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Abstract—The Modified Winding Function Theory (MWFTh),
regarded as a very powerful and general theory, has been extensively
used for the last 15 years. This paper performs an in-depth review
of the mathematical and physical framework on which the MWFTh
is based, showing that it is indeed very well suited to analyse
machines with small air gaps of arbitrary shape. However, contrary
to what is usually stated in the literature, it is also proved that its
general formulae fail when applied to large air gaps. This major
finding is deduced from two different approaches, both of which
are later reinforced by numerical examples. In spite of that, there
is an important industrial field (diagnosis techniques of salient-pole
synchronous machines eccentricities) in which good theoretical results
have been reported by applying the MWFTh to these large air-gap
machines. This issue is addressed and clarified in the paper.

1. INTRODUCTION

To the authors’ knowledge, the Winding Function Theory (WFTh)
can be traced back to [1]. Contrary to the classical d-q model, this
theory can take into account all of the winding magnetomotive force
(mmf) space harmonics in small air-gap machines. Relying on the
WFTh, the authors in [2] presented, in a clear and detailed manner,
a coupled circuit model of the squirrel cage induction machine (IM)
with no restrictions as to the space distribution of the stator windings
and rotor bars, taking into account all of the winding mmf harmonics.
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Following [2], the WFTh has been widely and satisfactorily used in the
analysis of faulty IM windings, such as shorting, opening and arbitrary
asymmetrical connections of the stator windings, as well as broken
rotor bars and cracked end rings (e.g., [3–5]). Needless to say, modern
studies based on FEM — e.g., [6–8] — are more accurate, but also
more time consuming.

Based on [2], the WFTh was also used in [9] and [10] for the
analysis of the static and dynamic eccentricity in IMs. The authors
in [9] stated then (page 916) that “as a result of non-uniform air gap,
the mutual inductances between stator phases and rotor loops, Lsr

are different than the mutual inductances between the rotor loops and
stator phases Lrs”. This is incorrect and was later criticized in [11],
where it is indicated that the inequality between Lsr and Lrs is not the
result of non-uniform air gap but originates in the way inductances are
calculated using the equations in [2], which do not account for air-gap
variations. Indeed, when linearity and reciprocity hold, the mutual
inductances LAB and LBA of two arbitrary circuits A and B must
always be the same, as proved, e.g., in [12] (notice that, since in [9] the
iron permeability was assumed to be infinite, the system is linear).

In [13] an important modification of the old procedure and a
new method to calculate inductances, called the Modified Winding
Function Approach, was presented. It was essentially aimed at
analysing rotor eccentricity effects in asynchronous and synchronous
salient-pole machines in order to develop a suitable diagnosis technique,
which is very important for improving machine life (e.g., [14]).

Except for the major requirement that all of the machine cross-
sections be equivalent (no axial variations; two-dimensional problem),
there are no restrictions regarding the rotor shape, air-gap length,
windings layout and number of space harmonics, which may be
arbitrary. Therefore, being so general and ambitious, there seems to be
no reasons to limit the application of the mathematical development
in [13] to salient-pole synchronous machines. In fact, the authors in [13]
state in the concluding section that “the Modified Winding Function
Approach can be used for finding inductances of any electrical machine
in cases of healthy and unhealthy conditions”.

Accordingly, the approach in [13] was soon considered an
undoubtful achievement. Its importance and great influence, especially
in the field of eccentricities studies, cannot be understated, as
confirmed by the almost hundred papers which have cited [13] in the
last 15 years.

Rotating electrical machines are well known to be very complex
systems. The analytical formulation of their behaviour in the case of
arbitrary large air gap and, moreover, with arbitrary number of space
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harmonics is extremely difficult. Actually, even resorting to partial
differential equations, an analytical solution is only possible in very
few cases [15]. However, according to [13], such a complexity can
be essentially overcome by means of the MWFTh (Modified Winding
Function Theory), leading to rather simple formulae in the most
general case.

In view of the relevance and potential implications of the MWFTh
proposed in [13], one logically expects that the mathematical and
physical framework on which it is based should have been thoroughly
checked and verified in all detail. Unfortunately, it clearly seems that
this has not been done so far.

