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Abstract
The sequence of tasks is vital to the development of any project. The 
order of tasks is influenced by the information flow among them. The 
dependency structure matrix (DSM) can be used to model information 
flow. However, the information used by the DSM, including task duration, 
time required for communication, and task overlap, can have uncertain 
values. The aim of this paper is to analyze the effect of uncertainty 
on the scheduling of tasks using the DSM. Monte Carlo Simulation is 
applied to represent uncertainty in time estimates for projects using 
DSM. Conventional project duration, normal project duration with 
communication times, and normal project duration containing natural 
overlapping were considered for project time estimations. Several 
distribution functions were used to represent the uncertainty. It is 
concluded that project duration has normal distribution behavior that 
is independent of the type of input parameter distribution functions; 
that mean values of the input parameters give a good estimation of 
mean project duration; that interval and inner interval arithmetic 
give overestimation and underestimation of project duration times 
respectively. 

Keywords: DSM, Project Duration, Managing Project, Monte Carlo 
Simulation, Interval Arithmetic.

Resumen
La secuencia de actividades es vital para el desarrollo de cualquier 
proyecto. El orden de las actividades está influenciado por el flujo de 
información entre ellas. La matriz de la estructura de dependencias (DSM) 
se puede utilizar para modelar el flujo de información. Sin embargo, 
la información utilizada por la DSM puede tener valores inciertos. El 
objetivo de este trabajo es analizar el efecto de la incertidumbre sobre la 
programación de actividades utilizando la DSM. La simulación de Monte 
Carlo se aplica para representar la incertidumbre en las estimaciones 
de tiempo para proyectos que utilizan DSM. Para las estimaciones de 
duración de proyecto se consideraron la duración convencional del 
proyecto, la duración normal de proyecto con tiempos de comunicación, 
y la duración normal de proyecto con  superposición natural. Las 
incertidumbres se representaron con varias funciones de distribución. Se 
concluye que la duración de proyecto presenta distribución normal que 
es independiente del tipo de funciones de distribución de los parámetros 
de entrada; valores medios de los parámetros de entrada dan una 
buena estimación de la duración media del proyecto; las aritméticas de 
intervalo e intervalos interior dan una sobreestimación y subestimación 
de los tiempos de duración de proyecto respectivamente. 

Palabras Claves: DSM, Duración de Proyectos, Administración de 
Proyectos, Simulación de Monte Carlo, Aritmética de Intervalo. 

Introduction

The Dependency Structure Matrix (DSM) is a widely used tool 
because it allows the different parts of the project or product 
to be broken down or to be put together. The complexity is 
simplified by breaking down the project into smaller tasks, 
identifying the relationship between them, assessing their 
impact on the project, and assigning resources to individual 
tasks (Browning 2001). DSM has been applied to a large 
number of systems (Pektaş and Pultar, 2006; Cronemyr et 
al. 2001; Smith and Morrow 1999), including construction 
projects (Srour et al., 2013).

Moreover, the scheduling of projects is based on finding 
resources and scheduling activities with the goal of optimizing 
the efficiency of the project (Ponz et al., 2011). Overlapping 
of sequential activities occurs on most construction projects 
(Srour et al, 2013), which requires a two-way exchange of 
information among dependent design disciplines (Wang et 
al., 2006). The conventional tool for scheduling is the PERT/
CPM, however, the PERT/CPM is not an appropriate tool for 
analyzing a project with overlapping because it is unable to 
model information flow (Wang and Lin 2009, Węglarz et al. 
2011). Therefore, it cannot be used to model interdependent 
tasks and loops (Maheswari and Varghese, 2005). 

As a result of the factors previously mentioned, recent efforts 
to reconcile project scheduling and DSM have sought to 
produce a tool that serves two purposes: analysis and project 
scheduling (Maheswari and Varghese, 2005). Researchers 
have demonstrated that DSM is a powerful tool in planning 

the sequence of tasks. It depicts the interaction between the 
tasks, allows exchanges of information to be identified and 
administered (Yassine et al. 1999; Chen et al. 2003), and allows 
knowledge management (Tang et al. 2010). In addition, DSM 
has been applied to planning and scheduling tasks and to 
calculating critical path and assigning the “amount of effort/
work undertaken” for the duration of the activity. 

