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Abstract Some supervised tasks are presented with a numerical output but
decisions have to be made in a discrete, binarised, way, according to a par-
ticular cutoff. This binarised regression task is a very common situation that
requires its own analysis, different from regression and classification —and
ordinal regression. We first investigate the application cases in terms of the
information about the distribution and range of the cutoffs and distinguish
six possible scenarios, some of which are more common than others. Next,
we study two basic approaches: the retraining approach, which discretises the
training set whenever the cutoff is available and learns a new classifier from it,
and the reframing approach, which learns a regression model and sets the cut-
off when this is available during deployment. In order to assess the binarised
regression task, we introduce context plots featuring error against cutoff. Two
special cases are of interest, the UCE and OCE curves, showing that the area
under the former is the mean absolute error and the latter is a new metric that
is in between a ranking measure and a residual-based measure. A comprehen-
sive evaluation of the retraining and reframing approaches is performed using
a repository of binarised regression problems created on purpose, concluding
that no method is clearly better than the other, except when the size of the
training data is small.
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1 Introduction

Data mining tasks are characterised by the available data and the decisions
that have to be made according to those data. Supervised (or predictive)
problems are defined over an input (or feature) space X and an output space Y.
If the output space is numeric (quantitative) we usually talk about regression
problems, while if the output space is nominal (categorical) we usually talk
about classification problems. However, things are more complicated than this.
For instance, in this paper we consider the case where Y is numeric in the
training data, but becomes nominal (actually Boolean, denoted by Z) during
the deployment of the model. Let us consider an example.

Example 1 An estate agent has a database of possible customers who are in-
terested in buying a house. The estate agent collects information about each
customer and learns a model about the maximum mortgage that the customer
can get from a bank. This is our regression model. On an everyday basis, sev-
eral new properties enter the estate agent’s portfolio. Each of them has a
different price. Obviously, the estate agent only offers a property to those cus-
tomers that can afford it, i.e., those that can get a mortgage for at least the
property price1. That means that each property represents a genuine cutoff of
customers, those who can afford the property and those who cannot.

We will use the term binarised regression problem for this type of prob-
lem, as the data are given like a regression problem but decisions are like in
(binary) classification, as the only thing that matters is whether each new
example is above or below the cutoff. Binarised regression problems appear in
many situations, especially when there is an all-or-nothing reward (or loss) if
the actual value is above (or, respectively, below) a given cutoff. This is usual
whenever there is a discrete cutoff that implies a qualification, entrance, label
or accomplished objective or when the output space represents a count (num-
ber of sales, calls, payments, complaints, failures, or any other quantity [10]),
either originally or as a result of an aggregation operation over an indicator
value in a datamart [3].

The binarised regression problem appears naturally in many application
areas. In fact, we have collected 20 datasets that will be used as binarised re-
gression problems in our experimental section, apart from the running example
shown above.

The basic idea arising in all these cases is that, for many applications, we
are interested in telling whether the predictions are above or below a given
cutoff. This cutoff c can vary depending on the context and will critically
determine the overall performance. This problem leads to the consideration of
two basic alternatives:

– Reframing (post-binarisation): A natural (eager) approach would be to
train a model on the original training data just once and then reframe its

1 Note that some people can buy a house that is much cheaper than its maximum mort-
gage, especially if they buy it as an investment or to refurbish it afterwards.
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predictions using the cutoff c, once it is known, on the deployment data.
In this paper, we understand reframing as follows: we train a regression
model mregr and we predict class labels as ẑ = 1{mregr(x) ≥ c}.

– Retraining2 (pre-binarisation): A (lazy) alternative would be to wait until
the cutoff c is known during deployment time, and only then the original
output variable y in the training data is binarised as z = 1{y ≥ c}. This
makes a new classification training set T ′ = ⟨X,Z⟩, from which a classifi-
cation model mclas is trained. For each new instance x, the predicted class
label ẑ = mclas(x) (1 or 0) is just used to make the decision. Note that
this retraining has to be done each time the cutoff changes.

Basically, the differences between both alternatives are (1) whether the dis-
cretisation is performed before or after training and, as a consequence, (2)
whether the training data must be kept and used whenever c changes (retrain-
ing) or is just used once and for all (reframing). Figure 1 shows these two
alternatives graphically.

mregr c

y'

ŷ

REFRAMING

mclasc

RETRAINING

<X,Y> <X,Z>

ẑ

z

<X,Y>

ẑ

Fig. 1 Reframing vs. retraining. Reframing (top) shows how the training data T = ⟨X,Y ⟩
is used just once to create a regression model mregr that is applied to different operating
contexts c by properly discretising its output ŷ each time. Retraining (bottom) needs to
convert the training data T for each context c into a new dataset T ′ = ⟨X,Z⟩ from which
a classification model mclas is learned.

In this work we present these two approaches to the binarised regression
problem, which can be applied to many realistic problems. Knowledge reuse
(reframing) seems a more efficient approach than the systematic generation
of throw away models (retraining). This, and the possibility of using both
classification and regression techniques, is the major reason for the study of
these two options. These are two straightforward approaches. However, to our

2 It is worth noting that the training process is entirely repeated in the retraining alter-
native, having nothing to do with any kind of incremental learning or adaptation of the
previous model. This use of the term ‘retraining’, understood as building a different model
each time a new cutoff is set, can often be found in the active learning research field [15,33].
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knowledge, there is no systematic study in the literature about which method
is best and why. There might be several reasons for this:

– The binarised regression problem we describe here has not been fully iden-
tified as a standalone problem in data mining.

– The learning techniques used for both approaches must be different (at
most, we can use the same paradigm for both, such as a linear regression
vs. a logistic regression, or a regression tree vs. a classification tree).

– It seems, a priori, that the reframing approach has more advantages: the
model is trained with a richer version of the output variable and there is
no need to keep the training data.

– While it is clear that the same performance metric should be used for both
approaches, as the application is the same, the use of both regression and
classification models may lead to confusion about this issue.

In the framework of the binarised regression problems, this work makes the
following main contributions:

1. We identify and analyse a diverse collection of scenarios depending on the
context knowledge for the binarised regression problem. These scenarios are
illustrated with examples in our experimental section.

2. We formalise the notion of error for this kind of settings. We derive context
plots that show the average error w.r.t the operating contexts c. We call
them the cutoff error (CE ) plots.

3. We introduce two versions of these plots. The first one considers a uniform
range of cutoffs and we call them the uniformly-distributed cutoff error
(UCE ) plots. Interestingly, we prove that, for the reframing approach using
regression models, the area under this curve (AUCE ) is the mean absolute
error (MAE ). Also, if we just focus on a partial region of cutoffs, we derive
that the area of this region corresponds to a clipped version of the MAE .

4. The second kind of plots considers the x-axis is weighted by the observed
distribution on output value. These are called output-distributed cutoff
error (OCE ) plots. In other words, the distribution of contexts is taken
according to the observed prior p(Y ). We will discuss whether, in absence
of knowledge about the distribution of operating contexts, this assumption
is preferable or not over the uniform distribution, and hence its area, AOCE ,
is preferable over the AUCE .

5. We study the properties of both plots and their interpretation as evaluation
metrics in this problem and also as general evaluation metrics for regression
models.

6. We analyse the use of these plots and metrics in a case study, where we
study both the reframing and retraining approaches, showing the usefulness
of the newly introduced plots and metrics.

7. We perform a systematic study for the reframing and retraining approaches
with a repository of binarised regression problems, analysing whether one
approach is better than the other.

The rest of the paper is organised as follows. Section 2 states the problem and
gives a taxonomy for the binarised regression problems. The error function
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and the corresponding expected error expression are also introduced in this
section. Section 3 derives the UCE curves and shows that the area under these
curves for a regression model equals the MAE , including the correspondence
for partial regions. Section 4 introduces the OCE curves. Section 5 briefly
analyse the behaviour of the constant models, especially the role of the median
model and the extreme models. Section 6 elaborates a case study with the
example we have used in the introduction and illustrates the new plots and
metrics with it, as well as the reframing vs. retraining dilemma. Section 7
performs a series of experiments to see the performance of the two different
approaches. Section 8 discusses some related work and Section 9 closes the
paper and outlines some future work.

2 Binarised regression problems

After the motivation in the previous section, we will now be more precise
about the specification of the binarised regression problem. The input space
is denoted by X, the original (numerical) output space is denoted as Y, its
discretisation is denoted as Z = {0, 1}, mregr denotes a regression model
trained from a dataset T = ⟨X,Y ⟩, with vectors X and Y of the same size n
taken from sets X and Y respectively, mclas denotes a classifier trained with
T ′ = ⟨X,Z⟩, where the vector Z, also of size n, is taken from Z. We will use a
somewhat abused set notations for elements in these vectors (as if they were
ordered multisets). We hence refer to instances by their index, so ẑi denotes
the predicted class label for example i given by mclas or by applying the cutoff
c to ŷi, the estimation made by mregr. With m we will denote whichever model
(mregr or mclas).

2.1 Problem setting

We first define the notion of operating context:

Definition 1 Given a dataset T = ⟨X,Y ⟩ where Y = R, the operating con-
text c ∈ Y is defined as the value that determines a cutoff that splits the set Y
(or its prediction Ŷ ) into two disjoint sets: the values yi (or ŷi) that are above
and below c, respectively.

Therefore, when the operating context is applied to the actual values yi, the
original regression problem turns into a new classification problem which leads
to the retraining approach, where a classification model mclas can be learned.
Alternatively, when the operating context is applied to the predicted values ŷi
given by the regression model mregr we have the reframing approach. To be
able to analyse and compare both approaches, we need to relate classification
errors on Z and operating contexts.

Given the cutoff c, an error is any case where z and ẑ differ (in the retraining
approach, using a classification model) and the cases where y and ŷ are on
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different sides of the cutoff (in the reframing approach, using a regression
model). These errors are known as false positives FP and false negatives FN .

The error function for each example is then defined as follows:

Qi(c) , CFP · FPi(c) + CFN · FNi(c) (1)

where CFP and CFN are the misclassification costs of false positives and false
negatives respectively. Note that if CFP = CFN = 1, then Qi would be 1 for
misclassification and 0 otherwise.

Definition 2 The average error for a dataset with n examples with respect
to a cutoff c is

Q(c) ,
1

n

n∑
i=1

Qi(c)

For equal unitary misclassification costs, the above is equivalent to the mis-
classification rate. As we are considering that the context c changes, we are
interested in the error for a range of contexts. If we know or assume a distri-
bution of contexts, we can define the expected average error as:

Definition 3 The expected average error for a dataset under a context dis-
tribution w(c) is

L ,
∫ ∞

−∞
Q(c)w(c)dc

It is then clear that if we are given an operating context c (or a context
distribution w(c)) and we have to choose between several models, the model
with lowest Q(c) (respectively, L) will be preferred. However, a more useful
and common question is when we want to do model selection and evaluation
and we do not yet know the operating context or its distribution. Or, in other
words, we would like to know how well a model behaves for a range of oper-
ating contexts. In the classical classification problem, this problem has been
well-studied (works on ROC analysis and other related areas) and similar ap-
proaches exist for the regression problem. However, to our knowledge, this is
not the case for the binarised regression problem.

When presenting a series of tools in the following sections, we need to bear
in mind the distinction between model selection and model evaluation. Model
selection can be done with some information or all information available about
the context and the training dataset, whilst model evaluation will be done with
a test dataset with all the information.

2.2 A Taxonomy of binarised regression problems

In this section we devise a taxonomy of binarised regression problems depend-
ing on the factors involved in the process. Then, we discuss for each case how
to apply and evaluate the retraining and reframing approaches and to use the
cost plots introduced in this paper.
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The binarised regression problems are characterised by the following fea-
tures that determine the context: the cutoff distribution and its range. Accord-
ing to the degree of knowledge about these two features of the context that
we may have during training, we distinguish the following cases (from more to
less information):

a) we know the exact cutoff.
b) we know the range and the expected distribution of cutoffs for deployment

precisely.
c) we may have some information about the range or the distribution.
d) we may have complete absence of information about the range and the

distribution.