The structure of this paper is as follows: Section 2 briefly
reproduces, as presented in the literature, the deduction process that
leads to the well-known key quantity called the modified winding
function. Then, Section 3 reviews in all detail the mathematical
developments in the previous section. From this analytical review it
follows that the theory is very well suited to accurately model machines
with small air gap of arbitrary shape. However, its general formulae fail
when applied to large air gaps. This is also illustrated in this section
by simulation results, comparing on several machines the exact air-gap
induction distribution with the one implicitly assumed for deducing the
MWFTh general formulae in Section 2. Thereafter, Section 4 reviews
the inductance calculation method in the MWFTh. It is theoretically
shown that, for large air gaps, the validity of the inductances general
formulae in [13] can hardly be accepted. This theoretical conclusion is
also reinforced by means of a numerical example.

In spite of that, there is an important industrial field (diagnosis
of salient-pole synchronous machines eccentricities) in which good
theoretical results have been reported by applying the MWFTh to
these large air-gap machines. This issue is addressed and thoroughly
discussed in Section 5.

2. MODIFIED WINDING FUNCTION THEORY

In this section, the general formulae of the MWFTh are established
reproducing exactly the same statements, assumptions and deduction
process as in [13]. In the next section, some of these statements,
deduction process and resulting equations will be reconsidered.

Figure 1 reproduces Fig. 1 in [13]. The stator reference for the
angle ϕ of the closed path abcda is taken at an arbitrary point, a,
along the gap. Points a and d are located on the stator corresponding
to angles 0 and ϕ respectively and points b and c are located on the
rotor. Paths ab and cd are defined to lie along the lines of flux even



518 Serrano-Iribarnegaray, Cruz-Romero, and Gómez-Expósito

Figure 1. Elementary salient-pole machine with eccentric rotor.

though these flux lines cannot be uniquely defined without using flux
plots. They will take irregular paths in the air gap but intersect with
the stator and rotor at right angles.

Applying Ampere’s law to the path abcda results in∮

abcda

~H · d~l =
∫∫

S

~J · d~S (1)

where S is the surface enclosed by the path abcda. Since all the
windings enclosed by the closed path carry the same current i, (1)
reduces to the following:∮

abcda

~H · d~l = n(ϕ, θ) · i (2)

The function n(ϕ, θ) is the turn function and represents the
number of turns of the winding enclosed by the path abcda. In general,
for a rotating coil it is assumed to be a function of ϕ and the rotor
position angle θ (obviously, for a stationary coil it is only a function of
ϕ). In terms of mmf drops in a magnetic circuit, (2) can be written as

Fab + Fbc + Fcd + Fda = n(ϕ, θ) · i (3)
Since the iron is considered to be infinitely permeable, the mmf

drops Fbc and Fda are negligible and (3) reduces to
Fab(0, θ) + Fcd(ϕ, θ) = n(ϕ, θ) · i (4)

The next step is to find an expression for the mmf drop at ϕ = 0,
Fab(0, θ). To this end one makes use of Gauss’s law∫∫

©
S

~B · d~S = 0 (5)
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where ~B represents magnetic flux density, and the surface integral is
carried out over the boundary surface of an arbitrary volume. Taking
the surface S to be a cylindrical volume located just inside the stator
inner surface (that is, infinitely close to the stator inner surface), (5)
becomes

2π∫

0

l∫

0

µ0H(ϕ, θ) r dl dϕ = µ0rl

2π∫

0

H(ϕ, θ) dϕ = 0 (6)

where l is the axial stack length of the machine, r the stator inner
radius, and µ0 the free space permeability. Since B does not vary with
respect to the axial length, and the mmf is the product of flux radial
length times the magnetic field intensity, then

2π∫

0

F (ϕ, θ)
g(ϕ, θ)

dϕ = 0 (7)

Dividing (4) by the air-gap function g(ϕ, θ) and then integrating
from 0 to 2π yields

2π∫

0

Fab(0, θ) + Fcd(ϕ, θ)
g(ϕ, θ)

dϕ =

2π∫

0

n(ϕ, θ)
g(ϕ, θ)

i · dϕ (8)