Recently, Srour et al. (2013) presented a methodology for 
scheduling the design phase of fast-tracked construction 
projects taking into consideration information exchange among 
project activities. The DSM was used to generate the shortest 
schedule by adapting the method proposed by Maheswari and 
Varghese (2005).

However, tasks in a project are subject to many unknown 
factors (Herroelen and Leus 2005; Perminova et al. 2007) that 
can lead to changes in scheduling. These uncertainty-cau-
sing factors include: tasks taking more or less time than was 
originally estimated, resources not being available, required 
materials being ready before they are scheduled to arrive, 
tasks being  introduced or withdrawn, and weather conditions. 
These changes or uncertainties can cause the schedule to be 
delayed, increase stock, or require major work, all of which 
lead to higher costs than those originally planned. 

For example, González et al. (2010) studied the situation 
of construction planning in Yucatan and found that very 
frequently construction firms face problems caused by delays 
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in completion time, prompt supply of materials, and lack of 
labor or machinery. Because there are many unknown factors 
the verification of methods used to determine scheduling has 
been questioned (Goldratt, 1997).

One of the limitations of the research conducted by Maheswari 
and Verhese is the difficulty of obtaining a firm estimate of 
how long each task, the communication among tasks, and the 
overlap of tasks will take. Gálvez et al. (2012) studied the effect 
of uncertainty of task programming using DSM and grey theory 
or interval arithmetic. Shi and Blomquist (2012) extended the 
DSM method proposed by Maheswari and Varghese (2005) 
using fuzzy numbers. 

The aim of this study is to analyze the effect of uncertainty 
on the estimation of project duration times. Monte Carlo 
simulation was applied to estimate the conventional 
project duration time, normal project duration time with 
communication times, and normal project duration time with 
natural overlapping. Uncertainty was considered in the task 
duration times, communication times, and time factor (for 
natural overlapping) using uniform, normal, and triangular 
distribution functions.  

The remaining sections of this paper will be organized in 
the following manner. The second section provides brief 
descriptions of five important topics related to this paper, 
namely DSM, task planning under uncertainty, Monte Carlo 
simulation, interval arithmetic, and the estimation of project 
duration. The third section describes the Monte Carlo 
numerical experiment that was conducted and analyzes the 
results. Additionally, the applications of interval arithmetic 
(standard and inner) are compared with the values obtained 
by the Monte Carlo simulation. The fourth section provides 
conclusions. 

Background

This section provides brief descriptions of DSM, task planning 
under uncertainty, Monte Carlo simulation, interval arithmetic, 
and the estimation of project duration. 

DSM shows the relationship between the components of a 
system in a format that facilitates visual analysis. DSM is a square 
matrix that has the same number of rows as columns. The 
elements that lie outside the diagonal signify the dependence 
of one element upon the others. The content of the columns 
can be understood as “information given to” and by row as 
“information received from”. In other words, the entries can be 
seen by reading the columns, and the dependent factors can 
be seen by reading the rows (Browning 2001). 

Examined from the point of view of task scheduling, there are 
3 types of configurations (see figure 1): parallel, sequential, 
or coupled. When tasks are parallel, they do not interact with 
each other. For example, tasks A, B, and C in figure 1b do not 
require any exchange of information; whereas in figure 1a, 
when the tasks are sequential, one information element of task 
A influences the behavior of or decisions made concerning the 
other task B in a single direction. Consequently, the parameters 
of task C are selected on the basis of B, and B on the basis of A. 
If tasks are coupled, the flow of information is related, due to 
the fact that element C influences A or vice versa (A influences 
B, and B influences C), as shown in figure 1c. DSM can also 
represent tasks which are interrelated (Eppinger et al. 2010). 

The process of organizing the order of tasks can be achieved 
by moving a column left or right or a row up or down with the 
aim of obtaining a matrix that does not have marks over the 
diagonal cells or marks near the diagonal cells.  This is known 
as partitioning. 

Figure 1. Graphic and DSM representation of possible configurations in the project process. Self Elaboration, 2014

The literature on the scheduling of projects focuses on 
the generation of tangible tasks that allow the objective 
to be optimized, usually within the project’s duration. This 
scheduling is used as a basis for planning or programming and 
fulfills a number of important functions (Aytug et al. 2005). 
These functions include locating the resources for different 
tasks, coordinating tasks with outside organizations, having a 
communication base, and allowing for agreements and sub-
contracting. However, as previously mentioned, there are a 
number of uncertain factors that make scheduling projects 
difficult. 