Case a is the simplest one. In this scenario, there is no need of learning a
regression model since the problem can be solved directly by using the cutoff
in the training stage. First, the problem is binarised by using the cutoff and,
then, a classifier is learnt. However, for the rest of the cases, the performance
of the models for the range of possible cutoff values which we are interested in
must be examined. For cases c and d, where no information about the cutoff
is available, uniform-distributed or the output-distributed cutoff may be the
most straightforward assumptions as we will discuss in the following sections,
being the uniform distribution especially applicable when we want to focus on
a small region3 of cutoffs. Otherwise, the problem could not be solved.

Focussing on cases b and c, we have considered six possible binarised re-
gression scenarios (types) which are shown in Table 1. In the second column,
we consider different cases for the true distribution of cutoffs (w), which can
follow a uniform distribution, be similar to the output distribution observed in
the training set or any other distribution. The third column shows the range
of this distribution as Full or Region, depending on whether we expect a wide
range or a narrow range of cutoffs, respectively. The fourth column shows
whether each type of problem can be considered common or not whereas the
fifth column shows which error measures would be recommended for each case
(which will be seen in the next sections).

A collection of datasets from common repositories [1,2] can be found at
http://www.dsic.upv.es/~flip/BinarisedRegression/. For each problem,
we have included information about the binarised regression task, the distri-
bution and regions of cutoffs that make more sense for the problem, as well
as the CFP vs CFN costs. These datasets have also been used in the experi-
ments in Section 7. The repository features three datasets for which the cutoff
has a narrow uniform range (type 2), seven with a wide output-distributed
range (type 3), one with a narrow output-distributed range (type 4), eight
with a wide range with any other distribution (type 5) and one with a narrow
range with any other distribution (type 6). There are no type-1 problems in
our repository since this situation is quite unlikely. In this collection, there

3 Note that region is here used to refer to an interval (continuous subset of values) within
all the possible cutoff values. This interval will usually be narrow.

http://www.dsic.upv.es/~flip/BinarisedRegression/
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Type Cutoff Distribution (w) Range Common? Measure Method
1 Uniform Full No MAE
2 Uniform Region Yes Clipped MAE (cMAE)
3 Output Full Yes AOCE

4 Output Region Yes AOCE for the region (or cMAE)
5 Other Full Yes ACE

6 Other Region Yes ACE for the region (or cMAE)

Table 1 Types of cutoff contexts, including the distribution and range of cutoffs. Common?
indicates how realistic each kind of problem seems to be, and Measure Method shows which
evaluation measure is recommended, where AP denotes the area under the plot P . For cases
4 and 6, if the region is small it is acceptable not to use the true distribution, and use a flat
uniform distribution instead, so we can ultimately use cMAE .

are situations where a uniform distribution of cutoffs is observed for a re-
gion of interest (type 2). For instance, some problems depend on cutoffs that
are established according to certain local or national normative or regulation
such as the allowed acoustic noise level or the energy consumption required
for building efficiency qualification. Usually, the interest in this kind of prob-
lems focusses on a small region of values for which we usually lack a clear
information about whether it is 2, 4 or 6.

Type-3 problems have a wide range of cutoffs that are approximately dis-
tributed as the output variable. The running example introduced in Section 1
belongs to this type. Niche applications detected for type 3 have some common
problem typologies:

– Supply-demand regulation, which includes all problems where we predict
sales, trade, stocks, etc., and there is a supply-demand equilibrium, which
aligns the cutoffs with the output values.

– Trend sign detection, which includes all problems where we predict the
change of a quantity in time and the decision is whether the value is higher
or lower than the current value (so cutoffs are taken from the output val-
ues).

– Who’s above me niche, which includes all problems where an individual is
interested in knowing the examples that are above itself, independently of
the magnitude. Again, the cutoffs are samples from the output distribution.

For instance, Figure 2 shows the distributions of mortgage amounts (which we
called output value from the model) and property prices (the true cutoffs) for
the running Example 1. In this case, both distributions are very similar and
we can use the actual distribution of outputs as a surrogate of the distribution
cutoffs. Hence, this example belongs to case b, is of typology 3 and corresponds
to a ‘supply-demand regulation’ case.

2.3 CE curves

We first present a graphical way of analysing binarised regression problems for
a range of possible cutoff values (cases from b to d):
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Fig. 2 Comparing the true cutoff distribution (top) with the output distribution (bottom)
for the running Example 1. The top figure shows the distribution of the mortgage amounts
(source [11]) whereas the bottom figure shows the house prices (source [38]) in USA for year
2013. As it can be seen, both mortgage amounts and house prices exhibit approximately the
same distribution. This belongs to case b, is of typology 3 and corresponds to a ‘supply-
demand regulation’ case.

Definition 4 The cutoff error (CE ) curve plots the error (value of Q(c)) on
the y-axis as a function of the cutoff c on the x-axis.

Note that the same plot can be drawn for the retraining approach, where
each point of the curve would correspond to a different classification model
mclas for the cutoff on the x-axis. That means that the CE curve for the
retraining approach would not show the performance for one classifier, but for
a procedure that generates a possibly different classifier for each point.

Figure 3 shows the CE plot for the running Example 1. The x-axis is
drawn according to the cutoff distribution (i.e., the actual mortgage distribu-
tions shown on top of Figure 2). For the reframing approach, we have applied
five regression algorithms (linear regression, kNN-median, kNN-mean, a re-
gression tree, and quantile regression). For the retraining approach we have
applied three algorithms (logistic regression, kNN and a decision tree). We
have used a partition 50%-50% for training and test. For every curve, the area
under the curve is the expected average error given in definition 3. This is
the case because we are drawing the magnitudes on the x-axis using the cut-
off distribution w, which magnifies (widens) those regions where cutoffs are
more likely according to w. Note that depending on the cutoff the best model
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changes and we see different dominance regions. In Section 6 we carry out a
more detailed analysis of this case.

●0.
0

0.
1

0.
2

0.
3

0.
4

CE
E

rr
or
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● Regr−LnR
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Regr−kNN−mean
Regr−M5P
Regr−qr
Clas−LgR
Clas−kNN
Clas−J48

Fig. 3 CE curves for five regression models (linear regression, kNN-median, kNN-mean,
the regression tree M5P, and quantile regression) and three classification models (logistic
regression, kNN and the decision tree J48) for the case study in Example 1.

Note that if we chose the best model for each cutoff, i.e., the lower envelope
of the CE plot, we would take the most of all models, by selecting the one
that dominates in each region. We call this solution a hybrid model, and it is
theoretically optimal if these regions can be perfectly determined for the test
set. Also, these dominance regions are independent on the distribution. The
problem, as we will see in the experimental section, is that it is not so easy
to estimate these regions from the training (or validation) set and extrapolate
them for the test set.

It is easy to see that there is no need to plot the curves from −∞ to∞. If we
are dealing with classification models, and if we assume that a classifier that is
learned with all positives always predicts positive and a classifier that is learned
with all negatives always predicts negative, we have that we only need to look
at the plot between cmin and cmax, where cmin = min{y : ⟨x, y⟩ ∈ T ∪D} and
cmax = max{y : ⟨x, y⟩ ∈ T ∪ D}, where T is the training dataset and D is
the deployment dataset. In other words, there is no need to plot beyond any
of the observed (true) values in both the training and deployment datasets.
Somewhat similarly, if we are dealing with a regression model, we only need
to consider the set of actual values in the deployment dataset and the set of
predictions for this dataset. cmin = min(min{mregr(x) : ⟨x, y⟩ ∈ D},min{y :
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⟨x, y⟩ ∈ D}), and cmax = max(max{mregr(x) : ⟨x, y⟩ ∈ D},max{y : ⟨x, y⟩ ∈
D}). In other words, there is no need to plot beyond any of the observed (true)
and estimated values in the deployment dataset. This suggests that plots only
need to be drawn in this range, as above, since for any c < cmin or c > cmax

we have that Q(c) = 0.

3 UCE curves

In the previous section we have seen that we can modify the x-axis of the CE
plot by using any distribution w. However, it is interesting to analyse the case
where w is uniform. This is not because we assume w uniform for selection or
evaluation purposes, but just because the plot is much easier to understand
as the x-axis is linear w.r.t. the cutoff magnitude. To highlight this choice of
distribution for the x-axis, we use the term UCE plots (uniform-distributed
cutoff error plots).

Let us illustrate the UCE plots with an example.

Example 2 Consider a regression model mregr which is applied to a dataset
with n = 6 instances with true values yi, producing the predicted values ŷi
and leading to absolute error AE i, shown in the following table:

i 1 2 3 4 5 6
yi 3 5 6 8 11 12
ŷi 9 4 7 10 16 13

AE i 6 1 1 2 5 1

Without loss of generality, examples are sorted by increasing values of y for
convenience. The Absolute Error is AE = 16, and the Mean Absolute Error
is MAE = 16/6 = 2.66. Figure 4 (left) shows what we call the UCE curve for
Example 2. Note that, in this case the values in the x-axis range from cmin = 3
and cmax = 16.

We can see that the curve in Figure 4 configures 16 rectangles of width
1 and height 1/6. This leads to the following straightforward but interesting
result:

Theorem 1 The area under the UCE curve (AUCE ) for a regression model
equals the mean absolute error MAE.

Proof We just operate with the area under the curve as:∫ ∞

−∞
Q(c)dc =

∫ ∞

−∞

1

n

n∑
i=1

Qi(c)dc =
1

n

n∑
i=1

∫ ∞

−∞
Qi(c)dc

It is easy to see that for each example, when ŷi < yi, there is a region c <
ŷi < yi where Qi(c) = 0, there is another region ŷi < c < yi where Qi(c) = 1
and, finally, there is another region ŷi < yi < c where Qi(c) = 0. As the width
of the second region is |yi − ŷi|, this is the area contributed by example i. A
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Fig. 4 Left: UCE curve for Example 2 with c on the x-axis and Q(c) on the y-axis. The
continuous line shows Q(c). The small circles show the exact value of Q(c) for the values of
y (borderline cases). Right: The absolute error is shown with a very different (example-wise)
decomposition.

similar rationale can be used when ŷi > yi. And the area is 0 when ŷi = yi.
So, the inner integral above simplifies:∫ ∞

−∞
Qi(c)dc =

∫ max(ŷi,yi)

min(ŷi,yi)

Qi(c)dc = |yi − ŷi| = AE i

Now, by just plugging this into the original equation we get:∫ ∞

−∞
Q(c)dc =

1

n

n∑
i=1

AE i = MAE

⊓⊔

These curves show how the MAE is distributed for different ranges of the
output variable. In Example 2, we see that both MAE and the area are 2.66.
The previous proof and the traditional examplewise decomposition of theMAE
as

∑n
i=1 AE i suggest an interesting comparison between a diagram where we

show each example in the x-axis (sorted by y) with AE i on the y-axis. This
is what can be seen in Figure 4 (right). While the area and the sum on the
left plot and the right diagram respectively are the same, they decompose the
MAE very differently.

So is MAE an expected error for our binarised regression problem? In
order to make this link exact, we have to assume a uniform distribution of
the context c, wu(c) = 1

cmax−cmin
. If we consider continuous data bounded

by cmin and cmax, the expected error function defined in Definition 3 can be
calculated as follows:

Lu ,
∫ ∞

−∞
Q(c)wu(c)dc =

∫ cmax

cmin

Q(c)wu(c)dc

This leads to the following corollary of Theorem 1:
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Corollary 1 For a regression model,

Lu =
MAE

cmax − cmin

Proof This just derives from the fact that Q(c) is always 0 beyond the interval
cmin and cmax and that the uniform distribution is independent of c inside
this interval. ⊓⊔

In Example 2, this is Lu = 2.66
16−3 = 0.208333.

What is the interpretation of this result? While it is a straightforward con-
nection, this gives a new interpretation of the MAE as aggregate performance
(more precisely, error) under a set of operating contexts (the cutpoint c). An-
other possible interpretation of the MAE is probabilistic: “Take a random
cutoff c uniformly between cmin and cmax. The probability that for a random
example its y and ŷ are not on the same side of the cutoff is linearly related
to MAE”.

What happens with the retraining approach? What is the interpretation of
AUCE for a set of classification models constructed under this procedure? We
conclude that the AUCE is the expected error for this procedure as well, but we
do not have the connection with any metric for classification. It is important to
clarify here that we can actually calculate the MAE of a probabilistic classifier,
but this is done by comparing the scores of a classifier with the actual values
(0 or 1). The AUCE , in contrast, represents the expected error for the infinite
set of crisp classifiers that are generated for all possible cutoffs. In other words,
for the retraining approach, AUCE gives the expected error of a procedure, not
the performance of a single classifier4.