Since the second term of the left hand side is zero as found from
Gauss’s law, (8) reduces to

Fab(0, θ) =
1

2π〈g−1(ϕ, θ)〉

2π∫

0

n(ϕ, θ) g−1(ϕ, θ) · i · dϕ (9)

where 〈g−1(ϕ, θ)〉 is the average value of the inverse gap function.
Substituting (9) into (4) and solving for Fcd(ϕ, θ) yields

Fcd(ϕ, θ) =


n(ϕ, θ)− 1

2π〈g−1(ϕ, θ)〉

2π∫

0

n(ϕ, θ)g−1(ϕ, θ)dϕ


 i

= M(ϕ, θ)i (10)

The term M(ϕ, θ) is called the modified winding function.
Equations (1) to (10) in this paper replicate Equations (1) to (10)

in [13].
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3. REVIEWING THE DEDUCTION PROCESS OF THE
MWFTH GENERAL EQUATIONS

3.1. Analytical Review

We fully agree with Equations (1) to (5). The surface integral (5)
can be carried out over the boundary surface of an arbitrary volume.
Taking the surface S to be a cylindrical volume located just inside the
stator inner surface, as proposed in [13], and assuming that the flux
lines intersect with the stator at right angles, Equation (5) becomes

2π∫

0

l∫

0

µ0HSurf (ϕ, θ)r dl dϕ = µ0rl

2π∫

0

HSurf (ϕ, θ)dϕ = 0 (11)

where, unlike in (6), we have explicitly stressed that the H values refer
to the surface S.

From (11) it follows immediately that
2π∫

0

HSurf (ϕ, θ) dϕ = 0 (12)

By definition, the mmf drop along an air-gap path between stator
and rotor of arbitrary shape and length, g(ϕ, θ), is

F (ϕ, θ) =

g(ϕ,θ)∫

0

~H(ϕ, θ) · d~l (13)

where ~H(ϕ, θ) represents, obviously, the H values along the air-gap
path g(ϕ, θ).

If the air-gap path g(ϕ, θ) lies along a flux line, as proposed in [13],
the directions of ~H and d~l coincide at any point and Equation (13)
becomes

F (ϕ, θ)| arbitrary air-gap
path along a flux line

=

g(ϕ,θ)∫

0

H(ϕ, θ) · dl (14)

If, in addition we assume the particular case that the length of
g(ϕ, θ) is negligible (small air gaps), then the H value along the air-
gap path g(ϕ, θ) can be considered to be constant and equal to the
value at that point of the inner stator surface where the integration
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path g(ϕ, θ) intersects with this surface. Therefore, in this particular
case (14) reduces to

F (ϕ, θ)|small air-gap path
along a flux line

=

g(ϕ,θ)∫

0

HSurf (ϕ, θ)dl = HSurf (ϕ, θ)g(ϕ, θ) (15)

Taking into account (15), Equation (12) becomes, for the
particular case of small (negligible) air gap,

2π∫

0

F (ϕ, θ)
g(ϕ, θ)

dϕ = 0
∣∣∣∣ small air-gap
path along a flux line

(16)

Equation (16) coincides with (7), except for an essential point: it
has been deduced and is valid only for small enough air gaps, not for
arbitrary air gaps, as assumed in [13]. Before analyzing in detail in
the next section the implications of this fundamental issue, another
questionable point will be discussed.

Consider the statement “in the case of salient-pole synchronous
machines, the flux lines will intersect with the stator and rotor at right
angles” (page 158 in [13], just at the beginning). This will only occur
at those particular stator (or rotor) surface points where the linear
current density is null, as proved in [16] and shown in Appendix A.
It is well known that assuming the classical hypothesis of µFe to be
infinite, the tangential component of the magnetic field intensity ~H at
any point of the stator (or rotor) surface equals the linear current
density at this point ([15] page 47, [17] page 244, [18] page 342).
Actually, as very well synthesized in [19], page 151 “the tangential
component is most important; without it the machine would not work.
The radial field alone may be regarded as necessary for the development
of armature emf, if relative motion between the armature conductors
and the radial flux is arranged but, for the development of mechanical
forces on the conductors and the complementary flow of power across
the armature conductors/air gap interface, the tangential field is an
absolute necessity”. This fact also becomes especially clear in [20]
(a paper in which the main rotating electrical machines formulae are
derived in a beautiful and rigorous manner resorting to the Poynting
vector): without tangential H field there would be no Poynting vector
radial component pointing to the stator inner (or to the rotor outer)
surface and therefore, no power flow stator-rotor could take place.

