the coverage relation are not explicitly included.

In order to consider the upwards propagation, only the leaves will have an initial support
value which is equal to its length in bits, and the rest of nodes will distribute it recursively
by propagating this support. Thus, the new support (S ′(ρ,W )) adapted to work on coverage
graphs is defined as:

S ′(ρ,W ) ,

L(ρ) if ρ ∈ leaves∑
ν∈suc(ρ)

S ′(ν,W ) otherwise (8)

In order to avoid the scenario where the less grounded (upper) nodes get higher and
higher support values, the support measure is required to satisfy a conservative condition.
This property is somehow related to the law of conservation of energy, implying that at any
node in a coverage graph, the sum of the total support flowing into that node is equal to the
sum of the total support flowing out of that node.

Now, to make S ′ (equation 8) conservative we need to divide the support coming from
the outcoming of a specific node ν by |anc(ν)| in order to equally distribute the support of
ν between all of its ancestors.

Therefore, the new formula used to calculate the support of a rule (Ṡ(ρ,W )) is defined
as:

Ṡ(ρ,W ) ,

L(ρ) if ρ ∈ leaves∑
ν∈suc(ρ)

Ṡ(ν,W )
|anc(ν)| otherwise (9)

and re-formulating equation 7 in terms of this conservative support:

L̇(ρ|W ) = −Ṡ(ρ,W ) + L(ρ) (10)

Equation 9 now accomplishes the mandatory conservative condition that the support of a
node (which depends on its successors) has to be always entirely allocated in its ancestors
together with the support inherited from other covered nodes.
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This implies (but not vice versa) that the total sum of the support in the leaves in the
coverage graph is equal to the total sum of the support at the roots :∑

µ∈leaves

Ṡ(µ,W ) =
∑

ν∈roots

Ṡ(ν,W ) (11)

For each leaf in the coverage graph we have n different paths whereby the support flows
upwards to root nodes. Whenever a path is forked (an ancestor is found), the support
is always divided by the number of the outcoming paths, having the ancestors an equally
part of the support and thus having the roots a proportion of the original support of the
leaves transitively covered by them. Therefore, if we assume that the total support at the
roots is different from the total support at the leaves, it means that an external transfer of
support (which comes from or goes to other sources) has happened. However, accordingly
to equation 9, this is not possible and, therefore, the total sum of the support at the roots
always remains constant and equal to the total support at the leaf nodes (see Figure 2).

Figure 2: Graphical representation of the flow of the conservative support (by using equation 9) in a
coverage graph: the support of each leaf node is always allocated in the roots.

Finally, we need to take into account that, since the working space W can accommodate
examples of different classes which have to be handled equally (e.g., positive and negative
classes as in the family problem in Table 1), we need our metric to distinguish between them.
Hence, there are as many support values for each node as many different classes there are in
the working space, each one holding the conservative property and formally defined as:

Ṡc(ρ,W ) ,

L(ρ), if ρ ∈ leavesc∑
ν∈suc(ρ)

Ṡc(ν,W )
|anc(ν)| otherwise (12)

with equation 10 being defined for classes as follow:

−L̇c(ρ|W ) = Ṡc(ρ,W )− L(ρ) (13)

The value of L̇c is interpreted as the hierarchical version of the MML principle, with the sign
change now −L̇c the higher the better. Note that, as a leaf (ground example) does not cover
any other rule, for any ρ ∈ leavesc it holds −L̇c(ρ|W ) = 0 (because Ṡc(ρ,W ) = L(ρ)) and
−L̇c′(ρ|W ) = −L(ρ),∀c′ ∈ C, c′ 6= c (because Ṡc′(ρ,W ) = 0 since ρ has no successors).
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Following with the family example, Table 2 (columns Ṡ+, Ṡ−, −L̇+ and −L̇− ) shows,
respectively, the support and the negative form of L(ρ|W ) per class (positive and negative)
of the rules in the graph in Figure 1.

3.3 Optimality

By using the support (equation 12) as the sole criterion to rank the rules in W is useful
provided there are only rules belonging to one class. However, when there are more than one
class in W , we need to consider the purity or confidence of the rules. In the same spirit of
the MML principle, we define the optimality as the difference between the cost of coding a
rule following equation 13 for a specific class and the cost of coding the exceptions, i.e., the
support of the rules covered that belong to the other classes. We use a factor β indicating
the relevance of rules being as pure as possible. Formally:

optc(ρ,W ) , −β · L̇c(ρ|W )− (1− β) ·
∑
c′∈C
c′ 6=c

Ṡc′(ρ,W ) (14)

leading to a generic optimality of a rule as:

opt(ρ,W ) , max
c∈C

(optc(ρ,W )) (15)

Following with the family example, Table 2 (columns opt+ and opt−) shows the optimality
values per class (the generic optimality in bold) for the rules in the graph of Figure 1 using
β = 0.5. According to these values, rule 110 is the most significant rule, as it can be easily
viewed in the coverage graph because it covers all the positive examples and no negative
one. Notice that the examples (rule IDs from 1 to 5) have zero values for the optimality
for the class they belong to because their support is equal to their length (equation 12) and
no exceptions are covered. The intuitive idea behind is that the optimality of the examples
should be the baseline level to ensure the usefulness of the rest of rules, i.e., those rules
with a generic optimality value less than zero mean that they are not worth keeping in the
working space (are less useful than the examples), while those rules with an optimality value
greater than 0 mean that, at least, they are more significant than a single example.