The assumption that the range of examples goes from the minimum to the
maximum values is unrealistic, as we discussed in the previous section (type
1 in Table 1). On many occasions, we are only interested in a partial region
of interest. While this can perfectly observed in any CE curve, if we want to
calculate the expected area for a single region, we can no longer use MAE
as an approximation. This is a pity, as when the region is small, the actual
distribution is not so relevant, and a flat (uniform) distribution could be a
choice, and the UCE plots would fit perfectly. Fortunately, we can still find a
connection between MAE and partial areas. In order to see this, we have to
clip the values y and its predictions ŷ to fit in the region of interest. Let us
first define the clipping of a value.

4 For the interested reader, it is worth mentioning that Theorem 1 is connected to Theorem
11 (and corollary 12) in [20], where the expected loss of the score-uniform threshold choice
method for a uniform distribution of operating contexts (cost proportions or skews) is shown
to be equal to MAE . Two comments must be done, though. First, here we are talking
about the MAE of a regression model while in [20] the result holds for a soft classifier
with estimated probabilities between 0 and 1 —upon which the MAE is calculated. Second,
here the decision rule is taking the operating context into account —the cutoff is used at
each point of the curve, while in [20] the result is obtained by the score-uniform threshold
choice method, which completely ignores the operating context. Nevertheless, this is still an
interesting connection as both are assuming a uniform distribution of contexts.
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Definition 5 Given two real numbers a and b with a ≤ b, known as the low
and high clipping limits, respectively, the clipping of a value y ∈ R with respect
to a and b is defined as

[y]ba =

a if y < a
y if a ≤ y ≤ b
b if y > b

Analogously, the difference between a clipped value and its clipped predic-
tion is called the clipped absolute error cAE ,

cAE =
∣∣[y]ba − [ŷ]ba

∣∣
From here, we can show the following result:

Theorem 2 The expected error (area) for a region of cutoffs where we assume
a uniform distribution corresponds to a clipped MAE (cMAE) where all the
values (estimated and true) are clipped by the region of interest.

Proof Using a similar rationale to Theorem 1, let us assume certain a and b
values as the limits of our region of interest. So, all actual and predicted values
have to be clipped w.r.t. the a and b clipping limits.∫ b

a

Qi(c)dc =

∫ min(max(ŷi,yi),b)

max(min(ŷi,yi),a)

Qi(c)dc =
∣∣[yi]ba − [ŷi]

b
a

∣∣ , cAE i

∫ b

a

Q(c)dc =
1

n

n∑
i=1

cAE i , cMAE

Note that the expected error is not given by taking only the subset of examples
inside the cutoff interval but rather by using all the examples where both the
estimated ŷ and the actual y are clipped. Apart from the notation cMAE , we
will use the equivalent term APUCE , referring to a Partial UCE .

4 OCE curves

While UCE plots allow for the analysis of dominance regions, and we can
derive partial areas when we know the region of interest, what can we do in
the case where we do not know the true cutoff distribution or the region (case
d in Section 2.2), i.e., no information at all about the cutoffs? The use of AUCE

as an aggregated error under a range of operating contexts assumes a uniform
distribution, which is unrealistic. When we are not given any information
about w(c) or any region, one interesting possibility would be to assume that
the operating context distribution is induced by the data, i.e., wo(c) = f(c),
where f(c) is the observed probability density function of the data (the a priori
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distribution for the output values y). This leads us to the following expected
error under that observed distribution wo(c):

Lo ,
∫ cmax

cmin

Q(c)wo(c)dc (2)

In other words, we could think of a discrete distribution where wo(c) = 1/n
for those c that match a value in the observed data. This is actually what the
circles in the UCE plots of Figure 4 (left) are showing. What if we just plot
these points? This is precisely what we do next.

Let us define the true rank ratio as follows. Consider that the yi are ordered
by ascending order. The true rank ratio is defined as R(i) , i−0.5

n , where n
is the number of examples. For the continuous case, R(i) is invertible, but we
need to work with empirical distributions and a finite set of points. The set
of possible exact ratios for an example in a dataset D is denoted by R(D).
Assume that there are no ties or there is a way to unequivocally sort the yi
by a criterion to resolve them. In this case, R is invertible and we can get a
cutoff for every ratio r ∈ R(D), i.e., yR−1(r). So now we could plot n points,
with r = R(i) for i = 1..n on the x-axis and Q(yR−1(r)) on the y-axis. But, for
the discrete case (the observed distribution), this is not actually a ‘curve’. A
‘curve’ can be obtained by interpolation or by any other way of connecting the
points. When n is large, how the points are connected becomes less and less
relevant in terms of precision. Nonetheless, we will make a choice such that the
area under the resulting curve is exact, i.e., equals the average of the points.
In order to do this we draw horizontal segments of the same size around each
point, by defining Q for all possible ratios in the continuum [0, 1], i.e.:

Definition 6 The average error for a dataset D with n examples with respect
to any true rank ratio r ∈ [0, 1] is:

Q̄(r) , Q(yR−1(ro)) where ro = argminρ∈R(D)|r − ρ|

Basically, these segments are just built by looking for the closest ratio that
corresponds to an example. And now we can define a curve for all points:

Definition 7 The output-distributed cutoff error (OCE ) curve plots the error
(value of Q̄(r)) as a function of the true rank ratio r ∈ [0, 1].

Note that the ‘curve’ is not continuous but it is now defined for all r in [0, 1].
Figure 5 (left) shows the OCE curve for Example 2.

We now need to check that our construction has led to a curve whose area
AOCE corresponds to Lo as for Eq. 2. This is shown next:

Theorem 3 The area under the OCE curve (AOCE ) equals Lo.

Proof As the ratios in R(D) are equally spaced at a distance of 1/n (R(i) =
i−0.5

n ), we can split the integral of the definition of the area under the OCE



16 José Hernández-Orallo et al.

●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OCE plot

E
rr

or

0.0 0.2 0.4 0.6 0.8 1.0

Cutoff

True Rank Ratio

3 5 6 8 11 12

●

●

● ●

●

●

● ● ● ● ● ●

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IR diagram

i
IR ●

●

● ●

●

●

Fig. 5 Left: OCE ‘curve’ for Example 2 with the true rank rates r on the x-axis and
Q(yR−1(r)) on the y-axis. Right: the interposition ratio for each example. Both left and
right: note the correspondence with Figure 4.

curve into n intervals of constant Q̄:∫ 1

0

Q̄(r)dr =

∫ R(1)+1/2n

R(1)−1/2n

Q̄(R(1))dr +

∫ R(2)+1/2n

R(2)−1/2n

Q̄(R(2))dr + · · ·+∫ R(n)+1/2n

R(n)−1/2n

Q̄(R(n))dr

As all segments have the same width, we have:∫ 1

0

Q̄(r)dr =
1

n

{
Q̄(R(1)) + Q̄(R(2)) + · · ·+ Q̄(R(n))

}
=

n∑
i=1

{
Q̄(R(i))

1

n

}
Now we have to look at the empirical distribution wo(c), which is equal to 1/n
iff c ∈ {yR−1(r)|r ∈ R(D)}. Then, from Definition 6, the above expression can
be rewritten as: ∫ 1

0

Q̄(r)dr =
∑

{Q(c)wo(c)}

which is the discrete version of:∫ ∞

−∞
Q(c)wo(c)dc =

∫ cmax

cmin

Q(c)wo(c)dc (3)

since Q(c) is zero outside (cmin, cmax), so finally leading to the definition of
Lo in Eq. 2. ⊓⊔
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For Example 2, the area under the OCE curve is Lo = (0/12 + 2/12 +
1/12+1/12+0/12+1/12) = 0.4166666. Note that this value is different to Lu

(0.208333), as we are using different distributions for the operating context c.
Therefore, if we are not given further information about the distribution

for c or the range of cutoffs, the use of the prior distribution for y as the cutoff
distribution is based on the fact that this is the only available knowledge to
address the problem. In addition, a practical reason is that the calculation
of the new measure is extremely simple. In the case of retraining, we just
need to retrain a classification model and calculate its Q(c) for every cutoff
c found in the test set (i.e., those with wo(c) = 1/n). But interestingly, for
reframing, we just train one regression model and the curve can be calculated
analytically, as we can calculate Q(c) by comparing y and ŷ. This procedure
has order in O(n2). This original expression and this way of calculating the
AOCE correspond to the following interpretation:

Interpretation 1 The area under the OCE curve (AOCE ) for a regression
model can be interpreted as follows: “Take a random test example j and make
the cutoff c equal its true value yj. The probability that for another random
example i its yi and ŷi are not on the same side of this cutoff c is the AOCE”.

The above interpretation is related to the typology “who’s above me” seen
in Section 2. This is a common question whenever a group of people are given
a score and we have an estimation of this score. If any individual uses the
estimator for any other individual, the probability that the estimator places
the second above or below the first incorrectly is the area under the OCE
curve. The interpretation follows formally from expression in Eq. 3, which can
be rewritten as

∫∞
−∞

1
n

∑n
i=1 Qi(c)wo(c)dc. According to Eq. 1, if we assume

equal unitary costs we have that Qi(c) = 0 if the example is correctly classified
and 1 otherwise, i.e., whether the example is misclassified or not according to
cutoff c.

In the previous section we compared the UCE plots with an AE diagram
(see Figure 4). We can do a similar decomposition for OCE plots:

Theorem 4

AOCE = Lo =
1

n

n∑
i=1

IRi

where IRi is known as the interposition ratio, the proportion of actual values
that can be found between ŷi and yi, more formally defined as follows:

IRi ,


1
n | {yj : yi < yj ∧ yj ≤ ŷi} | when yi < ŷi

1
n | {yj : yi ≥ yj ∧ yj > ŷi} | when yi > ŷi

0 when yi = ŷi

where the examples are assumed to be sorted by their true values.
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Proof We start from the definition of Lo and proceed as we did in Theorem 1:∫ ∞

−∞
Q(c)wo(c)dc =

∫ ∞

−∞

1

n

n∑
i

Qi(c)wo(c)dc =
1

n

n∑
i

∫ ∞

−∞
Qi(c)wo(c)dc

As we argued in the proof of Theorem 1, Qi(c) is 1 only when c is between ŷi
and yi. So, we can express this as:

1

n

n∑
i

∫ max(ŷi,yi)

min(ŷi,yi)

wo(c)dc

As wo is defined from the distribution of actual values y, then the inner integral
represents the proportion of actual values that can be found between ŷi and
yi, which is exactly IRi. ⊓⊔

This is a new interpretation of AOCE :

Interpretation 2 The area under the OCE curve (AOCE ) for a regression
model can be interpreted as follows: “Take a random test example i, the ex-
pected proportion of examples j whose true value yj is between ŷi and yi cor-
responds to the area under the OCE curve”.

Clearly the closer ŷi and yi are the less likely another example can be inter-
posed in between. This interpretation further clarifies that the area under the
OCE curves is independent of a linear transformation of the magnitudes of
the problem (unlike the area under the UCE , which is MAE and obviously
depends on the magnitudes). Imagine that we predict 10 but it is actually 15
(an error of -5). Then the number of actual values between 10 and 15 is in-
teresting, because it tells us whether this error is high or low, in terms of how
many of the other examples can go “misclassified” in between. If we do this for
the whole dataset, we have the area under the OCE . This independence of the
magnitude of the output variable (or the threshold) gives an extra practical
advantage for the use of OCE curves and its areas, if we do not have any other
better choice.

The values of IRi for each example are shown on Figure 5 (right). This new
way of calculating AOCE is more efficient than the original one, as for each
example, the calculation of IRi is in O(log n) using a binary search, as the
examples are assumed to be sorted by y. For n examples we have O(n log n),
which is equal to the order of previously sorting the examples.

The concept of interposition ratio is interesting as it is a component that
corresponds to the AE in the UCE plots and leads to a more efficient calcula-
tion of the AOCE . This exemplifies that AOCE is a metric that is somewhat in
between a residual-based metric and a ranking metric. However, an example-
wise decomposition of the AUCE loses our view of this metric as performance
(or error) over a range of contexts c, which is well illustrated by the OCE
plots.