In other words, for Equation (6) to be correct, the total magnetic
field intensity, H(ϕ, θ) appearing therein should be replaced by its
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radial component at the stator surface, HR,Surf , as follows:

µ0rl

2π∫

0

HR,Surf (ϕ, θ)·dϕ = 0 (17)

On the other hand, if we now choose g(ϕ, θ) to be a radial air-gap path
we can write

F (ϕ, θ)|arbitrary radial
air-gap path

=

g(ϕ,θ)∫

0

~H(ϕ, θ) · d~l =

g(ϕ,θ)∫

0

HR(ϕ, θ)dl (18)

This equation can be easily compared with its more complex
counterpart (14) where there are both radial and tangential H
components (more details on these two components in Appendix A). If
now, in addition to a radial path, we assume again the particular case
of small air gap, following just the same procedure as above, we get:

2π∫

0

F (ϕ, θ)
g(ϕ, θ)

dϕ = 0
∣∣∣∣ small air-gap

radial path

(19)

where g(ϕ, θ) represents, as explicitly indicated above, the mathemat-
ical expression of the air-gap radial length as a function of the polar
coordinate, ϕ (for a rotor fixed position, θ). This is the so-called air-
gap function. In fact, this is the function actually used in the papers
on MWFTh dealing with eccentricity problems, which is most appro-
priate since, for a specified machine with known static, dynamic or
mixed eccentricity, this air-gap function can rather easily be modeled
by means of different functions (see a comparison in [21]). This is not
at all the case for the flux line paths considered in Fig. 1. But, above
all, one should be aware that, when applying Gauss’s law, the H value
required in (6) is the H normal component at stator surface, as just
explained, so that the correct expression for (6) is actually (17). Thus,
the right mathematical process, which should start from (17) leads
compulsorily to (19).

Therefore, choosing for g(ϕ, θ) the air-gap function, formula (19)
coincides with (7), except for a fundamental point: its theoretical
validity has been proved only for the particular case of small enough
(negligible) air gaps, whereas the authors in [13] apply it directly to
machines with arbitrary air-gap length in order to establish the general
MWFTh formulae, in particular (8) to (10). Therefore, these formulae
become very questionable for large air gaps.
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3.2. Numerical Verification for Uniform Large Air Gaps

Equation (7) is a key equation to establish the MWFTh general
formulae. However, as just proved, its deduction requires that the H-
value along g(ϕ, θ) remains practically constant. Obviously, this is true
for small air gaps, but it is very dubious that this also holds for large
air gaps. This issue is analysed in detail in this section.

In a seminal paper [16], Doherty and Nickle, starting directly from
Maxwell’s equations, and assuming the classical hypothesis of infinite
iron permeability, deduce and solve a system of two partial differential
equations in order to determine with accuracy the induction at any
point inside a cylindrical uniform air gap of arbitrary length produced
by an arbitrary current sheet located at the armature surface (see
Appendix A of this paper for details). We have programmed these
equations in Matlab and obtained the different B values along the
path g(ϕ, θ) for very different conditions (variations in air-gap length,
mmf harmonics order, machine pole number, winding structure, etc.).

Figures 2 to 11 represent air-gap induction values versus air-gap
position at a fixed polar coordinate referred to the induction value at
rotor surface. The values have been calculated by applying (A5) and
(A6) in Appendix A to a constant air-gap machine with inner stator
radius 10 times as large as the air-gap length. Notice that this is not
a too much small value for the required verifications in this section.
On the contrary, the above ratio is actually greater than that found
in salient-pole synchronous machines for the region outside the poles

Figure 2. Induction versus
position inside the air gap for a
fixed polar coordinate. Values
referred to the induction at rotor
surface. Only fundamental mmf
wave considered. p = 1, q = 2.