In general, there are five different ways of approaching 
uncertain factors when scheduling projects (Herroelen and 

Leus, 2005): reactive scheduling, stochastic scheduling, fuzzy 
scheduling, proactive (robust) scheduling, and sensitivity 
analysis. Reactive scheduling does not attempt to incorporate 
uncertainty into the base planning, but rather revises and 
re-optimizes the original scheduling when an unexpected 
event takes place (Vieira et al. 2003; Sabuncuoglu and Bayiz, 
2000). 

Stochastic scheduling focuses on tasks with uncertain 
durations with the aim of minimizing the expected length of 
time that a project will take, while also taking into account 
restrictions on resources and tasks with random lengths. This 
method does not use a base plan and requires significant 
computer effort. The programming of fuzzy tasks indicates 
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that the probability distribution of a task’s duration is unknown 
due to a lack of historical data. For this reason, the length of 
time is usually estimated by human resources experts whose 
judgments can be imprecise. As a result, instead of probable 
distributions, member functions based on fuzzy sets are used, 
and these member functions translate into start and finish 
times of fuzzy tasks (Slowinski and Hapke, 2000). Another 
method is to represent human experts as normally distributed 
variables (such as Cox, 1995), but allow task durations to have 
other continuous distributions, such as triangular or uniform 
distributions (Lee, 2005).   

Monte Carlo simulation involves sampling the model using the 
parameters’ probability distribution functions, such as normal 
or uniform, to provide parameter values. Usually, a random 
number is used to obtain a value based on the parameters of 
the distribution function. When a value for each parameter has 
been calculated, the model is quantified to obtain an answer. 
This answer is then placed into a frequency table. The entire 
calculation process is then repeated until the desired number 
of iterations is reached. 

In addition to the Monte Carlo simulation, we explore the 
use of interval arithmetic to estimate the range of project 
duration times. Standard interval arithmetic and inner interval 
arithmetic will be compared with the maximum and minimum 
values given by Monte Carlo simulation. 

Standard interval arithmetic operates with real intervals 

    [1]

where  and  are real numbers. For any real arithmetic 
operation , the corresponding interval arithmetic 
operation  is defined where the result is an 
interval containing every possible number produced by 

. The standard interval arithmetic 
operations needed here are (in our applications, all the 
numbers are positive numbers) [2],[3],[4].

     [2]

 [3]

   [4]

 [5]

 [6]

With these equations the full range of possible function values 
in the defined region are always included. A disadvantage of 
standard interval arithmetic is the dependency problem: when 
a given variable occurs more than once in interval computation 
it is treated as a different variable at each occurrence. Inner 
interval arithmetic assumes that all operands are dependent. 
The inner interval operations needed here are (see Zilinskas 
and Bogle, 2004). [5], [6], [7]

However, the estimates obtained for a range of function 
values using inner interval arithmetic are not guaranteed to 
be enclosed in the function´s range, and therefore, will not 

cover the entire range. Finally, conventional times for the 
duration of a project, normal duration of a project with time 
for communication, and normal duration of a project with 
natural overlaps are briefly explained. Conventional time (CT) 
only take into account the length of time required to carry 
out tasks, and can be determined using DSM in the following 
manner. [8], [9], [10]

 [7]

 [8]

 [9]

 [10]  

 [11]

Where  is the conventional project duration,  represents 
the time of duration for task i.  Additionally, n refers to the 
number of tasks; i refers to all previous tasks (intermediary 
tasks) of j; j refers to the currently selected task identified by 
the partitioned DSM matrix. ES refers to Early Start and EF 
refers to Early Finish.   