So let us focus again on the OCE curve and its area. First, we will look at
a more elaborate example than the previous toy examples. We will work with
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the running Example 1 with the Zillow data of Figure 2. We randomly split
the 799 examples in the dataset into 400 examples to train a linear regression,
and the rest (399) were used for test (deployment). Figure 6 shows the UCE
and OCE curves of this model. The first thing that we observe in these two
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Fig. 6 UCE and OCE curves for a linear regression model for the Zillow data. The dotted
vertical line shows the median. We see that half of the examples (left of the median) are
extremely under-represented by the UCE plot.

plots is that they are significantly different. The plots show the median of the
actual value as a vertical dotted line. This is very illustrative, as half of the
examples are on the left, and they are clearly under-represented by the UCE
plot, as this part is much narrower on the UCE plot than on the OCE plot.
In fact, the contribution of this part for the AUCE (i.e., the MAE ) is small,
while this is half of the plot for AOCE . We can explain this by looking at a
histogram of the output values again (Figure 2, bottom). The distribution is
asymmetrical and far from uniform. Consequently, it is not very appropriate
in this case to consider a uniform distribution of cutoffs from 0 to 1000000,
when 75% of the examples are below 300000.

5 Trivial constant models

In order to better understand both the UCE and OCE plots, and CE plots
in general, in this section we are going to examine some trivial models (see
description in Table 2). The reframing approach used the five regression mod-
els, calculating the values of Q for each of them on the test set using the
cutoffs. For the retraining approaches, the models Clas-Pos and Clas-Neg are
fixed and always output positive and negative respectively. For the Clas-Maj,
we converted the numerical output of the training set into a binary label for
each cutoff and then we constructed (for each case) a new constant classifier
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from each modified training set outputting the majority class (note that this
actually leads to only two different classifiers that are just chosen depending
on the cutoff). For the three trivial classifier models, the final step is that they
are applied to the binarised test set directly for each cutoff.

Acronym Type of Constant Model Context-handling

Regr-Max Regression: outputs ∞ Reframing
Regr-Min Regression: outputs −∞ Reframing
Regr-Avg Regression: outputs the mean of the training set Reframing
Regr-Med Regression: outputs the median of the training set Reframing
Regr-Bad Regression: outputs ∞ for those below the median Reframing

of the training set and −∞ for the rest

Clas-Pos Classification: outputs positive Retraining
Clas-Neg Classification: outputs negative Retraining
Clas-Maj Classification: outputs the majority class Retraining

Table 2 Seven different trivial models.
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Fig. 7 UCE and OCE curves of the seven constant models in Table 2 for the Zillow Data
(Example 1).

Figure 7 shows their plots. We see that the models Regr-Max (always pre-
dicting ∞) and Clas-Pos (always predicting the positive class) are equivalent
(ascending diagonal in the OCE plot).

Similarly, we see that Regr-Min and Clas-Neg are equivalent (descend-
ing diagonal in the OCE plot). The Regr-Avg (mean=252485) performs very
poorly here, as the distribution is highly asymmetrical and can only switch
from the ascending diagonal to the descending diagonal very late. In contrast,
the Regr-Med (median=177858) and Clas-Maj (the model outputting the ma-
jority class), which are equivalent, take about half of the ascending diagonal
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and about half of the descending diagonal in the OCE plot. Note that the
Regr-Bad approach has better performance with a worse estimation of the
median, as it will get closer to either Regr-Max or Regr-Min. The inflection
point for Regr-Med, Clas-Maj and Regr-Bad is not exactly where the diago-
nals cross (true rank ratio 0.5 in the OCE plot), because the median in the
test set is slightly different (184128) from the training set.

Finally, Figure 7 shows the differences between UCE and OCE plots and
the way in which the trivial models are shown as (combinations of) straight
segments in the OCE plots. We also see clearly the difference between the
mean model and the median model. There is plenty of information in these
plots about the best and worst that can be done in this binarised regression
problem. In general, this suggests the use of the median and majority models
as baselines for this kind of problem.

From here, it is now the moment to show some easy properties of the OCE
plots.

Theorem 5 The OCE plots for Regr-Max and Clas-Pos are equivalent, Regr-
Min and Clas-Neg are equivalent and Regr-Med and Clas-Maj are equivalent.

Proof By Definition 6 we only need to consider ratios r ∈ R(D), where D is
the deployment or test data. Let |D| = n. We denote the elements in R(D) as
r1, . . . , rn such as R−1(ri) = i. Hence, Q̄(ri) = Q(yi).

Now, for each cutoff yi, it holds that ŷj = mRegr−Max(xj) > yi for all
1 ≤ j ≤ n, which means that Q(yi) = i−1

n . Analogously, for each cutoff yi
we have FN(yi) = 0 and FP (yi) = i − 1 for the Clas-Pos model, and then,
Q(yi) =

i−1
n . Hence the points in the OCE curves coincide for both models.

We can apply the same rationale for the Regr-Min and Clas-Neg approaches.
Finally, for the Regr-Med approach, we have that Q(yi) = i−1

n for each

yi < median(T ), where T is the training dataset and Q(yi) = n−i
n for each

yi ≥ median(T ). In the classification case, for each yi < median(T ) the Clas-
Maj model predicts all test examples as positive, so Q(yi) = i−1

n . However,
for each yi ≥ median(T ) the Clas-Maj approach predicts all test examples as
negative, giving Q(yi) = n−i

n . As a result, the OCE curves also coincide for
both approaches. ⊓⊔

Theorem 6 If the train and test medians are equal the median model is in-
flected at (0.5,0.5) in the OCE plot.

Proof As we are assuming that the yi values are in ascending order, the me-
dian corresponds to the cutoff placed at the middle point, which is i = n+1

2

(assuming n is even), whose true rank ratio is R(i) =
n+1
2 −1

n = 0.5. On the

other hand, as Q(yi) =
i−1
n for i ∈ [1..n2 ] and Q(yi) =

n−i
n for i ∈]n2 ..n], the

OCE plot is an ascending curve for ratios r ∈ [0..0.5] and a descending curve
for r ∈]0.5..1]. Finally, as the train and test medians are equal, for the cutoff
at r = 0.5 half of the test examples are below and half are above the cutoff,

that is Q̄(0.5) =
n
2

n = 0.5. ⊓⊔
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This does not happen in Figure 7 as the medians are different (177858 vs.
184128). Finally, we are interested in the limits for AOCE :

Theorem 7 The area under the OCE curve, AOCE , is always between 0 and
0.75 for regression models.

Proof The minimum value is clearly obtained when yi = ŷi for every i, as Q
equals 0. For the maximum values, we start with the results of Theorem 4,
where AOCE = Lo = 1

n

∑n
i=1 IRi. With this expression of AOCE we can freely

and independently choose the ŷi for each yi to see what the worst situation
is. As we assume that the values of yi are in ascending order, for y1 we can
actually put a very large ŷ1, so we are in the case of Eq. 4 and we have that
all the other yi < yj are in between, so IR1 = n−1

n . For y2, we can only put

IR2 = n−2
n elements in between. This can be generalised until n

2 , assuming n

is even, with IRi = n−i
n . In a similar way, we can put a very small ŷn, and

with the case of Eq. 4 we have that IRn = n
n as here yi ≥ yj . So from n

2 +1 we

have IRi =
i
n . Putting both things together and making the change j = n− i

we have:

1

n

n∑
i=1

IRi =
1

n


n
2∑

i=1

n − i

n
+

n∑
i=n

2
+1

i

n

 =
1

n


n−1∑
j=n

2

j

n
+

n∑
i=n

2
+1

i

n


=

1

n

 1

2
+ 1 +

2

n

n−1∑
j=n

2
+1

j

 =
1

n

{
3

2
+

2

n

(n − 1) + (n
2 + 1)

2
(
n

2
− 1)

}

=
1

n

{
3

2
+

1

n

(2n − 2 + n + 2)n−2
2

2

}
=

1

n

{
3

2
+

3(n − 2)

4

}
=

6 + 3(n − 2)

4n
=

3

4
= 0.75

A similar rationale works in approximately the same way when n is odd.
Note that the above result does not depend on n, so the maximum is always
achievable for any value of n. Nonetheless, for n → ∞ we have the first half of
the values decreasing smoothly from 1 to 0.5 and the second half of the values
increasing smoothly from 0.5 to 1. ⊓⊔

The maximum value for regression models can be obtained as we have seen
in the above theorem, provided we choose the test median or we estimate it
perfectly. For the classification approach if we choose a very bad classifier for
each cutoff we can theoretically have an AOCE of 1.

Corollary 2 When the train and test medians are equal, the AOCE of the
Regr-Med and Clas-Maj approaches 0.25.

Proof From Theorem 6 we see that the inflection point is at 0.5. When the
number of examples goes to infinity the curve of the Regr-Med converges to
the ascending diagonal in the first part and the descending diagonal in the
second part, by using the same rationale that we used in Theorem 5. Clearly,
the area of this triangle is 0.25. ⊓⊔
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6 Case study

In order to illustrate the binarised regression problem and the application of
the plots and metrics we have seen in the previous sections, we are going to
work with an illustrative example. This is the Zillow Data introduced in the
running Example 1 in Section 1 with the cuttoff distribution extracted from
[11] (see Figure 2, top).

We study the behaviour of eight techniques for this problem using RWeka
[21,16] and R, as shown in Table 3. We chose five regression techniques for the
reframing procedure (cutoff after prediction): linear regression (Regr-LnR),
quantile regression (Regr-qr)5 [24], k-nearest neighbours (kNN) [5] consid-
ering mean (Regr-kNN-mean) and median (Regr-kNN-median) among the
neighbours for estimating predictions, and regression trees (Regr-M5P); and
three classification techniques for the retraining procedure (cutoff before train-
ing): logistic regression (Clas-LgR), nearest neighbours (Clas-IBk) and decision
trees (Clas-J48). All parameters were chosen by default in Weka, except for
KNN, where we set the parameter k (number of neighbours) to 10. Our inten-
tion is to have three families: linear functions, lazy methods and trees, with
two similar algorithms for regression and classification, so that the comparison
could be more meaningful. The introduction of two linear regression methods
was meant to compare one method that optimises MSE (Regr-LnR) and a
method that optimises MAE (Regr-qr), given the connection seen between
AUCE and MAE . In a similar way, we compare two versions of the k-nearest
neighbours: one method that optimises MSE (Regr-kNN-mean) and a method
that optimises MAE (Regr-kNN-median) [17].

Acronym Technique Context-handling
Regr-LnR Linear Regression Reframing
Regr-qr Quantile Regression Reframing

Regr-kNN-med Nearest Neighbours Median Reframing
Regr-kNN-mean Nearest Neighbours Mean Reframing

Regr-M5P Regression Tree Reframing

Clas-LgR Logistic Regression Retraining
Clas-kNN Nearest Neighbours Retraining
Clas-J48 Decision Tree Retraining

Table 3 Eight different approaches that are considered for the experiments throughout the
paper.

We first split the dataset into 67% train and 33% test. For the five reframing
approaches we learned the regression model once on the training set, and then
we used the cutoffs for calculating the values of Q for each of them on the test
set. For the three retraining approaches we converted the numerical output of
the training set into a binary label for each cutoff and then we learned (for each

5 Quantile regression aims at estimating either the conditional median or other quantiles
of the goal variable.
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case) a new classifier from each modified training set (note the computational
cost of retraining so many models, one for each cutoff). Then each classifier
was applied to the test set with each cutoff.

For the uniform distribution (the UCE plots), we generated n cutoffs (with
n being the number of examples in the test set), but regularly distributed be-
tween the minimum and maximum values of all the true and predicted values.
This mimics a uniform distribution. For the observed distribution (the OCE
plots), we also generated n cutoffs, using the actual values on the test set as
cutoffs. We calculated the areas under both curves for the eight methods as
well as several additional metrics for the regression models in the reframing ap-
proach. Note that we cannot derive other metrics for the retraining approach,
as there is no metric in the literature that evaluates a set of classifiers for a
range of cutoffs. In fact, the area under the UCE and OCE curves, which both
can be calculated for both the reframing (regression) and retraining (classi-
fication) approaches, is one of the main contributions of this paper, as they
provide new measures for the binarised regression problem for both approaches
(and the AUCE is equivalent to MAE for the reframing approach, as we saw).
Table 4 shows the areas of the UCE and OCE curves for each of the eight
approaches and some other metrics for the reframing (regression) methods.