Figure 3. Same as Fig. 2, with
mmf harmonics 1, 5, 7, 11.
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Figure 4. Same as Fig. 2 with
all mmf harmonics (1, 5, 7, 11, 13,
17).

Figure 5. Same as Fig. 4 with
p = 2.

Figure 6. Same as Fig. 4 with
q = 3.

Figure 7. Same as Fig. 6 with
p = 3.

(see Fig. 1), which is just the region where the claims for the MWFTh
formulae general validity are to be checked. Obviously, this general
validity, if only true, must hold not only for the complex case of the
irregular interpolar space of a salient pole machine with eccentricity
(see the MWFTh application to path cd in Fig. 1) but also for the
much simpler case of a uniform air gap of similar length. This last
case, contrary to the one with irregular air gaps, can be tackled in an
exact analytical manner, and will be considered below.

The air-gap length in Figs. 2 to 11 is displayed in percentage (0
means rotor surface and 100 stator surface). The mmf space harmonics
considered are 1 (fundamental wave), 5, 7, 11, 13 and 17. For more
details, refer to Appendix A.
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Figure 8. Same as Fig. 6 with
p = 7.

Figure 9. Same as Fig. 6 with
p = 10.

Figure 10. Same as Fig. 6 with
p = 18.

Figure 11. Air-gap induction
produced exclusively by the 11
mmf harmonic in a machine with
p = 2.

Figures 2 to 4 refer to the most favourable case of a bipolar
machine, p = 1 (the air gap is as small as possible compared to the pole
pitch). Even in this case, if q (slots per pole and per phase) is equal
to 2, there are important differences between the B values, especially
when all the space harmonics are taken into account. Of course, for
p = 2, the situation is worse, as shown in Fig. 5.

With q ≥ 3, and p = 1, p = 2 (which are the cases often found in
the literature in experimental measurements) or p = 3, the differences
between B values are not too much important (see Figs. 6 and 7).
However, as predicted in [16], this is no longer true as the pole number
increases (notice that some hydroalternators may have more than 100
poles). This is shown in Figs. 8 to 10. For p = 7, the errors are already
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greater than 20%. For p = 10, they go over 50%. Moreover, even in
the case of p = 1 or p = 2, if we are only interested in the induction
produced by a given mmf harmonic, the differences in the B values are
again very important, as shown in Fig. 11.

In summary, as explained at the beginning of this section, proving
the validity of (7) in the general case requires that, not only for small
but also for large and irregular air gaps (see, e.g., eccentric interpolar
region in Fig. 1), the H value along g(ϕ, θ) remains practically
constant. However, this does not hold even in the very much simpler
case of large uniform air gaps, as shown in Figs. 2–11.

4. REVIEWING THE INDUCTANCE CALCULATION
PROCEDURE IN THE MWFTH

In order to calculate the winding inductances, the authors in [13] start
from the statement that the permeance P of the air-gap flux path is
given by Equation (16) in [13], which is repeated here:

P =
µA

l
(20)

where µ is the permeability, A is the cross sectional area and l is the
length of the magnetic path. That is, air-gap permeance is proportional
to the inverse of the air-gap length and is independent of the order of
the applied mmf wave. In this regard, after determining with accuracy
by means of partial differential equations the permeance of an air gap
of uniform length, Doherty and Nickle summarize their work as follows
([16], page 938): “The equations show that, when the air gap is small
compared to the pole pitch of the harmonic wave, the permeance
is simply equal to the reciprocal of the airgap length, as ordinary
assumed. When the air gap is large†, the permeance is a function of
the order of the space harmonic of mmf” This conclusion is repeated in
page 937, right column, where they write “it is clear that the permeance
of a given machine is different for every harmonic mmf”. Also in
the same paper [16], in the discussion section, J. Douglas already
underlined that “It is not generally appreciated that the permeance of
the air gap. . . is different for different orders of the armature harmonics
of mmf.” (page 944, right column). The same statements can be found,
e.g., in chapter 4 of [15].