4 Structuring knowledge: forgetting, promotion and

demotion

In our setting, rules are repeatedly generated by the inductive engine and added to the
working space W . In order to prevent the possible never-ending growth of W , we need some
mechanisms to discard those rules that are not useful, are inconsistent or do not get enough
support.

4.1 Forgetting mechanism

The optimality of a rule ρ is a core metric to determine its usefulness, but it is also important
to see whether ρ could be considered superfluous because it is covered (transitive or directly)
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Table 2: Metrics derived from the coverage graph (Figure 1) of the rules on the right side of Table 1.
The columns represent (from left to right) for each rule: its length, class, support, −L̇(ρ|W ) (equation 13),
Optimality (where bold values indicate the generic optimality as for equation 15) and permanence. By
considering the support values, we can only establish a ranking per classes. However, ranking the rules by
optimality, we can decide that the best rule is 110. Furthermore, given the permanence values, we see that
rule number 59 is redundant (Figure 1) because it is covered by a more significant rule (with ID 110), and
it has the lowest value of permanence.

ID L(ρ) class Ṡ+ Ṡ− −L̇+ −L̇− opt+ opt− perm

1 17.844 + 17.844 0.0 0.0 -17.844 0.0 -17.844 -12.863
2 17.844 + 17.844 0.0 0.0 -17.844 0.0 -17.844 -12.863
3 17.844 − 0.0 17.844 -17.844 0.0 -17.844 0.0 -2.933
4 17.844 − 0.0 17.844 -17.844 0.0 -17.844 0.0 -2.933
5 17.844 + 17.844 0.0 0.0 0.0 -17.844 -12.863

100 11.977 8.922 26.766 -3.0549 14.788 -14.91 2.933 2.933
59 18.791 8.922 0.0 -11.114 -20.036 -5.557 -14.479 -14.479
20 11.591 8.922 0.0 -2.668 -11.591 -1.334 -10.256 -1.334
35 9.284 8.922 8.922 -0.362 -0.362 -4.642 -4.642 -4.642
73 13.114 26.766 0.0 13.651 -13.114 6.825 -19.939 -6.037

110 9.962 35.688 0.0 25.726 -9.962 12.863 -22.825 10.173
138 12.462 44.61 26.766 32.147 14.303 2.69 -15.153 2.69

by another rule of higher optimality. If it is the case, ρ is mostly redundant and it could be
discarded safely. This idea leads to the following definitions for the permanence of a rule:

permc(ρ,W ) , optc(ρ)−max(0, max
ν:ν|=ρ

optc(ν)) (16)

and its generic permanence:

perm(ρ,W ) , max
c∈C

(permc(ρ,W )) (17)

The lower the value of permanence a rule has, the higher the odds it has to be forgotten.
Following with the family example, Table 2 (column perm) shows the permanence values per
each rule. We see that rule number 59 is the rule with lower permanence and, thus, candidate
to be forgotten: it is redundant (see Figure 1) because is covered by a more significant rule
(id 110).

When we perform a forgetting step, the coverage graph is affected and coverages are also
affected. In order to keep as much information about the past support, each rule is provided
with a trace of its old support. In cognitive systems this is associated to notions such as the
preservation of belief and trust even if we forget the particular cases that gave support to a
given statement. Thus, the forgetting mechanism works as follows:

1. If a non-leaf node is selected to be forgotten, the support of its successors has to be
re-distributed among their ancestors and the ancestors of the forgotten node.

2. In case there is a forgetting step that removes a leaf node, its support has to be equally
distributed among the rules that cover it which inherit it as their “residual” support
value associated to each class c (resc).

Hence, the equation 12 is modified to include the residual:

S̊c(ρ|W ) ,

L(ρ) if ρ ∈ leavesc
resc +

∑
ν∈suc(ρ)

S̊c(ν,W )
|anc(ν)| otherwise (18)
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Figure 3: Forgetting mechanism performed over a complete branch. Steps 1 and 2 show how the support
from the forgotten nodes (those which blurred colours and marked with a red cross) is distributed (pointing-
up arrows) among the outcoming nodes increasing their resc value. Step 3 shows that when the last forgetting
step removes a node without ancestor nor successors and a non-zero resc, this value cannot be distributed
and, therefore, is lost. Therefore, the conservative property over the support measure occurs in all steps,
but the initial amount of support at step = 0 (

∑
µ∈leaves S̊(µ,W ) = L(a)) has been reduced by half at the

step = 3 (
∑
µ∈leaves S̊(µ,W ) = L(a)

2 ).

where resc is initially set as 0. For each forgetting step, the support of forgotten nodes is
distributed among their outcoming nodes increasing their resc value, but if the last forgetting
step removes a node without ancestor nor successors and a non-zero resc, this value cannot
be further distributed and, then, it is lost. This decrements the total support of the graph;
although the support will remain conservative, the total amount will be lower than the total
support of the coverage graph before the forgetting steps. Consequently, in the end some
rules may have an under-estimated support value in terms of how many rules (of different
classes) they cover (see Figure 3)2.