Approach AUCE AOCE MAE MSE eVar eBias PCor SCor KCor

Regr-LnR 60308 0.107 60394 8191e6 8179e6 3510 0.896 0.898 0.734
Regr-kNN-med 50090 0.088 50317 8167e6 8165e6 -1508 0.895 0.897 0.744
Regr-kNN-mean 50691 0.091 51023 7101e6 7085e6 4037 0.910 0.899 0.747
Regr-M5P 66994 0.114 67101 12342e6 12339e6 -1809 0.838 0.860 0.685
Regr-qr 98303 0.175 98787 29390e6 27156e6 -47265 0.634 0.641 0.463

Clas-LgR 51105 0.081
Clas-kNN 42653 0.076
Clas-J48 54899 0.088

Table 4 Results for the Zillow data and the approaches shown in Table 3. Metrics shown
the area under the UCE and OCE curves for all approaches, and the mean absolute error
(MAE), the mean squared error (MSE), the error variance (divided by n instead of n− 1)
and bias, as well as the Pearson, Spearman and Kendall correlation coefficients for the
approaches based on regression models (reframing).

We can see some interesting things here. The methods based on classifi-
cation (retraining) are equal or better than the methods based on regression.
We cannot conclude anything from just one dataset (more datasets will be
considered in Section 7). The results for Regr-kNN (mean and median) and
Clas-kNN are close in AOCE . In theory, as they use the same algorithm and
the neighbours are calculated with the same features, the results should be
very similar, but not always equal6.

The metrics AUCE and AOCE are useful for comparing the two different
procedures under the same rule, something that we cannot do with the other

6 For example, consider three neighbours with outputs y = {1, 2, 6}, and a cutoff c =
2.5. If we consider equal weights and mean for the prediction, for regression, the average
ȳ = 4.5 ≥ c = 2.5 and predicts “above the cutoff”, but for classification there is only one
neighbour above the cutoff so it predicts “below the cutoff”. Only for k = 1 would both
approaches be equal.
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metrics. However, the measures do not show whether the curves cross and
whether there are different dominance regions. This is shown by the CE , UCE
and OCE plots. Figure 8 shows the UCE and OCE plots, including the eight
approaches. Given the different distributions, in the OCE plot, it is much
easier to differentiate the eight models. We also have the diagonals for reference
(representing the median model). In fact, we see that some models go beyond
the diagonal on the left, which means that they are worse than the median
model for low cutoffs (especially Regr-LnR, which has worse behaviour for the
10% lowest cutoffs (output value below 80000 approximately). The OCE plot
and the corresponding areas are more meaningful (and clear) than the original
uniform distribution in the UCE plots. Not only are the differences magnified
but also the area gives more relevance to those cutoffs that correspond to more
frequent values of the output values.
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Fig. 8 Left: UCE curves for eight different models for the Zillow data with 67% for training
and 33% for test. Right: Corresponding OCE curves.

If we look at the models, we see that the curves for Regr-kNN (median
and mean) and Clas-kNN are very close. However, for Reg-LnR and Class-
LgR and the two decision trees, the behaviour is notably different. In this
particular case, it seems that Regr-LnR, Reg-M5P and Reg-qr can be safely
discarded, as they are dominated for any possible cutoff.

We are also interested in the way dominance regions can be identified.
Figure 9 shows the same eight models learned with 50% of the dataset and
evaluated on different halves of the remaining data. This tries to emulate the
common use of these curves to select and discard models and then use them for
different deployment data. In other words, the left plot mimics the evaluation
and selection with validation data and the right plot mimics the performance
on deployment data. Despite the fact that this is a small dataset (799 exam-
ples), we can still identify which models present the better performance and
the regions on one dataset and use them for the other. We can also deter-
mine which models can be directly discarded because they are dominated by
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other models for all the range of possible cuttoffs. In this case we can reject
Regr-LnR, Reg-M5P and Reg-qr (although Regr-M5P dominates for a small
region on the right plot). We will explore this use of OCE and CE plots in
the experiments of Section 7.
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Fig. 9 OCE curves for eight different models for the Zillow case study with the same 50%
of the data for training. The rest of the data is split into two halves, one is used for the plot
on the left and the other for the plot on the right.

We can get more insight from this problem if we look at the behaviour
when the training set becomes smaller. Figure 10 shows the OCE plots where
the training set is now 33% (left) and 10% (right). We see a gradual trend if
we also compare with Figure 8 (right). We see that performance is increasingly
degraded for all the methods in general. We see a very dramatic degradation
for Clas-J48, while its companion, Reg-M5P, stays relatively constant. We
find a similar behaviour in the two methods based on linear models and in the
regression versions of kNN. An explanation for this phenomenon is that when
the dataset becomes smaller, the discretisation stage before training reduces
the available information significantly, and the models are worse, especially
those with risk of overfitting (linear models seem to be more robust here).
This is related to the discretisation (binarisation) procedure, which creates
imbalanced datasets for very low and very high cutoffs.

All this suggests that there is a dilemma for the retraining approach using
classification. If the training dataset is small, the results may be poorer than
for reframing. However, if the training dataset is large, retraining seems better,
but keeping the training data forever and retraining each time a new cutoff is
given becomes expensive.

In this section we have seen that the OCE plots are very informative about
the behaviour of several approaches and techniques for a real dataset. Some
intuitive rationales, however, have made upon one (illustrative) dataset. The
following section analyses some of these issues more systematically.
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Fig. 10 OCE curves for six different models for the Zillow case study with 33% (left) and
10% (right) for training and 67% and 90% respectively for test.

7 Experiments comparing retraining and reframing

In this section we aim at establishing whether some of the observations in the
previous section hold in general. In order to do that, we will analyse the per-
formance of the reframing and retraining approaches over several datasets for
different regression and classification techniques respectively. Table 5 includes
a summary of the features of the twenty datasets that we use7: number of in-
stances; number of attributes; average, standard deviation, median, maximum
and minimum of the target value; and the parameters of the Beta distribution
used to model the actual distribution of cutoffs (when α = β = 1 the distri-
bution is actually uniform), and the range of the target value employed for it.
This range is in percentage w.r.t. the minimum and maximum values of the
output value in the dataset.

In our analysis, we investigate the influence of the range of the cutoff region,
considering narrow ranges those < 50% of the complete range, i.e., datasets
1, 2, 3, 8 and 19. We also analyse the influence of small vs. large datasets. We
consider a dataset small if the number of instances is < 1000, i.e., datasets 2,
3, 6, 7, 8, 9, 12, 14, 17 and 20. Finally, we also distinguish those datasets that
are evaluated with a uniform-distributed cutoff distribution (1, 2, 3), those
with an output-distributed cutoff distribution (5, 7, 8, 9, 12, 13, 15, 20) using
values of α and β that resemble the output distribution, and the rest (with
other distributions using other parameters of α and β).

The goals of the experiments are:

– Analyse whether a method that optimises MSE is worse or better than a
similar method that optimises MAE .

– Analyse the two alternative solutions for the binarised regression problem:
retraining and reframing.

7 See http://www.dsic.upv.es/~flip/BinarisedRegression/.

http://www.dsic.upv.es/~flip/BinarisedRegression/.
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– Analyse whether the hybrid model (using the best model for each cutoff
region it dominates) is best, or the selection of one single model using some
aggregated measure can also be good.

– Analyse the items above depending on different actual cutoff distributions,
wide vs narrow ranges, size of datasets, etc.

We consider the following experimental scenario. Each dataset is split into a
training dataset (50%) and test dataset (50%). For Table 9, the partition is
(50%) for training, (25%) for validation (model selection) and (25%) for test
(model evaluation). As we did in Section 6 we use three different families of
learning methods: linear models (linear regression and quantile regression),
K-nearest neighbours (median and mean versions for regression) and Decision
trees (M5P), all with the same configuration as shown in Table 3.

Id dataset #Inst #Att Ave SD Med Max Min Alfa Beta MinR MaxR Type

1 airfoil 1503 6 124.84 6.90 125.72 140.99 103.38 1 1 0.30 0.75 2
2 data cooling 768 9 24.59 9.51 22.08 48.03 10.90 1 1 0.30 0.65 2
3 data heating 768 9 22.31 10.09 18.95 43.10 6.01 1 1 0.30 0.65 2
4 CCPP 9568 5 454 17.07 451 495 420 2 2 0.15 0.85 5
5 Concrete 1030 9 35.82 16.71 34.45 82.60 2.33 2 2 0.15 0.85 3
6 forestfires 517 13 12.85 63.66 0.52 1090 0 1 5 0 1 5
7 housing 506 14 22.53 9.20 21.20 50 5 2 2 0.20 0.70 3
8 autoMpg 398 8 23.51 7.82 23 46.60 9 2 4 0.20 0.60 4
9 yacht hydr 308 7 10.50 15.16 3.06 62.42 0.01 1 1 0.30 0.60 3
10 wine-white 4898 12 5.88 0.89 6 9 3 2 2 0.10 0.90 5
11 wine-red 1599 12 5.64 0.81 6 8 3 2 2 0.10 0.90 5
12 solar-flare 1 323 11 0.29 0.77 0 6 0 2 6 0 0.70 3
13 solar-flare 2 1066 11 0.35 0.95 0 8 0 2 6 0 0.70 3
14 dee 365 7 2.97 0.97 2.79 5.12 0.77 2 2 0 1 5
15 plastic 1650 3 15 3.42 15 20 10 1 1 0 1 3
16 treasury 1049 16 7.52 3.38 6.61 20.76 3.02 1.5 3 0 1 5
17 wankara 321 10 48.92 14.98 47.70 81.60 16.20 2 2 0.20 0.80 5
18 wizmir 1461 10 61.51 14.38 60 89.90 29.40 2 2 0.20 0.80 5
19 cpu small 8192 13 83.97 18.40 89 99 0 2 2 0.30 0.70 6
20 auto price 159 16 11445 5877 9233 35056 5118 2 2 0 0.70 3

Table 5 Features of the 20 datasets employed in the experiments: number of instances,
number of attributes; average, standard deviation, median, maximum and minimum of the
target value; parameters of the Beta distribution used to model the actual distribution of
cutoffs and range of the target value employed for it (in percentage w.r.t. the minimum and
maximum values of the dataset). Last column shows which type each dataset belongs to
(see Table 1).

In order to increase the significance of the results we perform ten iterations
for each dataset. In these cases we estimate the same metrics we used for the
case study in the previous section, as shown in Table 4 with the following
variations. In order to take the range of cutoffs into account, we will use
APUCE instead of AUCE . Analogously, we also include the ACE as a measure
to better analyse case b. When not specified, the models in subsequent tables
are evaluated with the true cutoff distribution, ACE .

We first analyse in Table 6 the two alternative solutions for the binarised
regression problem: retraining and reframing. For linear regression we only
use LnR (not qr) and for kNN we only use the mean version (not the me-
dian version). The results of this table are difficult to synthesise, but we see
that generally models based on decision trees give good results for both the
retraining and the reframing approaches. However, we can find some datasets
(e.g. 7, 8, 14, 15, 17, 18, 19) where Logistic Regression is obtaining a bet-
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ter performance than J48 in the retraining scenario, whilst the situation is
inverse in the reframing scenario. On the other hand, APUCE approximates
the MAE quite well for the Regr-LnR approach and for those datasets with
a wide range of cutoffs (type 1, 3 and 5), being the values slightly different
because the APUCE is approximated with a finite number of points. Over-
all, for small datasets reframing methods seem competitive against retraining
methods. For large datasets, however, the retraining approach looks generally
better. Nonetheless, large datasets represent a situation where retraining re-
quires more computational time. In summary, depending on the application a
trade-off should be found.

In Table 7 we compare the default linear regression method (Regr-LnR,
which uses quantitative response optimisation of MSE ) with the quantile re-
gression (Regr-qr, which optimises for MAE ). Some values are missing because
some predictions were null for Regr-qr. With this experiment we try to analyse
whether the methods that are devised for MAE are better for the binarised
regression problem, as the connection between this problem and the MAE
metric may suggest. At first sight, we observe that it is true that linear regres-
sion and quantile regression optimise for different metrics. This is obvious in
datasets 9, 12, 13, 19 and 20. But if we look at the columns ACE , APUCE or
AOCE , we do not see that the results are better for Regr-qr always (it is only
the case for 6, 12, 13, 15 and 20). In fact, Regr-LnR obtains better results than
Regr-qr for MAE and MSE in datasets 1, 5 and 17. For the rest of datasets,
the differences between both methods are small. Therefore, we think that we
cannot yet conclude that optimising regression models for MAE is necessarily
better than optimising them for MSE for the binarised regression problem.