In summary, for big air-gap enlargements or expansions (and, of
course, also for uniform, but large air gaps) Equation (20) above is
† Notice, from another different perspective, that for vey large air gaps (more precisely:
when air gap length and pole pitch of the harmonic wave are of similar order), the errors
in determining the air gap B values become completely unacceptable, as shown, especially,
in Fig. 11.
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Figure 12. One-side slotted machine with rectangular slots.

not valid. Just as the key Equation (7) in Section 2 is restricted
to small air gaps, Equation (20), chosen in [13] as starting point
for general inductance calculations, is restricted to small air gaps as
well. Therefore, general formulae (23) and (24) in [13] for mutual
and magnetizing self inductances, which rely on (20), have not
general validity and may lead (at least in certain cases) to remarkable
inaccuracies in inductance calculations, as shown in the following
example.

In Fig. 12 there are only slots in the stator. Assume air-gap
length, δ = 2.54 mm, air-gap radius, r = 422.656mm, axial stack
length l = 273.05 mm and 48 slots (these data coincide with the ones
of the machine in appendix of [13]). Slot depth, d = 100mm. We want
to determine the magnetizing self-inductance of a diametral coil placed
on the rotor.

For the machine with no slots the classical formula gives,

L =
µ0

2δ
lπ r = 0.089mH

Simulation with the Finite Element Method (FEM) gives
0.0894mH. Applying the MWFTh (Equation (24) in [13]) we get

LMWF = µ0rl

2π∫

0

n(ϕ)M(ϕ)g−1(ϕ)dϕ

= µ0rl

2π∫

0

(
1
2

)
1
δ
dϕ = L = 0.0897 mH

So, for small air gaps, the three methods provide the same result.
However, for the machine with slots, the MWFTh gives, no matter the
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rotor position,

LMWF = µ0rl

2π∫

0

n(ϕ)M(ϕ)g−1(ϕ)dϕ

=
(

1
2

)2

µ0rl

π∫

0

(
1
δ

+
1

δ + d

)
dϕ = 0.0460mH

whereas the FEM simulations provide 0.0582mH. This last value is in
close agreement with the one obtained (second method) using Carter’s
factor (kc = 1.5212 for Fig. 12), namely

LCarter =
µ0

2δ
lπ r

1
kc

= 0.0590mH

In other words, the actual coil self inductance is about 28% greater
than the incorrect value provided by the MWFTh. This discrepancy
can also be obtained very fast by a third alternative way, namely
applying the air-gap length inverse law, which underlies the MWFTh
inductance calculation. According to this law, the permeance of the
slotted area in Fig. 12 would be about 40 times smaller than the
permeance of the non-slotted area. Thus, the total permeance would
be 0.512Psmooth where Psmooth means the permeance of the air gap with
no slots. However, since Carter’s factor is 1.5212, the actual permeance
value is, in fact, 0.657Psmooth, that is, 28% greater than the value given
by the air-gap length inverse law. Had other machine parameters been
chosen in Fig. 12, the errors could have exceeded 50%.

This example shows, by three different ways, that the claims in
the concluding section of [13] (“in fact, the MWFTh can be used for
finding inductances of any electrical machine in cases of healthy and
unhealthy conditions”) can hardly be accepted.

5. ON THE APPLICATION OF THE MWFTH TO
SALIENT-POLE SYNCHRONOUS MACHINES
ECCENTRICITY STUDIES

In spite of equations, figures and statements in Sections 3 and 4, it
could be objected that there is an important industrial field (diagnosis
techniques of salient-pole synchronous machines eccentricities) in
which very good theoretical results are reported by applying the
MWFTh to these machines, where very large air gaps are present. This
seems to be, at least at first sight, in contradiction with the findings
discussed in this work. Actually, this is not so for two main reasons.
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To begin with, when resorting to the MWFTh for condition
monitoring, diagnosis of rotor eccentricities is actually based not
on direct inductance measurements but on detecting some specific
stator current harmonics due to eccentricity. Yet the coincidence of
theoretical and experimental frequencies of some current harmonics
does not actually prove that the inductances have been correctly
computed.