4.2 Consolidated knowledge: promotion and demotion

Finally, some of the rules with good indicators in the working space have to be eventually
promoted to consolidated knowledge (or belief). This has to be a careful process, as the
consolidated knowledge will be used by the deductive engine to calculate coverage. This
means that an inconsistent rule that is promoted to the consolidated knowledge may have
important consequences on the behaviour of the system.

The promotion function can be tuned for the application, but a general choice is to use
a threshold θp on the optimality.

When a rule is promoted to consolidated knowledge K, it cannot be target of the forget-
ting mechanism and, hence, be forgotten. It may happen that this rule can be eventually
removed from the consolidated knowledge. Therefore, the promotion system is mirrored by a
demotion system, with the use of another threshold θd. The original background knowledge
(K0) cannot be demoted (and forgotten).

In the family example (Table 1) in case we would establish θp equal to the average
optimality of all the rules in the working space, all the rules that exceed this average value
will be consolidated to the background knowledge base (rules 110 and 73).

2More details can be found in (Mart́ınez-Plumed et al., 2015)[Figure 5 and Table 3] through nine consec-
utive forgetting steps with the family example.
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5 Experiments

We claim that our approach is able to address the Stability-Plasticity dilemma (mentioned in
section 1) in a lifelong or incremental learning process. For this purpose, we have conducted
an experimental evaluation to explore the following questions: (a) is it possible to gradually
generate a large repository of consolidated knowledge assessing the usefulness of the rules?
(b) is our approach able to forget or revise the existing knowledge in order to generate a
rich and reusable knowledge base? and (c) how are the process and the resulting knowledge
structure understood in terms of cognitive systems that must acquire and develop knowledge
incrementally? We want to illustrate these features in one single domain. The ultimate goal
of these experiments is to see whether the framework is general enough to work with off-the-
shelf inductive and deductive engines, to better understand how the metrics and procedures
work, and finding whether they may require some tuning or improvement to the framework
before addressing other problems.

5.1 Methodology

We will focus on learning a model of legal moves of different pieces of chess from a set of legal
and illegal move examples (extracted from (Muggleton et al., 1989)). In our framework, the
legal moves are the positive examples and the illegal moves the negative ones (so we have
two classes). Each example representing a move is denoted by a triple from the domain
Piece × Pos × Pos, where the second and third components represent, respectively, the
piece’s initial position and its destination on a chessboard. Positions are represented by a
tuple from the domain File × Rank where files (a-h) stand for columns and ranks (1-8)
stand for rows. For instance, Figure 4 illustrates all the possible moves of a knight from a
specific initial position (k) to several other positions (k′). We will use a Prolog notation (as
in the example in the previous section). The only background predicate used is the absolute
difference, diff(X,Y), that calculates the distance between X and Y , where both X and Y
can be ranks or files (see Table 3).

8         

7   k’  k’    

6  k’    k’   

5    k     

4  k’    k’   

3   k’  k’    

2         

1         

 a b c d e f g h 

 Figure 4: Possible moves of the knight from position (d,5). The particular legal move from k to k′ will be
represented as move(knight,pos(d,5),pos(e,3)).

The challenge we would like to face is knowledge acquisition in a progressive way from
examples provided incrementally. A random set of chess moves from all chess pieces in the
game except the pawn is given. This includes 28 positive and 12 negative examples. We also
consider that an inductive engine (in our case the ILP system Progol (Muggleton, 1995))
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Table 3: Background knowledge for the chess problem.

ID ρ ID ρ
k1 project(a,1).

k11
rdiff(Rank1,Rank2,Diff):-
rank(Rank1), rank(Rank2),
Diff1 is Rank1-Rank2, abs(Diff1,Diff).

k2 project(b,2).
k3 project(c,3).
k4 project(d,4).
k5 project(e,5).
k6 project(f,6).

k12

fdiff(File1,File2,Diff) :-
file(File1),file(File2),
project(File1,Rank1),
project(File2,Rank2),
Diff1 is Rank1-Rank2, abs(Diff1,Diff).

k7 project(g,7).
k8 project(h,8).
k9 abs(X,X) :- X>=0.
k10 abs(X,Y) :-,X<0, Y is -X.

is generating rules during the whole process (60 in total), which arrive to the system in a
random order. A geometric distribution determines how many examples and rules are given
for each step of the system: the probability that n examples (and similarly for rules) are
given is P (X = n) = (1−p)n−1 ·p where n is 1, 2, 3, . . . and p is the probability of success (we
set it to 0.5). In order to better mimic a situation where the inductive engine can produce
rules it has already generated, we use this distribution with replacement. Similarly, we have
considered replacement for the examples. We have set the consolidation criterion with a
threshold of optimality greater than the average of the optimality value of the rules in W
(provided that it is above the average optimality of the evidence). Furthermore, since we
want the consolidated knowledge to represent legal chess moves, we have set the β parameter
equal to 0.1 (equation 14) for penalising those rules that are not pure.