A similar analysis is shown in Table 8. Here we compare two versions of the
k-nearest neighbours: one method that optimises MSE (Regr-kNN-mean) and
a method that optimises MAE (Regr-kNN-med) [17]. The results show the
effect of these optimisations in most of the datasets: Regr-kNN-mean usually
gets better performance in MSE while Regr-kNN-med obtains better results in
MAE. In this case we have more evidence than for the linear regression case.

In Table 9 we aggregate all techniques per dataset and compare model
selection when one single model is chosen using different aggregated measures
(ACE , AOCE or APUCE ) with hybrid models and the best for the test. The
first three are chosen as options for model selection using the validation data
for the cases b (the cutoff distribution is known), d (nothing is known so we
assume output-distributed cutoffs) and c (the partial cutoff range is known)
respectively, as described in Section 2.2. These are denoted by V alCE , V alOCE

and V alPUCE in the table. In addition, we compare with a hybrid model (using
the best model for each cutoff region it dominates) combining the models
where they are best (denoted by V alHybrid). For all of them, we use the true
distribution for model evaluation with the test set. We also add two ideal
(unreachable) models for comparison: the optimal hybrid model using the test
set, denoted by TestHybrid, and the model with lowest area using the true
cutoff distribution on the test set (denoted by TestCE ). What we see in these
results is that the selection method using the aggregated measures for the
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Reframing Retraining

Id Met ACE APUCE AOCE ACE APUCE AOCE MAE MSE eVar eBias PCor SCor KCor

1
Lr 2.97 2.97 0.18 2.77 2.78 0.16 3.73 23.28 23.25 -0.02 0.71 0.69 0.51
kNN 4.12 4.13 0.24 3.05 3.07 0.18 4.84 37.67 37.59 -0.16 0.49 0.45 0.31
Trees 1.96 1.96 0.12 2.00 2.01 0.12 2.48 11.21 11.20 0.06 0.87 0.84 0.67

2
Lr 0.99 1.00 0.08 0.83 0.84 0.06 2.26 10.28 10.26 0.02 0.94 0.93 0.78
kNN 0.85 0.86 0.07 0.92 0.93 0.07 1.99 7.29 7.26 0.07 0.96 0.92 0.76
Trees 0.62 0.63 0.05 0.61 0.62 0.05 1.31 3.82 3.81 -0.01 0.98 0.98 0.89

3
Lr 0.60 0.61 0.05 0.56 0.57 0.04 2.05 8.43 8.42 0.01 0.96 0.95 0.81
kNN 0.71 0.71 0.05 0.65 0.66 0.05 2.17 8.92 8.78 0.32 0.96 0.93 0.77
Trees 0.37 0.37 0.03 0.17 0.17 0.01 0.88 1.52 1.52 -0.02 0.99 0.99 0.92

4
Lr 3.14 3.24 0.06 2.91 2.99 0.05 3.63 20.74 20.73 0.01 0.96 0.96 0.83
kNN 2.86 2.91 0.05 2.69 2.75 0.05 3.18 18.76 18.75 -0.01 0.97 0.96 0.84
Trees 2.80 2.87 0.05 2.69 2.77 0.05 3.14 16.67 16.66 0.02 0.97 0.97 0.84

5
Lr 8.84 7.88 0.16 7.75 6.56 0.14 8.45 115.93 115.60 0.40 0.77 0.79 0.60
kNN 8.99 7.94 0.16 9.14 8.13 0.16 8.50 123.06 122.44 -0.73 0.75 0.76 0.56
Trees 5.54 4.76 0.10 5.81 5.10 0.10 5.16 47.96 47.81 0.31 0.91 0.91 0.75

6
Lr 80.13 19.77 0.07 75.79 40.86 0.07 21.13 3488 3462 0.43 0.04 0.04 0.03
kNN 45.84 12.01 0.04 45.54 11.95 0.04 13.02 3441 3312 -11 0.00 0.07 0.05
Trees 81.08 20.65 0.07 45.91 12.13 0.04 21.81 4164 4121 1.22 0.00 0.03 0.02

7
Lr 2.64 2.44 0.12 2.17 2.07 0.10 3.49 23.83 23.67 0.20 0.85 0.88 0.71
kNN 3.95 3.56 0.18 3.00 2.82 0.13 4.65 54.16 51.78 -1.51 0.63 0.70 0.53
Trees 2.09 1.95 0.09 2.33 2.22 0.10 2.67 15.82 15.76 0.01 0.90 0.89 0.73

8
Lr 1.43 1.46 0.09 1.46 1.46 0.10 2.43 10.18 10.13 0.15 0.91 0.93 0.78
kNN 1.73 1.95 0.12 1.45 1.58 0.10 3.05 17.61 17.39 -0.34 0.84 0.87 0.70
Trees 1.37 1.39 0.09 1.62 1.81 0.11 2.28 9.63 9.56 0.13 0.92 0.94 0.79

9
Lr 1.53 1.55 0.08 0.33 0.33 0.02 7.35 85.09 84.50 -0.42 0.81 0.99 0.94
kNN 2.81 2.84 0.15 2.64 2.71 0.14 8.25 238.52 195.89 -6.52 0.53 0.70 0.51
Trees 0.19 0.19 0.01 0.21 0.22 0.01 1.28 5.00 4.92 -0.25 0.99 1.00 0.95

10
Lr 0.78 0.58 0.16 0.70 0.53 0.15 0.59 0.57 0.57 0.01 0.52 0.55 0.43
kNN 0.84 0.62 0.17 0.68 0.51 0.14 0.63 0.78 0.78 -0.01 0.31 0.32 0.28
Trees 0.76 0.57 0.16 0.69 0.52 0.14 0.57 0.54 0.54 0.01 0.56 0.58 0.46

11
Lr 0.66 0.50 0.16 0.56 0.44 0.14 0.51 0.43 0.43 0.01 0.58 0.58 0.47
kNN 0.73 0.55 0.18 0.59 0.45 0.15 0.56 0.67 0.67 -0.07 0.30 0.31 0.28
Trees 0.66 0.50 0.16 0.61 0.47 0.15 0.51 0.43 0.43 0.01 0.58 0.59 0.47

12
Lr 0.65 0.40 0.15 0.61 0.39 0.14 0.42 0.66 0.65 -0.05 0.25 0.24 0.21
kNN 0.55 0.30 0.13 0.52 0.29 0.12 0.32 0.77 0.68 -0.30 0.08 0.06 0.06
Trees 0.63 0.39 0.15 0.53 0.29 0.13 0.41 0.65 0.64 -0.06 0.27 0.26 0.24

13
Lr 0.74 0.47 0.13 0.65 0.39 0.12 0.48 0.84 0.84 -0.03 0.40 0.36 0.31
kNN 0.63 0.36 0.11 0.62 0.36 0.11 0.37 1.09 0.97 -0.34 0.12 0.10 0.10
Trees 0.75 0.47 0.13 0.64 0.37 0.12 0.48 0.86 0.85 -0.03 0.38 0.35 0.30

14
Lr 0.40 0.32 0.09 0.39 0.32 0.09 0.32 0.18 0.17 -0.00 0.90 0.90 0.73
kNN 0.42 0.33 0.10 0.42 0.34 0.10 0.33 0.21 0.20 -0.01 0.88 0.88 0.71
Trees 0.41 0.32 0.09 0.47 0.38 0.11 0.33 0.18 0.18 -0.01 0.90 0.90 0.72

15
Lr 3.00 3.00 0.30 1.06 1.07 0.11 3.01 11.71 11.71 0.01 0.06 0.06 0.04
kNN 1.18 1.18 0.12 1.17 1.17 0.12 1.18 2.85 2.78 -0.25 0.88 0.88 0.76
Trees 1.19 1.19 0.12 1.38 1.39 0.14 1.24 2.36 2.36 -0.02 0.89 0.90 0.76

16
Lr 0.20 0.15 0.01 0.25 0.18 0.01 0.15 0.06 0.06 -0.00 1.00 1.00 0.95
kNN 0.37 0.32 0.02 0.27 0.20 0.01 0.32 0.49 0.49 -0.03 0.98 0.99 0.93
Trees 0.20 0.14 0.01 0.24 0.18 0.01 0.14 0.05 0.05 -0.00 1.00 1.00 0.95

17
Lr 1.01 1.01 0.03 1.73 1.78 0.04 1.26 2.75 2.73 0.01 0.99 0.99 0.94
kNN 1.23 1.25 0.03 2.02 2.21 0.05 1.69 4.85 4.79 0.06 0.99 0.99 0.93
Trees 0.90 0.90 0.02 1.81 1.85 0.05 1.08 2.01 1.99 -0.01 1.00 1.00 0.95

18
Lr 0.67 0.68 0.02 0.78 0.79 0.02 0.91 1.56 1.56 0.00 1.00 1.00 0.95
kNN 0.84 0.87 0.02 1.14 1.20 0.03 1.22 2.65 2.65 -0.00 0.99 0.99 0.93
Trees 0.66 0.66 0.02 1.07 1.07 0.03 0.88 1.43 1.43 0.00 1.00 1.00 0.95

19
Lr 0.44 0.54 0.01 0.13 0.17 0.00 6.21 98.22 98.13 -0.08 0.85 0.76 0.59
kNN 0.20 0.33 0.01 0.15 0.21 0.00 4.56 46.34 45.23 1.05 0.93 0.75 0.58
Trees 0.14 0.19 0.00 0.17 0.23 0.00 2.38 12.17 12.17 -0.03 0.98 0.93 0.79

20
Lr 1954 1849 0.09 2251 2120 0.11 2063 83·105 81·105 -54 0.88 0.90 0.73

kNN 1960 1784 0.09 2736 2486 0.13 1945 112·105104·105-825 0.85 0.92 0.75

Trees 1805 1679 0.09 1867 1679 0.09 1864 73·105 72·105 -121 0.89 0.92 0.76

Table 6 Results for the 20 datasets of Table 5 as binarised regression problems. We use 3
techniques for reframing (qr and kNNmean are excluded here) and 3 techniques for retraining
as in Table 3.

whole range (V alCE , V alOCE ) are equal, i.e., they always choose the same
model in all cases. The use of a partial region makes things slightly different
for a few datasets (2, 6, 7, 8, 14 and 20), and indistinguishable (equal) for
the rest. All the datasets showing difference are of small size, so this may be
caused by a high variability in the curves for small validation sets, as we saw
in the analysis of the test case. The interesting thing is when we compare
the best single method with a hybrid method. We see that the hybrid method,
which was supposed to be better and independent of the distribution, is indeed
better in some cases but worse in others. There seems to be no pattern for
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Id Approach ACE APUCE AOCE MAE MSE eVar eBias PCor SCor KCor

1
Regr-LnR 2.97 2.97 0.18 3.73 23.28 23.25 -0.02 0.71 0.69 0.51
Regr-qr 2.95 2.95 0.17 3.78 24.52 24.46 -0.15 0.70 0.70 0.52

2
Regr-LnR 0.99 1.00 0.08 2.26 10.28 10.26 0.02 0.94 0.93 0.78
Regr-qr 1.02 1.03 0.08 2.26 11.00 10.98 -0.01 0.94 0.92 0.76

3
Regr-LnR 0.60 0.61 0.05 2.05 8.43 8.42 0.01 0.96 0.95 0.81
Regr-qr 0.69 0.69 0.05 2.05 9.06 9.06 -0.05 0.95 0.95 0.82

4
Regr-LnR 3.14 3.24 0.06 3.63 20.74 20.73 0.01 0.96 0.96 0.83
Regr-qr 3.11 3.21 0.06 3.62 20.91 20.89 -0.10 0.96 0.96 0.83

5
Regr-LnR 8.84 7.88 0.16 8.45 115.93 115.60 0.40 0.77 0.79 0.60
Regr-qr 8.43 7.61 0.15 8.55 143.86 140.90 1.66 0.74 0.81 0.62

6
Regr-LnR 80.13 19.77 0.07 21.13 3488.17 3462.34 0.43 0.04 0.04 0.03
Regr-qr 45.69 12.18 0.04 12.97 3446.57 3307.60 -11.57 0.01 0.05 0.04