Regarding this point, in the conclusions of [11], it was already
explicitly underlined that although “incorrect inductances had been
used in [10] in the analysis of the dynamic eccentricity” (the mutual
inductances LAB and LBA of two arbitrary circuits A and B in a
linear system must always be equal, as already said) the extra current
harmonic however was the same in both papers.

An analogous conclusion related to a different practical case can
be found in [15], where the air-gap permeance of a one-side slotted
machine, like the one in Fig. 12, is given by the expression:

P (ϕ) = P0 (1 + b1 cosNϕ + b2 cos 2Nϕ + . . .) (21)

The author underlines that the coefficients b1, b2, etc. in (21) are
different for different mmf harmonics, which is in total agreement
with [16], since, as also indicated in [15], slots expansions cannot at all
be considered “negligible air gap”. Nevertheless the author in [15] also
emphasizes that, as can be mathematically checked, the frequencies of
the stator current harmonics due to machine slotting are correctly given
by (21), even assuming (as often erroneously done) that the coefficients
b1, b2, etc. are constant, that is, independent of the mmf harmonic
order ([15], page 102 for more details). In other words, in spite of the
fact that inductances calculated from (21) with constant coefficients are
not correct, the theoretical frequencies (but not at all the amplitudes)
of current harmonics are in agreement with the measurements.

The second reason referred to above is in close connection with the
first one. Indeed, the extra harmonics coming from rotor eccentricity
are due to modifications or changes in the magnetic energy distribution
of the eccentric machine with respect to the healthy one. Yet, these
magnetic energy changes are located, by far, in the small air gap under
the poles. Therefore, for the purpose of eccentricity diagnosis based on
the detection of the frequencies of some extra significant harmonics,
the large air gap outside the poles can be neglected in the machine
equations. In fact, this is just the assumption explicitly chosen as
starting point for eccentricity analysis, for instance in [22], where the
authors write (page 1551) that in their equations “this quantity (the
permeance) is thus neglected for the points far from the poles shoes
air-gap, and taken into account only for the air-gap between the salient-
poles and the stator”. This assumption is also shown in a clear manner
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in Figs. 3 and 4 of [22]. Obviously, applying the MWFTh in such cases
will not show its limitations, simply because in fact only small air gaps
are being (and are needed for our purposes to be) considered.

The above reasoning becomes reinforced by the refined approach
followed in [23]. Its authors apply the MWFTh equations only to the
small air gap above the pole shoes (see Equation (24) in page 414
of [23]), adding thereafter, in the same page, that the contribution
of the slots and the area outside the poles (saliency) has to be
taken into account (if only necessary) by means of special techniques.
This procedure constitutes, in fact, a confirmation (although implicit
and rather hidden) of the MWFTh limitations. Indeed, should the
MWFTh actually be valid for arbitrary air gaps, then it could be
directly applied to the whole machine and there would be no need
at all to resort to special techniques for dealing with the large air-gap
areas (saliency and slots). In summary, references [22, 23], and other
similar ones, do not contradict the conclusions in the present paper, for
none of them applies the MWFTh to the machine large air-gap areas.

Finally, it is worth emphasizing that the mathematical proofs in
Sections 3 and 4 of this paper, on the MWFTh restricted validity, are
fully independent of the contents of this section. In other words, they
would keep on being true even if the objection above had not been
addressed and rebutted in the paper.

6. CONCLUSIONS

Rotating electrical machines are well known to be very complex
systems. The analytical formulation of their behaviour in the case of
arbitrary large air gaps and, moreover, with arbitrary number of space
harmonics is extremely difficult. Actually, even resorting to partial
differential equations, an analytical solution is only possible in very
few cases. However, this complexity is stated to be easily overcome by
means of the MWFTh, which leads to rather simple formulae in the
most general case.

The core of this paper is the in-depth review of the mathematical
and physical framework underlying the MWFTh presented in [13],
a theory regarded as very general (able to cope with different and
very complex problems in large air gap machines), reproduced in
several books and cited by numerous publications in the last 15 years,
particularly in the field of fault diagnosis techniques.