5.2 Consolidation without forgetting

In a first experiment we try to show what would happen without applying the forgetting
mechanism and check whether the MML-based measures work successfully for knowledge
acquisition. Figure 5 shows the evolution of the learning process during 500 steps. As no
rules are forgotten, the rule population (dashed brown line) reaches its maximum value (40
examples and 60 rules) and it stagnates ignoring any new evidence which arrives to the
system (because they are already placed in W ) from step 180 onwards. In this case we have
assumed that all the evidence of the chess problem can be allocated in W , however it could
be the case that all knowledge of a problem does not fit into W (due memory restrictions)
thus collapsing with no improvement. The same applies to both the average optimality of
all rules (dashed blue line) and the consolidated ones (dashed green line), since no more new
rules are allocated into W , no further learning or knowledge improvement can take place.

Table 4 shows the consolidated rules at step 5003 that almost represent all the legal chess
moves (only two movements of the knight are missing) and there is only one rule (x20) which,
despite representing a legal move, does not completely generalise the movement of the king
piece. The conclusion is that the metrics provide a guarantee of promoting those rules that,
having the maximum compression, best describe the problem.

3See (Mart́ınez-Plumed et al., 2015)[Table 12] for all the rules in W at step 500.
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Figure 5: Evolution of some indicators for the chess problem without the forgetting mechanism: #Examples
and #Rules show the examples that arrive and the rules that are generated by the inductive engine, #Cons is
the number of consolidated rules (initially the background knowledge) and #Population is the total number
of rules (magnitudes shown on the left y-axis). AvgOpt and AvgOptCons show, respectively, the average
optimality for all rules and for all consolidated rules (magnitudes shown on the right y-axis). After the
working space is filled with all the evidence and rules, the metrics become stable.

Table 4: Consolidated rules and metrics for the chess problem without the forgetting mechanism at step
500. IDs in bold represent those rules that perfectly generalise the legal moves of the chess pieces.

ID ρ L(ρ) Ṡ+ Ṡ− −L̇+ −L̇− opt+ opt− Perm

r15 move(rook,pos(A,B),pos(A,C)). 22.133 49.594 0 27.461 -22.133 2.746 -46.847 2.746
q19 move(queen,pos(A,B),pos(C,B)). 13.214 27.052 0 13.838 -13.214 1.383 -25.668 1.383
q12 move(queen,pos(A,C),pos(A,D)). 13.214 27.052 0 13.838 -13.214 1.383 -25.668 1.383
r16 move(rook,pos(A,B),pos(C,B)). 20.455 33.815 0 13.360 -20.455 1.336 -32.479 1.336

x18
move(king,pos(A,B),pos(C,D)) :-

34.275 40.578 0 6.303 -34.275 0.630 -39.947 0.630
rdiff(B,D,1), fdiff(A,C,1).

x20
move(king,pos(A,B),pos(A,C)) :-

22.918 27.052 0 4.134 -22.918 0.413 -26.638 0.413
rdiff(B,D,1).

x13
move(king,pos(A,B),pos(C,B)) :-

22.918 27.052 0 4.134 -22.918 0.413 -26.638 0.413
fdiff(A,C,1).

q23
move(queen,pos(A,B),pos(C,D)) :-

28.993 32.462 0 3.469 -28.993 0.346 -32.115 0.346
rdiff(B,D,E),fdiff(A,C,E).

b10
move(bishop,pos(A,B),pos(C,D)) :-

24.534 26.300 0 1.766 -24.534 0.176 -26.123 0.176
rdiff(B,D,E), fdiff(A,C,E).

5.3 Consolidation with forgetting

Now, we repeat the same experiment, but using forgetting. This represents a situation
where we have a more limited working space, so it is necessary to forget rules in order to
allocate new ones. We want to show that if our approach is able to find a solution without
forgetting, a suitable (and possibly better) solution should exist by using forgetting. In order
to do that, we have executed several configurations varying the size of the working space
(|W | ∈ {20, 30, 40, 50, 60, 70, 80, 90}). Also, every time the limit is exceeded the forgetting
process is launched, forgetting up to 25%, 50% or 75% of the most meaningless rules. Each
different configuration has been launched 10 times giving 240 executions in total.