Normal time (NT) for project duration is the duration of the 
project, including the times for the duration of each task as 
well as the time for communication. Maheswari and Varghese 
(2005) have determined the normal time for the duration of a 
project with DSM using the communication times that occur 
between tasks and their duration. Communication time is the 
time spent obtaining information before or after completing 
a task, as well as time spent in meetings, organizing those 
meetings, sending and receiving emails, and other duties. The 
NT can be determined using Eqs. [8] and [10] and changing Eq. 
[9] for the following equation (for more details see Maheswari 
and Varghese, 2005). [11]

Where the elements outside the diagonal,  are equivalent to 
the  communication times of each task. The meanings of n, i, 
and j are the same as previously stated. When one task depends 
on another, there are two possibilities: they may overlap, or 
they may not. Situations in which there is no overlap are of 
interest to administrators and carry a comparative minimum 
of risk. In situations where there is overlap, the upstream task 
may communicate available preliminary information to the 
downstream task and enable the downstream task to begin 
earlier (Wang and Lin 2009). 

The relationship from Finish to Start (FS) is a conventional re-
presentation of the relationship between tasks in DSM, which 
by itself does not completely represent the overlap of projects. 
It is also possible to estimate the duration of overlap by taking 
into account the time taken to transfer information between 
tasks through a relationship Start to Start (SS). 

In the case of tasks that do not overlap, it is assumed that the 
following, or successor, task will not start until the previous 
task or tasks have been completed. Tasks that overlap assume 
that a successor task can start before receiving information 
about tasks that took place previously and that these tasks are 
able to provide information before they have been finalized.
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The times that allow for overlap are represented by the time 
factor, which is defined as the ratio between the time taken to 
exchange information and the time taken to carry out a task 
(Maheswari and Varghese, 2005). These times are represented 
by the factors Tp and Ts, where Tp represents the time factor to 
send information from a previous task, and Ts is the time factor 
required to receive information for the successor task. 

 [12]

                                          [13]

To determine the time for the duration of a project with 
overlapping tasks (NTO), the Eq. [10] can be used, but replacing 
Eqs. [8] and [9] by Eqs. [12] and [13]. Where  and  are two 
matrices representing time factors,  represents all the values 
of Tp, and represents  all the values of Ts. The significance 
of the remaining elements is the same as previously indicated.

Monte Carlo Numerical Experiments 

Description of the case study

This section presents the procedure for solving the conventional 
time for the duration of a project, the normal time for the 
duration of a project including the time for communication, 
and the normal time for project duration when the project 
has overlapping tasks. To provide a clearer understanding, 
this solution procedure is applied to a modified version of 
an example given by Maheswari and Varghese (2005), but 
including uncertainty in task duration, communication times, 
and time factors. This example consists of 10 tasks (A through 
J), as shown in table 1. Information is also provided about 
the previous tasks, the mean duration times, and standard 
deviations. 

Table 2 presents the mean and standard deviation of 
communication times and the values of the matrices B and 
C, where Bji represents the values of Tp (information required 
prior to carrying out the task).  For example, 0.78 in BCA implies 
that A can send the required information through C at the 
end of 0.78 times its duration. Cji represents the values of Ts 
(time factor for receiving information).  For example, 0.095 
in CDA implies that it is essential that to continue, D receive 
information from A, but only at 0.095 of the time of its 
duration, instead of at the beginning of the task.
 
For the calculation of the conventional project duration, the 
normal project duration with communication times, the normal 
overlap project duration, probability distribution functions of 
task duration are needed. Therefore, communication times 
and time factor values were sampled from normal, uniform, 
and triangular distribution functions. Figure 2 provides an 
example of the distribution function of task A duration time. 

Table 1: List of tasks in the example with the mean duration time (Aii) and 
standard deviation for each task. Self Elaboration, 2014

Task
Identification

Previous 
Information

Mean Duration 
(Days)

Standard 
Deviation

A - 5.9 0.1

B D 8.2 0.45

C A 6.85 0.33

D A, F 3.9 0.05

E B 8.85 0.28

F A, C 1.0 0.0

G F, J 2.05 0.03

H I 10.05 0.325

I D, G, E 4.95 0.225

J F, B 3.0 0.0

Table 2: The mean and standard deviations for communication times (Aji) 
between tasks, time factors Tp (Bji), and time factors Ts (Cji). Self Elaboration, 
2014