In this sense, the central thesis of this paper is as follows: the
MWFTh is indeed very well suited to analyse machines with small air
gaps of arbitrary shape; however we do question its general validity on
the ground of the following main reasons:
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a) The key Equation (7) upon which the MWFTh general
equations rely, does not hold for large air gaps. As proved
mathematically, it must be replaced by Equation (19) which is
only valid for negligible air gaps. This fact has been also checked
by numerous simulations, solving the exact two partial differential
equations system that gives the magnetic field of a large cylindrical
air gap.

b) The inductance or, more precisely, the permeance calculation
method in [13] is based on the so called air-gap length inverse law. Yet,
it has long been known [16] that this law does not hold for large air
gaps.

c) Starting from the assumption that there are no tangential field
components on the stator and rotor surfaces is unacceptable, especially
for a theory which claims to be as general as the MWFTh. For it
has been also well known for a long time that, without tangential
components, the machines would simply not work.

Finally, it is worth mentioning that this paper, as explained in
detail in Section 5, does not question at all the, in our opinion,
correct results, and the diagnosis techniques for salient-pole machines
eccentricities proposed in publications like [22, 23]. Notice that none
of them applies the MWFTh to the machine large air-gap areas.

APPENDIX A.

In pages 935–937 of [16] Doherty and Nickle, resorting to Maxwell’s
equations, undertake the problem of determining with accuracy the
flux density distribution at any point inside a cylindrical uniform air
gap of arbitrary length produced by an arbitrary current sheet located
at the armature surface, assuming the classical hypothesis of infinite
iron permeability. To this end, they start from the two following
differential equations (Equations (1b) and (2b) in page 936 of [16]):

∂Bλ

∂λ
+ BR + R

∂BR

∂R
= 0 (A1)

∂BR

∂λ
−R

∂Bλ

∂R
−Bλ = 0 (A2)

where

R = radius to any point in the air-gap space
λ = mechanical angular displacement on armature periphery
Bλ = induction tangential component at any point in the air gap
BR = induction radial component at any point in the air gap
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Differentiating (A1) and (A2) with respect to R and λ and
following the mathematical manipulations indicated in [16], we get
the two following second order differential equations with separated
variables (Equations (9b) and (10b) in [16]):

1
R2

∂2BR

∂λ2
+

∂2BR

∂R2
+

3
R

∂BR

∂R
+

BR

R2
= 0 (A3)

1
R2

∂2Bλ

∂λ2
+

∂2Bλ

∂R2
+

3
R

∂Bλ

∂R
+

Bλ

R2
= 0 (A4)

Doherty and Nickle solved the above system in the case of a
sinusoidal current sheet (or a sinusoidal mmf) of arbitrary amplitude
and pole number placed at the stator surface, obtaining the tangential
and radial components of the induction at any air-gap point. Their
values are given by expression (24b) and (27b) in page 937 of [16],
which are repeated here using today’s more usual symbols for some
quantities:

Bλ =
n p FnRpn

a(
R2pn

a −R2pn
f

)
(
Rpn−1 −R2pn

f R−pn−1
)

sin(pnλ) (A5)

BR =
n p FnRpn

a(
R2pn

a −R2pn
f

)
(
Rpn−1 + R2pn

f R−pn−1
)

cos(pnλ) (A6)

where n is the order of the sinusoidal mmf (or of the sinusoidal current
sheet), Ra the radius of inner armature surface, and Rf the radius of
rotor surface (more details in [16]).

Obviously, in actual machines, the current sheet wave produced by
the stator winding is not sinusoidal. In this case we simply proceed to
its Fourier expansion, apply (A5) and (A6) to each sinusoidal harmonic
wave and add up in due manner the individual contributions.

Notice that according to (A5) and (A6) there are both radial and
tangential induction components at the stator surface, as underlined
after establishing (16) in this paper. Notice too that at all points of the
radial straight line defined by λ = 0 there is only radial component, no
matter the order n of the mmf harmonic considered. In other words,
this particular radial straight line is at the same time a flux line. We
have chosen this straight line in the calculations and figures in Section 3
(simulations with other radial straight lines provide similar results).
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