Table 5 is a heat map, showing, for each possible configuration (|W | × forgetting(%))
how many times a specific rule appears in the consolidated knowledge in 10 repetitions, from
white (0 times), light yellow (1 time) to dark green (10 times). Rules that are not represented
in the heat map is because they have not been consolidated at any time. As a reference,
the bottom row (|W | = 100) represents the consolidated rules by the first experiment (Table
4). We see that not only the set of consolidated rules almost always includes the reference
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Figure 6: Evolution of the same indicators as in Figure 5 for the chess problem with the forgetting mechanism
(for a configuration with |W | = 60 and up to 50% of rules forgotten). Now we see a bumpier picture, where
the forgetting mechanism takes place every 30 steps approximately.

solution (even with very limited resources), but also the forgetting criterion allows the system
to include those rules that perfectly generalise the moves of the king (rules in bold). The
rest of rules included in the consolidated set in each experiment also generalise different
movements of the pieces.

In order to compare both experiments, Figure 6 shows the evolution of the system during
500 steps for one of the 24 configurations (|W | = 60 and forgetting up to 50%). Now, the
variations in the amount of consolidated rules (dotted black line) and rules in W (dashed
brown line) allow us to observe how the forgetting mechanism works (every 30 steps approx-
imately). Table 6 presents the consolidated rules at the final step (500)4. In this case, this
set perfectly generalises all the legal moves of all the chess pieces. The system has reached a
stable situation in which the number of consolidated rules (dotted black line) remains almost
constant from step 250. The average optimality of both the consolidated rules (dashed green
line) and all the rules (dashed blue line) have an increasing trend due to the distribution
with replacement used to populate the working space. The appearance of new rules in the
system or the execution of the forgetting mechanism mainly affect the average optimality of
W (dashed blue line): every time it runs, the working space is cleaned of useless rules which
strongly affects the metrics of the rules in W (and to a lesser extent to the consolidated
set of rules (dashed green line)) that have to be recalculated. Compared with the former
experiment, the number of rules in W has been reduced (with one order of magnitude (10x)
speedup in execution) obtaining a better set of consolidated knowledge: it comprises all the
rules that solve the chess problem, including the two moves of the knight, rules k22 and k24,
missing in the first experiment.

5.4 Incremental knowledge acquisition

Finally, the last experiment shows the capability of our approach for the incremental learning
of new knowledge from previously consolidated concepts. This experiment has two phases.
In the first one we have only taken rules and examples of the rook and bishop moves (15 and

4See (Mart́ınez-Plumed et al., 2015)[Table 13] for all the rules in W at step 500.
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Table 5: Heat map showing the percentage of times a rule has been consolidated for each configuration
(|W |=20..100, forgotten(%)=25%..75%) and 10 repetitions. Larger values are represented by dark green
squares and smaller values by lighter yellow squares (those blank cells represent absence for this rule in all
repetitions for a specific configuration). The last row shows the results without forgetting (as a reference).
Rules in bold (ρ) belong to the problem solution. 
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20 

25 1 4 5 3 6 7 5 8 5 3 7                   1   1   1       1   1 

50  1 4 3 6 3 3 6 3 1 4         2 2    1      1 

75   3 3 5 1 1 3 2  3     1     2   1 2      1 

30 

25 3 10 6 4 9 9 9 10 9 8 9       1  1      1       

50 2 4 4 3 5 8 8 8 7 2 5         1             

75 1 1 2 2 5 6 3 5 3 1 6   1      1 1            

40 

25 6 10 8 5 10 9 10 10 7 9 9                      

50 5 9 6 6 10 8 10 10 8 7 9       1               

75 3 3 5 4 9 5 5 5 5 3 7           1   3  1      

50 

25 9 10 9 7 10 10 10 10 9 10 10 1                     

50 8 10 9 7 10 9 10 10 8 10 10 1                     

75 5 7 6 6 9 6 8 10 7 5 9    1                  

60 

25 9 10 8 7 10 10 10 10 10 10 10                      

50 10 10 9 8 10 10 10 10 10 10 10                      

75 7 10 9 6 10 10 10 10 9 8 9         1    1  1     2 

70 

25 9 10 7 5 10 10 10 10 10 10 2 3            4         

50 8 10 9 7 10 10 10 10 10 10 10 2            1         

75 6 7 9 6 10 10 10 10 8 8 9                    2 

80 

25 9 10 6 5 10 10 10 10 10 10 5 2 2                    

50 10 10 10 7 10 10 10 10 10 10 10 3 3      2 4             

75 8 10 10 8 10 10 10 10 10 10 10        3 4             

90 

25 10 10 10 8 10 10 9 10 10 9 10 5            7         

50 10 10 10 8 10 10 10 10 10 10 10 4        4  4  6      1   

75 10 10 10 9 10 10 10 10 10 10 10 4       2 4             

100 0 10 10 10 10 10 10 10 10     10 
                                        

 

30 rules respectively) providing the system with them in the same way as in the previous
experiment. The consolidation criterion has not been changed, but the maximum number of
rules in W has been established to 15 (in order to allow the forgetting mechanism to work)
and the percentage of rules that are forgotten up to 25%, due to the smaller size of W .
Table 7 shows the set of consolidated rules after 100 steps, which perfectly generalises all
the legal moves of the rook and the bishop. In the first 100 steps of Figure 7 we see how the
forgetting and consolidation mechanisms runs every few steps, due to the lower maximum
number of rules in W , the lower percentage of forgotten rules and the geometric distribution
used to provide the rules. We can also see a non-constant sawtooth-like wave ramps for the
number of rules in W (dashed brown), whereas the number of consolidated rules remains
almost constant from step 45 to 100.