j i

Communication 
mean time 
(Days), Aji

Time Factors 
Tp, Bji

Time Factors 
Ts, Cji  

mean Standard 
Deviation mean Standard 

Deviation mean Standard 
Deviation

C A 1.00 0.0 0.78 0.01 0.10 0.0

F C 1.90 0.05 0.585 0.008 0.310 0.0050

D A 0.80 0.0 0.795 0.003 0.095 0.0025

D F 0.30 0.0 0.685 0.007 0.200 0.0050

B D 4.05 0.18 0.885 0.008 0.375 0.0125

J F 1.50 0.0 0.895 0.003 0.195 0.0075

J B 0.0 0.0 0.960 0.020 0.0 0.0

G F 0.10 0.0 0.480 0.010 0.480 0.010

G J 0.40 0.0 0.980 0.010 0.310 0.005

E B 4.25 0.125 0.865 0.018 0.100 0.0

I D 3.45 0.075 0.580 0.010 0.195 0.0075

I G 2.00 0.05 0.795 0.003 0.560 0.0350

I E 3.05 0.175 0.980 0.010 0.0 0.0

H I 4.90 0.150 0.665 0.018 0.405 0.0125

Results

Values of task duration, communication times, and time factors 
were generated randomly from the probability distribution 
functions. Then using equations 1 to 12, values of conventional 
project duration, normal project duration with communication 
times, and normal overlap project duration were calculated, 
respectively. These values were placed in a frequency table, 
1000 calculations were completed, and the data from this 
table were analyzed. MS Excel was used in all computations. 
Histograms and descriptive statistics were constructed for 
each type of project duration time and distribution function. 

The conventional project duration results are given in table 3. 
All distribution functions gave similar results. From the values 
of kurtosis and skewness, it is clear that the conventional 
project duration has a normal distribution. This result is the 
same whether the input data have a uniform, normal, or 
triangular distribution.

The mean and median of a conventional project are also 
similar because the distribution is normal. If the mean values 
of each duration task are used to calculate the conventional 
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project duration, a value of 49.70 is obtained, which is close 
to the mean values obtained in the Monte Carlo simulations. 
If the minimum and maximum values of each task duration 
are used to calculate the conventional project duration using 
standard interval arithmetic, values of 46.20 and 53.20 are 
obtained, which are overestimations of the values obtained 
in the Monte Carlo simulations. On the other hand, if inner 
interval arithmetic is used, values of 49.50 and 49.90 are 
obtained, which are underestimations of the values obtained 
in the Monte Carlo simulations.

Figure 2. Task A distribution functions included in the Monte Carlo simulation. 
Self Elaboration, 2014. 

Uniform distribution

Normal distribution 

Triangular distribution 

The normal project duration and normal overlap project 
duration results are also given in table 3. If the mean values 
of each task duration and communication time are used to 
calculate the normal project duration and normal overlap 
project duration, values of 69.15 and 32.05 are obtained 
respectively, which is near the mean values obtained in the 
Monte Carlo simulations. If the minimum and maximum values 
of each task duration are used to calculate the normal project 
duration and normal overlap project duration, using standard 
interval arithmetic, values of [64.3 and 74.0] and [29.48 and 
34.68]  are obtained respectively, which are overestimations 
of the values obtained in the Monte Carlo simulations (see 

table 3). On the other hand, if inner interval arithmetic is 
used, values of [68.70 and 69.60] and [30.96 and 32.83] are 
obtained, which are underestimations of the values obtained 
in the Monte Carlo simulations.

Table 3. Project duration for uniform, normal and triangular input distribution 
functions. (SD=standard deviation). Self Elaboration, 2014.

Input Distribution Function

Uniform Normal Triangular

Conventional project duration

Mean 49.412 49.666 49.873

Median 49.425 49.647 49.853

SD 0.782 0.763 0.527

Kurtosis -0.286 0.096 -0.043

Skewness -0.013 -0.015 0.142

Minimum 47.031 47.024 48.346

Maximum 51.856 52.067 51.730

Normal project duration with communication times

Mean 68.869 69.108 69.404

Median 68.901 69.108 69.387

SD 0.871 0.812 0.571

Kurtosis -0.151 0.193 -0.043

Skewness -0.070 -0.049 0.119

Minimum 66.084 66.472 67.701

Maximum 71.419 71.884 71.520

Normal overlap project duration

Mean 31.871 32.028 32.048

Median 31.873 32.033 32.045

SD 0.485 0.543 0.493

Kurtosis -0.338 0.030 0.034

Skewness 0.008 0.006 0.059

Minimum 30.508 30.187 30.322

Maximum 33.198 33.766 33.530

Figures 3 shows distribution functions of normal overlap 
project duration when uniform, normal and triangular 
distributions are used as input distribution functions for the 
task duration, communication times and time factors. It may 
be observed that normal distribution functions are obtained 
independently of the kind of input distribution functions used.  
Similar results are observed for the distribution function of 
conventional project duration and normal project duration. 