7
Regr-LnR 2.64 2.44 0.12 3.49 23.83 23.67 0.20 0.85 0.88 0.71
Regr-qr 2.20 2.12 0.10 3.21 24.25 23.52 -0.79 0.85 0.88 0.72

8
Regr-LnR 1.43 1.46 0.09 2.43 10.18 10.13 0.15 0.91 0.93 0.78
Regr-qr 1.73 1.76 0.11

9
Regr-LnR 1.53 1.55 0.08 7.35 85.09 84.50 -0.42 0.81 0.99 0.94
Regr-qr 2.81 2.85 0.15 6.55 133.61 117.73 -3.97 0.81 0.99 0.93

10
Regr-LnR 0.78 0.58 0.16 0.59 0.57 0.57 0.01 0.52 0.55 0.43
Regr-qr 0.79 0.59 0.16 0.59 0.58 0.58 -0.03 0.52 0.54 0.42

11
Regr-LnR 0.66 0.50 0.16 0.51 0.43 0.43 0.01 0.58 0.58 0.47
Regr-qr 0.65 0.49 0.16 0.50 0.44 0.44 -0.03 0.58 0.58 0.46

12
Regr-LnR 0.65 0.40 0.15 0.42 0.66 0.65 -0.05 0.25 0.24 0.21
Regr-qr 0.53 0.29 0.13 0.31 0.72 0.65 -0.25 0.25 0.27 0.22

13
Regr-LnR 0.74 0.47 0.13 0.48 0.84 0.84 -0.03 0.40 0.36 0.31
Regr-qr 0.62 0.36 0.11 0.37 1.02 0.93 -0.31 0.27 0.36 0.29

14
Regr-LnR 0.40 0.32 0.09 0.32 0.18 0.17 -0.00 0.90 0.90 0.73
Regr-qr 0.41 0.33 0.09 0.33 0.18 0.18 -0.01 0.90 0.90 0.73

15
Regr-LnR 3.00 3.00 0.30 3.01 11.71 11.71 0.01
Regr-qr 1.15 1.15 0.12 1.23 2.37 2.34 -0.16 0.89 0.90 0.76

16
Regr-LnR 0.20 0.15 0.01 0.15 0.06 0.06 -0.00 1.00 1.00 0.95
Regr-qr 0.19 0.14 0.01 0.14 0.06 0.06 -0.03 1.00 1.00 0.95

17
Regr-LnR 1.01 1.01 0.03 1.26 2.75 2.73 0.01 0.99 0.99 0.94
Regr-qr 1.03 1.04 0.03 1.29 2.87 2.85 -0.08 0.99 0.99 0.93

18
Regr-LnR 0.67 0.68 0.02 0.91 1.56 1.56 0.00 1.00 1.00 0.95
Regr-qr 0.67 0.69 0.02 0.91 1.56 1.56 -0.04 1.00 1.00 0.95

19
Regr-LnR 0.44 0.54 0.01 6.21 98.22 98.13 -0.08 0.85 0.76 0.59
Regr-qr 0.63 0.67 0.02 4.13 168.42 167.10 1.11 0.78 0.91 0.77

20
Regr-LnR 1954 1849 0.09 2063 83·105 81·105 -54.00 0.88 0.90 0.73

Regr-qr 1818 1758 0.09 1948 86·105 81·105 -298.67 0.88 0.91 0.75

Table 7 Results of Linear Regression and Quantile Regression. These results show the
average of 10 iterations (50% train - 50 % test) for the 20 datasets.

this depending on the size of the dataset or the true cutoff distribution. This
suggests that the choice of one single model using ACE , AOCE or APUCE

can be a reasonably good option in comparison to keeping several models for
different regions. In the end, this shows that these aggregated metrics show
a good behaviour even if the distribution is different to the one used for the
aggregation.

8 Related work

This work has focussed on a common problem where the dependent variable
is given as numeric but the decision is binary according to a cutoff. This can
be seen as a hybrid between regression and classification, which can actually
be solved by regression and classification methods, as we have seen. The idea
of solving one kind of problem by adapting techniques for other problems is
not uncommon in the literature [28]. In this way, multiclass classification can
be solved with binary classification, and ordinal regression is frequently ad-
dressed with classification and regression. Also, some classification techniques
were originally regression techniques and vice versa (e.g., logistic regression,
kNN, neural networks, SVM, etc.). Regarding the connection between regres-
sion and classification, we find in the literature that regression problems can
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Id Approach ACE APUCE AOCE MAE MSE eVar eBias PCor SCor KCor

1
Regr-kNN-med 4.12 4.13 0.24 4.84 37.67 37.59 -0.16 0.49 0.45 0.31
Regr-kNN-mean 4.04 4.05 0.24 4.76 35.24 35.16 0.23 0.51 0.47 0.33

2
Regr-kNN-med 0.85 0.86 0.07 1.99 7.29 7.26 0.07 0.96 0.92 0.76
Regr-kNN-mean 0.85 0.85 0.07 1.97 6.88 6.86 0.10 0.96 0.93 0.76

3
Regr-kNN-med 0.71 0.71 0.05 2.17 8.92 8.78 0.32 0.96 0.93 0.77
Regr-kNN-mean 0.71 0.72 0.06 2.16 8.35 8.26 0.26 0.96 0.93 0.77

4
Regr-kNN-med 2.86 2.91 0.05 3.18 18.76 18.75 -0.01 0.97 0.96 0.84
Regr-kNN-mean 2.85 2.91 0.05 3.18 17.73 17.72 -0.04 0.97 0.96 0.84

5
Regr-kNN-med 8.99 7.94 0.16 8.50 123.06 122.44 -0.73 0.75 0.76 0.56
Regr-kNN-mean 8.77 7.80 0.16 8.36 114.05 113.50 -0.68 0.77 0.78 0.58

6
Regr-kNN-med 45.84 12.01 0.04 13.02 3441 3312 -11.12 0.00 0.07 0.05
Regr-kNN-mean 75.54 18.54 0.07 19.71 3623 3605 -0.18 0.05 0.01 0.00

7
Regr-kNN-med 3.95 3.56 0.18 4.65 54.16 51.78 -1.51 0.63 0.70 0.53
Regr-kNN-mean 4.40 3.89 0.20 4.97 51.87 51.70 0.07 0.63 0.67 0.49

8
Regr-kNN-med 1.73 1.95 0.12 3.05 17.61 17.39 -0.34 0.84 0.87 0.70
Regr-kNN-mean 1.76 1.98 0.12 3.06 17.18 17.03 0.12 0.85 0.87 0.70

9
Regr-kNN-med 2.81 2.84 0.15 8.25 238.52 195.89 -6.52 0.53 0.70 0.51
Regr-kNN-mean 2.79 2.82 0.15 9.46 196.18 193.93 -1.22 0.46 0.59 0.43

10
Regr-kNN-med 0.84 0.62 0.17 0.63 0.78 0.78 -0.01 0.31 0.32 0.28
Regr-kNN-mean 0.88 0.65 0.18 0.66 0.68 0.68 0.02 0.38 0.39 0.31

11
Regr-kNN-med 0.73 0.55 0.18 0.56 0.67 0.67 -0.07 0.30 0.31 0.28
Regr-kNN-mean 0.78 0.58 0.20 0.59 0.58 0.58 -0.03 0.35 0.36 0.29

12
Regr-kNN-med 0.55 0.30 0.13 0.32 0.77 0.68 -0.30 0.08 0.06 0.06
Regr-kNN-mean 0.68 0.40 0.16 0.43 0.66 0.65 -0.07 0.21 0.23 0.19

13
Regr-kNN-med 0.63 0.36 0.11 0.37 1.09 0.97 -0.34 0.12 0.10 0.10
Regr-kNN-mean 0.78 0.51 0.14 0.52 0.92 0.92 -0.05 0.26 0.27 0.23

14
Regr-kNN-med 0.42 0.33 0.10 0.33 0.21 0.20 -0.01 0.88 0.88 0.71
Regr-kNN-mean 0.41 0.32 0.09 0.33 0.19 0.19 0.01 0.89 0.89 0.71

15
Regr-kNN-med 1.18 1.18 0.12 1.18 2.85 2.78 -0.25 0.88 0.88 0.76
Regr-kNN-mean 1.28 1.28 0.13 1.28 2.51 2.50 -0.02 0.89 0.88 0.74

16
Regr-kNN-med 0.37 0.32 0.02 0.32 0.49 0.49 -0.03 0.98 0.99 0.93
Regr-kNN-mean 0.41 0.34 0.02 0.34 0.49 0.49 -0.01 0.98 0.99 0.93

17
Regr-kNN-med 1.23 1.25 0.03 1.69 4.85 4.79 0.06 0.99 0.99 0.93
Regr-kNN-mean 1.11 1.11 0.03 1.51 3.87 3.82 0.04 0.99 0.99 0.93

18
Regr-kNN-med 0.84 0.87 0.02 1.22 2.65 2.65 -0.00 0.99 0.99 0.93
Regr-kNN-mean 0.79 0.81 0.02 1.14 2.38 2.37 -0.01 0.99 0.99 0.94

19
Regr-kNN-med 0.20 0.33 0.01 4.56 46.34 45.23 1.05 0.93 0.75 0.58
Regr-kNN-mean 0.20 0.33 0.00 4.59 42.58 42.54 0.13 0.94 0.76 0.59

20
Regr-kNN-med 1960 1784 0.09 1945 112·105 104·105 -825 0.85 0.92 0.75

Regr-kNN-mean 1809 1669 0.09 1828 95·105 90·105 -524 0.87 0.92 0.75

Table 8 Results of kNN using median and mean as the operator to predict new values from
the selected neighbours. These results show the average of 10 iterations (50% train - 50 %
test) for the 20 datasets.

be addressed by using classification techniques. Thus, ‘quantile regression’ is
solved in [25] by learning a family of binary classifiers ct with t ∈ [0, 1] that are
then used to make more accurate q-quantile estimations; ‘regression’ is solved
by first discretising the problem for learning a classifier and then transforming
their outputs into numeric values as in [36] and [23] (that uses cost-sensitive
classification). Note that, in the mentioned approaches the original ‘regres-
sion problem’ does not change but is solved by using classification techniques
whereas our approach addresses the more general situation in which a regres-
sion problem (at the learning time) is turned into a classification one (at the
deployment time). A somewhat related approach for the opposite case, i.e.,
turning a classification problem into a regression one, is presented in [26],
where the authors defined an algorithm to transform a binary classification
problem into the problem of estimating class probability membership.

In our case the connection between regression and classification originates
from a particular kind of problem. In addition, we have a volatile cutoff, so
the mapping cannot be done once and for all. Either the context is applied to
the training set or the decision rule has to take it into account. So our work
is more closely related to an area of research that is concerned about model
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Id V alCE V alOCE V alPUCE V alHybrid TestHybrid TestCE

1 1.81 1.81 1.81 1.85 1.76 1.81
2 0.59 0.59 0.60 0.59 0.51 0.58
3 0.16 0.16 0.16 0.16 0.14 0.16
4 2.69 2.69 2.69 2.66 2.55 2.68
5 5.55 5.55 5.55 5.45 5.10 5.46
6 43.92 43.92 44.23 43.69 42.51 43.16
7 2.02 2.02 2.04 2.06 1.69 1.96
8 1.40 1.40 1.31 1.43 1.06 1.26
9 0.21 0.21 0.21 0.21 0.12 0.20

10 0.68 0.68 0.68 0.68 0.66 0.68
11 0.57 0.57 0.57 0.58 0.55 0.56
12 0.53 0.53 0.53 0.53 0.49 0.51
13 0.63 0.63 0.63 0.63 0.60 0.61
14 0.40 0.40 0.41 0.40 0.32 0.38
15 1.08 1.08 1.08 1.10 1.06 1.08
16 0.19 0.19 0.19 0.19 0.11 0.18
17 0.98 0.98 0.98 1.14 0.66 0.98
18 0.65 0.65 0.65 0.70 0.55 0.64
19 0.12 0.12 0.12 0.13 0.11 0.12
20 1733 1733 1829 1656 1068 1532

Table 9 Results of four model selection strategies: three based on the aggregated measures
using the whole range (V alCE , V alOCE and V alPUCE ), one hybrid model using the valida-
tion set. The last two columns show two ideal models for comparison: the optimal hybrid
model using the test set and the model with lowest area using the true cutoff distribution
on the test set.

generation, adaptation and evaluation when we consider volatile conditions at
deployment time [22,37].