In the second phase, we provided the system with a new set of rules and examples (10
and 20 respectively) only representing moves of the queen chess piece. At this point it
should be possible to use the previously learned rook and bishop moves apart from using
the background knowledge provided initially. Table 8 shows the set of consolidated rules
which contains the previously consolidated rules that generalise the legal moves of the rook
and bishop, and a new set of rules that represents the legal moves of the queen. This latter
set includes rules q29 and q25 that use the rook and bishop rules and represent all the
possible moves of the queen. The second half of Figure 7 (from step 100) shows how the
forgetting mechanism runs even more frequently than previously (dashed brown) due to the
increment of consolidated rules (that cannot be targeted by forgetting). Again, the number

17



Table 6: Consolidated rules and metrics (as in Table 4) for the chess problem with forgetting at step 500
(with |W | = 60 and forgetting up to 50%). IDs in bold represent rules that perfectly generalise chess legal
moves.

ID ρ L(ρ) Ṡ+ Ṡ− −L̇+ −L̇− opt+ opt− Perm

x18
move(king,pos(A,B),pos(C,D)) :-

34.275 662.774 0 628.499 -34.275 62.849 -599.924 -22.681
rdiff(B,D,1), fdiff(A,C,1).

x13
move(king,pos(A,B),pos(C,B)) :-

22.918 459.884 0 436.966 -22.918 43.696 -416.187 -41.834
fdiff(A,C,1).

k22
move(knight,pos(A,B),pos(C,D)) :-

34.275 446.358 0 412.083 -34.275 41.208 -405.149 29.394
rdiff(B,D,2), fdiff(A,C,1).

q23
move(queen,pos(A,B),pos(C,D)) :-

28.993 437.340 0 408.347 -28.993 40.834 -396.505 -1.513
rdiff(B,D,E),fdiff(A,C,E).

x20
move(king,pos(A,B),pos(A,C)) :-

22.918 392.254 0 369.336 -22.918 36.933 -355.320 8.116
rdiff(B,D,1).

r15 move(rook,pos(A,B),pos(A,C)). 22.133 389.999 0 367.866 -22.133 36.786 -353.212 6.602
q19 move(queen,pos(A,B),pos(C,B)). 13.214 365.202 0 351.988 -13.214 35.198 -330.003 -7.149

k24
move(knight,pos(A,B),pos(C,D)) :-

34.275 369.710 0 335.435 -34.275 33.543 -336.166 25.561
rdiff(B,D,1), fdiff(A,C,2).

q12 move(queen,pos(A,C),pos(A,D)). 13.214 311.098 0 297.884 -13.214 29.788 -281.309 -12.559
r16 move(rook,pos(A,B),pos(C,B)). 20.455 284.046 0 263.591 -20.455 26.359 -257.686 -3.824

b10
move(bishop,pos(A,B),pos(C,D)) :-

24.534 275.028 0 250.494 -24.534 25.049 -249.978 12.731
rdiff(B,D,E), fdiff(A,C,E).

of consolidated rules (dotted black line) remains constant most of the time (from steps 140
to 200).

Table 7: Consolidated rules and metrics (as in Table 4) for the chess problem (rook + bishop moves) at
step 100. All rook and bishop legal moves are covered by these rules and no better rules can be obtained.
IDs in bold represent rules that perfectly generalise the rook and bishop moves.

ID ρ L(ρ) Ṡ+ Ṡ− −L̇+ −L̇− opt+ opt− Perm

b10
move(bishop,pos(A,B),pos(C,D)) :-

24.534 590.635 0 566.101 -24.534 56.610 -534.024 24.904
rdiff(B,D,E), diff(A,C,E)

r15 move(rook,pos(A,B),pos(A,C)). 22.133 277.282 0 255.149 -22.133 25.514 -251.767 25.514
r16 move(rook,pos(A,B),pos(C,B)). 20.455 223.178 0 202.723 -20.455 20.272 -202.905 20.272
r7 move(rook,pos(A,2),pos(B,2)). 19.718 175.838 0 156.120 -19.718 15.612 -160.226 -4.659
r14 move(rook,pos(A,2),pos(C,D)). 21.133 162.311 0 141.178 -21.133 14.117 -148.193 14.117
r9 move(rook,pos(a,B),pos(h,B)). 19.133 121.733 0 102.600 -19.133 10.260 -111.473 -10.011

5.5 Discussion

The chess domain has been an appropriate starting point for illustrating and evaluating our
approach. Firstly, it is a well-known and well-structured domain where we can test our
metrics and procedures. Furthermore, it involves a lifelong or incremental learning process
and thus it can be used as a test bed for addressing the stability-plasticity dilemma. Finally,
due to its intrinsic hierarchical nature (in terms of coverage between rules), the coverage
function is well defined.