Table 4 reports the interval values of the project duration. The 
values under the column heading “Monte Carlo Simulation” 
are the minimum and maximum values, including normal, 
uniform, and triangular distributions. Overestimations are 
obtained using standard interval arithmetic, whereas underes-
timations are obtained if inner interval arithmetic is used. The 
last column of Table 4 gives the average values of standard and 
inner interval arithmetic, which are better estimations of the 
minimum and maximum project duration times.

Monte Carlo simulations were performed using uniform and 
normal distributions for the input parameter, with standard 
distribution value equal to two times the values of the previous 
simulations. The results are given in table 5,  columns headed 
“SD” represent the Monte Carlo simulation performed with a 
standard deviation equal to the values given in the previous 
simulations, and columns headed “2SD” represent the Monte 
Carlo simulation performed with a standard deviation equal to 
two times the values in the previous simulations. The mean 
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and median values are similar, but as expected, the standard 
deviation increased to a value nearly equal to two times that in 
the previous results. 

Conclusions 

The following may be concluded from this research: 1) Monte 
Carlo simulation allows the uncertainty in the project duration 
to be quantified by taking into account how long it takes to 
carry out each task in relation to overlapping time factors. 2) 
The project duration has a normal distribution independent 
of the distribution of the task duration, communication times, 
and time factors. This is observed for normal project duration, 
conventional project duration with communication times and 
conventional overlap project duration. 3) A good estimation of 
project duration can be obtained with the mean values of task 
duration, communication times, and time factors. 4) Standard 
interval arithmetic produces an overestimation of project 
duration, and inner interval arithmetic gives an underesti-
mation of project duration. 5) Good estimations of minimum 
and maximum project duration times are obtained using the 
average values of standard and inner interval arithmetic.

Figure 3. Normal project duration with overlapping distribution functions.

uniform distribution functions 

 
normal distribution functions 

 
triangular distribution functions
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Table 4. Interval values of project duration. Self Elaboration, 2014

Project Duration Monte Carlo Simulation Standard Interval 
Arithmetic Inner Interval Arithmetic Average value of Interval 

Arithmetic

Conventional time 47.02-52.07 46.20-53.20 49.50-49.90 47.85-51.55

Normal with  communication times 66.08-71.88 64.30-74.00 68.70-69.60 66.50-71.80

Normal time with overlapping 30.19-33.77 29.48-34.68 30.96-32.83 30.22-33.76

Table 5. Project duration with different values of standard distribution. Self Elaboration, 2014

Distribution function

Uniform Normal

SD 2SD SD 2SD

Conventional project duration

Mean 49.412 49.663 49.666 49.718

Median 49.425 49.617 49.647 49.652

Standard deviation 0.782 1.681 0.763 1.541

Kurtosis -0.286 0.406 0.096 0.390

Skewness -0.013 0.091 -0.015 0.096

Minimum 47.031 45.173 47.024 42.705

Maximum 51.856 54.973 52.067 55.113

Normal project duration with communication times

Mean 68.869 69.123 69.108 69.175

Median 68.901 69.142 69.108 69.148

Standard deviation 0.871 1.820 0.812 1.693

Kurtosis -0.151 0.312 0.193 0.496

Skewness -0.070 0.029 -0.049 0.069

Minimum 66.084 64.043 66.472 60.856

Maximum 71.419 75.220 71.884 75.737

Normal overlap project duration

Mean 31.871 31.885 32.028 32.012

Median 31.873 31.870 32.033 32.028

Standard deviation 0.485 0.783 0.543 0.952

Kurtosis -0.338 0.245 0.030 0.244

Skewness 0.008 0.080 0.006 0.057

Minimum 30.508 29.788 30.187 28.518

Maximum 33.198 34.231 33.766 35.925
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