This context can be parametrised in the form of loss functions, output vari-
able distribution, attribute costs, etc. In this scenario, there is an increasingly
common perspective of addressing this problem by using graphical represen-
tations where the context can appear in one or more of the axes of the plot.
In these plots, we can determine dominance models if the context regions are
given, or otherwise we can estimate the expected loss for a range or distribu-
tion of context. Many of these works are inspired by ROC analysis [34,9] and
ROC isometrics [14], which were originally introduced for binary classification.
Just for classification there are many other representations, such as cost curves
[8,7], DET curves [27], lift charts [29], and calibration maps [6]. A survey on
graphical methods of predictive performance evaluation for classification can
be found in [31]. The connection of many of these graphical representation
with the existing performance metrics for classification is becoming more clear
throughout the years [13,20].

However, the interest in adapting graphical representations for regression
is more recent, and we can find the so-called Regression Error Characteristic
(REC) Curves [4] and the Regression Error Characteristic Surfaces [35], which
rely on the concept of tolerance, in order to consider that an error (which can
be the squared error, the absolute deviation or any other loss function) is
admissible or not. The surfaces also include an additional dimension for the
output value. The notion of context is then very different for REC curves and
surfaces, as it is the tolerance to the magnitude of the error (and the range of
the output value for the surfaces) and not the sign of the error, as with the
binarised regression transformation to classification. In other words, in REC
curves and surfaces, the regression model is evaluated in a discretised way as
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for having an error below or above the tolerance or the output in a region,
but not the output below or above a cutoff. The so-called partial REC curves,
also introduced in [35], may look similar to our analysis of the CE curves for
partial regions of the cutoff. However, partial REC curves show the behaviour
of the model for a subset of examples according to a range of output values,
whereas “partial” CE curves analyse all the examples with a partial range of
cutoffs. This difference is well illustrated by the newly introduced notion of
clipped MAE , which is not a MAE for a subset of examples but a MAE for
which the absolute error is clipped for all examples according to the cutoff
region. Overall, the notion of context in REC curves and surfaces is quite
different to the notion of cutoff, and REC curves and surfaces are intended
for the general problem of regression. Note that we can plot CE curves for a
set of classification models, as for the retraining approach, which is obviously
impossible for REC curves or surfaces.

Other graphical representations for regression that lead to a metric are
the ROC curves for regression (RROC curves) [18]. In this case, the loss is
the asymmetric cost and the area under the ROC curves for regression is
shown to be the error variance. While there might be interesting connections
to unveil between ROC curves for regression and the UCE and OCE curves,
yet again the problem that the ROC curves for regression address is traditional
regression, where the asymmetry of the cost is the operating context.

Finally, the approach that may look more closely related to this paper is an
understanding of regression models as rankers [32]. Here, Rosset et al. stated
the problem as being able to select the p percent of examples with higher
output value, focussing on order and the magnitudes being consequently ir-
relevant. In fact, they establish connections with two rank correlation coef-
ficients: Spearman and Kendall. The difference between our paper and the
curves shown in [32] (e.g., the rank plots in Figure 1 in that paper) is very
significant. There, the magnitudes of the predictions are not important, just
the ranks. In our case, the magnitude of the prediction is very important. For
instance, just adding a constant value to all predictions leaves all the metrics
and analysis in [32] unchanged, while for our curves this clearly increases the
expected loss as the binarised regression problem is clearly affected. But it is
true that they understand regression in a different way, or as a different task,
converting a regression dataset into a ranking decision problem. Nonetheless,
on many occasions, that problem is not very realistic. Let us consider the case
study proposed in [32] as an example of how the magnitude of the scores is
important in order to reach the optimal solution. In this case study, the IBM
wallet of customers for information technology products is used for evaluating
and comparing models using a ranking-based measure. The authors suggest
that the profit would be optimised by only considering the 10% of the total
amount of companies (top companies). Let us now propose a different scenario
where an important percentage of the spending in this top range (let us say
90%), is gathered together by the first half of these 10% of top companies,
but with the same ranking previously obtained. In this case, it will surely be
more convenient to the company to reduce the number of companies down to
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5%. Therefore, differences between both scenarios (with the same ranking) are
henceforth very significant.

Summing up, to the best of our knowledge, the area under the OCE curves
is not related to any existing metric. It counts mismatches but takes the mag-
nitude into account, so it is a sort of hybrid between a ranking metric (such as
Spearman or Kendall coefficient) and a residual-based metric (such as MAE
or MSE ). The two interpretations that we have given to AOCE reflect this
hybrid character.

9 Conclusions

In this paper we have identified what is certainly not a new task but that,
to our knowledge, has not been isolated as a standalone data mining task.
We have used the term ‘binarised regression task’, as this problem is mostly
characterised by a binarisation of a regression-like data when confronted by
decision of whether the value is above or below a given cutoff. This means
that once the cutoff is given, the loss metric is just a 0/1 loss, as in binary
classification. By focussing on this task, its evaluation and two different kinds
of solutions, we have better understood how to characterise it and address it
more systematically.

We have seen with a case study that by using the graphical tools that
we have proposed it is relatively easy to determine the dominance ranges
where each model is best. However, the experiments for many datasets show
that if we just focus on the overall metric these regions are not as decisive.
Also, we have seen that none of the two kinds of families is best in general,
although the retraining approach is more inefficient and behaves more poorly
with small training sets. However, we cannot tell a priori what is small or big,
as this depends on the problem. This means that each particular case requires
a detailed examination. This lack of a clear pattern also supports the idea of
having plots and metrics to evaluate each case, as one method can be good for
one problem but very bad for other problems.

The main take-away message of this paper is that if a data mining or ma-
chine learning practitioner faces a binarised regression task, our recommen-
dation is that s/he should not treat it as a classical regression task, relying
exclusively on MSE or other classical regression metrics. We suggest to try, if
possible, different techniques under the reframing and retraining procedures
and plot their UCE and OCE curves. If we have some information about the
regions of cutoffs that are most important, we should focus our selection on
those areas. If we do not have such information and we want an overall metric
to choose upon, we could calculate the integral using an expected distribution
of cutoffs. If we do not have reliable information about the distribution of cut-
offs, we suggest to use the observed distribution on the deployment situation.
If a data mining or machine learning practitioner wants to do all this, it is
really straightforward. A complete library in R for doing this is available at
http://www.dsic.upv.es/~flip/BinarisedRegression/ and can tune their

http://www.dsic.upv.es/~flip/BinarisedRegression/
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techniques or compare with a repository of 20 binarised regression problems
there.

There are clearly many possible continuations and connections of this work.
For instance, while we have considered a 1/0 loss, there might be cases where
an asymmetric misclassification cost could also be used. In other words, while
the application areas we discussed in the introduction are characterised by a
cutoff that is set as an all-or-nothing criterion, it is not uncommon that false
positives and false negatives may have different costs. This suggests that the
cost proportion could be an additional parameter of our context, and plots
and metrics could be extended with an extra dimension, with two axes for
the context. Nonetheless, the cutoff distribution and the cost distribution will
rarely be independent, and we can analyse this dependency or even reduce
this to a single parameter.

Also, the problem that we address in this paper is binarised regression.
Why if we had more than two classes? For instance, the general discretised
regression problem could be considered (which is not the same as, but might be
related to, ordinal regression), with b categories or bins and b−1 cutoffs. This
general problem is more complex as we would need to consider distributions
for two or more cutoffs. As a result, more knowledge (or assumptions) would
be required to evaluate the models for a range of cutoffs. This would affect the
metrics and also the plots. For b categories, we would require b−1 dimensions.
One option to simplify the problem would be the use of a cascade of binary
decisions, which would be useful for those cases with b small, reusing much
of this work. A second option could be considered for those cases with three
bins where the middle bin is associated with no action (e.g., sell if below first
cutoff, buy if above second cutoff and do nothing in between). This could be
related to the problem of abstaining classifiers [12,30]. A third option would
be to assume all bins with the same width. In this overly simplified case, we
would have one parameter as context (and not a distribution) and we could
try to understand the behaviour of models depending on how many bins are
going to be considered in application time.

Finally, we have only analysed two possible approaches for this problem:
retraining using crisp classification methods and reframing using regression
models. However, we think that there are many other possibilities here to
be explored, such as the exploration of techniques that try to improve MAE
(such as the quantile regression explored here), the clipped MAE or AOCE ,
the use of soft classification methods or soft regression methods [19] under the
reframing paradigm, labelling the training dataset using the median as fixed
cutoff and leaving a mapping of classifier scores to cutoffs for deployment time
(by using a table, an approximate function or a calibration technique). This
could relate this problem with some threshold choice methods in classification,
most especially the scoredriven and the ratedriven methods [20].
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38 José Hernández-Orallo et al.

19. Hernández-Orallo, J.: Probabilistic reframing for context-sensitive regression. ACM
Transactions on Knowledge Discovery from Data, 8(3), to appear (2014) 36

20. Hernández-Orallo, J., Flach, P., Ferri, C.: A unified view of performance metrics: Trans-
lating threshold choice into expected classification loss. Journal of Machine Learning
Research (JMLR) 13, 2813–2869 (2012) 13, 33, 36

21. Hornik, K., Buchta, C., Zeileis, A.: Open-source machine learning: R meets Weka. Com-
putational Statistics 24(2), 225–232 (2009). DOI 10.1007/s00180-008-0119-7 23

22. Hsu, C.N., Knoblock, C.A.: Discovering robust knowledge from databases that change.
Data Mining and Knowledge Discovery 2(1), 69–95 (1998) 33

23. Kocjan, E., Kononenko, I.: Regression as cost-sensitive classification. International mul-
ticonference on Information Society pp. 38–41 (2009) 32

24. Koenker, R.: Quantile regression. 38. Cambridge university press (2005) 23
25. Langford, J., Oliveira, R., Zadrozny, B.: Predicting conditional quantiles via reduction

to classification. arXiv preprint arXiv:1206.6860 (2012) 32
26. Langford, J., Zadrozny, B.: Estimating class membership probabilities using classifier

learners. In: Proceedings of the Tenth International Workshop on Artificial Intelligence
and Statistics (AISTAT05), pp. 198–205 (2005) 32

27. Martin, A., Doddington, G., Kamm, T., Ordowski, M., Przybocki, M.: The DET curve
in assessment of detection task performance. In: Fifth European Conference on Speech
Communication and Technology. Citeseer (1997) 33

28. Pan, S.J., Yang, Q.: A survey on transfer learning. Knowledge and Data Engineering,
IEEE Transactions on 22(10), 1345–1359 (2010) 31

29. Piatetsky-Shapiro, G., Masand, B.: Estimating campaign benefits and modeling lift. In:
Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery
and data mining, p. 193. ACM (1999) 33

30. Pietraszek, T.: On the use of ROC analysis for the optimization of abstaining classifiers.
Machine Learning 68(2), 137–169 (2007) 36

31. Prati, R.C., Batista, G.E., Monard, M.C.: A survey on graphical methods for classifi-
cation predictive performance evaluation. IEEE Transactions on Knowledge and Data
Engineering 23, 1601–1618 (2011). DOI http://doi.ieeecomputersociety.org/10.1109/
TKDE.2011.59 33

32. Rosset, S., Perlich, C., Zadrozny, B.: Ranking-based evaluation of regression models.
Knowledge and Information Systems 12(3), 331–353 (2007) 34

33. Sammut, C., Webb, G.: Encyclopedia of Machine Learning. Encyclopedia of Machine
Learning. Springer (2011) 3

34. Swets, J.A., Dawes, R.M., Monahan, J.: Better decisions through science. Scientific
American 283(4), 82–87 (2000) 33

35. Torgo, L.: Regression error characteristic surfaces. In: Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data mining, pp. 697–702.
ACM (2005) 33, 34

36. Torgo, L., Gama, J.: Regression by classification. In: Advances in artificial intelligence,
pp. 51–60. Springer (1996) 32

37. Yang, Y., Wu, X., Zhu, X.: Mining in anticipation for concept change: Proactive-reactive
prediction in data streams. Data Mining and Knowledge Discovery 13(3), 261–289
(2006) 33

38. Zillow: Zillow API (2013). http://www.zillow.com/howto/api/APIOverview.htm 9

http://www.zillow.com/howto/api/APIOverview.htm