Our ultimate goal with the experiments was to provide some insight into the generality,
efficiency and usefulness of the forgetting and consolidation cognitive procedures: we show
that by using a proactive interference-based approach we allow knowledge to be forgotten
because of already existing information covering or overlapping the former. This is differen
to decay-based forgetting principles in which elements fade due to the mere passage of time
and hence are very dependent on the order in which examples appear and rules are created.
From the above experiments, we see that the repository of rules can be well structured and
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Figure 7: Evolution of the same indicators as in Figure 5 for the incremental chess problem (rook and bishop
moves in the first 100 steps, and queen moves in the following 100 steps) with the forgetting mechanism (for
a configuration with |W | = 15 and up to 25% of rules forgotten). We see a non-constant sawtooth-like
picture for the number of rules. The forgetting mechanism takes place every few steps due to the small
amount of rules allowed and the low percentage of rules discarded in every forgetting step. Nonetheless, the
consolidated rules became constant in each different learning process.

Table 8: Consolidated rules and metrics (as in Table 4) for the chess problem at step 200 (the 100 first
steps for learning the rook and bishop moves, and the 100 following steps for learning the queen moves). All
legal queen moves are covered by using the previously learned rook and bishop moves. IDs in bold represent
rules that perfectly generalise the rook, bishop and queen moves.

ID ρ L(ρ) Ṡ+ Ṡ− −L̇+ −L̇− opt+ opt− Perm

b10
move(bishop,pos(A,B),pos(C,D)) :-

34.275 590.635 0 566.101 -24.534 56.610 -534.024 56.610
rdiff(B,D,E), fdiff(A,C,E).

q29
move(queen,pos(A,B),pos(C,D)) :-

34.275 432.832 0 405.116 -27.716 40.511 -392.320 40.511
move(bishop,pos(A,B),pos(C,D)).

q25
move(queen,pos(A,B),pos(C,D)) :-

22.133 417.051 0 389.335 -27.716 38.933 -378.117 38.933
move(rook,pos(A,B),pos(C,D)).

r15 move(rook,pos(A,B),pos(A,C)). 22.918 277.282 0 255.149 -22.133 25.514 -251.767 25.514
r16 move(rook,pos(A,B),pos(C,B)). 34.275 223.178 0 202.723 -20.455 20.272 -202.905 20.272
q12 move(queen,pos(A,C),pos(A,D)) 13.214 173.583 0 160.000 -13.214 16.036 -157.546 16.036
r7 move(rook,pos(A,2),pos(B,2)). 28.993 175.838 0 156.120 -19.718 15.612 -160.226 -4.659
r14 move(rook,pos(A,2),pos(C,D)). 22.918 162.311 0 141.000 -21.133 14.117 -148.193 14.117
r9 move(rook,pos(a,B),pos(h,B)). 24.534 121.733 0 102.600 -19.133 10.260 -111.473 -10.011

ranked by the metrics and the system consolidates those rules that are appropriate, therefore
responding affirmatively to the question (a) at the beginning of this section. Regarding
question (b), we also see that a moderate limitation of working space with forgetting is even
capable to improve the identification of the rules to be consolidated, and, what is better,
prevents the system from stagnating or collapsing in situations where we have bounded
resources. Finally, in connection with question (c), we see the behaviour in an incremental
setting, where the knowledge previously acquired can be used in new tasks.

Consequently, the proposed approach for knowledge acquisition is a favourable compro-
mise to the stability-plasticity dilemma: (plasticity) the promotion and demotion mecha-
nisms together with the evaluation metrics rank and structure the knowledge allocated in
the working space avoiding useful knowledge losses; (stability) the forgetting mechanism
together with the evaluation metrics are in charge of removing those meaningless and redun-
dant pieces of knowledge.
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6 Conclusions

Learning a set of rules from data is nowadays a well-known problem for which many ap-
proaches exist, from data science to robotics. However, the use of background knowledge
and the consolidation of new knowledge is one of the conspicuous problems in the under-
standing and creation of cognitive systems, and the management of more lifelong learning
and knowledge acquisition systems. The organisation of complex knowledge structures in
terms of coverage graphs allows for a straightforward and principled approach to knowledge
acquisition, consolidation (promotion), revision (demotion) and forgetting. All this can be
analysed at a meta-level, with the use of off-the-shelf deductive and inductive engines in
charge of, respectively, establishing the relations between the different rules and the gener-
ation of new rules. This modularity, and the ability of dealing with declarative knowledge
bases (logical, functional, algebraic, equational, grammatical, etc.) opens up a range of ap-
plications in learning, knowledge acquisition, developmental cognition, expert systems and
other intelligent systems that are meant to have a non-ephemeral life.

The main contributions of this work are: (1) The first extension of the MML principle to a
knowledge network (in the form of coverage graph). While the MML principle has a Bayesian
inspiration, the metrics are more flexible than actual probabilities, stauncher when pieces of
the working space are removed, and can be combined into metrics for different processes. (2)
We show that the development of a formal epistemological setting to realise how knowledge
can be acquired, supports a constructive and developmental knowledge acquisition processes.
In particular, we have seen how the forgetting criterion is not only necessary when the
working space is finite but it can even be beneficial. (3) Our approach is parametrisable to
other cognitive or intelligent systems, as it works at a meta-level and is independent of the
actual deductive and inductive mechanisms that are used underneath. (4) The nonmonoticity
problem of knowledge acquisition and revision is approached in a more lightweight and robust
way, and the system can cope with redundancy, inconsistency or even uncertainty produced
by conflictg resolutions or complex semantic artefacts. (5) The stability-plasticity dilemma
has been addressed efficiently.

We plan to apply the setting to some other applications, by using the same or other de-
ductive and inductive engines, including rules dealing with numerical or continuous features,
such as time or space, and other notions of non-crisp coverage and example certainty, such
as probabilities, degrees of truth, fuzzy rules, etc. We also keep on with the integration into
our declarative learning system gErl5 (Mart́ınez-Plumed et al., 2013). Furthermore, other
cognitive or AI systems, such as decision support systems can benefit from the application of
the metrics introduced here. Finally, two further desirable characteristics for our approach
could be explored: (a) interactiveness, namely, the ability to find an additional (human or
not) input source if a problem statement is ambiguous or incomplete; (b) contextually, that
is, to identify, understand and extract contextual or even cognitive elements such as syntax,
semantics, domain, time, location, environment, goal, . . . , which may be useful to move
beyond the current knowledge acquisition systems.

5For a first approach using gErl as a deductive and inductive engine, see (Mart́ınez-Plumed et al., 2015,
Appendix).

20



Acknowledgements

This work has been partially supported by the EU (FEDER) and the Spanish MINECO under
grant TIN 2013-45732-C4-1-P and FPI-ME grant BES-2011-045099, Generalitat Valenciana
PROMETEO2011/052 and the REFRAME project, granted by the European Coordinated
Research on Long-term Challenges in Information and Communication Sciences & Technolo-
gies ERA-Net (CHIST-ERA), and funded by the Ministerio de Economı́a y Competitividad
in Spain (PCIN-2013-037).

References

Alnajjar, F., Zin, I.B.M., Murase, K., 2009. A hierarchical autonomous robot controller for learning and
memory: adaptation in a dynamic environment. Adaptive Behavior 17, 179–196.

Ans, B., Rousset, S., 1997. Avoiding catastrophic forgetting by coupling two reverberating neural networks.
Comptes Rendus de l’Acadmie des Sciences - Series {III} - Sciences de la Vie 320, 989 – 997.

Bragaglia, S., Ray, O., 2014. Nonmonotonic learning in large biological networks, in: Proc. 24th Int. Conf.
on Inductive Logic Programming.

Brin, S., Page, L., 1998. The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN
Syst. 30, 107–117.

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell, T.M., 2010. Toward an
architecture for never-ending language learning, in: Proc. of the 24th Conference on Artificial Intelligence,
pp. 1306–1313.

Carpenter, G., Grossberg, S., 1988. The art of adaptive pattern recognition by a self-organizing neural
network. Computer 21, 77–88.

Della Sala, S., 2010. Forgetting. Psychology Press.

Dere, E., Easton, A., Nadel, L., Huston, J. (Eds.), 2008. Handbook Of Behavioral Neuroscience. volume 18.
Elsevier.

Eaton, E., Ruvolo, P.L., 2013. Ella: An efficient lifelong learning algorithm, in: ICML, pp. 507–515.

Eiter, T., Wang, K., 2008. Semantic forgetting in answer set programming. Artificial Intelligence 172, 1644
– 1672.

Erbas, M.D., Winfield, A.F.T., Bull, L., 2014. Embodied imitation-enhanced reinforcement learning in
multi-agent systems. Adaptive Behaviour 22, 31–50.

Erdem, E., Ferraris, P., 2007. Forgetting actions in domain descriptions, in: Proc. of the 22nd AAAI
Conference on Artificial Intelligence, pp. 409–414.

Ferri-Ramı́rez, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J., 2001. Incremental learning of functional
logic programs, in: Functional and Logic Programming, pp. 233–247.

French, R.M., 1997. Pseudo-recurrent connectionist networks: An approach to the ”sensitivity-stability”
dilemma. Connection Science 9, 353–379.
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